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Abstract— NASA’s High-Data Rate Architecture (HiDRA) 
project is working towards a general yet practical toolkit and 
knowledge base to help usher in the era of new technologies 
for space systems communications, such as optical links. The 
High-Rate Delay Tolerant Networking (HDTN) implementation 
falls under the umbrellas of both the toolkit and the knowledge 
base, as its advancements illuminate more general areas of Delay 
Tolerant Networking (DTN) that need growth. The goal of 
this paper is to explore the usage of particular mathematical 
machineries, namely temporal flow n etworks a nd s heaves, to 
identify fundamental, underlying structures in DTN for space 
systems.

Satellites, space assets, ground stations, etc. give rise to a discon-
nected network, and it is the goal of DTN to glue disparate links 
together into a cohesive system, that is, a network. Depending on 
a given link, the latencies might be beyond that which the Trans-
mission Control Protocol (TCP) can handle, and contact times 
might have one-way light times in excess of minute (sometimes 
significantly l onger). Some links might be periodic (say, due to 
orbital mechanics) or they might not be. This diversity has made 
it difficult t o p robe t he u nderlying s tructure. A n immediate 
consequence is that DTNs in practice today are controlled by 
globally distributed contact plans (schedules), which are the 
input to the contact graph routing (CGR) algorithm. While this 
is effective for smaller networks, it will be very difficult to scale 
for future networks. Deeper and more rigorous theory is needed 
to bring DTN to the next evolutionary step.

To this end, this paper introduces and suggests a mathematical 
framework for DTN, and applies it to a space network that is 
simulated using an orbital analysis toolkit. The tag-line for the 
structure known as sheaves is that they are the mathematically 
precise way of gluing local data together into unique, global 
data. If we consider routing, we see that networking is a 
“sheafy” science. We then discuss a simplified s heaf model, 
known as the cellular sheaf. The sheaf-theoretic analysis is pre-
sented and discussed, as it is hoped that this and related papers 
will help form the primordial ooze of DTN theory. Finally there 
is a section of future work suggesting follow-on research.

1. INTRODUCTION
In several senses, the need for networking in space grows like 
entropy. Here, we consider two such ways: assets are begin-
ning to enjoy optical (laser) links in addition to the traditional 
radio frequency (RF) links, and there are more assets in space 
than ever before. The current optical communication technol-
ogy demonstrations promise to deliver an order-of-magnitude 
increase in bandwidth [1] [2] [3], which implies both the 
choice of different types of links, and the need for the current 
space and ground infrastructure to adapt concomitantly. Hav-
ing RF and optical communications implies different kinds 
of links, meaning even between two assets there could be 
multiple paths, and the number of assets implies end-to-end 
paths might feature multiple hops. Given the disruptions

and disconnections caused by, for example, mobility, and
the wide variance of latencies due to the physical distances
between any two given assets, an alternative to terrestrial
networking was created to turn the collection of disparate,
time-varying links into a network. This is the goal of Delay
Tolerant Networking (DTN) [4] and its implementations [5].
DTN research is still on-going, and as certain barriers are
overcome, others gain prominence. Classically, performance
was one such hurdle: it is the goal of this paper to begin work
towards how we might achieve greater scalability and routing.

We do not attempt to provide a deep introduction to DTN in
this paper - for suitable material, the reader is encouraged
to consult [4] [5] [6] [7] [8] - however we do recall the
necessities in this paragraph. Architecturally, delay-tolerance
is achieved through the use of an overlay network. This
overlay is a logical construct that can be thought of as a graph
that exists on top of a number of existing assets and links. A
vertex in this graph is a place at which data may exit the over-
lay: such a destination may map to either one physical asset
or a collection of many (e.g. an entire constellation). An edge
in this graph represents a logical link between two endpoints:
such edges may be constructed upon any protocol, known as
convergence layers. These consist of small transport-layer
protocol adaptations which allow the atom of DTN data, the
bundle, to pass through individual edges; note that a bundle
may be of arbitrary size. The protocol by which such bundles
are transported through the overlay itself is called the Bundle
Protocol [5]. A restatement of the goal of this paper is that
we bring more rigor and mathematical structure to bear on
DTN in order to begin teasing out the fundamental theory of
DTN; it is within and by this theory that the authors believe
scalability will be realized.

