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This paper proposes a new topology optimization formulation for multifunctional 

performance of a compliant sensor structure – a wind tunnel balance. Compliant mechanism 

design is one of the main applications of topology optimization and plenty of successful design 

studies have been reported. However, design practicability is still questionable when stress 

concentration is critical due to complex/combined loads, especially at compliant hinge joints. 

In this paper, we formulate a new topology optimization formulation considering multiple 

loading scenarios in a compliant sensor structure design. Two separate constraints, one related 

to sensor performance and the other focused on structural safety in terms of maximum von 

Mises stress, are included in the design formulation. This formulation is to achieve excellent 

sensitivity of an applied axial load while maintaining structure safety with a combined general 

load applied which is one order higher than the axial load. This challenging problem is solved 

using a well-known SIMP approach with the relaxation and projection methods.  

I. Introduction 

 Historically, topology optimization has been employed for designing lightweight and energy-efficient structure 

under specific density fraction [1–3]. It has been applied to design stiff structures under specific volume fraction 

constraints. One of the technical problems of topology optimization was manufacturability due to its complex design. 

As additive manufacturing (AM) technology has rapidly grown as one of the modern manufacturing solutions [4,5] 

and has overcome manufacturing issues, topology optimization has regained high attention as a structural design 

methodology. A few separate studies have been conducted to overcome realistic AM issues on overhang when 

topology optimization is applied – topology without supporting material by applying filtering method [6] and self-

supporting structure [7].  

Compliant mechanism design is another popular application of topology optimization. Compliant mechanism 

design is widely used for the precise force or displacement mechanisms [8] in microscale (MEMS: Micro Electro 

Mechanical System) and macroscale [9,10]. Sigmund [11] first introduced the topology optimization for compliant 

mechanism design to maximize a displacement, with plenty of follow up studies [12–14]. A strain gauge based load 

cell design has been proposed using compliant mechanism topology optimization [15]. One of the critical issues on 

using Solid Isotropic Microstructure with Penalization (SIMP) [16] – a well-known parameterization for topology 

optimization that obtains black and white design – is that it can produce one node connection designs. A one node 

connection is interpreted as a hinge joint that amplifies displacement, but this weak connection between elements in 

finite element analysis usually causes high-stress concentration and structural safety issues. A few remedies to avoid 

this weak connection and obtain a hinge free design are developed using a wavelet approach [17] or level set approach 
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[18]. More recently, stress-constrained topology optimization has been studied to remove one-node connection and 

highly stressed hinge in compliant mechanisms [19].  

Development of topology optimization and additive manufacturing raises a fundamental design question if one 

can find a better structural design than the one believed to be the best design so far. A wind tunnel force balance, for 

example, is one of the important measurement devices that measure aerodynamic forces and moments experienced by 

wind tunnel models during wind tunnel testing. One of the well-accepted force balance designs is the internal type 

that is placed inside of the test model to predict the model’s aerodynamic performance, and its design has seen limited 

updates in last century since first development [20,21]. A balance will simultaneously measure six force/moment 

components (Fx, Fy, Fz, Mx, My, Mz, axial force, normal force, side force, roll moment, yaw moment, pitch moment, 

respectively) while it provides the connection between the wind tunnel model and the sting that suspends the model 

in the tunnel flow. In this kind of force sensor, it is important to decouple multi-component forces for accurate 

measurement. To measure forces and moments accurately and simultaneously, researchers have tried to reduce the 

error using shape optimization [22,23], error reduction technique with signal processing [24], and machine learning 

[25].  

Compared to a usual 6-axis force sensor, designing the force balance is challenging because of the axial force 

measurement section. Typically, an axial force is significantly smaller than other force components and hard to 

measure accurately. A traditional wind tunnel force balance measures the axial force from the deformation of vertical 

flexures [26–28]. On the axial section, strain gauges are attached to the vertical flexures and connected to a full 

Wheatstone bridge circuit to amplify the axial force signal and minimize the signal from other forces by mutual 

cancellation. Some researchers already made effort to measure the accurate axial force on the internal force balance 

using shape optimization for the vertical hinge [29], reduction of vertical flexure thicknesses [30], or modified 

Wheatstone bridge equation for interference error reduction [31]. However, previous studies are based on the 

traditional force balance shape and only minor shape design changes were considered. Also, they did not consider an 

extreme axial to normal force ratio – 1:6.25 [31], 1:4 [29,32] – unlike a high force ratio (1:10+) attempted in this 

study.  

