Human Missions to Mars Surface Concept of Operations

National Aeronautics and Space Administration

EXPLORE MOONtoMARS

M. Rucker, S. Hoffman
Mars Architecture Team
JSC Exploration Missions and Planning Office
1 December 2020

Presentation Overview

- The purpose of this presentation is to provide insight into NASA's current thinking for human exploration on the surface of Mars
- Presentation outline
 - Part 1: Human Mars Mission Overview
 - Major mission events
 - Range of Mars mission durations for human missions
 - Part 2: Surface Mission Operations
 - Expected environmental conditions and operations during the Mars surface exploration phase
 - Example Mars surface mission 30-sol timeline
 - Some Planetary Protection issues still open for discussion

Human Mars Mission Overview

Human Mars Mission Overview

4

General Human Mars Mission Concept of Operations

- 1. Deploy Mars Transit Habitat for testing and validation at or near Gateway
 - Opportunity to do practice planetary protection processes
- 2. Pre-deploy surface cargo to Mars before crew departure
- 3. Crew transit to Mars
- 4. Rendezvous with crew descent lander in Mars parking orbit
- 5. Crew descend to Mars surface
 - Crew transport loiters in orbit
- 6. Crew completes surface mission then returns to orbit with Mars samples
- 7. Crew return transit to Earth

Human Mars Mission Intersection with Planetary Protection

Surface Phase

- Crew Ingress/Egress
- Waste management
- Excess heat creating a "special region"
- Science Operations
 - Potentially sub-surface
- End of Mission disposal of vehicles and infrastructure
- Contingencies
- Transit Phase
- Return of Mars samples to Earth

Ideally We Will Practice with Analogues Analogue Comparisons

	6 days (4 + 2) <i>Artemi</i> s Phase 1	30 days Gateway (extended)	60 days (30 on surface) <i>Artemi</i> s (extended)	4-12 months ISS LEO	24+ months Mars transit CRA	22-30 months (1-18 on surface) Mars landing CRA
Exploration Atmosphere *TBR/TBD	Low Pressure (8.2 psi / 34% O ₂ , other options possible)*			Earth-like (14.7psi / 21% O ₂)	Low Pressure (8.2 psi / 34% O ₂ , other options possible)*	
CO ₂	Current ECLSS	S (2-4 mm Hg)	New ECLSS	Current ECLSS	New ECLS:	S (2 mm Hg)
Microbes of Built Environment & Wetted Systems	Intermittent Occupancy, Limited Inputs			20 y Continuous Evolution/ multiple inputs	2-3 y Evolution, Single input	
Microbes Outside	Colonization		Colonization			Planetary Protection / Colonization
Food System						
Dust	Lunar Dust		Lunar Dust			Mars Dust, Storms

Joint NASA-COSPAR Planetary Protection Meeting – December 2020

Surface Mission Operations

8

Crewed Mars Surface Exploration Phase

Conditions

- Partial Gravity
- Dust/Dust Storms
- Mass-Limited
- Communication Delays
- No Resupply
- Day/Night Cycle

Operations

- Science
- Frequent EVA
- Vehicle and Space Suit Maintenance

Duration

• 30 – 300 sols

Notional Phases of a Minimal Surface Mission Short (30 sol) Example Shown

Maximum of 8-hour Extravehicular Activity (EVA) x 20 EVA sols = 190 EVA hours

Ingress and Egress

- Crew land and ascend from Mars in different vehicles
 - So crew must changes vehicles on the surface
- Many EVA activities planned inbetween these events
- There are several methods that can be used for these transfers
 - Depressurize cabin and open a hatch (Apollo style)
 - Enter and exit through an airlock
 - Suitports: EVA suits remain on the outside of the vehicle cabin
- All options have some amount of habitable cabin atmosphere escape

Mars Surface Ingress/Egress Events

EXPL®RE MOONtoMARS

Arrival Ingress/Egress

- Suits arrive with crew inside cabin
- Crew don suits and depress cabin
- Suit docked to Pressurized Rover suitport and crew enter cabin
- All nominal surface EVA uses suitport for rover exit and entry

Contingency Ingress/Egress

- Contingency scenarios in development
- Example: Incapacitated crew or damaged suit port requires crew to ingress/egress rover via hatch
 - Requires rover cabin
 depressurization/vent to surface