In order to live up to its purpose, achieving scalability of
communications, networking must not incur inefficiencies so
as to become a bottleneck. Initial work with DTN showed
promise in the domain of disconnected networks, however
the limitations are well-published [9] [10] [7] [8]; indeed,
given representational network traffic, data rates taper off
in the low 100’s of megabits per second regardless of the
power of the underlying hardware. Consider a simple bundle
transfer between two nodes: if the bundle is large and sent
over TCP/IP, the data rate should be the line-rate. However,
we expect most bundles to either be smaller (on the order
of the maximum transmission unit (MTU) size), or to be
fragmented to such a size. Therefore, we must consider the
bundle overhead, and indeed the computational complexity
is non-trivial for such reasons as the header fields are not of
fixed width, precluding random access. This and implemen-
tation specifics have resulted in the mentioned limitations.
The need to overcome these bottlenecks gave rise to several
performance-optimized DTN implementations, such as High-



Rate DTN (HDTN) and Bundle Protocol library (bplib) [11].
We hasten to add that different implementations, such as the
reference implementation, Interplanetary Overlay Network
(ION) [12], are designed for particular environments and use-
cases; they may all have a place in a single given network
given their unique attributes.

HDTN has been shown to process on the order of 10’s
to 100’s of thousands of bundles per second on hardware
suitable for Low Earth Orbit (LEO) spacecraft, and to support
links over 1 gigabit per second with bundles less than 1
kilobyte in size [7]. We note that it is critical to have
several independently developed manifestations of a protocol
for interoperability testing. In particular, having two or
more helps find bugs in the specification as well as any
given code base. Interoperability, however, means more than
specification conformancy, or “speaking the same language,”
and includes not speaking more quickly than one can listen.
Hence work was conducted to verify interoperability between
ION, HDTN, and bplib over a simulated satellite scenario
using a variety of line rates [8].

While the work is not done yet, HDTN and bplib show great
promise towards their performance goals, so here we turn our
attention to other matters. In a typical DTN, the nodes use
InterPlanetary Network (IPN) naming: a name is of the form
ipn:x.y, where the number x is the name of the node and
the number y refers to the service number [13]. The only
topology on a collection of names is the trivial (indiscrete)
topology - as such, no hierarchy or ordering is possible; this
can be contrasted with Internet Protocol (IP) addressing. The
bundle routes are often computed using schedules, known
as contact graphs [6]. A contact graph contains such infor-
mation as link start and stop times, bit rates, and one-way
light times. These schedules are globally distributed across
the network, and a modified Dijkstra’s algorithm is used
to determine the end-to-end paths. The lack of topological
separation and schedule creation, maintenance, and distri-
bution render DTN nearly inapplicable to modern systems.
Indeed, pending as of the date of publication, SpaceX has
submitted paperwork to the International Telecommunication
Union (ITU) for up to an additional 30,000 satellites on
top of the 12,000 it already has approval for [14]. These
satellites are in LEO, in a decaying orbit, and naturally will
be launched over time. Moreover, a system of this magnitude
will encounter loss. These factors force any network to be
adaptive, bucking against the rigidity exhibited by DTN. The
issues are particularly exacerbated by the tendency to have
“humans in the loop,” that is, manually created schedules.

The primary representation of a network is a graph - a collec-
tion of edges and vertices (nodes and links) - upon which we
apply probability, statistics, game theory, and more [15]. We
also note that a TCP connection presupposes such conditions
as end-to-end connectivity, which cannot be assumed in a
DTN. Consider a TCP/IP connection: given low latencies and
an end-to-end paths, intermediary buffering requirements are
relatively low. On the other hand, one way of considering
DTN is as a store-carry-and-forward network: given a period
of disconnection, bundles (of arbitrary) size must be buffered.
Hence as we add information to our graph, we have to
consider buffering capabilities. Other approaches to DTN
have incorporated this information into graph representations
of the network in a variety of ways [16] [17] [18] [19] [20]
[21]. While each approach functions well as a model for

DTN in the specific applications, there is a lack of a unified
theoretical foundation for DTN as a graph.

One goal of this paper is to present the structure that forms
a unified theory of DTN. As this theory takes form, more
deterministic approaches towards algorithm development,
implementation, management, and so forth become possible.
More specifically, if topological structure that persists across
typical DTNs becomes known, then a respective addressing
scheme may be developed. Indeed, improved scalability will
be a natural by-product of taking the leap from naming to
addressing. Below, we introduce the structures germane to
DTNs.

