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Goal: employ fs/ps CARS to quantify thermodynamic properties with spatial resolution 

in highly transient, reacting flows using ground-based experimental facilities

High-speed vehicle engines (air-

breathing, rocket), exhaust plumes

Compressible, 

turbulent combustion High-energy, 

radiative exhuast

NASA LaRC, 2006

Flowfields of interest characterized by: 

- Reactions (combustion, dissociation/ 

recombination, etc.)

- Nonequilibrium energy distributions and 

resulting reactions, internal energy transfer

- Wide range in temperatures, pressures

- Spatial gradients

- Transient flow dynamics



Instead of relying on a change in polarizability from a naturally occurring 

vibration/rotation, we can drive the change in polarizability (drive the coherence) 

using two electric fields to increase strength of transition, scatter from this 

prepared coherence with a third field.

Thus, three waves incident on a medium, medium response (phased array of 

oscillators) produces a fourth wave radiated by the induced nonlinear polarization
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Molecular vibrational or 

rotational transition

CARSRaman Scattering
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Temperature Sensitivity

Pure-Rotational CARS Rovibrational CARS

Temperature sensitivity
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Advantages of hybrid fs/ps CARS
- High signal levels (highly-efficient generation of Raman coherence w/ fs pulses)

- Suppress nonresonant signal

- Insensitive (or selectively sensitive) to collisions

- Inherent broadband excitation: excite multiple transitions with multiple photon pairs

- Extension to 1D- and 2D-measurements (Bohlin et al., 2013; Miller et al. 2016.; 

Bohlin et al. 2017)

Frequency Diagram

Transform-limited

Pulse Timing
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Astrella, dual compressors
Vibrational pump

Probe

source

Stokes / rotational pump

(v = 0)

(v = 1)

(J = 0,1,2…)

ωp ωprobeωs ωCARS



6

Spatially-resolved measurements

Required spatial and temporal overlap of 

the 3 incoming electric fields can provide a 

spatially-resolved measurement, depending 

on phase-matching configuration.

Phase-Matching Configurations

Signal intensity vs. resolution

Optimizing resolution



CARS systems
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GWU ns CARS cart (A. Cutler)
P. M. Danehy, B. F. Bathel, C. Johansen, M. 

Winter, A. D. Cutler, S. O’Byrne, “Molecular-

based optical measurement techniques for 

Nonequilibrium Hypersonic Flows,” book 

chapter in AIAA Progress Series Book, Vol. 

247, entitled "Hypersonic Nonequilibrium 

Flows", edited by Eswar Josyula, published 

May, 2015.

UVA fs/ps CARS system 

(C. Dedic)



Temperature
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Experimentally determined error/precision in single-shot temperature 

evaluations for…

ns CARS

Accuracy Precision

fs/ps CARS

2-5% 3-5%

1-5% 1-3%

Seeger, Leipertz, Appl. Opt., 1996

Miller et al., Opt. Lett., 2010

Miller et al., Opt. Exp., 2011

<3% <2% Kearney, Combust. Flame, 2015

Extension to 1D measurements:

Bohlin, Jainski, Patterson, Dreizler, 

Kliewer, Proc. Combust. Inst., 2017

Temperature-sensitive response:
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Pressure

Delay probe pulse to sample the time 

response of Raman excitation

298 K, 1 atm

10 ps
250 ps

Measure the relative decay of each 

transition to determine pressure from 

collisional-induced signal decay

Kearney and Danehy, AIAA SciTech, 2015 

Kearney and Danehy, Opt. Lett., 2015
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Pressure

Tfit = 83 K   pfit = 26 torr

Dedic, Cutler, Danehy, AIAA SciTech 2019

2-probe technique to measure temperature

and pressure fluctuations in a supersonic jet

ωpump

0.275m

Spec.

EM 
CCD

N2

ωStokes

ωprobe,1

ωprobe,2

To vacuum
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Species concentration

Gallo, Cantu, Cutler, Rahimi, 

Chelliah, AIAA AVIATION, 2014

WIDECARS (N2, CO2, H2, CO, O2, C2H4)

Cutler, Gallo, Cantu, Appl. Opt., 2017

fs/ps CARS w/ supercontinuum generation (N2, CO2, H2, CO, O2, CH4)

ERE CARS for minor species 

measurements (CH, OH, NO)

Bohlin, Jainski, Patterson, Dreizler, Kliewer, Proc. Combust. Inst., 2017
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Hybrid fs/ps CARS is ideal for studying nonthermal environments 
➜ Single-shot measurement of rotational and vibrational energy distributions

➜ Resolve spatial non-uniformities

➜ Capture highly transient phenomena

➜ Suitable for studying local internal energy transfer and thermalization

CARS measurements of nonequilibrium energy 

distributions:
Dedic et al., Optica, 2017

Pealat et al., J Appl. Phys., 1981

Cutler et al., AIAA Journal, 2015

Montello et al., J. Phys. D: Appl. Phys., 2015

➜ Quantify energy level populations directly
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Nonequilibrium energy distributions

➜ Secondary temperature peak at 2.25 mm likely due to secondary vibrational excitation:

13% N2, 34 Td
RF voltage supply

Dedic et al., Optica, 2017

Tvib = 3120 KTrot = 388 K

400 single-shot spectra

Trot = 390 K, Tvib = 3460 K 
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Nonequilibrium energy distributions

No 

emission 

signalN2(A←B) emission 

emission

CARS

Thompson, Michael, Dedic, 

In preparation 

Further kinetic model-based 

investigation of secondary 

peak in Tvib

Compare CARS measurements of N2(X) to excited electronic state energy 

distributions to examine secondary rise in temperature post-plasma.

