Coherent anti-Stokes Raman Scattering for Determining Key Thermodynamic Properties of Supersonic, Combusting, and Nonequilibrium Flows

Chloe E. Dedic *University of Virginia*

SCHOOL of ENGINEERING & APPLIED SCIENCE

JANNAF, EPSS 9C, 17 December 2020 Distribution A: Approved for public release; distribution is unlimited

Coherent anti-Stokes Raman Scattering

Thermodynamic nonequilibrium

> Shock-BL interaction

Flowfields of interest characterized by:

- Reactions (combustion, dissociation/ recombination, etc.)
- Nonequilibrium energy distributions and resulting reactions, internal energy transfer
- Wide range in temperatures, pressures
- Spatial gradients
- **Transient flow dynamics**

Extended-use hypersonic

 N_2 , O₂, O, N, NO, O₂⁺, N₂⁺ Dissociation, Rxn

High-speed vehicle engines (airbreathing, rocket), exhaust plumes

Goal: employ fs/ps CARS to quantify thermodynamic properties with spatial resolution in highly transient, reacting flows using ground-based experimental facilities

vehicles

Ablation

Coherent anti-Stokes Raman Scattering

Instead of relying on a change in polarizability from a naturally occurring vibration/rotation, we can drive the change in polarizability (*drive the coherence*) using two electric fields to increase strength of transition, scatter from this prepared coherence with a third field.

Thus, three waves incident on a medium, medium response (phased array of oscillators) produces a fourth wave radiated by the induced nonlinear polarization

Temperature Sensitivity

Temperature sensitivity

$$
\Delta \rho_{i\rightarrow f} = \frac{g_f}{\sum\limits_{m} g_m e^{\frac{-E_m}{k_B T}}} \Big[e^{\frac{-E_i}{k_B T}} - e^{\frac{-E_f}{k_B T}}\Big]
$$

Coherent anti-Stokes Raman Scattering

Advantages of hybrid fs/ps CARS

- High signal levels (highly-efficient generation of Raman coherence w/ fs pulses)
- Suppress nonresonant signal
- Insensitive (or *selectively* sensitive) to collisions
- Inherent broadband excitation: excite multiple transitions with multiple photon pairs
- Extension to 1D- and 2D-measurements (Bohlin et al., 2013; Miller et al. 2016.; Bohlin et al. 2017)

Coherent anti-Stokes Raman Scattering

⁷IRGINIA

& APPLIED SCIENCE

Spatially-resolved measurements

Required spatial and temporal overlap of the 3 incoming electric fields can provide a spatially-resolved measurement, depending on phase-matching configuration.

& APPLIED SCIENCE

Phase-Matching Configurations

Signal intensity vs. resolution 1.2

CARS systems

UVA fs/ps CARS system (C. Dedic)

GWU ns CARS cart (A. Cutler)

P. M. Danehy, B. F. Bathel, C. Johansen, M. Winter, A. D. Cutler, S. O'Byrne, "Molecularbased optical measurement techniques for Nonequilibrium Hypersonic Flows," book chapter in AIAA Progress Series Book, Vol. 247, entitled "Hypersonic Nonequilibrium Flows", edited by Eswar Josyula, published May, 2015.

Temperature

Experimentally determined error/precision in single-shot temperature evaluations for…

	Accuracy	Precision	
ns CARS	$2 - 5%$	$3 - 5\%$	Seeger, Leipertz, Appl. Opt., 1996
fs/ps CARS	$1 - 5%$	$1 - 3\%$	Miller et al., Opt. Lett., 2010 Miller et al., Opt. Exp., 2011
	$<$ 3%	2%	Kearney, Combust. Flame, 2015

Temperature-sensitive response:

Extension to 1D measurements:

Bohlin, Jainski, Patterson, Dreizler, Kliewer, **Proc. Combust. Inst., 2017**

Pressure

Pressure

RGINIA

2-probe technique to measure temperature and pressure fluctuations in a supersonic jet

 $T_{\text{fit}} = 83 \text{ K}$ $p_{\text{fit}} = 26 \text{ torr}$

 0.5

20

40

60

Wavenumber $(cm⁻¹)$

80

100

120

(b) $p_{fit} = 26$ torr

Dedic, Cutler, Danehy, AIAA SciTech 2019

Species concentration

WIDECARS (N² , CO² , H² , CO, O² , C2H⁴) Cutler, Gallo, Cantu, **Appl. Opt., 2017**

