Multiscale Simulation of Deployable Composite Structures

AIAA SciTech 2021 SCS-02/MAT-04 High Strain Composites Materials Structures, Material Characterization, and Modeling II 01/11/2021

> Yufei Long, Orzuri Rique, Wenbin Yu School of Aeronautics & Astronautics, Purdue University Juan M. Fernandez, Andrew C. Bergan NASA Langley Research Center Wenbin Yu School of Aeronautics & Astronautics, Purdue University

Introduction

<u>Deployable composite structures</u>:

TP-HSC: ply thickness 0.02 to 0.1 mm.

Small satellite: small in stowed volumn, large after deployment; large deformation, long stowage time.

Simulation:

- Experiment: column bending test (CBT), close to pure bending, less stress concentration; verification of material constitutive model.
- Deployable boom structures: coiling and deployment of a lenticular boom; influence of large deformation and long stowage time on the geometry of the boom after deployment

NASA, <u>https://gameon.nasa.gov/projects/deployable-composite-booms-dcb/</u>.
A. Lee, J. Fernandez, Composite Structures 225 (2019).
J. Fernandez et al., ICCM22 (2019).
J. Fernandez et al., AIAA SciTech (2018).

cdmhub.org/groups/yugroup

MSG-Based Multiscale Simulation Framework

$$\Delta N(t_{n+1}) = A_{eq} \Delta \epsilon(t_{n+1}) + B_{eq} \Delta \kappa(t_{n+1}) + \Omega_N$$

$$\Delta M(t_{n+1}) = B_{eq} \Delta \epsilon(t_{n+1}) + D_{eq} \Delta \kappa(t_{n+1}) + \Omega_M$$

Direct integration UGENS: force and moment increment calculated from ABD Prony series and loading history

Multiscale Structural Mechanics

Column Bending Test Simulation

- Abaqus/Standard solver
- General purpose shell element S4 •
- M30S/PMT-F7 plain weave (PW), $[\pm 45_{PW}]_4$
- Viscoelastic shell properties
- 4-step analysis
 - 1. Folding
 - 2. Relaxation
 - 3. Unfolding
 - Recovery 4.

4

cdmhub.org/groups/yugroup

 $U2 = \delta$

Column Bending Test Simulation

Process of the CBT:

Step	Time (s)
Folding	120
Relaxation	21600 (6 h)
Unfolding	5
Recovery	7200 (2 h)

Data reduction:

Multiscale Structural Mechanics

Column Bending Test Simulation

Curvature history κ during folding

Effective bending stiffness *D**₁₁ history during relaxation Curvature history κ after relaxation

Calibration Using CBT Simulation

Calibrating coefficients of Prony series

k	$\boldsymbol{\rho}_k$	$D_{11,k}$ (N·mm)
∞		(calculated)
1	1.00E+01	0.0760
2	1.00E+02	0.5130
3	1.00E+03	0.4345
4	1.00E+04	0.2178
5	1.00E+05	0.4873
6	1.00E+08	1.0000
SUM		50.6562

 D_{12} and D_{33} keep the MSG results A_{ij} estimated with $A_{ij} = D_{ij} \frac{12}{h^2}$ The SUM is kept unchanged

Multiscale Structural Mechanics

Comparing $D_{11}^* = \frac{M_{max}/d}{\kappa}$

Error evaluated using Error Sum of Squares (SSE)

 $SSE = SUM[(predicted - target)^2]$

Calibration Using CBT Simulation

Calibration was judged converged after 423 iterations. Best results at iteration 408

Minimized SSE: 2.9520415814

400

300

Abaqus/Standard, implicit dynamics, quasi-static analysis Boom length: 880 mm; Hub radius: 90 mm; Boom coiled approx. 1.5 rev. Tension force of 0.4 N/mm, the whole boom flatten with plates before coiling

9

Tension force and plates kept through coiling, stowage and deployment. Released after deployment

Rollers with forces applied: 2 nip & 7 radial rollers. Tension force and plates removed after coiling

cdmhub.org/groups/yugroup

Unidirectional carbon fiber/epoxy (C): MR60H/PMT-F7

Plain weave carbon fiber/epoxy (PW): M30S/PMT-F7

Different layups in segment 1, 2 and the web

Improved model, flattening and coiling

Multiscale Structural Mechanics

Improved model, relaxation and deployment

Multiscale Structural Mechanics

Residual curvature after recovery of 24 h

Multiscale Structural Mechanics

Curvature in the longitudinal direction Negligible, only boundary effect

60

Distance (mm)

80

Baseline before recovery

Baseline after recovery Improved before recovery

Improved after recovery

0.01

0.00

0

20

40

SK2 (1/mm)

100

120

Summary

- Simulation framework: MSG homogenization, finite element structural simulation
- CBT simulation: nonuniform deformation captured, consistent data reduction with experiments
 - Accurate prediction of curvature and stiffness during folding and relaxation
 - Underpredict curvature after unfolding, possibly plasticity
- Potential application of CBT simulation for the calibration of material properties
- Deployable boom structure: baseline and improved models
 - Flattening, coiling, stowage and deployment simulated
 - Negligible residual curvature in the longitudinal direction, major in the hoop direction, greatly reduced after recovery

Future work: Nonlinear material constitutive models

Thank You!

Backup

CBT fixture arm length <i>l</i> (mm)	25.4
Specimen width $d \pmod{d}$	25.4
Specimen gage length s (mm)	27.432
Fixture arm initial angle θ (rad)	0.0712
Fixture total displacement δ (mm)	25.4
Specimen thickness h (mm)	0.276

Baseline model

Multiscale Structural Mechanics

Backup

Roller	Force (N)
1	20
2	21
3	11
4	11
5	6
6	6
7	21

Springs with stiffness of 1 N/mm in addition to the applied force

Moving up during flattening