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The objective of this paper is to develop a constitutive model for finitely deformed
viscoelastic-viscoplastic materials and a micromechanics approach to homogenizing com-
posites consisting of such materials. The development of the constitutive model involves
establishing a thermodynamic framework based on finite strain theory, developing a vis-
coelasticity and a viscoplasticity model based on the thermodynamic framework, devel-
oping a radial return algorithm based on a classic framework, and deriving a closed-from
incremental constitutive relation in the spatial configuration. The development of the mi-
cromechanics approach involves pulling-back the above constitutive relation to the material
configuration, formulating a variational statement with the resulting constitutive relation,
discretizing variational statement in a finite-dimensional space, and solving the discretized
variational statement using an Euler–Newton predictor–corrector method. The constitu-
tive model is calibrated via monotonic uniaxial compression tests on a polymer, and the
calibrated model is validated by comparing its predictions with the cyclic test data. It is
shown capable of characterizing viscoelasticity, viscoplasticity, and complex loading paths.
The micromechanics approach’s capabilities are demonstrated through homogenizing a uni-
directional fiber-reinforced composite, subjected to uniaxial, biaxial, and shear loading, at
different strain rates. It is demonstrated to be capable of handling rate dependence and
complex loading paths. The present framework can be further improved by implementing
more sophisticated viscoelasticity and viscoplasticity models in future work.

I. Introduction

Deployable composite booms are designed to be self-deployed in space after (1) flattened and coiled for
stowage and (2) stowed for a long time before launch. Thin-ply high strain composites (TP-HSCs) are widely
used in booms thanks to their high strength-to-weight ratios, low manufacturing costs, and ability to sustain
large curvatures without failure. Despite these advantages, TP-HSCs in composite booms may be degraded
by different mechanisms during boom coiling and stowage so that the composite booms partially recover
their cross-sections when deployed. Specifically:

1. When a TP-HSC is bent during boom coiling, its resin matrix may undergo finite, viscoplastic defor-
mation.

2. When a TP-HSC has been stowed for a long time, its resin matrix may undergo considerable stress
relaxation.
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3. Once a TP-HSC is considerably degraded, the composite boom may exhibit reduced bending/torsional
stiffness and not be successfully deployed.

It is critical but challenging to predict the extent of viscoplastic deformation/stress relaxation in a TP-HSC.
For one thing, there is still a need for a constitutive model for the resin matrix exhibiting material and
geometric nonlinearities in practice. For another, the multiscale modeling of a composite boom often spans
multiple length scales (e.g, fiber, yarn, ply, laminate, and boom structure in Figure 1). In this paper, focus
is placed on (1) the constitutive modeling of finitely deformed viscoelastic-viscoplastic materials and (2)
the micromechanical analysis of composites consisting of such materials (e.g., unidirectional fiber-reinforced
composites (UDFRCs) and yarns).

Figure 1. Bottom-up mechanics of structure genome (MSG)-based multiscale modeling.

There are only a few recent viscoelastic-viscoplastic constitutive models, and only several of them con-
sidered finite strain at the same time. Such a model consists of the stress and the strain measures, a
thermodynamic framework, a viscoelasticity model, a viscoplasticity model, a radial return algorithm, and
an incremental constitutive relation. Different chosen options on these components result in different con-
stitutive models. It is crucial to properly choose the stress and the strain measures in the finite strain
regime. These measures are easy to choose in the infinitesimal strain regime3,4 or when only considering
viscoelasticity.19 However:

• In finite strain theory, there are multiple combinations of these measures, which result in vastly different
thermodynamic frameworks.

• When considering viscoplasticity as well, one must balance between the versatility and complexity of
these measures.
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On the one hand, simple measures (e.g., the deformation gradients) result in constitutive models (1) easy to
develop but (2) incapable of meeting certain requirements (e.g., assumptions and material behavior). On the
other hand, complex measures (e.g., nonlinear functions of the deformation gradients) result in constitutive
models (1) capable of meeting certain requirements but (2) difficult to develop and to implement in finite
element (FE) codes and homogenization frameworks.1,2 Gudimetla and Doghri2 stated that the Prony
series in viscoelasticity should be defined in the material configuration. To meet this requirement, they
chose complex measures but did not obtain a closed-form incremental constitutive relation. In this paper,
the simplest possible stress and strain measures are chosen, i.e., they are complex enough to characterize
material behavior while simple enough for model development and implementation. Following Ref. [5], the
stress and the strain measures are set to be the Kirchhoff stress tensor and the viscoelastic left Cauchy–Green
strain tensor, respectively.

In a viscoelasticity model, the strain energy and the branch stress evolution laws must be rigorously
formulated. This is because:

• There must be thermodynamic consistency between the viscoelasticity and the viscoplasticity models,
and the strain energy ensures this consistency.

• An ad hoc evolution law may result in inaccurate results.

In the infinitesimal strain regime, the evolution laws can be derived by analyzing the branch stresses, and the
total stresses can then be expressed as a hereditary integral. In the finite strain regime, several authors1,2

constructed (not proved) evolution laws, strain energies, and/or stress tensors based on the hereditary
integral, introducing thermodynamic inconsistency and/or arbitrariness to their constitutive models. In this
paper, the strain energy and the evolution laws are ensured to be rigorous by constructing a 3D viscoelasticity
model based on a well established 1D model. When developing viscoplasticity models, some authors3,4 chose
yield functions and flow rules for metals rather than polymers, and others1,2 chose complex yield functions
and/or flow rules, which enhance the difficulties in model calibration. In this paper, the simplest possible
yield function and flow rule for polymers are chosen and calibrated via tests.

An integration scheme involves computing, updating, and storing all state variables, in each load step.
Radial return is among the most popular integrations schemes for viscoplasticity models. This is because
radial return balances accuracy and efficiency well. In the infinitesimal strain regime, the radial return algo-
rithm is well established,3,4 but in the finite strain regime, it is either absent2 or very complicated.2 In this
paper, the general radial return algorithm in Ref. [5] is modified to accommodate the current objective, and
the viscoelasticity and the viscoplasticity models are implemented in the modified algorithm subsequently.
An incremental constitutive relation relates the stress increments to the strain increments. It is needed for
the assembly of the global stiffness matrix, during the FE implementation of a constitutive model. Due
to the complexity of the problem, none of competing constitutive models has a closed-form incremental
constitutive relation. When implementing such a constitutive model, one must accomplish the following:

1. Treat the plastic hardening variables as additional degrees of freedom (DOFs).

2. Customize the FE solver to the additional DOFs.

3. In each load step, solve for the displacements and the plastic hardening variables in a staggered manner.

In this paper, a closed-form incremental constitutive relation is derived and used for model calibration and
implementation.

In this paper, homogenization is accomplished using the variational asymptotic homogenization method.6,7

This method involves asymptotically analyzing a variational statement of a composite and solving the re-
sulting simplified functional equation governing the response of the unit cell. Its first-order approximation
is actually mathematically equivalent to the formal asymptotic homogenization method and therefore pos-
sesses similar advantages. Since this method is inherently variational, it is straightforward to implement this
method using finite element method. Recently, Yu8 generalized this method to the mechanics of structure
genome (MSG), a unified approach to the constitutive modeling of composite structures, based on the con-
cept of structure gene (SG). A structure gene (SG) can be defined as the smallest mathematical building
block of a structure. Thanks to SG, MSG can handle a UDFRC subjected to longitudinal shear loading
(see Figure 12(b)), with a 2D UC. Zhang and Yu9,10 extended the MSG-based micromechanics approach for
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homogenizing elastoplastic and elasto-viscoplastic composites, and Zhang et al.11 extended it for homoge-
nizing finitely deformed heterogeneous elastomers. In this paper, the MSG-based micromechanics approach
is extended as follows:

1. Pull-back the aforementioned incremental constitutive relation, formulated in the spatial configuration,
to the material configuration.

2. Formulate a variational statement with the resulting incremental constitutive relation, in the material
configuration (see Section VII for detailed differences).

3. Solve the variational problem in each load step so that the micromechanics approach can handle finitely
deformed viscoelastic-viscoplastic composites.

In Ref. [11]:

• The constitutive relation is already formulated in the material configuration, making the above Step 1
unnecessary.

• The variational statement is formulated with a strain energy density function, which does not exist in
this paper.

These differences further make the solution procedure of variational problem in this paper different from
that in Ref. [11].

This paper is organized as follows. First, a thermodynamic framework is established based on finite strain
theory. Then, the general radial return algorithm in Ref. [5] is modified to accommodate the current objective.
A viscoelasticity and a viscoplasticity model are developed based on the thermodynamic framework. These
models are implemented in the general radial return algorithm. The incremental constitutive relation for the
material is first derived in the spatial configuration and then pulled-back to the material configuration. A
variational statement of an SG is formulated with the incremental constitutive relation. Then, the variational
statement is first discretized in a finite-dimensional space and then solved using an Euler–Newton predictor–
corrector method. The constitutive model is calibrated via monotonic uniaxial compression tests on a
polymer, and the calibrated model is validated by comparing its predictions with the cyclic test data. The
micromechanics approach’s capabilities are demonstrated through homogenizing a UDFRC, subjected to
uniaxial, biaxial, and shear loading, at different strain rates.

