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Key Points 10 

1. MMS in a string-of-pearls formation observed oblique bow shock reformation induced by 11 

foreshock ULF waves. 12 

2. We propose the reformation mechanism is the periodic modification of the bow shock upstream 13 

conditions by the ULF waves. 14 

3. The bow shock reformation generated ULF perturbations in the magnetosheath and modulated 15 

reflected ions. 16 

Abstract 17 

Collisionless shocks can be nonstationary with periodic reformation shown in many simulation 18 

results, but direct observations are still tenuous and difficult to conclusively interpret. In this study, 19 

using Magnetospheric Multiscale (MMS) observations, we report direct observational evidence of 20 

Earth’s oblique bow shock reformation driven by the foreshock ultra-low frequency (ULF) waves. 21 



When the four MMS spacecraft were in a string-of-pearls formation roughly along the bow shock 22 

normal, they observed that when each period of foreshock ULF waves encountered the bow shock, 23 

a new shock ramp formed. Meanwhile, in the magnetosheath, the old bow shock’s remnants were 24 

observed periodically convecting downstream. We propose that the reformation mechanism of the 25 

oblique bow shock is the variation of the upstream conditions by the periodic ULF waves as they 26 

encounter the bow shock. We also examine the nature of reflected ions during the reformation 27 

process.    28 

1. Introduction 29 

Collisionless shocks are a fundamental and prevalent phenomenon in various plasma 30 

environments, playing an important role in particle acceleration (see review by Treumann (2009) 31 

and references therein). Based on the angle between the upstream magnetic field and the shock 32 

normal unit vector, 𝜃𝐵𝑛, shocks can be categorized as quasi-parallel shocks (𝜃𝐵𝑛 < ~45°) and 33 

quasi-perpendicular shocks (𝜃𝐵𝑛 > ~45°). At quasi-parallel shocks, a portion of the solar wind 34 

particles are reflected back into the upstream region forming the foreshock (e.g., Eastwood et al., 35 

2005) and driving the growth of ultra-low frequency (ULF) waves (e.g., Wilson, 2016). For 36 

example, there are “30 second waves” (e.g., Fairfield, 1969), which are intrinsically right-hand 37 

polarized magnetosonic modes (Hoppe and Russell, 1983; Eastwood et al., 2002), magnetosonic-38 

whistler “1 Hz waves” (e.g., Fairfield, 1974), and short large-amplitude magnetic structures 39 

(SLAMS)  (e.g., Schwartz et al., 1992).     40 

Collisionless shocks can be nonstationary. For example, there are surface waves at shock 41 

fronts leading to rippled shock surfaces at ion-kinetic scales (e.g., Johlander et al., 2016; Gingell 42 

et al., 2017), which can affect the electron acceleration process (Umeda et al., 2009). There are 43 

also fluid-scale ripples which can affect the dynamics of reflected ions (Hao et al., 2016) and result 44 



in magnetosheath jets (e.g., Hietala et al., 2009; Hietala and Plaschke, 2013) that can cause 45 

perturbations in the magnetosphere-ionosphere system (e.g., Archer et al., 2013; Hietala et al., 46 

2012; Wang et al., 2018) and accelerate particles (Liu et al., 2019, 2020a, 2020b).  47 

Additionally, Burgess (1989) found from 1-D hybrid simulations that the transition region of 48 

quasi-parallel shocks can reform and periodically change from steepened to extended (in the 49 

direction along the shock normal) due to upstream perturbations. These results were later 50 

confirmed by 2-D simulations showing the reformation was not caused by the 1-D limitation 51 

(Thomas et al., 1990). In 3-D hybrid simulations, shock reformation was also seen (e.g., Lin and 52 

Wang, 2005). As shock reformation does not occur in MHD simulations, the ion kinetic process 53 

should play an important role. Multiple reformation mechanisms have been identified from 54 

simulations. For example, at nearly perpendicular shocks (𝜃𝐵𝑛 > 80° ), the accumulation of 55 

specularly reflected ions at the upstream edge of the foot can increase the plasma density and 56 

magnetic field leading to a new shock front (e.g., Matsukiyo and Scholer, 2006; Scholer and 57 

Burgess, 2007). At quasi-parallel shocks, on the other hand, the reflected ions can interact with 58 

upstream ULF waves causing them to steepen to pulsation-like structures (Scholer, 1993) which 59 

ultimately become the reformed shock (Scholer and Burgess, 1992; Scholer et al., 1993). This 60 

reformation process has also been confirmed by recent simulations (e.g., Su et al., 2012a, 2012b; 61 