2. TEMPORAL FLOW NETWORKS
This section is meant to set up the mathematical tools in
use for our graph theoretic model of DTNs. In order to be
able to properly model the complexities of DTN, even given
the confines of space networks, we must develop a rigorous
definition of the mathematical objects that represent them.
This is a crucial step to be able to bring existing tools from
higher mathematics to bear on the problems at hand. With
that in mind we define a temporal flow network (TFN), which
are introduced in [22]. We recall that a graph G = (V,E)
consists of a set of vertices V and a collection E of (possibly
directed) edges between them.

We note that the below definitions are technical, but there are
graphical examples - see Figures 1 & 2.

Definition 2.1 (Temporal Graph). We call a graph G =
(V,E) a temporal graph if:

• G is a directed graph; and

• for each edge e ∈ E, we assign a finite set Le ⊂ N of labels
identifying the integer time instances when e is available.

This is denoted G = (V,E, L) where L =
⊔

e∈E
Le to

summarize the necessary information.

Once we have established a temporal graph, if we want to
use it to model flow we must add additional structure to make
it a flow network. First, we recall that in a contact graph,
link durations and average bit rates are known, and hence link
capacities are known. Individual nodes will be equipped with
known storage (buffering) capabilities.

Definition 2.2 (Temporal Flow Network). A temporal flow
network G is a temporal graph equipped with:

• an identified source vertex s and sink (target) vertex t;

• a capacity function c : E → R; and

• a buffer function B : V → R, where B(s) and B(t) are
assumed to be infinite.

This is denoted G = (V,E, L, s, t, c, B) to summarize the
necessary information.

One can think of a temporal flow network as a sequence of
graphs at each time instance connected by edges mapping
each vertex to its copy in the next time instance with buffer



3capacities representing the storage capacities over the edges
between time instances.
Definition 2.3 (Time-Extended Graph). LetG = (V,E, L, s, t, c, B)
be a temporal flow network. Then its corresponding time-
extended graph GTE = (V TE , ETE) is a weighted directed
graph where:

• for each vertex v ∈ V , there are `TE + 1 copies in V TE

denoted v0, v1, . . . , v`TE where `TE is the largest integer in⋃
e∈E

Le

• for each edge e = (v, w) ∈ E and each i ∈ Le, there is an
edge eTE

vw,i = (vi−1, wi) ∈ ETE

• for each vertex v ∈ V , there is an edge eTE
v,i = (vi−1, vi) ∈

ETE

• there is a capacity function cTE : ETE → R defined by:

cTE(eTE
x,i ) =

{
c(e) if x ∈ E
B(v) if x ∈ V

To simplify our computations, we can simplify the time-
extended graph for a given temporal flow network by col-
lapsing edges that only serve to extend the buffer for the
vertex. To state this precisely, if the only edges containing
vi in GTE are eTE

v,i and eTE
v,i+1, then we can remove vi, eTE

v,i ,
and eTE

v,i+1, and replace them with (vi−1, vi+1) with capacity
cTE((vi−1, vi+1)) = B(v). We call these simplified time-
extended graphs (STEGs) and as they are computationally
simpler and theoretically justifiable, they will be used instead
of time-extended graphs for the remainder of this paper.

The main approach we implement in this paper involves
using these STEG objects as an abstraction of a potential
space network and then to model the maximum information
flow over these graphs. This, while in its current form is
an unrealistic representation of the situation, is a proof of
concept that easily allows for future more detailed approaches
to be developed.

Toy Examples

In this subsection we will work through a few manageable
examples.

The first example is purely artificial. Let G be the graph
shown in Figure 1. Let S and T be the source and sink nodes.
Let the gray numbers inside each intermediary node be the
buffer capacity, the black number by the edges be the edge
capacity, and the sets next to each edge be the set of times the
edge is available for flow.

If we wish to calculate the maximum temporal flow, we
cannot use traditional max flow algorithms. However, we can
form a STEG of this graph which is shown below in Figure 2,
and then apply existing max flow approaches. This example
is simple enough to calculate the max flow by hand even with
a non systematic approach.

The rules of max flow are discussed later in this section and

Figure 1. An example temporal flow network

we leave the computation of max flow as an exercise to the
reader (see Figure 6).

