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Coherent anti-Stokes Raman Scattering

Flowfields of interest characterized by:

- Reactions (combustion, dissociation/ High-speed vehicle engines (air-
recombination, etc.) breathing, rocket), exhaust plumes
Nonequilibrium energy distributions and Propulsionsairtrame imegrated scramjet
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Goal: employ fs/ps CARS to quantify thermodynamic properties with spatial resolution
in highly transient, reacting flows using ground-based experimental facilities
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Coherent anti-Stokes Raman Scattering

Instead of relying on a change in polarizability from a naturally occurring
vibration/rotation, we can drive the change in polarizability (drive the coherence)
using two electric fields to increase strength of transition, scatter from this
prepared coherence with a third field.
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Thus, three waves incident on a medium, medium response (phased array of
oscillators) produces a fourth wave radiated by the induced nonlinear polarization
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Temperature Sensitivity

Pure-Rotational CARS
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Coherent anti-Stokes Raman Scattering

Advantages of hybrid fs/ps CARS
(highly-efficient generation of Raman coherence w/ fs pulses)
- Suppress nonresonant signal
(or selectively sensitive) to
- Inherent broadband excitation: excite multiple transitions with multiple photon pairs
and (Bohlin et al., 2013; Miller et al. 2016.;
Bohlin et al. 2017)
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Coherent anti-Stokes Raman Scattering
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Spatially-resolved measurements

Required spatial and temporal overlap of
the 3 incoming electric fields can provide a
spatially-resolved measurement, depending
on phase-matching configuration.

Phase-Matching Configurations

E(r,t) = E(t)e!kr—wot+e)
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CARS axial diameter (mm)

Signal intensity vs. resolution
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CARS systems

o 2

‘”V OUtP“t mirro GWU ns CARS cart (A. Cutler)
== "uP tO facd:ty P. M. Danehy, B. F. Bathel, C. Johansen, M.

B Winter, A. D. Cutler, S. O’Byrne, “Molecular-
based optical measurement techniques for

Nonequilibrium Hypersonic Flows,” book
mbl nmg chapter in AIAA Progress Series Book, Vol.
Dye pumps OptICS 247, entitled "Hypersonic Nonequilibrium

Flows", edited by Eswar Josyula, published
May, 2015.

Set up in basement below DCSCTF S /




Temperature

Experimentally determined error/precision in single-shot temperature

evaluations for... .
Accuracy Precision

ns CARS 2-5% 3-5%  Seeger, Leipertz, Appl. Opt., 1996

fs/ps CARS 1-5% 1-3%  Miller et al., Opt. Lett., 2010
Miller et al., Opt. Exp., 2011

<3% <2% Kearney, Combust. Flame, 2015
Temperature-sensitive response:
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Pressure

298 K, 1 atm

—10 ps
— 250 ps’
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Delay probe pulse to sample the time
response of Raman excitation
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Kearney and Danehy, AIAA SciTech, 2015
Kearney and Danehy, Opt. Lett., 2015
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Pressure

Frequency

1mm CARS probe volume
130 145 160 175 190 205
Temperature [K]

2-probe technique to measure temperature
and pressure fluctuations in a supersonic jet

Ta =83 K pgs =26 torr

(a) Tjy = 83K | 1 I (b) psie = 26 torr
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Species concentration

WIDECARS (N,, CO,, H,, CO, O,, C,H,)
Cutler, Gallo, Cantu, Appl. Opt., 2017 Gallo, Cantu, Cutler, Rahimi,
2 Chelliah, AIAA AVIATION, 2014

—Experiment (b)
16— —Theory ® =0.85 =1 ®=1.7

8 - 0.77+0.03 0.78+0.03 0.66+0.03
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4 T2vy) GHiHvy)

0.00 +0.003 0.06+0.01
= 0.00 +0.004 0.12+0.02
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fs/ps CARS w/ supercontinuum generation (N,, CO,, H,, CO, O,, CH,)
Bohlin, Jainski, Patterson, Dreizler, Kliewer, Proc. Combust. Inst., 2017
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Nonequilibrium energy distributions

