

David North
NASA Langley Research Center


AIAA SciTech Forum January 2021 Control ID 3452348

Motivation for LA-7 VTOL

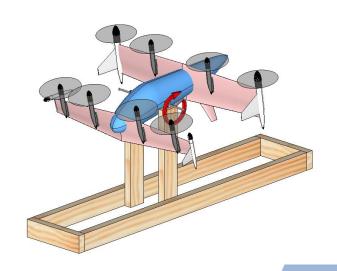
- A 50% scale (4 foot span) version of LA-8 was built and taken through flight testing to:
 - Verify and build confidence in the tandem tilt wing configuration and 3-board flight control scheme
 - Train pilots and crew. Provide a similar experience to LA-8 but at a lower investment level
 - Provide insight into trim and damping values for the LA-8

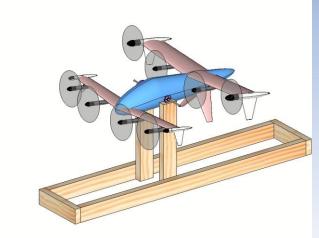
LA-7 Fabrication

- Hotwired foam fuselage with plywood and 3-D printed internal chassis
- Hotwired foam wings with fiberglass overlay and carbon fiber spar
- > 3-D printed motor mounts, wing tilt mechanisms, flap hinges, winglets
- Same flight control boards and control outputs (20) as LA-8 (KK2.1.5 + OpenAeroVTOL)
- Standard RC transmitter and receiver
- No data acquisition system

Progression of LA-7 Flight Testing

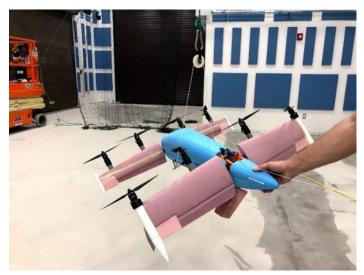
- 1. Single motor thrust stand testing
- 2. Full model 8-motor static thrust testing
- 3. Pitch axis tuning stand
- 4. Indoor tethered hover testing
- 5. Indoor free flight hover testing
- 6. Outdoor free flight hover testing
- 7. Outdoor free flight transition testing

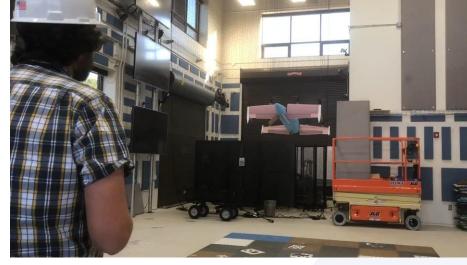




LA-7-2 Pitch Axis Tuning Stand

- Prior to indoor tethered hovering, a stand with a rotation axle along the pitch axis located at the aircraft C.G. was built to tune autoleveling and pitch rate gain in hover and forward flight wing configurations
- Tuning of pitch auto-level and pitch rotation rate damping coefficients to achieve well-damped pitch behavior was performed by perturbation in the pitch axis with a stick.
- Although "wind-on" forward flight conditions are not achieved with this rig, it provided a best guess at a starting point for gain settings. It was assumed that passive aero damping in pitch should add to propulsion system active damping.
- After tuning at multiple transition levels, the model was able to go through a full transition from hover to forward flight at 50% throttle with the fuselage remaining very level and well damped.





Indoor Hover Flight Testing

- 1. Tethered testing with model suspended and slightly below hover thrust using a bridle that allowed yaw axis rotation only (pitch and roll constrained)
- 2. Tethered testing with model suspended and slightly below hover thrust using a bridle that allowed pitch, roll and yaw axis rotation
- 3. Tethered testing at hover thrust
- 4. Free flight hover testing
- 5. Battery characterization resulted in hover flight time of approx. 5 min. with 20% energy reserve.
- 6. IR camera was used to measure motor housing temperatures

Tethered model with pitch, roll, yaw bridle

Indoor free flight hovering

Outdoor Hover Testing

- Short hover flights to verify indoor tuning and trimming
- ➤ A series of small stick perturbations increasing to half-doublets was used to assess and tune auto-leveling and rotation rate damping in the pitch and roll axes
- Climbing and descending behavior and damping was assessed
- Maximum forward speed in hover (0% transition) is approximately 10 knots with pitch stick at maximum

Outdoor Transition Testing

- An incremental approach of proceeding through transition at 5% steps was used
- Straight and level flight at each transition percentage point was established and then trim and damping was assessed and tuned
- Initial set of propellers had too low of a pitch and top speed was only slightly above stall. A second set of higher pitch propellers resulted in a substantially higher top speed
- ➤ A persistent pitch oscillation on low power inbound transitions was observed but solved with proper pitch rate gain setting on motors.

Conclusions / Lessons Learned

- Using three (3) KK2.1.5 flight control boards simultaneously works
- ➤ A combination of differential motor RPM, blown elevons, and tilted wingtip rotors was needed to achieve effective yaw control
- Select propellers that are suitable for both hover and forward flight
- Hovering in winds above 5 knots is difficult due to large wing area normal to wind
- ➤ Tethered hover testing and pitch rigs (1 degree of freedom) can speed tuning while limiting risk to the vehicle
- Transition testing should proceed in small increments with trimming and PID tuning that allows "hands-off" straight and level flight at each transition point.
- Propulsion forces (vs. forces from control surfaces) are dominant. Solving control and damping issues should start with the motors / propellers.

Thanks

Questions?

Design, Testing, and Modeling for the LA-8 Tilt-Wing VTOL Aircraft I & II References

- North, D. D., Howland, G., and Busan, R. C., "Design and Fabrication of the LA-8 Distributed Electric Propulsion VTOL Testbed"
- 2. Busan, R. C., Murphy, P. C., Hatke, D. B., and Simmons, B. M., "Wind Tunnel Testing Techniques for a Tandem Tilt-Wing, Distributed Electric Propulsion VTOL Aircraft"
- 3. Simmons, B. M., "System Identification for Propellers at High Incidence Angles"
- 4. Geuther, S. C., and Fei, X., "LA-8 Computational Analysis and Validation Studies Using FlightStream"
- 5. Simmons, B. M., and Murphy, P. C., "Wind Tunnel-Based Aerodynamic Model Identification for a Tilt-Wing, Distributed Electric Propulsion Aircraft"