For this paper, code was written to provide a framework
within which experimentation with TFNs can be conducted.
For the purposes of computing max flow over the TEG, it is
possible to skip creating the TFN and go straight to creating
the STEG: this is the approach taken by the authors. The code
will be considered further in subsection 2. First, we illustrate
this using an example social network where the constituents
are the authors. We assume that communications depends on
peoples’ whereabouts over time, and that we might have no
three (or four) in the same room at the same time. We can
model this as a temporal graph. Depending, perhaps, on how
quickly one speaks, different “data rates” are exhibited. If we
further assume that one person must deliver information to
another, we create a TFN. The schedule that might be used as
input to the program is shown in Figures 3 & 4.

The information shown in Figures 3 & 4 is used to directly
generate the STEG shown in Figure 5.

Data Generation and Programming Approach

We used the graph-tool [23] package in Python which is
built to perform many algorithms and computations within
the envelope of graph theory, using high efficiency C++
implementations using a Python wrapper. This was used
to both compute the max flow over the graph and to create
visualizations.

In order to put our STEG code through its paces, we gener-
ated relatively large systems. The means was orbital analysis
software. This includes, e.g., Satellite Orbital Analysis Soft-
ware and Systems Tool Kit (STK). NASA is developing the
Strategic Center for Networking, Integration, and Communi-
cations (SCENIC) tool, which also simulates the orbital pat-
terns and communication capacities of various NASA assets
[24]. By creating scenarios using such tools, we can induce
a measure of realisticness as well as direct applicability. This
will be explored further in Section 3.



Figure 2. The STEG associated to the temporal flow network shown in Figure 1

Figure 3. Data rate input to the program (social network
example)

The first and main piece of pertinent data from SCENIC
and STK are times line-of-sight availability between different
space assets. We used this along with a time slice window,
which was used to create a STEG based on the line of sight
data. The assumption is if two assets have line of sight at the
beginning of the window then it will persist throughout the
window and data can be transferred over that whole window.
other inputs that the program needs in order to calculate the
max flow is the amount of data that can be stored at each
asset and an estimated capacity for each channel. We then
developed a proof of concept Python package to take the STK
and SCENIC data and build our data structures which then
can be used as input to the graph-tool package. The authors
plan to determine that possibility of open-sourcing the code.

Figure 4. Contact schedule input to the program (social
network example)

Max Flow

As discussed, one mathematical approach for analyzing net-
works as a whole that has proven historically very useful and
productive is graph theory. It can be used to do cost benefit
analysis of different utilization of shipping networks, or to
find the most efficient path from one’s computer to Google.
One problem that has been heavily studied in this field is that
of max flow, the aim of which is to find the maximum amount
of units that can flow across a given network. Other examples
of the broad applicability include determining the flow of
water through a system of pipes and the flow information
through a network of computers. The question of max
flow over a disconnected network, say from space assets to
Earth, boils down to solving max flow problem over a graph
theoretic representation of the network in our new setting.
First we should understand max flow on a traditional graph
theoretic representation of a network before we bring it to the
Temporal flow networks we use to analyze DTN.
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Figure 5. STEG associated to social network example. Here we are considering the maximum flow from bob to metin and
alan from time 0 to five with time step of .4

When solving max flow, one is presented with a graph G =
{V,E, s, t, c}, where V is the set of vertices, which represent
nodes in the graph. E is the set of edges which connects
those vertices and can also be thought of as a proper subset
of V × V . The source s is a special vertex where the data
units to be transferred through the graph originate. The sink,
or target, is t, and is another special vertex, serving as the
destination of the units traveling through the graph. Lastly
c is a function from E to R+ denoted by C(u, v) which
indicates the capacity of the directed edge (u, v). With this
graph construction we can define a flow as follows.

A flow is a mapping f : E → R+ denoted by f(u, v) subject
to the following two constraints:

• f(u, v) ≤ C(u, v) ∀ (u, v) ∈ E; and
•

∑
u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E
f(v, u) for each u ∈ V \

{s, t}.

The first rule amounts to a formal capacity constraint. The
second rule eliminates the possibility for any flow to originate
or terminate anywhere except for the source and the sink.
With this in mind we can now define the value of an s−t flow
or a flow from s to t by |f | =

∑
v:(s,v)∈E

f(s, v). Now that we

can determine the value of a flow, the natural progression is
to maximize it.

Computing max flow is a problem that has been of great
interest to graph theorists for a long time, and with such
interest comes many different approaches to computing it.
All of them involve systematically testing out different flow
options, but the approach varies from algorithm to algorithm.
This variance in approaches can change what the compu-
tational complexity will depend on. However as graphs

get very large computational complexity quickly becomes a
non-trivial concern. As this paper is meant as a proof-of-
concept the authors have decided to forgo lengthy discussion
of optimization. The algorithms used by our Python package
to maximize flow over a given network are standard ones of
the field that where already built into the graph-tool package
referenced above.