Stress analysis is essential part to evaluate the structural integrity of the balance. To solve the stress-based topology 

optimization effectively, some challenging problems need to be overcome [33]. First, singularity issue arises when 

elements are eliminated from the design domain due to zero density elements. Nonlinear optimization algorithms 

cannot generate subspaces that converge to local minima [34,35]. ε-relaxation [36] and q-p approach [37] have been 

introduced to overcome singularity issues and obtain smooth stress function in a design domain. The second problem 

is that stress values are fundamentally local properties. The adjoint method can be used for design sensitivity analysis 

to reduce computational time, but it is not suitable when one needs to handle element-wise stress measures as separated 

constraints due to its expensive computational time. To overcome local measurement issues, several methods to 

represent a local constraint as a global one have been introduced such as Kreisselmeier-Steinhauser function (KS 

Function) [38] and P-norm [39]. Both approaches, however, have convergence issues that are caused by infinite 

oscillation near convergence criteria [40]. Recently stability transformation method was presented to reduce the 

oscillation issue [41]. Normalization and interlacing methods were introduced to control maximum stress effectively 

[42]. Multi-P-norm formulation approach was proposed to remove a correction factor for P-norm [43]. Level set 

method has been reported to be able to control the maximum stress effectively, but requires more computational time 

[22,44]. 

This paper investigates the topology optimization of a force balance design that considers a high force ratio. In 

detail, we develop a new axial force measurement section for an internal wind tunnel balance using topology 

optimization that is possibly fabricated using additive manufacturing technology [45,46]. A new topology 

optimization formulation considers decoupling the balance responses from different forces and moment and 

maintaining structural safety. This design problem is challenging due to the extremely high force ratio (normal force 

is 13 times larger than axial force). Two separate design requirements are formulated as constraints: sensitivity to axial 

load and maximum von Mises stress under a threshold value. The axial load sensitivity is measured using local 

directional stress by the axial force at a sensor location (i.e. strain gauge), and the global maximum von Mises stress 

by the combined load (axial force + normal force + pitching moment) is used to evaluate structural safety. For global 

von Mises stress measurement, P-norm stress evaluation with relaxation method is used in this study. The rest of this 

paper is organized as follows: Section II introduces the topology optimization formulations for P-norm stress 

evaluation and directional stress. This section includes the design sensitivity analysis and filtering method. Section III 

presents a detailed discussion of the optimized designs. The final section concludes this study and presents future 

studies.  
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II. Optimization Problem 

A. Problem Definition 

This section defines the wind tunnel balance design problem. As explained in Introduction, the shape of a typical 

wind tunnel balance is a long solid rod mounted on a fixed base, and the other end is connected to the wind tunnel 

model. The design of the axial section is to be found in the middle of the rectangular domain as indicated in Figure 1. 

The design study handles a two-dimensional problem assuming the geometry and the loading is uniform through the 

thickness direction. Three loading conditions – axial force, normal force, and pitching moment – are applied to the 

center of the right edge, and Table 1 shows the magnitude of each component. The normal force is around 13 times 

larger than the axial force. To consider the problem in two dimensions, the forces and moment are normalized by 

thickness.  

 

 

Table 1 Aerodynamic loads applied to the wind tunnel force balance 

Load components SI units* 

Normal Force 116.8 N 

Axial Force 8.9 N 

Pitching Moment 7.43 Nm 

* loads for unit thickness (mm) 

 
Fig.1 Boundary conditions for Problem – unit: mm 

 

In this study, we define three different domains – analysis domain, design domain, and topology optimization 

domain. Figure 1 shows detail boundary conditions for this study. The analysis domain is an entire domain for the 

wind tunnel force balance analysis. The design domain is where we want to design for the axial force section. Bending 

stress cancellation between upper and lower half in a symmetric balance design is beneficial to minimize the bridge 

sensor output out of bending load. Therefore, we perform topology optimization for the upper part of the design 

domain only and mirror obtained topology to the lower part of the design domain. The detail design formulation will 

be explained in Section II.C. The rest of the analysis domain is assigned as passive elements (100% density throughout 

the optimization process). 