II. Thermodynamics

Introduce material coordinates X = (X1, X2, X3) and spatial coordinates x = (x1, x2, x3), and let the
orthonormal basis of these two sets of coordinates coincide. x can be related to X and time t by

x (X, t) = X + u (X, t) , (1)

where u (X, t) denotes the displacement vector in the material configuration. The deformation gradient
tensor, F , is defined as

F =
∂x

∂X
= I +

∂u

∂X
, (2)

where I denotes the second-order identity tensor. The left and the right Cauchy–Green strain tensors, b and
C, are defined as

b = F · F T and C = F T · F , (3)
respectively. The multiplicative decomposition of F into its viscoelastic and viscoplastic parts, F ve and F vp,
reads

F = F ve · F vp. (4)
The viscoelastic left and the viscoplastic right Cauchy–Green strain tensors, bve and Cvp, are then

bve = F ve · (F ve)
T

and Cvp = (F vp)
T · F vp, (5)

respectively. Combing Eqs. (4) and (5) gives

bve =
[
F · (F vp)

−1
]
·
[
(F vp)

−T · F T
]
= F ·

[
(F vp)

−1 · (F vp)
−T
]
· F T = F · (Cvp)

−1 · F T . (6)
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By definition, the Lie derivative of bve reads

Lvb
ve = F · ∂

∂t

(
F−1 · bve · F−T

)
· F T = F ·

(
Ċ

vp
)−1

· F T , (7)

where the overdot denotes the time derivative of a quantity. Taking time derivatives on both sides of Eq. (6)
gives

ḃ
ve

= l · bve + bve · lT + Lvb
ve, (8)

where l = Ḟ · F−1 is the spatial velocity gradient.
Let Ψ denote the Helmholtz free energy per unit volume in the material configuration. It can be treated

as a function of a suitable set of independent state variables describing the viscoelasticity and viscoplasticity
of the material, e.g.,

Ψ = Ψ(bve,γ1, . . . ,γN , r) , (9)

where γi’s are strain measures describing viscoelasticity, and r a scalar describing isotropic hardening.
Assume that Ψ can be decomposed into its viscoelastic and plastic hardening parts, i.e.,

Ψ(bve,γ1, . . . ,γN , r) = Ψve (b
ve,γ1, . . . ,γN ) + Ψvp (r) . (10)

Taking time derivatives on both sides of Eq. (10) gives

Ψ̇ =
∂Ψ

∂bve
:
(
l · bve + bve · lT + Lvb

ve
)
+

N∑
i=1

∂Ψ

∂γi

: γ̇i +
∂Ψ

∂r
ṙ

=

(
2
∂Ψ

∂bve
· bve

)
:

[
d+

1

2
Lvb

ve · (bve)−1

]
+

N∑
i=1

∂Ψ

∂γi

: γ̇i +
∂Ψ

∂r
ṙ,

(11)

where d is the symmetric part of l, and the second equality holds due to the symmetry of bve. Substituting
Eq. (11) into the Clausius–Duhem inequality gives

Φ = τ : d− Ψ̇ =

(
τ − 2

∂Ψ

∂bve
· bve

)
: d

+

(
2
∂Ψ

∂bve
· bve

)
:

[
−1

2
Lvb

ve · (bve)−1

]
−

N∑
i=1

∂Ψ

∂γi

: γ̇i −
∂Ψ

∂r
ṙ ≥ 0,

(12)

where Φ denotes the dissipation per unit volume, and τ the Kirchhoff stress tensor (τ = Jσ with σ being
the Cauchy stress tensor and J = detF ). Consider a special case of elastic deformation where Ċ

vp
= 0,

γ̇i = 0, and ṙ = 0. Here Eq. (12) degenerates to(
τ − 2

∂Ψ

∂bve
· bve

)
: d ≥ 0. (13)

Noting that Eq. (13) holds for arbitrarily chosen d gives

τ = 2
∂Ψ

∂bve
· bve = 2

∂Ψve

∂bve
· bve. (14)

Define the following thermodynamic driving forces:

qi = − ∂Ψ

∂γi

= −∂Ψve

∂γi

and R =
∂Ψ

∂r
=

dΨvp

dr
, (15)

where qi is a stress measure conjugate to γi, and R is related to the current yield stress. Substituting
Eqs. (14) and (15) into Eq. (12) gives

Φ = τ :

[
−1

2
Lvb

ve · (bve)−1

]
+

N∑
i=1

qi : γ̇i −Rṙ ≥ 0. (16)
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Also assume that Φ can be decomposed into its viscoelastic and viscoplastic parts, i.e.,

Φ = Φve +Φvp, (17)

where

Φve =

N∑
i=1

qi : γ̇i ≥ 0 and Φvp = τ :

[
−1

2
Lvb

ve · (bve)−1

]
−Rṙ ≥ 0. (18)

Following Ref. [12], assume that there is a viscoplasitic potential, say Ω, governing the evolution of bve and
r, such that

−1

2
Lvb

ve · (bve)−1
=

∂Ω

∂τ
and ṙ = −∂Ω

∂R
. (19)

Further assume that Ω depends on τ and R via a yield function, f , such that

Ω = Ω(f) and v̇ =
∂Ω

∂f
, (20)

where v̇ is referred to as the viscosity function. Choosing a viscoplasticity model is then the equivalence of
choosing f and v̇. Combining Eqs. (19) and (20) gives the associated viscoplastic evolution laws as

Lvb
ve = −2v̇

∂f

∂τ
· bve and ṙ = −v̇

∂f

∂R
. (21)

Polymers often exhibit non-associated viscoplastic flow. Assume that there exist a pseudo-plastic potential,
F , such that the non-associated viscoplastic evolution laws read

Lvb
ve = −2v̇

∂F

∂τ
· bve and ṙ = −v̇

∂F

∂R
, (22)

where v̇ is still given by Eq. (20). According to Ref. [12], Ω has to be a convex function of τ and R, and so
do f and F .

III. General Radial Return

In this section, the general radial return algorithm in Ref. [5] is modified to accommodate the current
objective. Suppose that all variables at a given instant of time, tn, are known. Let (·)n denote a quantity
at tn, and let ∆(·) = (·)n+1 − (·)n, e.g., tn+1 = tn + ∆t. Let ∆u be prescribed displacement increments
superposed upon spatial configuration x = xn over [tn, tn+1]. For notational convenience, omit the subscript
n+ 1 on each quantity at tn+1. Define relative deformation gradient5

f = I +
∂u

∂x
(23)

such that F can be related to F n by
F = f · F n. (24)

The evolution laws over [tn, tn+1] then read

ḟ = l · f , ḃ
ve

= l · bve + bve · l− 2v̇
∂F

∂τ
, ṙ = −v̇

∂F

∂R
. (25)

Since u and therefore f are prescribed, the task is to find the other variables at tn+1.
Here a radial return algorithm consists of the following steps:

1. trial viscoelastic step—assume that the deformation is entirely viscoelastic, apply so-called trial vis-
coelastic strains to the material, and compute the corresponding trial stresses

2. radial return step—reduce the trial strains along the viscoplastic flow direction such that the reduced
strains and the resulting hardening variable(s) satisfy all constraints imposed by the viscoplasticity
model
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Figure 2. Radial return over [tn, tn+1].

These steps are iterated to convergence (see Figure 2).
In the trial viscoelastic step, v̇ = 0, and Eq. (25) degenerates to

ḟ = l · f , ḃ
ve

= l · bve + bve · l, ṙ = 0. (26)

Following Eq. (5), define the trial value of bve, say (bve)
tr, as

(bve)
tr
= f · F ve

n · (f · F ve
n )

T
= f ·

[
F ve

n · (F ve
n )

T
]
· fT = f · bven · fT . (27)

Once the viscoelasticity model and (bve)
tr are specified, the trial stresses, say τ tr, can be uniquely determined

(see Section V for example).
In the radial return step, the evolution laws can be obtained by subtracting Eq. (26) from Eq. (25), i.e.,

ḟ = 0, ḃ
ve

= −2v̇
∂F

∂τ
· bve, ṙ = −v̇

∂F

∂R
. (28)

Suppose that v̇ remains constant in this step. ∆v can then be related to v̇ using the backward Euler method
by

∆v = v̇∆t. (29)
The second equation of Eq. (28) then becomes an ordinary differential equation over [tn, tn+1], whose solution
reads

bve = exp

(
−2∆v

∂F

∂τ

)
· (bve)tr (30)

with (bve)
tr being the initial value of bve in this step. r can then be updated as

r = rn −∆v
∂F

∂R
. (31)

Assume that the material exhibits both elastic and plastic isotropy. bve and τ then have the same
principal directions and can be decomposed as

bve =

3∑
A=1

(λve
A )

2
pA ⊗ pA and τ =

3∑
A=1

τApA ⊗ pA, (32)

respectively, where pA denotes the Ath principal unit vector of τ and bve, λve
A the Ath principal viscoelastic

stretch, and τA = pA · τ · pA the Ath eigenvalue of τ . The viscoelastic logarithmic strain tensor can then be
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defined as

ϵve =

3∑
A=1

ϵveA pA ⊗ pA =

3∑
A=1

lnλve
A pA ⊗ pA. (33)

Ψve can then be expressed as a function of ϵve and γi’s, i.e.,

Ψve (b
ve,γ1, . . . ,γN ) = Ψ̂ve (ϵ

ve,γ1, . . . ,γN ) , (34)

such that
τ =

∂Ψ̂ve

∂ϵve
and qi = −∂Ψ̂ve

∂γi

. (35)

f and F can be treated as functions of τA’s and R, i.e.,

f (τ , R) = f̂ (τ1, τ2, τ3, R) and F (τ , R) = F̂ (τ1, τ2, τ3, R) . (36)

For brevity, here only consider F and F̂—f and f̂ can be similarly analyzed. The following can be verified:

∂F

∂τ
=

3∑
A=1

∂F̂

∂τA
pA ⊗ pA. (37)

First, (bve)tr can be decomposed similarly to Eq. (32) as

(bve)
tr
=

3∑
A=1

[
(λve

A )
tr
]2
ptr
A ⊗ ptr

A. (38)

Second, the following can be obtained from Eq. (30):

(bve)
tr
=

3∑
A=1

(λve
A )

2
exp

(
2∆v

∂F̂

∂τA

)
pA ⊗ pA. (39)

Comparing Eq. (38) with Eq. (39) gives

pA = ptr
A and (λve

A )
2
= exp

(
−2∆v

∂F̂

∂τA

)[
(λve

A )
tr
]2
. (40)

Taking the logarithm of both sides of the second equation of Eq (40) and combining the equation with
Eq. (31) give

ϵve = (ϵve)
tr −∆v

∂F

∂τ
and r = rn −∆v

∂F

∂R
, (41)

which are the evolution laws to be used hereafter.