- Plasma emission is path-integrated, but will bias to filaments

- CARS reflects energy distribution from a volume of gas

Transition to a pulsed ns discharge to evaluate 

fs/ps CARS for accurate measurements in 

N2/O2 and N2/CO/CO2 mixtures
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Energy distributions of a decaying detonation

Propulsion Systems Scramjet cavity ignition

10 – 70 μs

S. Voelkel et al., AIP Conference Proceedings, 2016

“Extreme environment”

Wide range of…

T (300 – 4000 K)

P (1 to 80 bar)

Highly transient process, with 

multiple relevant time scales: 

μs (wavefront passage, 

energy transfer) – ms 

(blowdown)

Rankin et al., Combust. Flame (2017)

Ombrello et al., Proc. Combust. 

Inst., 2015
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Experimental setup: microscale detonation tube

Quartz capillary tube

- L = 0.61 m

- ID = 2 mm

- OD = 8 mm

Detonation tube based on Wu et al., 

Proc. Combust. Inst., 2007

+5000 V

Ground

C2H4, 

O2

15 μm 
filter

High-
speed 
CMOS 

photodiodes

Dedic, Meyer, and Michael, AIAA SciTech 2017

Dedic, Meyer, and Michael, LACSEA 2018

Luminescence within the detonation tube:

CARS measurements at tube exit:

udetonation = 2253 m/s
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ɸ = 1.0, 2 slpm N2

Considering Tv and u for a few detonation events…

Dedic, Meyer, and Michael, LACSEA 2018
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Tvib,N2 results

T, C-J

Tvib, measured 

• Initial and rapid rise in vibrational T for N2 with

little variation in wavespeed (< 1%)

• Slow decrease in temperature at late times

• Measured vibrational temperature is ~1000 K 

lower than CJ predictions (heat loss to walls?):

Voelkel et al., 2016

1 mm of predicted 

nonequilibrium = 5 μs 

Dedic, Meyer, and Michael, LACSEA 2018
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Tvib,O2 results

ɸ = 0.8

From detonation: 

Resultant temperatures of an adiabatic flame 

determined using O2 vibrational CARS:

Nearby CARS signal from CO2 complicates 

results from detonation blow-down:

ɸ = 0.5, ~1600 K

Adiabatic flame, C2H4/air:

CO2

O2

Dedic, Meyer, and Michael, LACSEA 2018
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O2 and N2 comparison

Tvib, N2

Tvib, O2

Lower Tvib(O2) than Tvib(N2), contrary 

to V-V relaxation timescales:

p (atm) T (K) 𝜏N2 (μs) 𝜏O2 (μs)

10 2500 6.6 0.21

27 3650 0.83 0.022

Tvib(N2)

Tvib(O2)

ɸ = 0.5, 1 slpm N2 ɸ = 0.8, 1 slpm N2
ɸ = 0.7, 1 slpm N2

Dedic, Meyer, and Michael, LACSEA 2018
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Next: Nonequilibrium plasma chemistry

Challenges to address: 

1) Transient flow facilities (NASA EAST)

• Robust, synchronized system resolving multiple dimensions and species

2) Improve SNR and extract meaningful data from single-shot, low-density 

environments

3) Accuracy of fs/ps CARS at high-enthalpy, nonequilibrium conditions

NASA Early Career Faculty, 2020

Research Collaborator: Paul Danehy

Topic Champions: Aaron Brandis, Mike Barnhardt

Laser system used to measure post-shock wave gases in 
a shock tube to study key atmospheric entry reactions

Image borrowed from NASA

Flow-induced plasma: 
C, CO, CO2, N, O, O2, NO, N2… 

Top View:

Shock Wave

ωCARS

Spectro-
meter CCD

Gas 
velocity

CO2, N2

Shock 
wave

1D CARS 
profile (5 mm)

0D CARS
measurement

Oblique 
shock

very low 
densities

Side View:

Validating and optimizing 

nonequilibrium plasma models 

will enable improved design of 

materials and heat shields for 

Earth/Mars atmospheric 

entry…but requires accurate 

measurements of energy 

and species in high 

enthalpy, pulsed ground-

based facilities.

https://science.ksc.nasa.gov/mirrors/images/images/pao/APOLL_OV/10074645.jpg
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Graduate 

Students:

Undergraduate 

Students:

University of Virginia Reacting Flow Laboratory

Questions?