Table 2 shows the maximum von Mises stress per wind tunnel safety allowable (for 300 maraging steel) and the 

minimum stress (directional) that should be detected by the axial force sensor when axial force is applied. The 

maximum von Mises stress is measured when the combined force (axial + normal + pitching moment) are applied to 

the balance, to consider required structural safety.  

 

Table 2 Stress conditions for the force balance 

Stress Condition SI units 

Maximum von Mises stress 0.896 GPa 

Minimum Sensor Performance (σ0) 75 MPa 

 



4 

 

B. Stress measures 

In this paper, we used two different stress measures – P-norm stress with relaxation method for structural safety 

allowance which is maximum of global stress evaluation, and the directional stress for the sensor performance. The 

P-norm stress is evaluated using the following equation: 
1

1

Pn
n

Pn
pnorm i i

i

v


 
 
 

  

                       (1) 

 

where i is element index, n is the number of elements, vi is elemental volume, Pn is norm parameter, and the tilde 

indicates a relaxed stress. The P-norm stress controls the level of the overall structural stress by taking the tendency 

of the stress. That is, the P-norm stress with the infinity norm parameter (Pn = ∞) represents the maximum von Mises 

stress of the structure. However, a larger norm parameter causes a higher degree of non-linearity and discontinuity of 

the optimization process that finds local minima. The norm parameter requires adjustment to obtain a feasible solution 

close to the global minimum. In this study, the norm parameter is adjusted by trial and error as 2.5 (Pn = 2.5) that 

works effectively for stable optimization convergence. Relaxation method is applied to design variables to generate a 

smooth feasible design domain and to overcome the singularity issue. The relaxed von Mises stress at element i is 

formulated as: 

,

r P

i i VM ix 
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where xi is the element-wise density variable, r is relaxation power, P is penalization power for SIMP approach, and 

σVM,i  is elemental von Mises stress. The study on the effect of these parameters is not a focus of this paper, but one 

can find an in-depth study by Le et al. [42]. P=3 and r=0.5 are used for this study. For more information, a sensitivity 

analysis is included in Appendix. 

 

C. Optimization Formulation 

The topology optimization problem for the axial section of a wind tunnel balance design is formulated as: 
1

1

min :

Pn
n

Pn

pnorm i i

i

v 


 
  
 


 (3) 

. . :s t Ku = f
 (4) 

   
0:

2

su sl

aby
 





x x

F  (5) 

1

1

:

Pn
n

Pn

i i safe

i

v by 


 
 

 
 F  (6) 

where K is a global stiffness matrix, u is a global displacement vector and f is a global force vector. f is either the 

axial force (Fa) for evaluation of sensing performance, or the combined force (F = Fa + Fn (normal force) + Mp 

(pitching moment)) for evaluation of maximum von Mises stress. σsu and σsl are local directional stress on the sensor 

location, upper and lower location, respectively. σ0 is the minimum sensor performance requirement under the axial 

force. This formulation includes two inequality constraints that consider two functional requirements of the wind 

tunnel balance in Table 2 (minimum sensor performance and maximum von Mises stress). To obtain the sensor 

performance, we apply the Wheatstone bridge circuit on the force balance that averages two axial stresses. The 

symmetric domain setup in Figure 1 ensures stress value cancellation when the structure experiences bending 

deformation. Therefore, the sensor performance by the combined force is not considered in the formulation. To 

consider the maximum von Mises stress, we formulated the constraint of the P-norm to be smaller than the threshold 

σsafe = 2 that corresponds to the maximum von Mises stress 0.896 GPa (found by trial and error). In addition, the 

objective function is chosen to minimize stress P-norm function. This formulation is to achieve a feasible balance 
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design as defined in Table 2 regarding stress performances, and to obtain a durable structural design represented by 

minimum P-norm stress. Method of Moving Asymptotes (MMA) is used for the optimization algorithm. 

D. Projection Method 

For the formulation, we employ a projection method to obtain clear black and white topological design results. A 

filtering method is introduced to avoid checkerboard pattern that is caused by numerical instabilities and non-

convergence of finite element solution [47,48]. Density filtering [49] and sensitivity filtering [11] are popular among 

others, but they may cause intermediate density or artificial material (grey area) that makes it difficult to discern a 

clear structural boundary for easy manufacture. If grey elements are involved in stress-based topology optimization, 

it can amplify a displacement and overestimate the stress value compared to black and white solutions. The projection 

method is one such filtering method. It was used to achieve minimum length that is applied on nodal design variables 

[50], and modified to consider elemental design variables [51].  

