Intelligent Contingency Management for Urban Air Mobility

Irene M. Gregory, Michael J. Acheson, Barton J. Bacon, Thomas C. Britton,
NASA Langley Research Center, Hampton, VA, 23681, USA

Newton H. Campbell
NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

Jacob W. Cook, Jon B. Holbrook, Daniel D. Moerder, Patrick C. Murphy, Natasha A. Neogi, Benjamin M. Simmons, John D. McMinn and Pieter G. Buning
NASA Langley Research Center, Hampton, VA, 23681, USA

2021 AIAA SciTech Forum
11 – 20 January 2021
Irene.M.Gregory@nasa.gov

Copyright C: This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
Third Aviation Revolution

• Urban Air Mobility
 – Part of **Anyone, Anywhere, Anytime**
 Advanced Air Mobility concept
 – Largely enabled by electrification and automation
 – **Autonomous flight** to fully realize the market potential
 – **Urban Air Mobility** is the most challenging subset
 – Operation in complex environment and densely populated areas

• Driving Factors
 – Cost
 – Reliability
 – Flexibility
 – Trustworthiness for safety-critical systems

• Dynamic data driven approaches play an integral part in enabling this emerging market
Challenges to Enable Urban Air Mobility

• Develop **assured autonomous functions** that enable safe and efficient operations in increasingly complex environments

• Driver is off-nominal conditions requiring robust **contingency management** and **graceful degradation** to unforeseen events

• Fundamental research challenges in adaptive mission management, robust autonomous decision making, explanatory intelligent systems, intelligent contingency management, and graceful performance degradation in the unique domain of **aviation safety-critical systems**

• External **degraded** information and communications

• High level of **assurance** and **safety**

• Systems designed to include understanding of human collaborators and **own capabilities and limitations**
Urban Air Mobility – Technical Challenges

Air traffic management system

Vehicle mission management system

• Resilient vehicle contingency management system, highly autonomous even at early maturity levels
• Hierarchical fault tolerance & graceful degradation
 – mission level
 – vehicle
 – subsystem
• Fail-operational stability
 – If physically capable, must maintain flight
• Real-time vehicle noise management
• Real-time mission planning & trajectory generation
UAM Mission Under Study

• Vehicle mission: target final phase of autonomous flight
 – Safely fly from pt. A to pt. B following a nominal trajectory

• Environmental and operational constraints:
 – Under all vehicle-allowable weather conditions,
 – In a high-density airspace and complex urban environment,

• React appropriately to off-nominal situations and contingencies without direct human control,

• Currently contingency management is a highly prescribed, rule-based approach.

• We are interested in exploring intelligent contingency management that can appropriately handle unanticipated situations.
Intelligent Contingency Management – Architecture

Vehicle Capability Assessment
Decisions Based on Models and Measurements

Mission Execution
Decisions Based on Model Based Prediction under uncertainty

Future State Prediction

External Constraints

Vehicle Current and Future State

Data

High level architecture
Intelligent Contingency Management – Major Component Blocks

External Constraints (Weather & Air Traffic Management)

Vehicle Model
• Model development (RAM-C)

Atmospheric Characterization
• Turbulence models for low altitude

Vehicle Capability Assessment
Decisions Based on Models and Measurements

Mission Execution
Decisions Based on Model Based on Prediction under uncertainty

Future State Prediction

Human Element
• Identification & Formalization of Safe Strategies

Vehicle Flight
• Trajectory planning
• Unified control – robust adaptive control with novel allocation

Data

Vehicle Current and Future State

Vehicle Safety
• Safe dynamic envelope
• Collision Avoidance

Irene.M.Gregory@nasa.gov
MathWorks Matlab/Simulink® software

Simulation includes:
- Vehicle models
- Control systems
- Atmospheric disturbances
- Trajectory: internal and external sources

Existing vehicle types are:
- Lift+Cruise (RVLT reference) – contains multiple other variant subsystems
 - Control actuators (aerodynamic and propulsive)
 - Force & Moment computation method
 - EOM approach
 - Sensor
- LA-8
- Quad6 (RVLT reference) - 6 person capacity
- Generic Tilt Rotor – placeholder
Aerodynamic Modeling for ICM

• Objectives:
 – Develop full-envelope aerodynamic models for UAM-class aircraft that are suitable for nonlinear, flight dynamics and controls simulations.
 – Develop Rapid Aero Modeling or RAM, an automated testing and modeling process.
 – Research and develop best practices for eVTOL aircraft modeling and simulation development.

• Challenges:
 – In an Urban Air Mobility transportation system, aircraft may embrace many features from both aircraft and rotorcraft. These designs present greater complexity, aerodynamic nonlinearity, and a large number of interacting factors, compared to conventional aircraft.
 – Conventional experimental methods, in particular one-factor-at-a-time testing, fail to capture the complexity and numerous interactions, often resulting in costly studies in terms of time/resources and may still produce models with deficient information.