Gallo, Cantu, **Cutler**, Rahimi, Chelliah, **AIAA AVIATION, 2014**

	$\Phi = 0.85$	$\Phi = 1$	$\Phi = 1.7$
N ₂	$0.77 + 0.03$	$0.78 + 0.03$	$0.66 + 0.03$
CO ₂	$0.10 + 0.02$	$0.11 + 0.02$	$0.04 + 0.01$
H ₂		$0.00 + 0.003$	$0.06 + 0.01$
CO		$0.00 + 0.004$	$0.12 + 0.02$
O ₂	$0.00 + 0.01$		
T [K]	$1713 + 77$	$1809 + 67$	$1843 + 76$

fs/ps CARS w/ supercontinuum generation (N₂, CO₂, H₂, CO, O₂, CH₄)

Bohlin, Jainski, Patterson, Dreizler, Kliewer, **Proc. Combust. Inst., 2017**

ERE CARS for minor species measurements (CH, OH, NO)

Nonequilibrium energy distributions

Hybrid fs/ps CARS is ideal for studying nonthermal environments

- **→ Single-shot measurement of rotational** *and* **vibrational energy distributions**
- \rightarrow Resolve spatial non-uniformities
- \rightarrow Capture highly transient phenomena
- \rightarrow Suitable for studying local internal energy transfer and thermalization

➜ Quantify energy level populations directly

CARS measurements of nonequilibrium energy distributions:

> Dedic et al., *Optica*, 2017 Pealat et al., *J Appl. Phys*., 1981 Cutler et al., *AIAA Journal*, 2015 Montello et al., *J. Phys. D: Appl. Phys.*, 2015

Nonequilibrium energy distributions

Secondary temperature peak at 2.25 mm likely due to secondary vibrational excitation:

$$
N_2(A^3\Sigma_u^+) + N_2(A^3\Sigma_u^+) \to
$$

$$
N_2(B^3\Pi_g) + N_2(X^1\Sigma_g^+, v = 8)
$$

Dedic et al., *Optica*, 2017

Nonequilibrium energy distributions

Compare CARS measurements of N² (X) to excited electronic state energy distributions to examine secondary rise in temperature post-plasma.

- Plasma emission is path-integrated, but will bias to filaments
	- CARS reflects energy distribution from a volume of gas

Energy distributions of a decaying detonation

Propulsion Systems Scramjet cavity ignition

S. Voelkel et al., *AIP Conference Proceedings*, 2016

$\phi = 1.0, 2$ slpm N₂

T_{vib,N2} results

- Initial and rapid rise in vibrational T for $N₂$ with little variation in wavespeed (< 1%)
- Slow decrease in temperature at late times

& APPLIED SCIENCE

• Measured vibrational temperature is ~1000 K lower than CJ predictions (heat loss to walls?):

1 mm of predicted nonequilibrium = 5 μs

Tvib,O2 results

Resultant temperatures of an adiabatic flame determined using **O² vibrational CARS**:

Nearby CARS signal from $CO₂$ complicates results from detonation blow-down:

O_2 and N_2 comparison

Lower $\mathsf{T}_{\mathsf{vib}}(\mathsf{O}_2)$ than $\mathsf{T}_{\mathsf{vib}}(\mathsf{N}_2)$, contrary to V-V relaxation timescales:

20

Next: Nonequilibrium plasma chemistry

Validating and optimizing nonequilibrium plasma models will enable improved design of materials and heat shields for Earth/Mars atmospheric entry…but requires accurate measurements of energy and species in high enthalpy, pulsed groundbased facilities.

NASA-5-66-11003 **Top View:** Flow-induced plasma: CO₂, N₂ C, CO, CO₂, N, O, O₂, NO, N₂... Shock Wave *ωCARS* **Side View:** Gas Spectrovelocity meter _{CCD} 0D CARS 1D CARS measurement profile (5 mm) Shock wave Image borrowed from [NASA](https://science.ksc.nasa.gov/mirrors/images/images/pao/APOLL_OV/10074645.jpg) **Oblique** very low shock densities

Laser system used to measure post-shock wave gases in a shock tube to study key atmospheric entry reactions

Challenges to address:

- 1) Transient flow facilities (NASA EAST)
	- Robust, synchronized system resolving multiple dimensions and species
- 2) Improve SNR and extract meaningful data from single-shot, low-density environments
- 3) Accuracy of fs/ps CARS at high-enthalpy, nonequilibrium conditions

NASA Early Career Faculty, 2020

Research Collaborator: Paul Danehy Topic Champions: Aaron Brandis, Mike Barnhardt

University of Virginia Reacting Flow Laboratory

Graduate Students:

Undergraduate Students:

Questions?