Hao et al., 2017). There are also other reformation mechanisms, such as interface instability 62 

(Winske et al., 1990) and whistler wave steepening (e.g., Scholer and Burgess, 2007). Additionally, 63 

in global hybrid simulations (Omidi et al., 2010, 2020; Liu et al., 2018), the secondary shock of 64 

foreshock bubbles (Turner et al., 2013, 2020; Liu et al., 2015, 2016) convects anti-sunward and 65 

becomes the Earth’s new bow shock on a global scale.    66 



Although many shock reformation processes have been simulated, direct observations are still 67 

limited (e.g., Lobzin et al., 2007; Lefebvre et al., 2009; Dimmock et al., 2019; Madanian et al., 68 

2020; Yang et al., 2020). In early 2019, Magnetospheric Multiscale (MMS) spacecraft were in a 69 

string-of-pearls formation with separation of 100s of km, which provides a good opportunity to 70 

observe the evolution of the bow shock. In this study using MMS data, we present the direct 71 

observational evidence of the bow shock reformation caused by the upstream ULF waves. 72 

2. Data 73 

We used data from NASA’s Magnetospheric Multiscale mission (MMS; Burch et al., 2016). 74 

We analyzed plasma data from the Fast Plasma Investigation instrument (Pollock et al., 2016), DC 75 

magnetic field data from the fluxgate magnetometer (Russell et al., 2016), and electric field data 76 

from axial and spin-plane double-probe electric-field sensors (Ergun et al., 2016; Lindqvist et al., 77 

2016). From February to March 2019, the MMS spacecraft were in a string-of-pearls formation 78 

with separation of several hundred km. We present one of their bow shock crossings associated 79 

with foreshock ULF waves.   80 

3. Results 81 

On 12 February 2019, four MMS spacecraft crossed Earth’s bow shock from the 82 

magnetosheath to the solar wind in a string-of-pearls formation with a sequence of MMS2, 1, 4, 83 

and 3 (Figures 1.1-1.4). The separation between two adjacent spacecraft is 275, 358, and 229 km, 84 

respectively (see the geometry in Figure 2). Upstream of the bow shock, there were fast 85 

magnetosonic mode ULF waves with a period of around 20s in the spacecraft frame (Figures 1.1-86 

1.4a and 1.1-1.4b), consistent with commonly observed “30 second waves” (see review by Wilson, 87 

2016).  Correlated with the ULF waves, foreshock ions showed periodic inverse energy dispersion 88 

(Figure 1d) which will be discussed later. Electron parallel and perpendicular temperatures also 89 



oscillated periodically with a phase difference likely due to the ULF wave compression (Figure 90 

1f). Using the mixed mode coplanarity method (Eq. 10.13 in Schwartz, 1998), the calculated bow 91 

shock normal observed by MMS2, 1, 4, and 3 was [0.88, -0.35, 0.30], [0.85, -0.46, 0.24], [0.85, -92 

0.27, 0.44], and [0.86, -0.49, 0.11] in GSE, respectively. Such measured results were consistent 93 

with [0.88, -0.41, 0.23] in GSE from the Merka et al. (2005) bow shock model. Local 𝜃𝐵𝑛 was 94 

around 50° using the average magnetic field. As shock 𝜃𝐵𝑛 was around the boundary between the 95 

quasi-parallel and quasi-perpendicular regimes, we simply call it an oblique shock. The angle 96 

between the bow shock normal and the spacecraft line was around 20° (Figure 2). Thus, the 97 

difference among four spacecraft observations was mainly due to temporal changes. Using 98 

conservation of mass flux (Schwartz, 1998), the calculated bow shock normal speed was very 99 

small (~10-20 km/s earthward) within the calculation uncertainty.  100 

By comparing the magnetic field data among four spacecraft (Figure 3), we see that the time 101 

delay of measured magnetic field structures between two adjacent spacecraft was several seconds. 102 

This is because the spacecraft separation was 200-300 km and the magnetic field structures were 103 

convecting with the local plasma flow at 100-200 km/s in the magnetosheath and ~330 km/s in the 104 

foreshock (Figure 1c) with relative propagation (shown later). However, the time delay between 105 

two adjacent spacecraft for the bow shock was ~10-20s, because the bow shock normal speed was 106 

very small (the spacecraft motion was several km/s). The four spacecraft thus monitored the bow 107 

shock for ~1 min (~7 solar wind ion gyroperiods).    108 

MMS2 first crossed the bow shock (yellow shaded in Figure 3a), which had a gradual 109 

transition region (nearly half of the yellow region). Right upstream of the bow shock, a ULF wave 110 