3. APPLICATIONS TO SPACE NETWORKS
Both STK and SCENIC were utilized to construct proof-of-
concept models that we could run our analysis on. We started
by determining what format the data from STK and SCENIC
and constructed our package around building a model that
would accept these formats as inputs. For both SCENIC and
STK the data we were getting was in terms of line-of-sight
data for our models between specific assets in the model. For
SCENIC, the data came in the form of universal coordinated
time (UTCG) which we had to convert in our code to a
standard format for consistency with STK.

The first model we set up was a system designed to simulate
the Artemis program, which is scheduled to build a long-
term lunar capability with several relay satellites and the
Lunar Reconnaissance Orbiter (LRO) to communicate back
to Earth; see Figure 7. For this model, we constructed four
assets in SCENIC, including a moon station but leaving out
the Earth communications. We designed the system so that
the lunar base would communicate with the two ARTEMIS
1 and ARTEMIS 2 relay satellites that, between their two
orbits, had a near-constant line-of-sight with the lunar base.
Then between the two ARTEMIS satellites, communications
can be established with LRO when possible. The data we
collected from SCENIC was over a period of a year and two
months. This was used as input into our code and the STEG
that emerged was indicative of the lack of direct connectivity
between the lunar base and LRO while also providing a useful



Figure 6. Max flow example: The top is the capacities, and
the bottom is the max flow

visualization of the frequency and time of communication
that the model achieved.

Just as it was with the model, creative license was taken with
the RF parameters: the values chosen are not particularly
relevant to determining the tractability of the algorithms.
As such, our max-flow code gave us an estimate of 168.3
TB being maximally communicated over 61 days. This
amount, while large in a theoretical model, demonstrates the
value of thinking of the network capabilities of a system of
information. The corresponding STEG is shown in Figure 8.

The second model we set up was a larger model that included
a lunar relay, a lunar rover, a Mars relay, a Mars rover,
the ISS, and three different ground stations, Goldstone CA,
Canberra, and Madrid, as illustrated in Figure 9. This system
worked similarly to the smaller Artemis model wherein the
assets on the ground communicated through the relays around
their moon or planet via a relay satellite network in geosyn-
chronous orbit (namely, Tracking and Data Relay Satellite
System (TDRSS)). This larger model simulated something
closer to existing NASA networks except instead of singular
points of communication with each asset we were attempting
to construct a larger model. Some of the assets in the model
such as the ISS, LRO, the Mars relay, and the ground stations
were all accurate in terms of location and orbits. We note
the Mars relay was really Mars Atmosphere and Volatile
EvolutioN (MAVEN). While there are existing rovers on
Mars and the moon, for this model, we used fictional rovers
so that we could match hardware requirements to the commu-
nications assets we desired. With that in mind, we made some
modifications to the hardware used on some relays, satellites,
and ground stations including adding antennas/bands simply
to ensure compatibility between all of our assets since we

wanted to have as many connections as possible. Getting data
on this larger model stretched SCENIC to its capacities since
it was such a large model with so many orbits and assets.
Thus we had to collect data for only a month with much less
frequent intervals to check on the connections. Nevertheless,
our STEG for this model had 45,794 vertices and 239,783
edges in our graph of connections. We note that on an AMD
Threadripper 2990wx that was shared among many users,
computations took place on the order of minutes.

Our two models were similar in inspiration but different in
terms of scale and complexity. The smaller lunar-centric
model was designed to be a more realistic model in terms
of mimicking what the Artemis program is hoping to ac-
complish, while the larger model was much more focused
on extending our network as wide as possible with as many
different types and locations of assets as possible. Both
of these models demonstrated that we can visualize and
calculate maximum flow on the networks which are useful
analytic tools to understand, optimize, and improve networks,
both existing and planned. The networks were theoretical in
that we had to create new hardware capabilities and modify
existing hardware, however the modifications made were not
egregious. To make sure we were running our code on
as complex a model as we could create in our time-frame,
we ensured there was enough connectivity in the model to
have multiple channels for information to flow from every
asset and that every asset could theoretically communicate
with any other asset (though not necessarily directly). Being
able to run our models through visualization and calculate
max-flow proved that we can glean actionable insights about
networks from this analysis.