Nominal Departure Rover-to-MAV Ingress/Egress

- Inflatable tunnel integrated arrives with Mars Ascent Vehicle (MAV)
- Rover docks with tunnel
- Crew shirt-sleeve transfer from Rover to MAV
 - Minimizes Mars dust entering MAV

Apollo LEM Ingress and Egress

Planetary Protection Questions to Consider

- Given that all hatches and EVA joints will leak (in both directions) how much leakage is acceptable?
 - Leakage, by definition, is unfiltered
- If an airlock is used or the entire cabin is depressurized, should there be some sterilization step prior to exiting and before reentering the habitat?
 - What is the verification criteria?
- What kind of monitoring of the habitable environment is necessary
 - HEPA filtering is assumed for capturing airborne particles
 - What type of microbial or chemical detection is needed for air and water?
 What is the verification criteria?

Waste Management

Trash

- Consumables
 - Filters
 - Wet wipes
 - Packaging material
- Broken or unused spare parts and maintenance items
- Vented gases
- Liquids
 - Grey water
 - Brines
- Human waste
 - Liquids
 - Solids

Planetary Protection Questions to Consider

- What treatment of trash is required before disposal?
 - Radiation? Antimicrobials? Other?
- How long should any container be expected to provide its containment?
- What is the preferred location for trash disposal?
 - Disposal below ground, on the surface, above the surface (e.g., lander deck)?
- How much leakage/venting/etc. from fluid systems is allowable?
 - All systems are assumed to leak
 - Containment vs special region segregation
- If HEPA filtering is assumed for cabin atmosphere systems, is venting of CO2 or other cabin gases acceptable? Is additional sterilization of these gases necessary?
- Under what conditions can liquid waste be released into the environment?

Crew Interaction with Science Experiments and Breaking the Chain with Mars

- Experiments include subsurface sampling and searching for signs of life
- Samples from these experiments will be returned with the crew
 - Placed in containment as part of experiment protocol
 - Transferred from surface to orbit as part of the MAV payload
 - Transferred from the MAV to the Transit Vehicle for the return flight to Earth-Moon space
 - Transferred from the Transit
 Vehicle to an Orion capsule for return to Earth surface

Planetary Protection Questions to Consider

- Crew proximity to subsurface sampling and search for life experiments.
 For example:
 - How close can the crew be to subsurface operations, especially ice?
 - How should these potential life-containing samples be returned with the crew?
- What are the Mars biomarker or chemical markers for backward detection?
- How is backward contamination to be detected and measured?
- Should returned samples be stored inside the habitable environment with the crew? While on the surface? In the MAV? In the interplanetary Transit Vehicle?
- What microbial detection/monitoring of the surface and in-space habitat environment is required?
- Should the crew be allowed to interact with Mars samples during the return transit?

End of Mission Infrastructure Shut-Down and Vehicle Disposal

- At the conclusion of the surface mission, humancontaminated equipment will remain
 - Whether these systems remain active or are deactivated will depend on subsequent mission strategy
- After crew rendezvous with their interplanetary transit vehicle, their MAV will be left behind in orbit

Planetary Protection Questions to Consider

- What steps should be taken for the long-term disposal of surface systems?
 - Remaining fluids (e.g., water, propellants, etc.) could freeze and burst containment without adequate heating or cooling
 - Sterilize as appropriate and abandon in place
 - Vent overboard
 - Drain into purpose-built long-term containment
 - Is long-term monitoring (for biological activity) of the landing site necessary? If so, for how long?
- What steps should be taken for the long-term disposal of the Mars Ascent Vehicle (MAV) following crew departure from the vicinity of Mars?
 - Maneuver into stable disposal orbit? What orbit lifetime is considered adequate?

Contingencies

- Unplanned leaks or spills (outside habitable spaces)
 - Do we clean it up?
 - What are the standards for deciding the spill has been sufficiently cleaned or remediated? How will the crew verify?
- Inadvertent opening of sample container inside a habitable space
 - How is contamination to be detected and measured?
 - How should any sample material released be collected, contained, and stored? How will the crew verify that the release has been sufficiently cleaned?

Testing Opportunities on the Moon

- What aspects of Planetary Protection would benefit from testing on the Moon?
 - High level guidance for testing Mars mission systems and operations on the Moon
- Opportunities exist for testing equipment or protocols for most (all?) of the topic areas discussed above
 - Ingress/Egress
 - Biological characterization
 - Waste management
 - Cleaning/sterilization techniques
 - Clean sampling protocols
 - Impacts on drilling and subsurface sampling