In this study, a smoothed Heaviside function for elemental design variable is applied for projection method as: 

tanh( ) tanh( ( ))

tanh( ) tanh( (1 ))

i
i

x
x
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where ix  is the physical variable of element i, ix  is intermediate filtered density corresponding to xi which is the 

design variable. β determines the slope of the Heaviside curve, and η is the threshold point. If the intermediate density 

is less than η, it is projected into 0. Otherwise, it is projected into 1. Generally, topology optimization is initiated with 

a small valued β (e.g. 1) and updated every specific iteration (e.g. every 50 iterations) or when an iterative design 

variable change is less than 1%. Starting with a large β is proposed for the MMA algorithm by tightening two initial 

asymptotes of the MMA [52]. This method is effective to prevent perturbation of design variables and slow 

convergence. We start with a small β (=1) for a moderate tightening of the asymptotes that brings better topology 

design. β is updated every 150 iterations or when the density-changing ratio is less than 0.1%. β is increased up to 64 

and η is fixed as 0.5. 

The intermediate density is obtained using the density filter as below: 
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where e is the element index located within the filter radius rmin from element i, and Hie is a weight factor as below: 

minmax(0, ( , ))ieH r i e 
  (9) 

where (i,e) is the center to center distance between element i and element e. 

The sensitivity with respect to a design variable is determined using the chain rule [51]: 

i i

i i i i
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 (10) 

As mentioned in Section II.A,topology optimization is performed considering geometric symmetry between the upper 

and lower domains. That is, the density design variables are updated for the upper and the lower domain at the same 

time. Therefore, the sensitivity should consider the design change in both the upper and lower domains. At element i, 

the final sensitivity considering design symmetry can be formulated as: 

, ,i final i i l

f f f

x x x

  
 

  
 (11) 

where f is a general function, xi,l represents the elements symmetrically located to xi. xi and xi,l are at the same horizontal 

location, but symmetrically located along the vertical direction – if element xi is located on the top surface, element 

xi,l is located on the bottom surface of the design domain. 
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III. Design study results and analysis 

This section explains the results of a design study that focuses on finding the optimal balance topology considering 

variable sensor locations. Again, this study considers two major concerns: the sensor performance under the axial 

force and the structural safety under the combined force. Due to high computational cost, we perform the topology 

optimization for ten (10) different sensor locations (A to J in Figure 4) rather than scanning all possible locations. We 

use a 4-noded rectangular element with 0.333mm2 element size for the finite element method. Total number of 

elements is 50274 in the analysis domain, and 22230 elements are used design domain. The force values in Table 1 

are used for this design study. Vertical (y) directional stress is used for evaluating the sensor performance. Table 3 

summarizes the optimization parameters used in this Section. 

 

Table 3 Parameters used in topology optimization 

Description Parameter Value 

Filter radius rmin 1.332 mm 

Young’s modulus E0 189 GPa 

Poisson’s ratio  γ  0.3 

Norm parameter for P-norm  Pn  2.5 

relaxation power  r  0.5 

Penalization power  P 3.0 

Threshold for maximum P-norm  σsafe  2.0 

Minimum directional stress for sensor performance  σ0  75 MPa 

Slope for Heaviside function  β  Initially 1; increased up to 64 

Threshold point for the Heaviside function slope  η  0.5 

 

The locations in Figure 4 present one sensor located in the upper topology optimization design domain. The second 

sensor is located symmetrically in the lower design domain.  

 

Fig. 4 Different sensor locations in the topology domain 

Out of ten separate topology optimization runs, two feasible solutions are obtained for sensor locations C and G as 

shown in Figure 5 after 2500 iterations where a user-defined convergence criterion is met (maximum xi change less 

than 0.1%). In these cases, there is no grey area found and all the performance requirements are satisfied as shown in 

Table 4. In each subfigure, the green (on the top) and blue (on the bottom) circles indicate the sensor locations and the 

red circle (on the right) indicates maximum von Mises stress location. Their exact locations are provided in Table 4. 