4. SHEAVES
The idea of transmitting data over a network relies upon us
having some notions of the type of data we are studying.
Whether this is traditional bit strings or higher-level quantita-
tive or qualitative data, we need an effective way of describing
this data. Moreover, data traveling over a network needs to
remain consistent, no matter the sender or receiver of the
information.

As an example, the data we need to define a temporal flow
network needs to be consistent over the course of the in-
terval we are considering. While our model works well if
connections can be established and speeds are constant, a
more sophisticated model might require individual connec-
tion inputs and variable speeds depending on location, time,
and other factors. In addition, if we want to construct more
sophisticated networking structures for DTN, a framework
for both describing this data and comparing this data would
be essential.

In mathematics, one method for collating local data into a
consistent piece of larger global data comes in the form of a
sheaf. We will define a sheaf below in terms of categorical
language. The value to doing this is that no matter what
category our data belongs to, we will still be able to use a
sheaf to construct the appropriate data structure and model.
Sheaves have been studied extensively in mathematics; in
recent years they have been reconstructed explicitly to handle
discrete data structures as would be found in networks. More
general introductions to sheaves in applied topology can be
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Figure 7. Simplified Artemis-lunar model

Figure 8. Visualization of our lunar-centric model. Blue
represents Artemis 1, yellow represents Artemis 2, purple
represents the Lunar station, orange represents the LRO,
green is the source (the Lunar station), and red is the sink

(the LRO communicating to Earth)

found in [25] while technical details can be found in [26] [27]
[28] [29] [30].

Sampling theory has been generalized and described using
morphisms of sheaves; this theory counts Shannon-Nyquist
theory as a special case [31]. In sampling, one essentially
attempts to reconstruct a function from individual samples;
the function is the global data, and the samples are the
local data. We see analogous processes in networking as
well, particularly in routing. Distance vector routes use
local connectivity information - tables based on neighbors.
Link state routers send their tables about their neighbors to
all routers, and hence can make routing decisions based on

global data. This provides some intuition on why networks
are “sheafy,” also see [32].

One reason to consider sheaves in DTN models is that sheaves
can organize information and relate it across a full network.
As an example, the information we impose to the base graph
in a temporal flow network can be thought of as a sheaf.
The buffer capacities and edge capacities we associate to the
network are not strictly part of the network graph structure,
but they form an essential piece for analysis of DTN. The
value of including this information as a sheaf is that sheaves
structurally include the relationships between the different
pieces of information. However, sheaves are more general
than this: they can incorporate quantitative or qualitative
data that could be relevant to networking problems being
considered.

For our purposes, we will use a cellular sheaf, which is a type
of sheaf designed for use over graphs, of which our STEGs
are examples. In the subsequent definition, think of the graph
G as a network (or a STEG), and think of the category C as a
mathematical descriptor for the type of data being applied to
the network.

Definition 4.1. A cellular sheaf F on a graph G = (V,E) to
a category C consists of assignments of

1. objects F (v) ∈ ob(C) to each vertex v ∈ V (each called
the stalk over v);

2. objects F (e) ∈ ob(C) to each edge e ∈ E (each also
called the stalk over e);

3. arrows F (v, e) ∈ Hom(F (v), F (e)) for v ∈ V and e ∈ E



Figure 9. Our larger model

whenever v is adjacent to e (each is called the restriction map
from e to v).

The sheaf can be thought of as the abstract space in which the
information we want lives. If we want a specific instantiation
of that data, we select a consistent representation of our data
within the sheaf. This selection, when consistent across the
entire network, is called a global section of the sheaf.

As mentioned above, the data needed to form a temporal
flow network can be thought of as a sheaf. Given a network
G, which is merely the vertices and edges connecting the
vertices, a temporal flow network requires capacity values
over each edge, buffer values over each vertex, and a set of
active time intervals over each edge. We can define this as a
sheaf by F (v) = R and F (e) = R × P(T ), where T is the
set of time intervals and P(T ) is the collection of subsets of
time intervals. The restriction maps here allow us to provide
additional information or relationships between our values.
We could impose the restriction that our buffer values must
exceed incoming capacity values, or that sufficiently low
capacity values are not associated to especially small time
intervals.

If we make our restriction maps so that the buffer values
must be greater than the sum of incoming capacity values,
a section of this sheaf is represented in Figure 1. Notice
that individually, the values are valid elements of our sets,
but the key to the section is that the restriction maps are
held consistent across the entire network. This consistency
of the data with respect to the rules of the network is the key
desirable property of sheaves.