IV. Viscoelasticity and Viscoplasticity Models

Choose a generalized Maxwell model containing N +1 springs and N dashpots (see Figure 13 for the 1D
case) as the viscoelasticity model. The 3D model can be developed similarly to the 1D one in Appendix A.
Let

Ei = KiI ⊗ I + 2GiI ′ (42)

be the fourth-order elasticity tensor of the ith spring (i = 0, 1, . . . , N), where Ki and Gi denotes the bulk
and the shear spring moduli, respectively, and I ′ = I − 1

3I ⊗ I is the fourth-order deviatoric projection
operator with I denoting the fourth-order identity tensor. Ψ̂ve can be expressed as the sum of its N + 1
parts each of which represents a branch, i.e.,

Ψ̂ve (ϵ
ve,γ1, . . . ,γN ) = Ψ̂0 (ϵ

ve) +

N∑
i=1

Ψ̂i (ϵ
ve,γi), (43)

8 of 36

American Institute of Aeronautics and Astronautics



where
Ψ̂0 (ϵ

ve) =
1

2
ϵve : E0 : ϵve and Ψ̂i (ϵ

ve,γi) =
1

2
(ϵve − γi) : Ei : (ϵ

ve − γi) (44)

are the zeroth and the ith spring viscoelastic potentials, respectively. Substituting Eq. (43) into Eq. (35)
gives

τ =
dΨ̂0

dϵve
+

N∑
i=1

∂Ψ̂i

∂ϵve
and qi = −∂Ψ̂i

∂γi

. (45)

Combining Eqs. (44) and (45) gives

τ = τ 0 +

N∑
i=1

qi, (46)

where
τ 0 = E0 : ϵve, (47)

and qi’s are to be determined. Let (·)m denote the mean of a second-order tensor, and let (·)′ denote the
deviatoric part. Following Ref. [4], assume that (qi)m and q′

i evolve independently such that

(q̇i)m +
(qi)m
ki

= 3Kiϵ̇
ve
m and q̇′

i +
q′
i

gi
= 2Giϵ̇

ve′, (48)

where ki and gi denote the volumetric and deviatoric characteristic relaxation times of the ith branch,
respectively. Solving Eq. (48) and noting that q = 0 at t = −∞ give

(qi)m = 3Ki exp

(
− t

ki

)∫ t

−∞
exp

(
s

ki

)
∂ϵvem
∂s

ds, (49)

q′
i = 2Gi exp

(
− t

gi

)∫ t

−∞
exp

(
s

gi

)
∂ϵve′

∂s
ds. (49′)

Substituting Eq. (49) into Eq. (46) and rearrange the equation give

τm = 3K0ϵ
ve
m +

N∑
i=1

3Ki exp

(
− t

ki

)∫ t

−∞
exp

(
s

ki

)
∂ϵvem
∂s

ds, (50)

τ ′ = 2G0ϵ
ve′ +

N∑
i=1

2Gi exp

(
− t

gi

)∫ t

−∞
exp

(
s

gi

)
∂ϵve′

∂s
ds. (50′)

Let the material obey a yield function taking the general form of

f (τ , R) = g (τ )− τy −R, (51)

where g is a scalar-valued function to be specified, and τy denotes the initial yield stress. Also let the material
obey a pseudo-plastic potential taking the general form of

F (τ , R) = G (τ )− τy −R, (52)

where G is another scalar-valued function to be specified. If G (τ ) = g (τ ), the viscoplastic flow becomes
associated, and Eq. (52) degenerates to Eq. (51). Also let

n =
∂f

∂τ
=

∂g

∂τ
and N =

∂F

∂τ
=

∂G

∂τ
. (53)

Substituting Eq. (53) into Eq. (41) gives

ϵve = (ϵve)
tr −∆vN and ∆r = r − rn = ∆v. (54)

Eqs. (10) and (15) imply that R is a function of r, i.e., R = R (r). R = R (r) is referred to as the damage
accumulation law, and its specific form is to be calibrated. Last set13

v̇ =

 γ

(
f

τy +R

)n

f ≥ 0,

0 f < 0,

(55)

where γ denotes a viscosity parameter, and n denotes a rate-sensitivity parameter.
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V. Radial Return Algorithm

In this section, the viscoelasticity and the viscoplasticity models are implemented in the general radial
return algorithm. Still consider time interval [tn, tn+1]. (qm)i and q′

i can be related to [(qm)i]n and (q′
i)n by

(qm)i = exp

(
−∆t

ki

)
[(qm)i]n + 3Ki exp

(
− t

ki

)∫ t

tn

exp

(
s

ki

)
∂ϵvem
∂s

ds, (56)

q′
i = exp

(
−∆t

gi

)
(q′

i)n + 2Gi

(
− t

gi

)∫ t

tn

exp

(
s

gi

)
∂ϵve′

∂s
ds, (56′)

respectively. Assume that ϵ̇ve remains constant over [tn, t], and relate ∆ϵve to ϵ̇ve using the backward Euler
method by

∆ϵve = ϵve − ϵven = ϵ̇ve∆t. (57)
Substituting Eq. (57) into Eq. (56) gives

(qm)i = exp

(
−∆t

ki

)
[(qm)i]n + 3Ki

[
1− exp

(
−∆t

ki

)]
ki
∆t

∆ϵvem , (58)

q′
i = exp

(
−∆t

gi

)
(q′

i)n + 2Gi

[
1− exp

(
−∆t

gi

)]
gi
∆t

∆ϵve′. (58′)

Substituting Eq. (58) into Eq. (56) gives

τm = 3
(
K0 + K̃

)
ϵvem +

N∑
i=1

exp

(
−∆t

ki

)
[(qm)i]n − 3K̃(ϵvem )n, (59)

τ ′
i = 2

(
G0 + G̃

)
ϵve′ +

N∑
i=1

exp

(
−∆t

gi

)
(q′

i)n − 2G̃ϵve′n , (59′)

where

K̃ =

N∑
i=1

Ki

[
1− exp

(
−∆t

ki

)]
ki
∆t

and G̃ =

N∑
i=1

Gi

[
1− exp

(
−∆t

gi

)]
gi
∆t

. (60)

The trial stress tensor, τ tr, can then be defined as

τ tr =
(
E0 + Ẽ

)
: (ϵve)

tr
+

N∑
i=1

{
exp

(
−∆t

ki

)
[(qm)i]nI + exp

(
−∆t

gi

)
(q′

i)n

}
− Ẽ : ϵven , (61)

where
Ẽ = K̃I ⊗ I + 2G̃I ′. (62)

The integration scheme can be formulated as solving the following equation set for τ and ∆r:

τ = τ tr −∆r
(
E0 + Ẽ

)
: N , (63)

∆r = v̇∆t. (63′)

The task can then be reformulated as solving the following equation set for τ and ∆r:

Ψ (τ ,∆r) = τ − τ tr +∆r
(
E0 + Ẽ

)
: N = 0, (64)

P (τ ,∆r) = ∆r − v̇∆t = 0. (65)
Here Newton’s method is used to obtain the solution. Require

Ψ (τ old + dτ ,∆rold + d∆r) = Ψ (τ old,∆rold) +
∂Ψ

∂τ
: dτ +

∂Ψ

∂∆r
d∆r = 0, (66)

P (τ old + dτ ,∆rold + d∆r) = P (τ old,∆rold) +
∂P

∂τ
: dτ +

∂P

∂∆r
d∆r = 0, (66′)
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where
∂Ψ

∂τ
= I +∆r

(
E0 + Ẽ

)
:
∂N

∂τ
,

∂Ψ

∂∆r
=
(
E0 + Ẽ

)
: N , (67)

∂P

∂τ
= − ∂v̇

∂τ
∆t,

∂P

∂∆r
= 1− ∂v̇

∂∆r
∆t (67′)

with

∂v̇

∂τ
= nγ

(
g

τy +R
− 1

)n−1
∂

∂τ

(
g

τy +R
− 1

)
=

nγ

τy +R

(
g

τy +R
− 1

)n−1

n, (68)

∂v̇

∂∆r
= nγ

(
g

τy +R
− 1

)n−1
∂

∂∆r

(
g

τy +R
− 1

)
= − nγg

(τy +R)
2

(
g

τy +R
− 1

)n−1
dR

d∆r
. (68′)

Note that, once g and G are specified, n, N , and ∂N/∂τ can be uniquely determined (see Appendix B for
example). Introduce matrix notation

τ =
⌊

τ11 τ12 τ22 τ13 τ23 τ33

⌋T
. (69)

Eq. (66) can be written in matrix form as{
Ψ(τold,∆rold)

SP (τold,∆rold)

}
+ J

{
dτ

Sd∆r

}
= 0, (70)

where

J =

 ∂Ψ

∂τ

1

S

∂Ψ

∂∆r

S
∂P

∂τ

∂P

∂∆r

 (71)

is a 7× 7 Jacobian matrix, and and S = dR/d∆r is a scale factor making J well-conditioned. Rearranging
Eq. (70) gives {

dτ

Sd∆r

}
= −J−1

{
Ψ(τold,∆rold)

SP (τold,∆rold)

}
. (72)

The corrections can then be computed and added to the solutions, i.e.,

τ new = τ old + dτ and ∆rnew = ∆rold + d∆r. (73)

This process is iterated to convergence.