 

(a) Design C 
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(b) Design G 

Fig. 5 Design examples using topology optimization 

 

Table 4 Stress measures for Design C and G 

Stress (MPa) 
Sensor performance (blue circle) Max von Mises stress (red circle) 

Top sensor location* value Location* value 

Design C (30.167, 10.167) 75.0 (44.167, 19.500) 856 

Design G (20.167, 5.167) 77.9 (42.167, 26.500) 813 

Requirement  75.0  896 

* measure from top/left corner of design domain to the center of the sensor element (mm) 

 

A detailed analysis is performed for these two designs in this section. Figure 6 shows the histories of the maximum 

von Mises stress (solid line) and the sensor performance (dash-dotted line) of Design C. The circles on the graph 

indicate β updating point (=every 150 iterations) for projection method. The graphical topology change is illustrated 

in Figure 7(a). In Figure 6, sudden changes of both the maximum von Mises stress and the sensor performance are 

observed when β is updated. As mentioned in Section 2.5, β update makes the physical variables mapped closer to its 

extremes (zero or one). The updated β causes sudden changes of the density variable close to the threshold (η = 0.5) 

that result in the jumps of stress measures. As iterations continue, however, the number of density variables close to 

the threshold decreases and the overall design process becomes stable. Another reason for sudden change for the 

maximum von Mises stress is due to its location change. For example, a sharp drop of the von Mises stress around 

iteration 600 is because of the location change as shown in Figure 7 (a). Several sharp peaks are due to design 

perturbation by the MMA.  

 
Fig. 6 Maximum von Mises stress and sensor performance histories of Design C 
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Fig. 7 History of maximum von Mises stress location (indicated by arrow) 

 

A. Mechanism analysis and verification study 

This section analyzes the balance design mechanisms and conducts a verification study for Design C. Figure 8 is 

the deformed shape and the directional stress (vertical direction) contour for Design C subject to axial force. The 

arrows in Figure 8 (a) indicate deformation directions. A close observation reveals that the mechanism layout is 

symmetric horizontally – Bodies 1 and 6 convey compressional force to Bodies 2 and 5 that are supported by hinged 

joints a and b. The rotational motion of bodies 2 and 5 vertically extends the internal links composed of Bodies 3 and 

4. The angled configuration between bodies 3 and 4 enables the extending deformation after the force is applied, and 

the sensor located between bodies 3 and 4 experiences bending (tensional) stress. In general, stress and deformation 

are concentrated at the hinged joints.  

 

 
(a) Deformed shape with movement direction 



9 

 

 
(b) Vertical directional stress contour for the design domain (circle: sensor locations) 

Fig. 8 Sensor performance analysis for Design C under the axial force 

 

The von Mises stress distribution for Design C subject to combined load is presented in Figure 9 where the largest 

stress values are found close to the hinged joints. The maximum von Mises stress is found at Joint b (856 MPa). 

However, one can observe that the stress at the sensor locations is well suppressed. 

 
Fig. 9 von Mises stress contour under the combined load for Design C 

 

Analysis study has been performed to justify this unique geometry. First, to understand the need for a slot under 

body 6, we modified the topology optimization result on Design C by filling the slot as shown in Figure 10 (highlighted 

area). In the optimized design (Figure 8), body 5 needs to rotate centered at Joint b and have a vertical deformation 

on Joint d that is enabled by moving down Joint c. A modified design (Figure 10) was explored that constrains the 

vertical deformation of Joint c that hinders the rotational movement of body 5. As a result, the directional stress is 

decreased on the sensor location from 75 MPa for the optimal results to 73 MPa.  

 

Fig. 10 Modified design (filled slot) for Design C 

The design with the slot is also justified for the von Mises stress design criterion when the combined load is applied. 

The changed design in Figure 10 has the maximum von Mises stress slightly increased (858MPa) on the same location 
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(Joint b). The horizontal displacement at Joint d is decreased (252.7 → 252.4 mm), but the vertical displacement is 

increased (-587.7 → -588.4 mm). This larger rotational motion by body 5 makes higher von Mises stress on Joint b.  

An additional verification study was conducted to understand the effect of the stiffness on Joint e between body 1 

and body 2 on Design C. Table 5 shows the location of the maximum von Mises stress (arrow) by different thicknesses 

of joint e, and Table 6 shows the effect of the hinge thickness on the stress value changes. 