Hybrid fs/ps CARS is ideal for studying nonthermal environments
Single-shot measurement of rotational and vibrational energy distributions
Resolve spatial non-uniformities
Capture highly transient phenomena
Suitable for studying local internal energy transfer and thermalization

wprobe Wears
S A
virtual states A Wp2
1 ws
_J|\
: /7 1\ w
1 1 probe
(v=1) 1

(J=0,12..) 0 Torobe
—(v=0)

Quantify energy level populations directly
CARS measurements of nonequilibrium energy

distributions:
Dedic et al., Optica, 2017
Pealat et al., J Appl. Phys., 1981
Cutler et al., AIAA Journal, 2015
Montello et al., J. Phys. D: Appl. Phys., 2015
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Nonequilibrium energy distributions
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Nonequilibrium energy distributions

Compare CARS measurements of N,(X) to excited electronic state energy
distributions to examine secondary rise in temperature post-plasma.

- Plasma emission is path-integrated, but will bias to filaments

- CARS reflects energy distribution from a volume of gas
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Transition to a pulsed ns discharge to evaluate
fs/ps CARS for accurate measurements in
N,/O, and N,/CO/CO, mixtures




Energy distributions of a decaying detonation

Propulsion Systems Scramjet cavity ignition

Detonation Front
Taic=3500 K
v=1500 m/s

Pulse Detonator

Beginning of Blow-Down Process
Toic=3000 K
v=1105 m/s

Ombrello et al., Proc. Combust. Pressure T —
Blowdown Blowdown
Inst., 2015 —

Pressure

Rankin et al., Combust. Flame (2017)

“Extreme environment”

Wide range of...
T (300 — 4000 K)
P (1 to 80 bar)

Highly transient process, with

multiple relevant time scales:
Ms (wavefront passage, | :
energy transfer) — ms o QR
(blowdown) e i)

S. Voelkel et al., AIP Conference Proceedings, 2016
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Experimental setup: microscale detonation tube

5000 V photodiodes _
15um *
fiiter s . ?uirt_zg %Tlﬁry tube

a - ID=2mm

pEEE
Ground - OD=8mm

Detonation tube based on Wu et al.,
Proc. Combust. Inst., 2007

Luminescence within the detonation tube:

CARS measurements at tube exit:
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¢=1.0, 2slpm N,

Considering T, and u for a few detonation events...
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Tyip N2 FESUltS

Voelkel et al., 2016
Initial and rapid rise in vibrational T for N, with

little variation in wavespeed (< 1%)

Slow decrease in temperature at late times
Measured vibrational temperature is ~1000 K
lower than CJ predictions (heat loss to walls?):
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Tyip 02 results

Resultant temperatures of an adiabatic flame
determined using O, vibrational CARS:

Temperature (K)
=
(a=]
o

Ju—
[\~)
o
o

Nearby CARS signal from CO, complicates
results from detonation blow-down: 03 od o3
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O, and N, comparison

®=0.5,1slpmN, ¢ =0.7, 1 slpm N, ¢ 0 8 1 slpm N
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Next: Nonequilibrium plasma chemistry

] . . L. NASA-5-66-11003 Top View:
Validating and optimizing Flow-induced plasma: Cox, N, |

nonequilibrium plasma models |REASSASSIUACACTNICRUTRY  cnock e
will enable improved design of | Tl
materials and heat shields for s f T

Earth/Mars atmospheric R T = soecro : | Side View:

meter velocity 1D CARS

entry...but requires accurate | N@ e memert profie (6 )
measurements of energy Shock

and SpeCIGS In hlgh Imae OFF&NE i‘rom NASA o ver : »omq
A verylo |

enthalpy, pulsed ground-
based facilities. Laser system used to measure post-shock wave gases in

a shock tube to study key atmospheric entry reactions
Challenges to address:

1) Transient flow facilities (NASA EAST)
» Robust, synchronized system resolving multiple dimensions and species
2) Improve SNR and extract meaningful data from single-shot, low-density
environments
3) Accuracy of fs/ps CARS at high-enthalpy, nonequilibrium conditions

NASA Early Career Faculty, 2020
Research Collaborator: Paul Danehy
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