VI. Incremental Constitutive Relation

In this section, the incremental constitutive relation for the material is first derived in the spatial configu-
ration and then pulled-back to the material configuration. It facilitates the implementation of the constitutive
model in either an FE code or the variational homogenization method (see Section VII).

The incremental constitutive relation can be written as

dS = C :
1

2
dC, (74)

where S denotes the second Piola–Kirchhoff stress tensor, and

C = 2
∂S

∂C
(75)

is the fourth-order second elasticity tensor. The fourth-order spatial elasticity tensor, Csp, can be obtained
by pushing-forward C to the spatial configuration, i.e.,

Csp
ijkl = J−1FimFjnFkpFlqCmnpq = 2J−1FimFjnFkpFlq

∂Smn

∂Cpq
. (76)
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The spatial representation of Eq. (74) then reads14

Lvτ = JCsp : d or τ̇ = JCsp : d+ l · τ + τ · lT . (77)

The task is to obtain the explicit expression for Csp from Eq. (76).
Eq. (32) can be rewritten as

τ =

3∑
A=1

τAqA, where qA=pA ⊗ pA. (78)

S can be related to τ by
S = F−1 · τ · F−T . (79)

Substituting Eqs. (78) and (79) into Eq. (76) gives

Csp
ijkl = 2J−1FimFjnFkpFlq

∂

∂Cpq

[
3∑

A=1

τAF
−1
mr (qA)rsF

−T
sn

]

= 2J−1FimFjnFkpFlq

3∑
A=1

F−1
mr (qA)rsF

−T
sn

∂τA
∂Cpq

+ 2J−1FimFjnFkpFlq

3∑
A=1

τA
∂

∂Cpq

[
F−1
mr (qA)rsF

−T
sn

]
.

(80)

Define the following fourth-order tensor:

Calg =

3∑
A=1

qA ⊗ ∂τA

∂(ϵve)
tr , (81)

which is actually the algorithmic tangent operator when pA’s are held fixed. Calg can be expressed as a 3×3
matrix in principal stress space, whose components reads

Calg
AB =

∂τA

∂ (ϵve)
tr
B

, where A,B = 1, 2, 3. (82)

The following can be verified:

2F ·
∂ (ϵve)

tr
B

∂C
· F T = qB (83)

(see Appendix C for the derivation). With the help of Eqs. (82) and (83), the first term on the right side of
Eq. (80) can further be expressed using the chain rule as

2FimFjnFkpFlq

3∑
A=1

F−1
mr (qA)rsF

−T
sn

∂τA
∂Cpq

=

3∑
A=1

3∑
B=1

(qA)ij
∂τA

∂ (ϵve)
tr
B

[
2Fkp

∂ (ϵve)
tr
B

∂Cpq
FT
ql

]
=

3∑
A=1

3∑
B=1

Calg
AB(qA)ij(qB)kl.

(84)

Define the following fourth-order tensor:

(RA)ijkl = FimFjnFkpFlq
∂

∂Cpq

[
F−1
mr (qA)rsF

−T
sn

]
, (85)

whose explicit expression can be found in Appendix C. Substituting Eqs. (84) and (85) into Eq. (82) gives

Csp = J−1
3∑

A=1

3∑
B=1

Calg
ABqA ⊗ qB + 2J−1

3∑
A=1

τARA, (86)
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where the explicit expression for Calg is to be derived.
Hereafter hold pA’s fixed. Totally differentiating both sides of Eq. (64) with respect to τ , ∆r, and (ϵve)

tr

gives
dΨ =

∂Ψ

∂τ
: dτ +

∂Ψ

∂∆r
d∆r +

∂Ψ

∂(ϵve)
tr : d(ϵve)

tr
= 0, (87)

dP =
∂P

∂τ
: dτ +

∂P

∂∆r
d∆r +

∂P

∂(ϵve)
tr : d(ϵve)

tr
= 0, (88)

where
∂Ψ

∂(ϵve)
tr = − ∂τ tr

∂(ϵve)
tr = −

(
E0 + Ẽ

)
and

∂P

∂(ϵve)
tr = 0. (89)

Solving Eq. (92) for d∆r gives

d∆r = −

∂P

∂τ
∂P

∂∆r

: dτ . (90)

Substituting Eq. (90) into Eq. (87) and solving the equation for dτ gives

dτ =

∂Ψ

∂τ
−

∂Ψ

∂∆r
⊗ ∂P

∂τ
∂P

∂∆r


−1

:
(
E0 + Ẽ

)
: d(ϵve)

tr ≡ Calg : d(ϵve)
tr
, (91)

which gives the explicit expression for Calg.
An alternative form of Eq. (74) reads

Ṗ = A : Ḟ . (92)
where P denotes the first Piola–Kirchhoff stress tensor, and

A =
∂P

∂F
(93)

is the fourth-order first elasticity tensor. According to Ref. [11], a variational statement formulated with
Eq. (92) is preferred for homogenization. The tasks are then (1) relating C to Csp and (2) relating A to C.
C can be obtained by pulling-back Csp to the material configuration, i.e.,

Cijkl = JF−1
im F−1

jn F−1
kp F−1

lq Csp
mnpq. (94)

P can be related to S by
P = F · S. (95)

Combining Eqs. (75) and (92)–(95) gives

A =
∂P

∂F
=

∂

∂F
(F · S) = I · S + F · ∂S

∂F
= I · S + F · ∂S

∂C
:
∂C

∂F
= I · S +

1

2
F · C :

∂C

∂F
. (96)

The first term to the right of the last equal sign in Eq. (96) can be expressed as

IijkmSml = δikδjmSml = δikSjl, (97)

and the second term
1

2
FimCmjnp

∂Cnp

∂Fkl
=

1

2
FimCmjnp

∂

∂Fkl
(FqnFqp) =

1

2
FimCmjnp (FqnIqpkl + FqpIqnkl)

= FimCjmnpFqnIqpkl = FimCmjnpFqnδqkδpl = FimCmjnlFkn.

(98)

Note that the third equality in Eq. (98) holds because C fulfills the minor symmetries. Substituting Eqs. (97)
and (98) into Eq. (96) gives

Aijkl = δikSjl + FimCmjnlFkn. (99)
Once Csp is computed, A can be obtained from Csp using Eq. (94) and (99).
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VII. Variational Asymptotic Homogenization

Consider a composite consisting of one or more constituents obeying the above incremental constitutive
relation, and suppose that the composite has an identifiable SG. In this section, a variational statement of
the SG is formulated. Introduce global coordinates X = (X1, X2, X3) describing the macroscopic structure,
and introduce local coordinates Y = (Y1, Y2, Y3) describing the SG so that

Y =
X

ε
, (100)

where ε ≪ 1 is a scale ratio. Suppose that all global and local variables at tn are known. The task is to find
the current displacements in the SG, ui. The present approach is similar to the approach used in Ref. [11].
In Ref. [11], the variational statement is formulated with a strain energy density function relating P to F .
The main difference herein is that the variational statement is formulated with a state function relating
Ṗ to Ḟ (see Eq. (101)) because there is no one-to-one correspondence between P and F . To ensure the
completeness of derivation, all necessary equations are presented in Sections VII and VIII.

Following Ref. [15], define a state function, W ∗, as

W ∗
(
Ḟij

)
=

1

2
ḞijAijklḞkl (101)

so that
δW ∗ = δḞijAijklḞkl = ṖijδḞij (102)

(see also Eq. (92), and see Figure 3 for the physical meaning of W ∗). It can be verified that, for ε → 0, external
forces negligibly contribute to the integral of W ∗ over the SG.6 The following variational principle can then
be created for viscoelastic-viscoplasic composites: among all admissible velocities, the actual velocities make
functional

U∗ =

∫
Ω

W ∗
(
Ḟij

)
dV ≡ ⟨W ∗⟩ , (103)

an absolute minimum (see Ref. [15] for more details), i.e.,

δU∗ =

〈
∂W ∗

∂Ḟij

δḞij

〉
=

〈
Ṗijδ

∂u̇i

∂Xj

〉
= 0 (104)

and

δ2U∗ =

〈
∂2W ∗

∂Ḟij∂Ḟkl

δḞijδḞkl

〉
=
〈
AijklδḞijδḞkl

〉
≥ 0, (105)

where Ω denotes the domain occupied by the SG (with boundary ∂Ω) and also its volume, and ⟨·⟩ denotes the
integral of a quantity over Ω. Note that the inequality in Eq. (105) holds because Aijkl is positive-definite.

