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Acronyms

• BOX – Buried Oxide
• DUT – Device Under Test
• FBB – Forward Body Bias
• FDSOI – Fully-Depleted Silicon-on-

Insulator
• finFET – Fin Field Effect Transistor
• LBNL – Lawrence Berkeley National 

Laboratory
• nMOS – N-Channel Metal Oxide 

Semiconductor
• pMOS – P-Channel Metal Oxide 

Semiconductor
• PDSOI – Partially-Depleted Silicon-on-

Insulator

• REF – Radiation Effects Facility
• RBB – Reverse Body Bias
• SEE – Single-Event Effects
• SOI – Silicon-on-Insulator
• SRAM – Static Random Access Memory
• STI – Shallow Trench Isolation
• TID – Total Ionizing Dose
• UTBB – Ultra-Thin-Body and BOX
• VNW – N-Well Bias Voltage
• VPW – P-Well Bias Voltage
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Introduction
• As scaling trended downward from technology feature sizes in the 100s of nm 

down to 32 nm, the effect of TID in PDSOI devices decreased1,2

• At smaller technology nodes, like 22 or 14 nm, where device manufacturers switched to finFET
technology or UTBB, the effect of TID has re-emerged2 due to the large number of STI interfaces3

• It was also hypothesized that deep submicron scaling had eliminated TID effects in FDSOI 
devices, particularly threshold voltage shifts4, as ultra-thin gate oxides do not trap charge 
the way older technologies did

• In these FDSOI technologies, charge accumulates in the STI5 similarly to 14 nm finFET technologies
• Previous IBM SOI technology generations were PDSOI, and exhibited minimal TID effects 

due to both the physical thickness of and high doping in the silicon body of the devices8

• Manufactured FDSOI test structures in IBM 45 nm saw substantial TID sensitivity due to 
lightly-doped BOX and charge trapping in the BOX8

• These results have led to considerable interest in the total ionizing dose sensitivity of 
FDSOI at highly-scaled technology nodes

1 Q. Zheng, IEEE TNS, April 2019. 
2 H. Hughes, IEEE REDW, 2015. 

3 N. Rezzak, IEEE Int’l SOI Conf, 2010. 
4 M. Turowski, IEEE TNS, Dec. 2004. 

5 M. R. Shaneyfelt, IEEE TNS, Dec. 1998.  
8 N. Rezzak, IEEE Int’l SOI Conf, 2012. 
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Background

• GlobalFoundries’ 22FDX process is a 22 nm fully-depleted SOI process9

• Previous generations were PDSOI (45 nm, 32 nm)

• It employs planar transistors (rather than novel designs like finFETs used 
in other highly scaled processes) with high-κ dielectric gates

• Planar transistors are simpler and less expensive to design and manufacture than 
3D

• FDSOI supports body biasing, which can significantly reduce energy 
consumption

9 V. Joshi, Symp on VLSI Tech, 2017. 
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Body Biasing

• 22FDX offers two well configurations10

• Standard: NMOS are located in p-wells 
and PMOS are located in n-wells

• Allows for reverse body biasing the 
transistors and reduces leakage currents11

• Flipped: NMOS are located in n-wells and 
PMOS are located in p-wells

• Allows for forward body biasing and higher 
performance operation12

• P-well voltage can decrease from nominal 
0 V to -2 V10

• N-well voltage can increase from nominal 
0 V to 2 V10

N-WellP-Well

n+ n+ p+ p+

P-Well Contact N-Well ContactNMOS PMOS
Standard Well Configuration

P-WellN-Well

n+ n+ p+ p+

N-Well Contact P-Well ContactNMOS PMOS
Flipped Well Configuration

10 R. Srinivasan, SNUG, 2016. 
11 O. Thomas, IEEE Int’l Elect. Dev. Mtg, 2014. 
12 GlobalFoundries, "Introducing the 22FDX 
22nm FD-SOI Plaform from GLOBALFOUNDRIES," 
March 2016. [Online].
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Test Vehicle
• DUTs are a 128-Mb SRAM line monitor circuit
• Nominal supply voltage is 0.8 V, but voltages as low as 0.4 V and as high as 

1.08 V are supported by the technology
• The bit cell array in this device is manufactured with all transistors in a p-well, 

while the n-well is implanted to isolate the SRAM bit cell array
• NMOS are in the standard configuration (allows reverse body biasing)
• PMOS are in the flipped well configuration (allows forward body biasing)

• As a result of the n-well only being used for isolation, n-well biasing was 
expected to have a limited effect on the radiation response of the SRAM

N-Well ContactN-Well Contact

N-Well P-Well

n+ n+ p+ p+

P-Well Contact P-Well ContactNMOS PMOS

N-Well

To be presented by Megan Casey at the Nuclear & Space Radiation Effects Conference (NSREC) virtually December 2, 2020. 6



Bias Conditions and Test Technique
DUT Array Voltage N-Well Voltage P-Well Voltage Dose Step Size Total Dose
609 0.8 V 0 V 0 V 50 krad(Si) 500 krad(Si)
601 0.8 V 2 V -2 V 50 krad(Si) 500 krad(Si)
602* 0.8 V 2 V -2 V 50 krad(Si) 300 krad(Si)

