

Enhancement of an Electrified Tilt-Wing Propulsion System using Turbine Electrified Energy Management

2021 AIAA SciTech Forum

Jonathan Kratz and Dennis Culley

NASA Glenn Research Center

January 14th, 2021

Objectives

- Investigate the applicability of Turbine Electrified Energy Management (TEEM) on a 15 passenger vertical lift concept vehicle
- Differences from prior applications of TEEM
 - Smaller turbomachinery
 - Turboshaft vs. turbofan
 - Power producing turbomachinery
 - Single spool gas generator vs. dual spool turbofans
 - Expanded propulsion system with propulsors outside of the engine
- Questions?
 - Is TEEM applicable to the smaller class vehicles?
 - Is TEEM applicable to this propulsion system architecture?

Background – TEEM

- At its broadest level, TEEM is about managing energy in an electrified turbine engine propulsion system
 - Goal: Improve operability of the turbomachinery → enable better performing engine designs and/or enhance aircraft capabilities
 - The Means: electric machines (EMs) coupled to the engine shaft(s)
 - EMs are new actuators that can alter engine operation
- Transient operability (main focus of this effort)
 - Supplement fuel flow to operate closer to steady-state design conditions

Background – The Tilt-Wing Vehicle

Mission Type: commercial transport

Architecture Type: Turboelectric

Payload: 3000 lb (15 passengers + luggage)

Max Gross Weight: 13866lb

Max range: 400nm

Cruise speed: 200kts

Key Features: performance of fixed wing aircraft with vertical take-off and landing capabilities

Background – The Tilt-Wing Propulsion System

Baseline System

- Turboshaft engine (~4000 hp)
- Generator connected to power turbine (PT)
- Rectifier
- DC-DC converter
- 4 inverters
- 4 motors
- 5 gearboxes (1 for each EM)
- 4 rotors
- 1 single-use battery

TEEM additions*

- EM connected to the gas generator (GG)
- 1 gearbox
- Re-usable energy storage
- Inverter/rectifier pair

*May already be present for the purpose of engine starting

System Modeling

- Utilizes the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)
 - Combines bulk component level models to create an overall system model
 - Inlet
 - Compressor
 - Burner
 - Turbine
 - Power Turbine
 - Nozzle
 - Bleeds
 - Compressor and turbine performance is defined by performance maps
 - Utilizes an iterative solver to satisfy conservation equations

- Techniques are based on theory used by the NASA Design and Analysis of RotorCraft (NDARC) software
 - Power calculations are highly empirical
 - Rotor forces are calculated using blade element theory
 - Power and thrust calculations are coupled requiring iteration
 - A solver is utilized to satisfy thrust and rotor flapping and coning equations

1/14/2021

System Modeling

Electric System and Gearboxes

- Simple model that applies efficiencies for each of the components
 - Electric Machines 97%
 - Inverters/Rectifiers/Converters 98.6%
 - Gearboxes 98%
- 0.7 kW-hr of re-usable energy storage was included
- EM Sizes:
 - Power Turbine EM: 3600 hp
 - Rotor EMs: 800 hp
 - Gas Generator EMs: 200 hp

*Only used to determine rotor shaft power requirements for transition

Flight Dynamics

- Simple aerodynamic models for aircraft components (wing, fuselage, horizontal tail, etc.)
- Calculates forces and moments
- Solves for trim conditions (thrust, velocity, cyclic pitch or horizontal tail angle) at different tilt-wing angles

Baseline Control

- Gain schedule Linear Quadratic Regulator (LQR) with integral action for reference tracking
- Control objectives
 - Maintain power turbine speed of 8000 rpm
 - Maintain rotors speed set-point (function of air speed)
 - Achieve a desired rotor shaft power
- Control Inputs
 - Fuel flow rate
 - Power turbine EM torque
 - Collective pitch
- Limit logic is applied to modify the shaft power set-point to prevent violation of operating limits

TEEM Control

- Augments the existing baseline controller
- Transient Control Logic
 - Designed independently from the baseline controller
 - Controller commands off-nominal torques to closely match steady-state shaft speed conditions for the rotors, power turbine, and gas generator
 - Proportional integral (PI) controllers
 - Activated/de-activated based on the rotor shaft power error
- Steady-state energy management
 - Applies excess power gathered during transients to the rotors (temporarily decreases fuel consumption)
 - Charges the ESDs as needed
- Thrust augmentation
 - Allows for additional energy from ESDs to be sent to the rotors increase maximum thrust by ~7% at sea level static conditions

- Burst and chop transient at sea level static hover conditions
- More tightly regulated rotor and power turbine speeds

- Superior transient operability
 - Improved minimum stall margin during acceleration
 - Tighter control of operating point on the map

11

Off-Nominal EM Power Inputs

- Baseline Power turbine EM and rotor EMs should be sufficient to implement TEEM control
- Need a gas generator EM with a peak power capability of ~175 hp
- Off-nominal power inputs tend to offset each other \rightarrow reduces energy storage needs
- A 0.7 kW-hr energy storage device was sufficient
- Brief periods of dissipating excess energy and charging
 - Resulted in a net decrease in bulk fuel consumption (0.3%)

- Increased maximum thrust by ~7% while retaining operability benefits
- Could be used to ...
 - Increase thrust during an emergency
 - Increase take-off/landing weight and or altitude
 - Address certain mission segments

Conclusions

- Questions?
 - Is TEEM applicable to the smaller class vehicles?
 - Yes
 - Is TEEM applicable to this propulsion system architecture?
 - Yes

Acknowledgements

- Funded by the Transformational Tools and Technology (TTT) project under the Aerospace Research Mission Directorate (ARMD)
- Special thanks to: Jeff Chapman, Mike Tong, and Chris Snyder from the NASA Glenn Research Center (GRC). Chris Silva and Wayne Johnson from the NASA Ames Research Center (ARC).

Questions/Discussion

<u>Contact Information</u> Jonathan Kratz – <u>jonathan.kratz@nasa.gov</u> Dennis Culley – <u>dennis.e.culley@nasa.gov</u>

15