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Objectives 

• Investigate the applicability of Turbine Electrified Energy 
Management (TEEM) on a 15 passenger vertical lift concept vehicle

• Differences from prior applications of TEEM
• Smaller turbomachinery
• Turboshaft vs. turbofan
• Power producing turbomachinery
• Single spool gas generator vs. dual spool turbofans
• Expanded propulsion system with propulsors outside of the engine

• Questions?
• Is TEEM applicable to the smaller class vehicles?
• Is TEEM applicable to this propulsion system architecture?
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Background – TEEM
• At its broadest level, TEEM is about managing energy in an electrified 

turbine engine propulsion system
• Goal: Improve operability of the turbomachinery  enable better performing engine 

designs and/or enhance aircraft capabilities
• The Means: electric machines (EMs) coupled to the engine shaft(s)

• EMs are new actuators that can alter engine operation

• Transient operability (main focus of this effort)
• Supplement fuel flow to operate closer to steady-state design conditions
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Background – The Tilt-Wing Vehicle
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Mission Type: commercial 
transport
Architecture Type: Turbo-
electric
Payload: 3000 lb (15 
passengers + luggage)
Max Gross Weight: 13866lb
Max range: 400nm
Cruise speed: 200kts
Key Features: performance 
of fixed wing aircraft with 
vertical take-off and landing 
capabilities



Background – The Tilt-Wing Propulsion System
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Baseline System
• Turboshaft engine (~4000 hp)
• Generator connected to power turbine (PT)
• Rectifier
• DC-DC converter
• 4 inverters
• 4 motors
• 5 gearboxes (1 for each EM)
• 4 rotors
• 1 single-use battery
TEEM additions*
• EM connected to the gas generator (GG)
• 1 gearbox
• Re-usable energy storage
• Inverter/rectifier pair

*May already be present for the purpose of engine starting



System Modeling

• Utilizes the Toolbox for Modeling and Analysis of 
Thermodynamic Systems (T-MATS)

• Combines bulk component level models to create an overall 
system model

• Inlet
• Compressor
• Burner
• Turbine
• Power Turbine
• Nozzle 
• Bleeds

• Compressor and turbine performance is defined by 
performance maps

• Utilizes an iterative solver to satisfy conservation equations
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• Techniques are based on theory used by the NASA 
Design and Analysis of RotorCraft (NDARC) software

• Power calculations are highly empirical
• Rotor forces are calculated using blade element theory
• Power and thrust calculations are coupled requiring 

iteration
• A solver is utilized to satisfy thrust and rotor flapping and 

coning equations



System Modeling
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Electric System and Gearboxes Flight Dynamics

*Only used to determine rotor shaft power 
requirements for transition
• Simple aerodynamic models for aircraft 

components (wing, fuselage, horizontal 
tail, etc.)

• Calculates forces and moments
• Solves for trim conditions (thrust, velocity, 

cyclic pitch or horizontal tail angle) at 
different tilt-wing angles

• Simple model that applies efficiencies for each 
of the components

• Electric Machines – 97%
• Inverters/Rectifiers/Converters – 98.6%
• Gearboxes – 98%

• 0.7 kW-hr of re-usable energy storage was 
included

• EM Sizes:
• Power Turbine EM: 3600 hp
• Rotor EMs: 800 hp
• Gas Generator EMs: 200 hp



Baseline Control

• Gain schedule Linear Quadratic Regulator (LQR) with integral action 
for reference tracking

• Control objectives
• Maintain power turbine speed of 8000 rpm
• Maintain rotors speed set-point (function of air speed)
• Achieve a desired rotor shaft power

• Control Inputs
• Fuel flow rate
• Power turbine EM torque
• Collective pitch

• Limit logic is applied to modify the shaft power set-point to prevent 
violation of operating limits
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TEEM Control

• Augments the existing baseline controller
• Transient Control Logic

• Designed independently from the baseline controller
• Controller commands off-nominal torques to closely match steady-state shaft speed 

conditions for the rotors, power turbine, and gas generator
• Proportional integral (PI) controllers
• Activated/de-activated based on the rotor shaft power error

• Steady-state energy management
• Applies excess power gathered during transients to the rotors (temporarily decreases 

fuel consumption)
• Charges the ESDs as needed

• Thrust augmentation
• Allows for additional energy from ESDs to be sent to the rotors – increase maximum 

thrust by ~7% at sea level static conditions
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Simulation Results

• Burst and chop transient at sea 
level static hover conditions

• More tightly regulated rotor and 
power turbine speeds
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Simulation Results

• Superior transient operability
• Improved minimum stall margin 

during acceleration
• Tighter control of operating point 

on the map
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Simulation Results

• Baseline Power turbine EM and rotor EMs should be sufficient to implement TEEM control
• Need a gas generator EM with a peak power capability of ~175 hp
• Off-nominal power inputs tend to offset each other  reduces energy storage needs
• A 0.7 kW-hr energy storage device was sufficient
• Brief periods of dissipating excess energy and charging

• Resulted in a net decrease in bulk fuel consumption (0.3%)
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Simulation Results
• Increased maximum thrust by ~7% while retaining operability benefits
• Could be used to …

• Increase thrust during an emergency
• Increase take-off/landing weight and or altitude
• Address certain mission segments
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Conclusions

• Questions?
• Is TEEM applicable to the smaller class vehicles?

• Yes
• Is TEEM applicable to this propulsion system architecture?

• Yes
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