As these global sections are desirable quantities, we fre-
quently want to analyze or compare different global sections.
The analysis of global sections has traditionally fallen to
sheaf cohomology, denoted H∗(−;F ) for a sheaf F . Within
a cohomological framework, it is possible to compare or
even combine different global sections to identify different
equivalence classes. Depending on the sheaf and structure in

the data category C, sheaf cohomology can describe several
different features of the global sections.

As an example of this, Robert Ghrist and Yasuaki Hiraoka
introduced a sheaf to model network codings over a network
[27]. They used sheaf cohomology as a means of computing
maximum flow when data is moving through a network in the
presence of a network coding.

Network codings are useful in manipulating how data moves
through a network in an attempt to improve efficiency. The
key feature of a network coding is a coding map telling how
to encode information at one vertex as it is transmitted to an-
other vertex. To be able to productively use this information
in a sheaf, Ghrist and Hiraoka define network codings in the
following way:

Definition 4.2. A network coding on a directed graph G =
(V,E) is a directed graph along with:

• an identified source vertex s and sink (target) vertex t;

• a capacity function c : E → R; and

• for each edge e = (v, w), a local coding map φe :

Rn(v) → R() where n(s) is the amount of information
coming out of the source, and n(v) =

∑
e∈In(v)

c(e) for v 6= s.

Note that In(v) is the set of edges which point at v, and
we denote a graph equipped with a network coding by G =
(V,E, s, t, c, {φe}).

To encode a network coding as a sheaf, the structure of
the network coding gives us a reasonable category of data,
namely vector spaces with linear maps between them. Thanks
to how the local coding is defined, there are natural choices
for the data types over each vertex and each edge. In addition,
the local coding maps form natural restriction maps for some
of the vertex-edge pairings. To define a network coding sheaf,
we need only specify data types of each vertex and edge
and codify the receiving coding maps as projection maps in



9the appropriate dimensions. Doing this yields the following
definition for a network coding sheaf:

Definition 4.3. A network coding sheafF on a directed graph
G = (V,E, s, t, c, {φe}) equipped with a network coding
assigns

• to each vertex v ∈ V , F (v) = Rn(v);

• to each edge e ∈ E, F (e) = R();

• a linear map F (v, e) : F (v) → F (e) whenever v is
adjacent to e such that:

F (v, e) =

{
proj : F (v)→ F (e) if e ∈ In(v)
φe : F (v)→ F (e) if e = (v, w) for some w ∈ V

What Ghrist and Hiraoka discovered was that the maximum
flow of information through a network coding was intimately
connected to the sheaf cohomology structure in the network
coding sheaf. In particular, they prove the following theorem:

Theorem 4.4. [27] For a network coding sheaf F on network
X , H0(X;F ) is equivalent to the set of information flows on
the network.

From here, we can determine that the maximum flow of
information over a network coding sheaf F is the dimension
of H0(X;F ). This is a reasonably computable quantity, and
can permit us to compare network codings from a maximum
flow perspective.

The computability aspect is a key point to reflect upon. One
big advantage to using sheaves to model data is that there
is software designed to handle sheaf-theoretic computations.
Namely PySheaf [33], a software package developed by
Michael Robinson et al. from American University. PySheaf
uses linear algebra and abstract algebra to construct and
compare sheaves and sheaf-like objects. This software makes
computing sheaf information tractable, even for large or
complex constructions. In the future, we hope to find ways
to model sheaves over a DTN by incorporating PySheaf
computations into our TFN construction.

5. CONCLUSION AND FUTURE WORK
Temporal Flow Networks form an excellent graph-theoretic
model for Delay-Tolerant Networking. There is sufficient
structure in TFNs for the computation of the maximum
amount of information that can flow over the network. More-
over, our model can be constructed in a way that predicts
connectivity, even for large and complicated networks, over
long periods of time. In addition to TFN’s ability to model
DTNs, powerful mathematical machinery can be placed on
top of them. Uncovering better tools for DTN research gave
rise to several projects that we hope to pursue.

Temporal Flow Networks

TFNs themselves need to be generalized so that they can be
used to build traditional DTN algorithms. We expect that
there is a means of transcribing existing routing algorithms,
including contact graph routing [6], into the language of
TFNs. We also expect that our definitions here rely upon
assumptions that may not hold in all DTN cases. A sufficient

generalization of TFNs should be able to represent any theo-
retical or practical Delay-Tolerant Network without needing
to impose additional restrictions.