• Pattern was written before irradiation and read back and the number of upset bits was recorded
• After irradiation, cells were read back again and number of upsets were recorded

• If any cells were incorrect, then the memory was rewritten and read back to see if the number of incorrect cells changed

• Post-Irradiation Measurements:
* Sweep array voltage (0.7 V to 1.08 V), holding n- and p-well voltages constant
• Sweep p-well voltage (0 V to -2 V), holding n-well voltage at nominal
• Sweep n-well voltage (0 V to 2 V), holding p-well voltage at nominal
* Sweep p- (0 V to -2 V) and n-well (0 V to 2 V) voltages
• Vary input pattern (00, FF, AA), holding array voltage, n-well, and p-well voltages constant
* Measure retention voltage at nominal well voltages

*Full results covered in the paper, but not in this presentation
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Total Ionizing Dose Test Results
Initial Upsets and Upsets after Write/Read

• More upset bits in DUT 601 than in DUT 609 across all doses
• Number of stuck bits after re-write is also lower

• At 500 krad(Si), DUT 601 has more than 200x fewer errors than DUT 609 after the 
initial read and 4133x fewer errors after write/read
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Total Ionizing Dose Test Results
Input Pattern Dependence with Nominal Bias Conditions

• Upsets are observed, and number of 
upsets saturates, at a lower dose in DUT 
601 than 609

• DUT 609 shows no pattern dependence, 
but after 150 krad(Si), DUT 601 has 
significantly more errors with 00 then FF

• Logical checkerboard (AA) falls between 00 
and FF

• Historically, with TID, PMOS exhibit 
greater leakage current than NMOS, so 
maintaining high nodal voltages 
becomes increasingly difficult

• As evidenced by greater number of errors 
with 00 input pattern, NMOS appear to be 
experiencing greater leakage than PMOS
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Total Ionizing Dose Test Results
Input Pattern Dependence with Extreme Bias Conditions

• Input pattern dependence 
disappears when DUTs are biased 
with extreme well conditions

• Total number of errors decrease 
compared to the nominal well bias 
voltages for both DUTs

• DUT 601 now has a more errors 
after 150 krad(Si) than DUT 609

To be presented by Megan Casey at the Nuclear & Space Radiation Effects Conference (NSREC) virtually December 2, 2020. 10



Total Ionizing Dose Test Results
Impact of Changing the N-Well Bias Voltage

• No change in number of errors when p-well voltage was held at 0 V and n-well voltage was 
increased up to maximum of 2 V
• This is expected since the n-well is only used for isolation around the SRAM cell arrays
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Total Ionizing Dose Test Results
Impact of Changing the P-Well Bias Voltage

• DUT 601 has a greater number of upset bits 
than DUT 609

• While n-well voltage has no effect on SRAM 
response, changing p-well voltage 
substantially changes number of upset bits

• When p-well voltage decreases, number of 
errors decreases by orders of magnitude

• From 0 V to -2 V at 500 krad(Si), ~2300x upset 
bits in DUT 601 and over 34,000x fewer in 
DUT 609

• Because n-well voltage had no effect, p- and 
n-well voltage results look identical to p-well 
only results
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Combined Total Ionizing Dose and 
Single-Event Effects Testing
• After TID irradiation, DUTs were stored on dry ice to ensure no annealing 

and were then transported to LBNL and subjected to heavy ion irradiation
• Due to high levels of gamma dose, on average, about half of all bits were 

upset before heavy-ion irradiation
• Made measuring the single-event contribution to the number of upset bits difficult 

to obtain
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Previous SEE Testing
Non-TID-Irradiated SRAMs

Previous SEE testing conducted on devices that were not TID-irradiated showed 
no pattern dependence 15 M.C. Casey, submitted to IEEE TNS, 2020. 
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Combined Effects Test Results
Heavy-Ion Irradiation with Nominal Well Bias Conditions

• Because there were so many pre-SEE-
testing upset bits, a large portion of the 
SEE-induced bit flips resulted in 
corrections from the incorrect memory 
state to the correct one
• Results in negative cross-sections that are 

actually bits that were corrected after heavy 
ion irradiation

• These results look like the SRAMs are no 
longer functioning properly
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Combined Effects Test Results
Heavy Ion Irradiation with Extreme Well Bias Conditions

• After changing well biases from nominal to the extreme voltages, more standard 
cross-section curves emerge

• Same pattern dependence observed in DUT 601 TID data also becomes apparent in 
the cross-section curves
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Conclusions

• TID results suggest by applying well voltages, SRAM memory cells fabricated in 
GlobalFoundries’ 22FDX process have fewer stuck bits than when irradiated 
with nominal supply voltages

• Input pattern dependence was observed with parts irradiated with extreme 
well biases, but not in the part with nominal well biases

• Pattern dependence was also found in the combined effects testing in the device TID-
irradiated with the extreme well bias voltages and then SEE-irradiated with the same bias 
conditions

• Adjusting body biasing through the well voltages provides a TID mitigation 
strategy

• N-well bias voltages had no impact on the TID response of the SRAMs
• P-well voltages had a substantial impact on the TID response
• All of these results are specific to transistors in these well configurations – flipped-well 

PMOS transistors and standard-well NMOS transistors
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