Assume that
u̇i = u̇i (X,Y ) (106)

is a smooth function of X and Y . The derivatives of u̇i can be expressed as6

∂u̇i

∂Xj
=

(
∂u̇i

∂Xj

)
Y

+
1

ε

(
∂u̇i

∂Yj

)
X

≡ u̇i,j +
1

ε
u̇i|j . (107)

Substituting Eq. (107) into Eq. (104) gives

δU∗ =

〈
∂U∗

∂Ḟij

δḞij

〉
=

〈
Ṗijδ (ui,j) + Ṗijδ

(
1

ε
u̇i|j

)〉
=

〈
Ṗijδ

(
1

ε
u̇i|j

)〉
= 0, (108)

where the third equality holds because the omitted term negligibly contributes to δU∗ (ε ≪ 1). Eq. (108)
has solution

u̇i (X,Y ) = ˙̄ui (X) . (109)
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Figure 3. 1D example over [tn, tn+1]. Pn is known, and quantities in red are of interest. A = ∆P
∆F

thanks to
linearization. Given the quantities related to the red triangle, Pn+1 and the other quantities at tn+1 can be
obtained subsequently. Since ∆F = Ḟ∆t, here state function W ∗ times (∆t)2 equals the area of the red triangle.

Eqs. (108) and (109) imply that u̇i (X,Y ) should be a rapidly oscillatory function not significantly deviating
from slowly varying function ˙̄ui (X). u̇i can then be asymptotically expanded into the sum of ˙̄ui and a
fluctuation function, say χ̇i, i.e.,

u̇i (X,Y ) = ˙̄ui (X) + εχ̇i (X,Y ) , (110)

where χ̇i should be a periodic function of Y and may also depend on X, and εχ̇i is asymptotically smaller
than ˙̄ui. Require

1

Ω

∫
Ω

χ̇idV ≡ ⟨⟨χ̇i⟩⟩ = 0 (111)

so that
˙̄ui = ⟨⟨u̇i⟩⟩ (112)

becomes the global displacement vector,6 where ⟨⟨·⟩⟩ denotes the average of a quantity over Ω. Substituting
Eq. (110) into Eq. (107) gives

∂u̇i

∂Xj
=

∂ ˙̄ui

∂Xj
+ εχ̇i,j + χ̇i|j . (113)

It can be similarly verified that εχ̇i,j negligibly affects Eq. (104) and is therefore omissible. Let

F̄ij = δij +
∂ūi

∂Xj
, (114)

which actually denotes the global deformation gradient tensor. Combining Eqs. (2), (113), and (114) gives

Fij = F̄ij + χi|j . (115)

Next hold ˙̄F ij fixed. With Eq. (115), the above variational principle can be revised as follows: among all
admissible fluctuation functions, the actual fluctuation functions make functional U∗ an absolute minimum,
i.e.,

δU∗ =

〈
∂W ∗

∂Ḟij

δḞij

〉
=
〈
Ṗijδχ̇i|j

〉
= 0, (116)

which is the variational statement to be solved in Section VIII.
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VIII. FE Implementation

In this section, the above variational statement is first discretized in a finite-dimensional space and then
solved using an Euler–Newton predictor–corrector method. Introduce the following matrix notations:

F̄ =
⌊

F̄11 F̄12 F̄22 F̄13 F̄23 F̄33 F̄21 F̄31 F̄32

⌋T
, (117)

∂χ1

∂Y1
∂χ1

∂Y2
∂χ2

∂Y2
∂χ1

∂Y3
∂χ2

∂Y3
∂χ3

∂Y3
∂χ2

∂Y1
∂χ3

∂Y1
∂χ3

∂Y2



=



∂
∂Y1

0 0
∂

∂Y2
0 0

0 ∂
∂Y2

0
∂

∂Y3
0 0

0 ∂
∂Y3

0

0 0 ∂
∂Y3

0 ∂
∂Y1

0

0 0 ∂
∂Y1

0 0 ∂
∂Y2




χ1

χ2

χ3

 ≡ Γhχ, (117′)

where Γh denotes an operator matrix, and χ denotes a column matrix containing the components of the
fluctuation function. Let χ be discretized in a finite-dimensional space as

χ (Xi, Yi) = S (Yi)X (Xi) , (118)

where S denotes the shape function, and X denotes a column matrix containing the nodal values of the
fluctuation function at all active nodes. Eq. (115) can be discretized as

F = F̄ + ΓhSX . (119)

The task then becomes finding F̄ and X . Here a multilevel Newton method16 is used for problem solving
due to the following reasons:

• F̄ and X are implicitly linked, making it numerically prohibitive to solve for them simultaneously.

• This method fits a multiscale simulation well.

The multilevel Newton method is not guaranteed to converge to the solution and often gets “lost” if started
far from the solution. Fortunately, it can be embedded in an Euler–Newton predictor–corrector method17

for improved convergence. This method consists of the following steps:

1. Euler predictor step—proceed in the tangent direction of the loading path

2. Newton corrector step—bring the predictions back to the loading path

In the remaining of this section, the details on these steps will be presented in succession.

A. Euler Predictor Step

Suppose that all global and local variables at a given instant of time are known. Note that such derivative of
a quantity can be converted to its corresponding increment by multiplying it by the time increment, ∆t. The
task can then be reformulated as finding the current velocities in the SG, u̇i. Eq. (103) can be discretized as

U∗ =
1

2

(
Ẋ TDhhẊ + 2Ẋ TDhF

˙̄F + ˙̄F
T
DFF

˙̄F

)
, (120)

where
Dhh =

〈
(ΓhS)

T
D (ΓhS)

〉
, DhF =

〈
(ΓhS)

T
D
〉
, DFF = ⟨D⟩ . (121)

U∗ attains its minimum if and only if

DhhẊ = −DhF
˙̄F or Ẋ = X0

˙̄F, (122)
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which implies that Ẋ linearly depends on ˙̄F . Substituting Eq. (122) into Eq. (120) gives

U∗ =
1

2
˙̄F
T (

X T
0 DhF +DFF

) ˙̄F ≡ Ω

2
˙̄F
T
D̄ ˙̄F, (123)

where D̄ denotes the effective tangent stiffness matrix. Let P̄ denote the global first Piola–Kirchhoff stress
column matrix. By definition,

˙̄P =
∂

∂ ˙̄F
⟨⟨W ∗⟩⟩ = D̄ ˙̄F. (124)

Eq. (124) can be partitioned as {
˙̄Pu

˙̄P k

}
=

[
D̄uk D̄uu

D̄kk D̄ku

]{
˙̄F k

˙̄Fu

}
, (125)

where the subscripts k and u denote the known and the unknown components, respectively. In Eq. (125),
˙̄Pu and ˙̄Fu need to be determined. Rearranging Eq. (125) gives{

˙̄Pu

˙̄Fu

}
=

[
D̄uk − D̄uuD̄

−1
ku D̄kk D̄uuD̄

−1
ku

−D̄−1
ku D̄kk D̄−1

ku

]{
˙̄F k

˙̄P k

}
, (126)

from which ˙̄Pu and ˙̄Fu can be determined (and so can the global response of the SG). After this, the local
deformation gradient rates can be obtained as

Ḟ = ˙̄F + ΓhSX0
˙̄F. (127)

B. Newton Corrector Step

The multilevel Newton method consists of the following loops:

• inner loop—F̄ is held fixed, and X is the variable

• outer loop—X is held fixed, and the unknown components of P̄ and F̄ (i.e., P̄u and F̄u) are the variables

Note that, if F̄ is fully prescribed (this is usually the case in multiscale simulations), only the inner loop is
needed. First consider the inner loop. The incremental form of Eq. (116) is given by

δU∗ =
〈
∆Pijδ

(
∆χi|j

)〉
= 0 (128)

or
δU∗ =

〈[
Pij − (Pn)ij

]
δ
[
χi|j − (χn)i|j

]〉
=
〈[

Pij − (Pn)ij

]
δχi|j

〉
= 0. (129)

Eq. (129) can be discretized as

δU∗ = δX T
〈
(ΓhS)

T
[P (X )− Pn]

〉
= 0, (130)

where P denotes the local first Piola–Kirchhoff stress column matrix. The second equality in Eq. (130) holds
only if

Ψin (X ) =
〈
(ΓhS)

T
[P (X )− Pn]

〉
= 0. (131)

Suppose that Eq. (131) is zeroed in each previous step. This implies that〈
(ΓhS)

T
Pn

〉
= 0. (132)

Substituting Eq. (132) into Eq. (131) gives

Ψin (X ) =
〈
(ΓhS)

T
P (X )

〉
= 0. (133)
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The task of the inner loop is therefore to solve Eq. (133) (rather than Eq. (131) to eliminate the accumulation
of errors) for X . Require

Ψin (Xold + dX ) = Ψin (Xold) +
∂Ψin

∂X
dX = 0. (134)

Solving Eq. (134) for the corrections, dX , gives

∂Ψin

∂X
dX = −Ψin (Xold) , (135)

where
∂Ψin

∂X
=

〈
(ΓhS)

T ∂P

∂X

〉
=
〈
(ΓhS)

T
D (ΓhS)

〉
≡ Dhh (136)

with D denoting the 9×9 tangent stiffness matrix condensed from A, using Voigt notation. The corrections
can then be computed and added to the solution, i.e.,

Xnew = Xold + dX . (137)

By definition,

˙̄P =
∂

∂ ˙̄F
⟨⟨W ∗⟩⟩ =

〈〈
∂W ∗

∂ ˙̄F

〉〉
=

〈〈(
∂Ḟ

∂ ˙̄F

)T
∂W ∗

∂Ḟ

〉〉

=

〈〈(
I + ΓhS

∂X
∂F̄

)T

Ṗ

〉〉
=
〈〈

Ṗ
〉〉

+

(
∂X
∂F̄

)T 〈〈
(ΓhS)

T
Ṗ
〉〉

,

(138)

where I denotes an identity matrix. Substituting the rate form of Eq. (133) into Eq. (138) gives