Table 5 Maximum von Mises stress location under different hinge thickness 

 Original Thicker Thinner 

Design 

C 

 

 

 

 

Table 6 Effect of the thickness of a hinge between Body 1 and 2 

Units (MPa) Original design Thicker hinge (200%) Thinner hinge (50%) 

Max von Mises stress 856 853 1208 

Sensor performance 75 62.7 80.6 

 
As analyzed previously, a thicker joint limits flexibility to improve the maximum von Mises stress performance, but 

makes the sensor performance unsatisfied. In addition, the thickness change causes the change of the location for 

maximum von Mises stress. To summarize, the design found in this study have the optimal joint thicknesses and 

locations to satisfy both sensor performance and structural safety. 

IV. Conclusion 

In this study, we performed stress-based topology optimization to satisfy design requirements for an internal wind 

tunnel balance. P-norm stress evaluation is introduced to consider the location-varying maximum von Mises stresses. 

Directional stress evaluation is used to obtain the sensor performance. To eliminate grey area, the projection method 

is implemented for the topology optimization. Compliant mechanism designs are obtained to satisfy requirements of 

the internal wind tunnel balance that considers two different loading conditions: axial and combined load. This balance 

design is challenging because it is required to have (1) substantial stress reading by the axial force that is more than 

one order smaller than the combined load and (2) the maximum stress by the combined load has to be less than the 

safety target. The optimization problem is formulated to consider both stress requirements. As a result, all hinges in 

the compliant balance mechanisms are found to have appropriate thickness and lengths to assure both the sensor 

performance and structural safety. 

For more practical balance design, it is required to consider the dimension of the actual strain gauge sensor in the 

design process. Future works include extending the methodology to the 3D topology optimization with more focus on 

manufacturability (e.g., minimum feature length). 

 

Appendix 

A. Sensitivity Analysis 

The sensitivity formulation of the elemental stress component as well as von Mises stress is derived using the SIMP 

approach in this section. First, an unrelaxed elemental von Mises stress is evaluated as:  
2
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where V is the Voigt matrix, σi ={σ11, σ22, σ12}T is the two dimensional stress vector component, qi is nodal 

displacement vector for element i, C0 is elasticity tensor, B is strain displacement matrix (i=Bqi), and M = TTVT with 

T = xi
PC0B.  

The sensitivity for the von Mises stress can be derived using its squared expression as follows: 
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The relationship of two sensitivities for the von Mises stress and its square is rewritten as 
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Combining Eqs. (4) and (6), the sensitivity for elemental von Mises stress is written as 
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Then, the sensitivity for the P-norm stress is evaluated as follows: 
1

1

Pn
n

Pn

pnorm i i

i

v 


 
  
 
  (8) 

1

2
1

Pn Pnn
pnorm Pn Ti i i i i

pnorm i

ii i VM i

v v
r

x x x

  








   
   

   


q
q M  (9) 

where r is relaxation power. To calculate displacement with respect to design variable (qi/xi ), the adjoint method is 

used. Assuming loads are design independent, orf/xi = 0. For convenience, σpnorm
1-Pn is multiplied on the adjoint 

term as: 
1( )T Pn

pnorm pnorm    λ Ku fL
 (10) 

Its partial derivative with respect to the design variable leads to: 
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where Ri is a restriction matrix that satisfied qi =Ri u.  

Finally, the sensitivity for the P-norm stress with respect to the design variable xi is expressed as:  
1

,

Pn

pnorm pnorm Pn T P

i i i e i i

i i

rv P x
x x


   

λ K q
 

   (12) 

where Ke,i is elemental stiffness that satisfies 
, 0

i
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dv K B C B where vi is elemental volume, and the adjoint 

equation is defined as: 
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The sensitivity for the directional stress is derived similarly using the adjoint method [53]. First, a directional stress 

component in element j (σj) is written as: 
P

j j jx
0

C BR u   (14) 

Same as the P-norm stress evaluation, the loads are design independent (f/xi =0). The adjoint method for directional 

stress is as below:  
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Therefore, the sensitivity for the directional stress component is written as: 
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where the adjoint load  is defined as: 
p

jx 
0

Kλ C BR   (18) 
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