Data-rates, and thus link capacities, should vary with time.
While CGR assumes that average rates per contact are spec-
ified in order to determine queuing depths, some links (de-
pending on latency) might support reactive mitigation to, e.g.,
loss. In a given contact, instantaneous data rates can change,
for example, with proximity.

TFNs can also be extended to better respect latency issues.
TCP, for example, is highly sensitive to latency and packet
loss [34]. There is value in rigorously determining the
appropriateness of a given protocol given link conditions.

In a network, we should consider multiple simultaneous
source and receiver nodes. Therefore, in a natural setting, it
might be impossible to truly determine buffer requirements.
This might be mitigated in practice by the use of network
policies. However, to perform computations using our TFN
models, buffer capacities were assumed to be large enough to
be a non-factor.

Incorporating cost-benefit optimization into max flow can
help make the beginnings of a graph-theoretic analysis of
different protocols.

Structure and Protocols

The idea of identifying and relating methods in DTN via
sheaf theory is very appealing. The idea of modeling informa-
tion consistently flowing over a network as a sheaf is not new,
but the specific implementations that would be relevant and
generalizable to DTN still need to be developed. Pieces of
this have been developed for different aspects of networking.
For example, Sanjeevi Krishnan in [30] found a sheaf that
could be used to compute maximum flow over any network,
without referencing or requiring a network coding structure.

The intrinsic structure of a DTN will likely have a much
finer granularity than the extrinsic structure, that is, a given
DTN will naturally take on more roles than as prescribed by
naming schemes. However, this structure is unknown. Topo-
logical data analysis (TDA) has enabled sub-classification of
previously prescribed types in data sets, see [35] to see an
example regarding sub-types of type 2 diabetes. It might
be that sheaves could be used to discuss not only the local
robustness of networks, but also the roles that nodes play in a
network.

If some structure of a network is determined, we might
be able to simplify max flow calculations for the temporal
network by compacting certain sub networks, for example,
by having a Mars network represented by one node from an
Earth-node’s perspective. Such simplifications would be ben-
eficial from a computational perspective, but it could also lead
to understanding relationships between networking structures
at different granularities. Sheaves, again, would provide good
theoretical structures for this comparison. Another math-
ematical tool to consider is discrete Morse theory (DMT)
[36] [37]. DMT might be useful for directing flows, but is



particularly useful for dimension-reduction (simplification).
If portions of a network could be collapsed by DMT, it would
illuminate the local hierarchies of those sub-networks.

Some protocols, such as TCP and the Datagram Congestion
Control Protocol (DCCP) have built-in congestion control
techniques. TFNs might be used to bridge not only max-flox
but also congestion control into DTNs.

Finally, Robinson in [28] describes a sheaf that models pro-
tocols effectively and provides a means of resolving conflicts
or interference in sheaf-based networking. These form pieces
of a much larger project among mathematicians, namely
developing multiple related sheaves that could be used to
model all of the layers to networking. One direction to pursue
over a long period of time would be to adapt sheaves that
could model all layers in the Open Systems Interconnection
(OSI) model for traditional networking. A sheaf-theoretic
OSI model may be reasonable to transport to the DTN setting.
We are certainly interested in pursuing this, but there is
significantly more work that needs to be done before this can
be effectively approached.

Software

Another project is pure software development. We hope that
future researchers are able to improve upon our algorithms
so that the community is even more comfortable using TFNs
as a framework. We also want to work on stronger methods
for importing data into our software so that data from a wide
range of modeling software.

Other potential contributions include simply deriving better
algorithms, or writing better implementations. Also, one
might begin transcribing DTN algorithms into the language
of TFNs. Presumably, a more user-friendly library combining
PySheaf and graph-tool, or building upon existing software in
a more accessible program, would entice more researchers to
join.

Miscellaneous

In the course of sheaf discussions, we noticed they might
also apply to space navigation. Celestial navigation often
utilizes computationally expensive star trackers, which com-
pare pictures of a visible star field to a known catalog of
stars. This method is very effective, but if navigational infor-
mation needs to be updated between star tracking algorithm
refreshes, sheaves might enable sensor fusion between either
accelerometers and camera data or accelerometers and star-
tracker output. This might be particularly true given sheaf-
sampling of signals with a high signal-to-noise ratio and
available power spectral density profiles of given space craft.
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