˙̄P =
〈〈

Ṗ
〉〉

or P̄ =

∫ t

0

˙̄Pdt =

∫ t

0

〈〈
Ṗ
〉〉

dt = ⟨⟨P ⟩⟩ . (139)

Next consider the outer loop. P̄ and F̄ can be partitioned as

P̄ =

{
P̄u

P̄k

}
and F̄ =

{
F̄k

F̄u

}
, (140)

respectively. Let

P̄ ∗ =

{
P̄u

F̄u

}
and F̄ ∗ =

{
F̄k

P̄k

}
, (141)

respectively. Set P̄ ∗ to be the variable, and choose

Ψout

(
P̄ ∗) = F̄ ∗ (P̄ ∗)− F̄∗ (142)

as the function to be zeroed in the outer loop, where F̄∗ denotes the prescribed value of F̄ ∗ in the current
load step. Requires

Ψout

(
P̄ ∗
old + dP̄ ∗) = F̄ ∗ (P̄ ∗

old

)
+ dF̄ ∗ − F̄∗ = 0. (143)

Substituting Eq. (142) into Eq. (143) gives

dF̄ ∗ = −Ψout

(
P̄ ∗
old

)
. (144)

The problem can then be solved by relating dP̄ ∗ to dF̄ ∗. Combining Eqs. (92) and (139) gives

dP̄ = ⟨⟨dP ⟩⟩ =
〈〈

∂P

∂F

∂F

∂F̄

〉〉
dF̄ = ⟨⟨D⟩⟩dF̄ ≡ J̄dF̄ , (145)

where the third equality holds because X is held fixed. Eq. (145) can be partitioned as{
dP̄u

dP̄k

}
=

[
J̄uk J̄uu

J̄kk J̄ku

]{
dF̄k

dF̄u

}
. (146)

18 of 36

American Institute of Aeronautics and Astronautics



Rearranging Eq. (146) gives{
dP̄u

dF̄u

}
=

[
J̄uk − J̄uuJ̄

−1
ku J̄kk J̄uuJ̄

−1
ku

−J̄−1
ku J̄kk J̄−1

ku

]{
dF̄k

dP̄k

}
(147)

or
dP̄ ∗ = J̄∗dF̄ ∗. (148)

Premultiplying both sides of Eq. (144) by J̄∗ gives

dP̄ ∗ = −J̄∗Ψout

(
P̄ ∗
old

)
. (149)

The corrections can then be computed and added to the solution, i.e.,

P̄ ∗
new = P̄ ∗

old + dP̄ ∗. (150)

The whole process is iterated to convergence.

IX. Numerical Examples

Zhang and Moore18 performed a series of monotonic/cyclic uniaxial compression tests on high density
polyethylene (HDPE), at different strain rates. These test data are appealing for model calibration and
validation due to the following reason: the monotonic test data are suitable for model calibration, and the
calibrated model can then be used to the reproduce the cyclic test data. First, the constitutive model is
calibrated via monotonic uniaxial compression tests on a polymer, and the calibrated model is validated by
comparing its predictions with the remaining of the experimental data. Then, the micromechanics approach’s
capabilities are demonstrated through homogenizing a UDFRC with an HDPE matrix, subjected to uniaxial,
biaxial, and shear loading, at different strain rates.

A. HDPE

Choose the loading direction as the x1-direction. Following Refs. [4, 18], assume that isotropic HDPE:

• has a Poisson’s ratio (ν0) of 0.39

• obeys the von Mises yield function along with an associated flow rule (α = β = 0 in Eqs. (158) and
(160))

• exhibits the Voce hardening law, Eq. (161) (i.e., isotropic hardening but no kinematic hardening)

These assumptions are made due to a lack of sufficient experimental data. The effects of these assumptions
will be discussed later this section. Figure 4 shows the experimental monotonic stress–strain curves of HDPE
at a strain rate of 10−4 s−1, and Figure 5 at a strain rate of 10−3 s−1. Numerical experiments indicate that
two branches in the generalized Maxwell model (i.e., i = 0, 1) are sufficient to characterize the viscoelastic
behavior of HDPE. To reduce the complexity of calibration, assume that k1 = g1. The fitted viscoelastic
parameters are then E0, K1, G1, and k1 = g1. Thanks to viscous effects, viscoplasticity seldom affects the
stress–strain relationships right after the onset of yielding. The initial yield stress, σy, then need not be
exactly determined but can take an estimated value. Numerical experiments indicate that σy = 5 MPa
serves the purpose well.

In this work, the method of nonlinear least squares (NLLSQ), which contains Monte Carlo experiments
and Powell’s methods, is used (see Appendix D for more details). The calibration process consists of the
following major steps:

1. Calibrate the viscoelastic parameters (see Table 1(a)) from the first 5 to 6 data points in Figures 4 and
5.

2. Hold the viscoelastic parameters fixed, and calibrate the viscoplastic parameters (see Table 1(a)) from
the remaining data points in the loading segments in Figures 4 and 5.
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Figure 4. Experimental and fitted monotonic stress–strain curves of HDPE at a strain rate of 10−4 s−1.
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Figure 5. Experimental and fitted monotonic stress–strain curves of HDPE at a strain rate of 10−3 s−1.
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3. Fine-tune all material parameters to make the predicted curves have the best fit to the experimental
ones.

This “staggered” method can be used time by time throughout a calibration process. Especially, Step 1 is
accomplished as follows:

1. Set K1 = G1 = 0, and calibrate E0 from the data points.

2. Hold E0 fixed, and calibrate K1 and G1 from the data points.

3. Fine-tune E0, K1, and G1 to make the predicted curves have the best fit to the data points.

Table 1 lists the fitted parameters of HDPE, and Figures 4 and 5 compare the fitted curves with the
experimental ones. Each curve in Figures 4 and 5 can be divided into a loading segment and an unloading
segment. As can be seen:

• Each fitted loading segment agree with its corresponding experimental one very well.

• Each fitted unloading segment does not agree with its corresponding experimental one.

Recall that only the loading segments were considered during calibration. The first point indicates that the
calibrated constitutive model can reproduce the test data. In contrast, the reason for the second point is
that the unloading segments were not considered during calibration. On the one hand, this can be further
improved by devoting more time and efforts to calibration. On the other hand, the following is worth noting:

• Each fitted unloading segment exhibits an approximately linear trend.

• Each experimental unloading segment exhibits an nonlinear trend at an early stage of unloading.

These experimental data indicate that HDPE may exhibit not only isotropic hardening but also kinematic
hardening. Given experimental evidence indicating that polymers often exhibit kinematic hardening, it is
necessary to incorporate kinematic hardening into the constitutive model in further work.

Table 1. Material parameters of HDPE.

(a) Viscoelastic parameters.

E0 (MPa) ν0 K1 (MPa) G1 (MPa) k1 = g1 (s)

543.198 0.39 488.225 115.91 55.5891

(b) Viscoplastic parameters.

σy (MPa) Q (MPa) b γ
(
s−1
)

n

5 5.50879 53.2535 1.00845× 10−4 8.27066

The calibrated constitutive model is then used to predict the responses of HDPE experiencing different
loading paths. Figure 6 compares the predicted cyclic stress–strain curve at a strain rate of 10−4 s−1, with
the experimental one. Each curve can be divided into a series of loading, unloading, and reloading segments.
The predicted initial loading segment agrees well with the experimental one. As HDPE is further deformed,
the subsequent predicted unloading and reloading segments increasingly deviate from their respective exper-
imental ones. This may again be because HDPE exhibits not only isotropic hardening but also kinematic
hardening, causing the experimental unloading segments to be highly nonlinear.

Figure 7 compares the predicted varying-strain-rate stress–strain curves with the experimental one. Here
the loading path consists of the following steps:

1. initial loading—HDPE is loaded up to an elongation of 1.65%, at a strain rate of 10−4 s−1

2. relaxation—HDPE is held fixed at an elongation of 1.65%, for 450 s

3. reloading—HDPE is loaded up to an elongation of 3.5%, at a strain rate of 10−2 s−1
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Figure 6. Experimental and predicted cyclic stress–strain curves of HDPE at a strain rate of 10−4 s−1.

As can be seen:

1. The predicted initial loading segment agrees well with the experimental one.

2. The predicted relaxation segment is shorter than the experimental one.

3. The predicted reloading segment noticeably deviate from the experimental one.

The second point indicates that the fitted viscoelastic parameters cannot well describe the responses of
HDPE during relaxation. The deviation during relaxation further causes the subsequent deviation during
reloading. In conclusion, Figures 6 and 7 indicate that the fitted parameters can well describe the responses
of HDPE during loading but not those during unloading or relaxation. The material parameters can be
better calibrated through the following:

• Incorporate kinematic hardening into the constitutive model.

• Consider more strain rates during calibration, to better calibrate the viscoelastic parameters.

• Conduct cyclic tests rather than monotonic tests to better calibrate the viscoplastic parameters.

Especially, cyclic tests are preferable to monotonic tests because each of its unloading segment helps one:

• determine the current residual/viscoplastic strain

• isolate the effects of viscoelasticity and viscoplasticity

• calibrate viscoelastic and viscoplastic parameters separately and therefore more accurately

B. UDFRC

Next consider a UDFRC consisting of an HDPE matrix (with its material parameters calibrated above) and
numerous cylindrical, elastic fibers arranged in a square array. For demonstration purposes, the volume
fraction of fibers is set to be 10%. This is because:

• There is a lack of experimental data for composite-level calibration or validation.

