

UAM Fleet Noise Assessments Using the FAA Aviation Environmental Design Tool (AEDT)

Stephen A. Rizzi Senior Researcher for Aeroacoustics NASA Langley Research Center <u>stephen.a.rizzi@nasa.gov</u>

Aerial Mobility: Noise Issues and Technology A TQA Virtual Workshop Organized by the INCE Foundation in cooperation with NASA and FAA Hosted by the National Academy of Engineering December 2-3, 2020

Outline

- Motivation and Approach
- Operational State Determination
- Calculation of NPD data
- Modeling Approach
- Generation-1 Assessment
- Concluding Remarks and Future Work

<u>Goal</u>

Assess the effectiveness of current commonly-used tools for the evaluation of UAM community noise.

<u>Approach</u>

- Develop methodology utilizing the FAA Aviation Environmental Design Tool (AEDT).
 - Lack of AEDT Aircraft Noise and Performance (ANP) Model for UAM requires user-supplied Noise-Power-Distance (NPD) data and use of fixed-point flight profiles.
- Demonstrate on representative route case.

Generation-1 Simulated Baseline Routes⁺

- Routes provided by NASA ATM-X UAM X2 team
- 16 routes around DFW
- 2 reference vehicles RVLT Quadrotor

RVLT Lift + Cruise

Operational State Determination

Distribution of X2 Trajectory Data

44 Operating States for L+C

AEDT Noise-Power-Distance Data

Fixed Wing

- NPD data are associated with an engine power (thrust) setting.
- NPD data consist of noise curves for each operational mode – approach, level flight, and departure.
- A performance model is used to determine the thrust setting for a specified operation.
- Source directivity applied using a dipole radiation model applied in the noise fraction adjustment for exposure metrics.

Helicopters

- NPD data are associated with an operational mode, i.e., noise-operational mode-distance data.
- NPD data consist of noise curves for each operational mode procedural step
 - Dynamic and static operational modes
- There is no performance model. The operational mode is specified by the procedural step.
- Source directivity
 - Dynamic: 0°, ±45° azimuth
 - Static: Helicopter-specific directivity

Fixed Point Flight Profile

- We use a 'fixed point' flight profile in AEDT
 - Fixed wing NPDs that bypass AEDT perf. models
- The database links the noise (L_{AMax}, SEL, PNLT_{Max}, EPNL) to the vehicle state and distance to observer
 - Vehicle state is an ID used as a surrogate for thrust and represents a particular operating condition defined by combination of indicated airspeed and climb angle.
 - By specifying piecewise constant flight conditions between waypoints, AEDT will interpolate noise between vehicle states (with short transitions), and distance to observer.
- In this scheme, we are hijacking the fixed wing aircraft type in AEDT.
 - NPDs generated by computing 0° azimuth data (normalized to reference flight speed). Directivity of fixed wing aircraft applied as part of noise fraction adjustment within AEDT.

Computation of NPD Data

NASA

pyaaron

120 110 (knots 100 SEL (dBA) 90 Flight Speed 80 70 60 60 50 80 40 -35 -30 -25 85 Climb Angle (deg)

SEL [dBA] at a given distance for all flight conditions

Example:

• Bar chart of SEL [dBA] at a given distance, for all flight conditions

Similar bar charts for:

- L_{Amax} [dBA]
- EPNL[EPNdB]
- PNLTM [TPNdB]

■0 ■10 ■20 ■30 ■40 ■50 ■60 ■70 ■80 ■90

Modeling Approach

- The following information is needed as input to AEDT to operate in fixed-point profile mode:
 - Lat/long coordinates, elevation of vertiports (direct from X2 data)
 - Set of track points defining the 2-D (X-Y) routes <u>departing</u> from each vertiport
 - Aircraft noise and performance data our calculated NPD data
 - Set of profile points defining aircraft distance along track, altitude (Z), speed, and thrust set (our operating state index) from start to finish

- Guard points to maintain constant operating state along each segment
- Track segmentation as means for reducing number of track and profile pts.
- Segment velocity to understand how choice of segment velocity affects results.

Track Point Example

Genaration-1 Assessment

- Uses RVLT Quadrotor NPD data only.
 - Recently found trim error in Generation-1 NPD database for Lift+Cruise (regenerating NPDs as part of Generation-2 database).
- Selected 100 (takeoff and landing) operations per hour over 12-hour daytime period as baseline (based on communication with Uber in absence of other demand data).
 - No nighttime penalty in DNL calculation.
 - 1200 operations / 2 = 600 departures for each route.
- Computed:
 - Sound Exposure Level (SEL) single operations from each departure vertiport
 - Day-Night-Level (DNL) 600 operations from each departure vertiport

Generation-1 Assessment (Example SEL Results)

Generation-1 Assessment (DNL - 600 operations)

What Have We Done –

- Developed a means of performing UAM community noise assessments using AEDT fixed-point flight profiles
 - Some limitations were identified that we will continue to work as part of the Generation-2 assessment (see next slide).
 - Automated method for analysis of routes and development of track and profile data guided by series of mini-studies.
 - Automated methods for generating large and scalable AEDT inputs, e.g., studies and vehicle data.

What Have We Not Done –

- Stated that the results shown are what we might expect of UAM operations in the DFW area.
- Drawn conclusions about UAM fleet noise based on the Generation-1 estimates.

Future Work

- Improve analysis fidelity
 - Investigate use of helicopter mode near vertiports to better capture directivity.
 - Quantify differences between fixed-wing (dipole) directivity, helicopter modes, and full hemisphere.
 - Model NPD data to remove restriction of limited number of discrete states.
 - Add terrain modeling.
- Ease of use
 - Input data directly into AEDT database to facilitate study development.
- Investigate alternative metrics as means of communicating impact
 - Time and number above, audibility, etc.

Acknowledgments

This work was supported by the NASA Revolutionary Vertical Lift Technology project.

- Noise database generation
 - Doug Boyd NASA Langley
 - Rui Cheng National Institute of Aerospace
- Assessments
 - Menachem Rafaelof National Institute of Aerospace
 - Stephen Rizzi NASA Langley
 - Kevin Shepherd NASA Langley Distinguished Research Associate
 - Andy Christian NASA Langley

Thanks to staff at the FAA Office of Environment and Energy and DOT Volpe Transportation Center for many helpful discussions.