• Impact
 – High-fidelity aerodynamic model development for eVTOL vehicles enables accurate vehicle simulation essential for UAM intelligent contingency management research.
 – RAM improves test and modeling efficiency, in the face of greater complexity, nonlinearity, and large numbers of interacting factors associated with eVTOL vehicles.
ICM – Control Overview

UAM Aircraft Control Considerations
• VTOL capable
• Modes of flight:
 – Hover, Transition and Forward Flight
 – Reflect very different ways to operate the aircraft
• Transition between modes safely and efficiently

A Robust Uniform Control Approach
• Configuration independent
• Unifies the control design across all flight modes
• Uses well known control approaches
 – Robust Servo Mechanism Linear Quadratic Regulator (RSLQR) for stability and trajectory tracking
 – Gain scheduling
• Provides a uniform set of control commands across all flight regimes
• Augmented with L1 Adaptive Control and implemented with Affine Generalized Inverse control allocation
A **reliably-convergent algorithm for trajectory planning with incomplete or corrupt information** to provide an **alternative** to machine learning for autonomous response to contingencies

- Establish a path to be followed by the vehicle that
 - Satisfies dynamical and air traffic constraints
 - Accommodates uncertainty in knowledge of current and future vehicle performance, environmental conditions, and traffic flow.

- **Technical Approach:**
 - Model:
 - Mission requirements and constraints expressed in terms of probabilistic moments.
 - Vehicle models are dispersed by random parameter values.
 - Computation
 - Vehicle command trajectory computed via constrained optimization of a collection of trajectories starting from the current state, and dispersed by random values of parameters
 - With the exception of the randomly varying parameters, the system representation is deterministic, employing Monte Carlo sampling to build up higher-level moments. Each sample trajectory is explicitly tied to a trajectory that satisfies mission requirements for the current mission moment estimate.
 - Resulting trajectory is explicitly in feedback form.
Intelligent Contingency Management – Major Component Blocks

Vehicle Model
• Model development (RAM-C)

External Constraints (Weather & Air Traffic Management)

Atmospheric Characterization
• Turbulence models for low altitude

Mission Execution
Decisions Based on Model Based on Prediction under uncertainty

Human Element
• Identification & Formalization of Safe Strategies

Data

Vehicle Capability Assessment
Decisions Based on

Vehicle Safety
• Safe dynamic envelope
• Collision Avoidance

Vehicle Flight
• Trajectory planning
• Unified control – robust adaptive control with novel allocation

Irene.M.Gregory@nasa.gov
Collision Avoidance via Deep Reinforcement Learning

- Approach motivated by learning algorithms used for autonomous navigation through crowds extended to 3D urban air environment
- Challenges are similar
 - Each agent is aware of only a subset of other agent states
 - Need to anticipate interaction patterns
 - Be computationally tractable for real time implementation
- Supervisory training from a known solution provides initial baseline policy
- DRL uses an epsilon-greedy version of baseline policy to explore other options and improve it.
 - Offline learning offloads online computation for real time implementation.

Result of baseline policy
Resilient Performance and Safety

- Resilient performance strategies enabled development of Soar rules to facilitate novel human-machine role allocation in a safe fashion
- Soar agent’s learned behavior was not just to avoid an undesired state, but to adapt its functioning to facilitate desired states enabling resilient performance
 - Resolution of impasses via learning
- Seven requirements were formally verified in UPPAAL
 - Impasse resolution requirement had verification time of 20.85 sec, and maximally observed worst case time of 23.97 seconds over 1000 runs
- Future work on evaluation of the effects of resilient strategies on multi-agent teaming performance (specifically human-machine teams)
- Check out the full paper!
Summary

• Urban Air Mobility for the masses is a major component of user-driven, immediate and flexible air travel
• Autonomous flight for full market potential
• One of the primary challenges is responding to off-nominal events, both common and unforeseen
• Intelligent contingency management (ICM) is one of the enabling technologies
• Basic premise of vehicle ICM:
 – Vehicle aware of its internal state and external environment at all times
 – Ascertain its capability
 – Makes decisions about mission completion or modification
• Propose overall architecture incorporating deterministic and learning algorithm to
 – Assess vehicle capabilities
 – Project these into the future
 – Make decision on mission management level
• Layered approach to allow mature technologies to be incorporated into early phases of UAM
QUESTIONs?

Related Publications at SciTech 2021

Session: IS-31, Enabling Autonomous Advanced Air Mobility II
- **Intelligent Contingency Management for Urban Air Mobility**
 Authors: Irene M Gregory, Michael J Acheson, Barton J Bacon, Thomas C Britton, Newton H Campbell, Jacob Cook, Jon Holbrook, Daniel D Moerder, Patrick C Murphy, Natasha A Neogi, Benjamin M Simmons, John D. McMinn, and Pieter Bunning

- **Rapid Aero Modeling for Urban Air Mobility Aircraft in Computational Experiments**
 Authors: Patrick Murphy, Benjamin Simmons, Pieter Bunning

- **Dynamic Vehicle Assessment for Intelligent Contingency Management of Urban Air Mobility Vehicles**
 Authors: Newton Campbell, Michael Acheson, Irene Gregory

- **Examination of Unified Control Incorporating Generalized Control Allocation**
 Authors: Michael Acheson, Jacob Cook, Irene Gregory

Session: IS-33: Enabling Autonomous Advanced Air Mobility III
- **Creating Formal Characterizations of Routine Contingency Management in Commercial Aviation**
 Authors: Natasha Neogi, Jon Holbrook

Session: IS-24, Autonomy VI - Spacecraft, Robotics and Flight Planning
- **Loss of Control Detection for Commercial Transport Aircraft Using Conditional Variational Autoencoders**
 Authors: Newton Campbell; Jared Grauer; Irene Gregory

Session: ACD-15/TF-09: Design/Analysis of Urban and Regional Air Mobility Vehicles
- **A Strip Theory Approach to Dynamic Modeling of eVTOL Aircraft**
 Author: Jacob Cook

1/14/2021
Irene.M.Gregory@nasa.gov