• Only HDPE contributes to the composite’s material nonlinearity and rate dependence.
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Figure 7. Experimental and predicted varying-strain-rate stress–strain curves of HDPE.

Let the fibers have a Young’s modulus of 76 GPa and a Poisson’s ratio of 0.22. Let the SG of this composite
consist of a square matrix and a circular fiber located at its center. Choose the center of the SG as the origin
of the local coordinates, yi, and the fiber direction and the length and width directions of the SG as the y1-,
the y2-, and the y3-directions, respectively.

Figure 8(a) depicts the SG used in the micromechanics approach. The 2D SG is meshed with 4-node
quadrilateral elements with 3 degrees of freedom (DOFs) at each node, and the meshed SG consists of 1216
elements. This FE model is found to be capable of producing converged results. In contrast, to simulate
longitudinal shear deformation using FE analysis (FEA), one has to at least use a 3D SG as shown in
Figure 8(b). The 3D SG is meshed with 8-node hexahedral elements, and the meshed SG consists of 2432
elements. Both FE models are found to be capable of producing converged results. Clearly, a 2D SG can
have much less DOFs than a 3D SG and therefore reduce the computational effort.

Figure 9 shows the stress–strain hysteresis loops of the composite subjected to uniaxial loading in the y1-
and the y2-directions, respectively. Hereafter let each loading path consist of the following steps:

1. initial loading—the major strain(s) is increased from 0 to 0.1

2. initial unloading—the major strain(s) is decreased from 0.1 to 0

3. reverse loading—the major strain(s) is decreased from 0.0 to −0.1

4. reverse unloading—the major strain(s) is increased from −0.1 to 0

It can be seen that the composite exhibits an approximately linear stress–strain relationship when loaded
in the y1-direction and a highly nonlinear one when loaded in the y2-direction. This can be understood by
investigating the stress distribution in the SG. In Figure 9(a), the fiber sustains most of the external load,
and accordingly, the composite behaves like a linearly elastic fiber. In Figure 9(b), the matrix also sustains
the external load, and the stress distribution in the matrix remains highly nonuniform. All these cause the
matrix to yield successively at different locations. In addition, in Figure 9(b), the composite becomes stiffer
as the major strain rate increases. This agrees with the theory of viscoplasticity. In contrast, in Figure 9(a),
the composite seldom exhibits any rate dependence. This is again because here the rate-independent fiber
sustains most of the external load.

Figure 10 shows the stress–strain hysteresis loops of the composite subjected to equal biaxial loading in
the y2y3 plane. It can be seen that the composite exhibits an approximately bilinear stress–strain relationship
during initial loading and a nonlinear stress–strain relationship at the beginning of unloading/reverse loading.
This can be understood by investigating the matrix deformation. During initial loading, the matrix undergoes
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Figure 8. Meshed SGs of a UDRFC.
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Figure 9. Stress–strain hysteresis loops of a UDRFC subjected to uniaxial loading.
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first entirely viscoelastic deformation and then viscoelastic-viscoplastic deformation. At the beginning of
unloading/reverse loading, the matrix still undergoes viscoelastic-viscoplastic deformation because the over
stress (i.e., f in Eq. (55)) has not dropped below zero. All these leads to different stress–strain relationships.
In addition, the composite also exhibits prominent rate dependence. This is because here the matrix also
sustains the external load.
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Figure 10. Stress–strain hysteresis loops of a UDRFC subjected to equal biaxial loading in the y2y3 plane.

Figure 11(a) shows the stress–strain hysteresis loops of the composite subjected to transverse shear
loading, and Figure 11(b) depicts an SG undergoing exaggerated deformation. It can be seen that the
stress–strain relationships here are similar to those in Figure 9(b). Therefore, the discussion for Figure 9(b)
holds here. However, the stress levels here are much lower than those in Figure 9(b). This is because the
matrix more easily yields under pure shear than under other loading conditions, such as uniaxial loading.

Figure 12(a) shows the stress–strain hysteresis loops of the composite subjected to longitudinal shear
loading, and Figure 12(b) depicts an SG undergoing exaggerated deformation. It can be seen that the
stress–strain relationships here are similar to those in Figures 9(b) and 11(a). Therefore, the discussion for
Figure 9(b) and 11(a) holds here. As mentioned above, to simulate longitudinal shear loading using FEA,
one has to at least use a 3D SG. This can be better understood by noting that, in Figure 12(b), the local
displacements fluctuate in the y1-direction due to the existence of the fiber. This indicates that, compared
with FEA, the micromechanics approach can often homogenize a composite in a simpler and more efficient
way.

X. Conclusions

In this paper, a constitutive model for finitely deformed viscoelastic-viscoplastic materials is developed,
and a micromechanics approach to homogenizing composites consisting of such materials is developed sub-
sequently. The development of the constitutive model involves establishing a thermodynamic framework
based on finite strain theory, developing a viscoelasticity and a viscoplasticity model based on the ther-
modynamic framework, developing a radial return algorithm based on a classic framework, and deriving
a closed-from incremental constitutive relation in the spatial configuration. The development of the mi-
cromechanics approach involves pulling-back the above constitutive relation to the material configuration,
formulating a variational statement with the resulting constitutive relation, discretizing variational state-
ment in a finite-dimensional space, and solving the discretized variational statement using an Euler–Newton
predictor–corrector method.

The following findings can be obtained from the results:

• The calibrated constitutive model is shown capable of accurately predicting the responses of HDPE
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Figure 11. UDRFC subjected to transverse shear loading.
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Figure 12. UDRFC subjected to longitudinal shear loading.
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during loading but not those during unloading or relaxation.

• The closed-form incremental constitutive relation is found to facilitate model calibration and imple-
mentation.

• The micromechanics approach is demonstrated to be capable of handling rate dependence and complex
loading paths.

The constitutive model can be conveniently implemented in an FE code, to perform structural analysis. The
material parameters can be better calibrated through the following:

• Incorporate kinematic hardening into the constitutive model.

• Consider more strain rates during calibration, to better calibrate the viscoelastic parameters.

• Conduct cyclic tests rather than monotonic tests to better calibrate the viscoplastic parameters.

The micromechanics approach can be embedded in a multiscale modeling framework, to perform multiscale
modeling. The present framework can be further improved by implementing more sophisticated viscoelas-
ticity and viscoplasticity models in future work.
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A. 1D Viscoelasticity Model

In this appendix:

• Omit the superscript/subscript “ve” as the deformation is entirely viscoelastic.

• Abandon the Einstein summation convention unless otherwise specified—most sums are indicated by
summation signs.

Figure 13 depicts a 1D generalized Maxwell model, where:

• Ei (i = 0, 1, . . . , N)—Young’s modulus of the ith spring

• ηi (i = 1, 2, . . . , N)—viscosity of the ith dashpot

• τ—stress acting on the network

• ϵ—strain in the network (and therefore in each branch)

• τ0—stress acting on the zeroth spring

• qi (i = 1, 2, . . . , N)—stress acting on the ith branch

• γi (i = 1, 2, . . . , N)—strain in the ith dashpot

The following can be obtained from Figure 13:

τ = τ0 +

N∑
i=1

qi, (151)

τ0 = E0ϵ, (152)
qi = Ei (ϵ− γi) = ηiγ̇i. (153)

The following can be obtained form Eq. (153):

q̇i +
qi
si

= Eiϵ̇, (154)
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where si = ηi/Ei is the characteristic relaxation time of the ith branch. Ψ̂ can then be expressed as the sum
of its N + 1 parts each of which represents a branch, i.e.,

Ψ̂ (ϵ, γ1, . . . , γN ) = Ψ̂0 (ϵ) +

N∑
i=1

Ψ̂i (ϵ, γi), (155)

where
Ψ̂0 (ϵ) =

1

2
E0ϵ

2 and Ψ̂i (ϵ, γi) =
1

2
Ei(ϵ− γi)

2
. (156)

The following can be verified:

τ =
∂Ψ̂

∂ϵ
=

dΨ̂0

dϵ
+

N∑
i=1

∂Ψ̂i

∂ϵ
and qi = −∂Ψ̂

∂γi
= −∂Ψ̂i

∂γi
. (157)

Figure 13. 1D generalized Maxwell model (adapted from Ref. [19]).

B. Drucker–Prager Yield Function

Let yield function f be the Drucker–Prager yield function, i.e.,

f (τ , R) =
1

1− α
(∥τ ′∥+ 3ατm)− τc −R, (158)

where
∥τ ′∥ =

√
3

2
τ ′ : τ ′, α =

τc − τt
τc + τt

, (159)

and τc and τt denote the initial yield stress in uniaxial compression and that in uniaxial tension, respectively.
Without loss of generality, set

F (τ , R) = C (∥τ ′∥+ 3βτm)− τc −R, (160)
where β is a parameter describing dilatancy, and C is a constant to be determined. Eq. suggests that R (r)
is measured via the uniaxial compression test. Set R (r) to be the Voce hardening law,20 i.e.,

R = Q [1− exp (−br)] , (161)

where Q and n are two isotropic hardening parameters.
n, C, N , and ∂N/∂τ are to be determined. Differentiating both sides of the equation with respect to τ

gives
n =

1

1− α

(
∂ ∥τ ′∥
∂τ

+ 3α
∂τm
∂τ

)
. (162)

The partial derivatives in Eq. (162) can be expressed as

∂ ∥τ ′∥
∂τ

=
1

2 ∥τ ′∥
∂∥τ ′∥2

∂τ
=

1

2 ∥τ ′∥

(
3

2
2
∂τ ′

∂τ
: τ ′
)

=
3I ′ : τ ′

2 ∥τ ′∥
=

3τ ′

2 ∥τ ′∥
, (163)

∂τm
∂τ

=
∂

∂τ

(
τ : I

3

)
=

I

3
. (163′)
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Substituting Eq. (163) into Eq. (162) gives

n =
1

1− α

(
3τ ′

2 ∥τ ′∥
+ αI

)
. (164)

Similarly, N can be expressed as
N = C

(
3τ ′

2 ∥τ ′∥
+ βI

)
, (165)

where C is still to be determined. Suppose that the material is subjected to uniaxial tension/compression
in the x1-direction, for which τ takes the form of

τ = τ11e1 ⊗ e1. (166)

Substituting Eqs. (162) and (166) into the first equation of Eq. (26) gives

ϵ̇vp11 =

{
v̇C (1 + β) τ11 > 0,

−v̇C (1− β) τ11 < 0.
(167)

Set |ϵvp11 | = r so that the isotropic hardening parameters can be conveniently calibrated via cyclic uniaxial
tension/compression tests. Substituting |ϵ̇vp11 | = ṙ = v̇ into Eq. (167) gives

C =


1

1 + β
τ11 > 0,

1

1− β
τ11 < 0,

(168)

which indicates that the value of C depends on whether one calibrates the model via the tension or the
compression test. Eq. (158) suggests that C = 1

1−β here. Eq. (165) can then be rewritten as

N =
1

1− β

(
3τ ′

2 ∥τ ′∥
+ βI

)
. (169)

Differentiating τ ′/∥τ ′∥ with respect to τ gives

∂

∂τ

(
τ ′

∥τ ′∥

)
= τ ′ ⊗ ∂

∂τ

(
1

∥τ ′∥

)
+

1

∥τ ′∥
∂τ ′

∂τ

= τ ′ ⊗

(
− 1

∥τ ′∥2
∂ ∥τ ′∥
∂τ

)
+ I ′ =

1

∥τ ′∥

(
I ′ − 3τ ′ ⊗ τ ′

2∥τ ′∥2

)
.

(170)

∂N/∂τ can then be expressed as

∂N

∂τ
=

3

2 (1− β) ∥τ ′∥

(
I ′ − 3τ ′ ⊗ τ ′

2∥τ ′∥2

)
. (171)

C. Principal Stretches and Unit Vectors

In this appendix, some derivation regarding the principal stretches and their unit vectors will be presented.
For brevity, assume that there are three different λA’s unless otherwise specified. First consider the derivation
of Eq. (115). Similarly to Eq. (32), C can be decomposed as

C =

3∑
A=1

λ2
APA ⊗ PA, (172)

where PA denotes the Ath principal unit vector of C. PA can be related to pA by

F · PA = λApA. (173)
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By definition,
C · PA = λ2

APA and b · pA = λ2
ApA. (174)

Totally differentiating both sides of the first equation of Eq. (174) gives

dC · PA +C · dPA = 2λAdλAPA + λ2
AdPA. (175)

Premultiplying both sides of Eq. (175) by PA gives

PA · dC · PA + PA ·C · dPA = 2λAdλAPA · PA + λ2
APA · dPA. (176)

Note the following:

• By definition, PA · PA = 1.

• Totally differentiating both sides of PA · PA = 1 gives PA · dPA = 0.

• Eq. (174) suggests that PA ·C · dPA = λ2
APA · dPA.

Eq. (176) then becomes
2λAdλA = PA · dC · PA = dC : (PA ⊗ PA) . (177)

Totally differentiating both sides of Eq. (33) gives dϵA = dλA/λA. Eq. (177) can then be rewritten as

2λ2
AdϵA = dC : (PA ⊗ PA) . (178)

Noting that dϵA and dC can be arbitrarily chosen gives

2
∂ϵA
∂C

= λ−2
A PA ⊗ PA. (179)

Premultiplying both sides of Eq. (179) by F and postmultiplying both sides of the equation by F T (see also
Eq. (173)) give

2F · ∂ϵA
∂C

· F T = pA ⊗ pA. (180)

Next consider the explicit expression for RA. It is beneficial to first derive the explicit expression for qA.
By definition, λ2

A’s are the roots of characteristic polynomial

−λ6 + I1λ
4 − I2λ

2 + I3 = 0, (181)

where
I1 = trC, I2 =

1

2

[
tr2C − tr

(
C2
)]

, I3 = detC = J2 (182)

are the first, second, and third invariants of C (or b), respectively. The roots of the characteristic polynomial
can be computed using the well-known closed-form solution of a cubic equation. If Eq. (181) has three
different roots, the first equation of Eq. (32) can be rewritten as

b− λ2
AI =

3∑
B=1;B ̸=A

(
λ2
B − λ2

A

)
pB ⊗ pB . (183)

Noting that pA · pB = δAB , one can obtain the following from Eq. (183):

pA ⊗ pA =
b− λ2

BI

λ2
B − λ2

A

· b− λ2
CI

λ2
C − λ2

A

, (184)

where
A = 1, 2, 3, B = 1 + mod (3, A) , C = 1 + mod (3, B) . (185)

Eq. (85) can be rewritten as

(RA)ijkl = FimFjnFkpFlq
∂

∂Cpq

[
F−1
mr (pA)r(pA)sF

−T
sn

]
. (186)

The explicit expression for RA can be obtained as follows:
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1. Pull-back F−1 · (pA ⊗ pA) ·F
−T to the material configuration (i.e., express it in terms of λA and PA,

with Eq. (173)).

2. Derive the explicit expression for ∂
∂C

[
F−1 · (pA ⊗ pA) · F

−T
]

in the material configuration.

3. Push-forward this explicit expression to the spatial configuration.

The explicit expression for RA reads

RA =
1

dA

{
Ib − b⊗ b− I3λ

−2
A [I − (I − qA)⊗ (I − qA)]

}
+

λ2
A

dA

[
(b⊗ qA + qA ⊗ b) +

(
I1 − 4λ2

A

)
qA ⊗ qA

]
,

(187)

where
dA =

(
λ2
A − λ2

B

) (
λ2
A − λ2

C

)
(188)

with A, B, and C given by Eq. (185), and

Ib
ijkl =

1

2
(bikbjl + bilbjk) . (189)

The derivation of Eq. (187) is omitted here due to its complexity. Interested readers can refer to Ref. [21]
for more details. If two or three out of three λA’s are identical, it is possible to obtain results similar to
Eqs. (180), (184), and (187). However, it is computationally favorable to convert this situation degenerates
into the case of three distinct λA’s by superposing perturbations upon identical λA’s.

D. Method of Nonlinear Least Squares

In this appendix, the method of NLLSQ, along with Monte Carlo experiments and Powell’s methods, will
be briefly introduced. Unless otherwise specified, let the “local” variables defined in this appendix override
the “global” variables defined in Sections II–IX, having the same names.

Suppose that N data points (xi, yi)’s are to be fitted to a nonlinear model depending on M adjustable
parameters aj ’s (N ≥ M). Let

a =
⌊

a1 · · · aM

⌋T
, (190)

and let the nonlinear model take the general form of y = f (x;a). Further suppose that each (xi, yi) has its
respective, known standard deviation σi, and introduce the so-called chi-square merit function,

χ2 ≡
N∑
i=1

(
yi − f (xi;a)

σi

)2

, (191)

which is the sum of N squares of normalized, distributed residuals. The method of NLLSQ involves finding a
minimizing χ2. An NLLSQ problem is therefore an optimization problem whose objective function is χ2 (a).

The Rastrigin function is frequently used for performance testing of optimization methods. Figure 14
shows its 3D surface and contour plots. As can be seen, the function has a global minimum at (0, 0) and
numerous local minima. When handling such a function, an optimization method itself is not guaranteed to
converge to the global minimum and often gets “lost” if started far from the solution. Fortunately, setting
the guessed values close to the solution greatly improves the convergence. In this paper, such guessed values
are obtained through Monte Carlo experiments consisting of the following steps:

1. Estimate the domains of aj ’s.

2. Create a lot of different combinations of aj ’s over these domains.

3. Compute the values of χ2 for these combinations.

4. Find as many neighborhoods of local minima as possible.
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Figure 14. Rastrigin function.
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The global minimum can be found first by carrying out an optimization procedure at each of these neigh-
borhoods and then by identifying the local minimum yielding the smallest χ2.

Optimization methods can be classified into (1) those only requiring evaluations of the objective functions
(e.g., Powell’s method) and (2) those also requiring evaluations of the derivatives of the objective functions
(e.g., Newton’s method). In this paper, Powell’s method is chosen due to the following reasons:

• Newton’s method often fails to converge if an aj is an exponent.

• In trial and error, it is difficult to compute the derivatives of χ2 through FE analysis.

• Given good initial guesses, Powell’s method produces good convergence and high efficiency.

Powell’s method involves successively minimizing the objective function along M mutually non-interfering
directions (see Figure 15 for the case of M = 2). These directions are defined so that Powell’s method
converges quadratically (see Ref. [22] for more details). The procedure is repeated until the objective function
effectively stops decreasing, or mathematically speaking, until

∣∣χ2
k − χ2

k−1

∣∣ < ε1 or

∣∣∣∣χ2
k − χ2

k−1

χ2
k−1

∣∣∣∣ < ε2, (192)

where χ2
k and χ2

k−1 are the values of χ2 in the current and the previous iteration, respectively, and ε1 and
ε2 are two prescribed tolerances.

Figure 15. Successive minimizations in a long, narrow “valley” (adapted from Ref. [22]).
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