(period A, orange shaded in Figure 3a) was interacting with the bow shock, and around one fourth 111 

of it had already merged into the bow shock (seen from the filtered magnetic field in Figure S1 in 112 



the supporting information). Superposed on ULF wave A, whistler precursor waves (~1 Hz; see 113 

Wilson, 2016) were also observed, which can potentially accelerate hot particles (e.g., Wilson et 114 

al., 2012), modulate cold particles (e.g., Goncharov et al., 2014), and mix the phase between 115 

incident ions and reflected ions (Scholer and Burgess, 2007). Both the ULF wave and whistler 116 

precursors were steepening with an enhanced magnetic field (Figures 3a), and their associated 117 

electric field increased (Figure 3b), consistent with simulations by Hao et al. (2017) because the 118 

increasing magnetic field amplitude produced an induced electric field. Inside wave A, there was 119 

a moderate plasma density enhancement (Figure 1.1b), deflection (Figure 1.1c), and heating 120 

(Figure 1.1f) with magnitudes between the upstream and downstream values. The steepened waves 121 

acted as an extension of the transition region by partially dissipating the incident plasma.  122 

Meanwhile, MMS1, 275 km downstream in the magnetosheath, observed a magnetic 123 

structure (yellow in Figure 3c) which looks very similar to the bow shock that MMS2 crossed 124 

(yellow in Figure 3a). Based on the time delay, the structure was convecting downstream at ~160 125 

km/s. Upstream of the magnetic structure, MMS1 crossed a new bow shock with a sharper 126 

transition region (orange), and the shock normal speed was ~20 km/s earthward from both the time 127 

delay from MMS1 to MMS2 and conservation of mass flux. We interpret that as MMS2 crossed 128 

the bow shock, the bow shock disturbance continuously generated magnetic perturbations that 129 

convected with the magnetosheath plasma flow towards MMS1 (yellow region). As the 130 

wavelength of the perturbation was several thousand km, the two spacecraft observed it 131 

simultaneously. One period of the perturbation in the magnetosheath acted as a remnant of the bow 132 

shock, which contained the information of bow shock disturbance. Similarly, when the bow shock 133 

was interacting with the steepened wave A as observed by MMS2 (orange in Figure 3a), another 134 

period of the perturbation was being generated in the magnetosheath and convecting towards 135 



MMS1 (orange in Figure 3c). When MMS1 crossed the bow shock, the bow shock had nearly 136 

finished interacting with wave A and formed a sharp transition region.  137 

Similarly, MMS4, 358 km further downstream in the magnetosheath, first observed the two 138 

remnants of the bow shock that MMS2 and MMS1 crossed (yellow and orange in Figure 3e), 139 

respectively. Then MMS4 crossed the new bow shock with a sharp transition region (red) caused 140 

by wave B that MMS2 and MMS1 observed. MMS3, 229 km further downstream, observed three 141 

remnants of the bow shock crossed by the other three spacecraft. Then MMS3 crossed another new 142 

bow shock with a sharp transition region (purple) caused by wave C. Therefore, the four spacecraft 143 

observed three reformation cycles and the reformation period was one ULF wave period in the 144 

spacecraft frame (~20s).  145 

Next, we analyze the properties of the ULF waves and their corresponding perturbations in 146 

the magnetosheath. We band-pass filtered the magnetic field using a frequency range from 0.04 to 147 

0.067 Hz (period from 15 to 25s; see Figure S1) and applied minimum variance analysis (Sonnerup 148 

& Scheible, 1998). In the upstream region (above dashed lines in Figure 4), the wave normal 149 

direction (top of each panel) had a very strong GSE-X component (intermediate-to-minimum and 150 

maximum-to-intermediate eigenvalue ratios are listed on the right of each panel as ratio 1 and ratio 151 

2, respectively). Using the time delay between MMS1 and MMS2 and between MMS4 and MMS3 152 

based on the correlation of filtered By of wave E, we calculated that the wave normal speed was 153 

sunward (~100 km/s) relative to the ion bulk velocity. Figure 4 shows the wave polarization 154 

relative to intrinsically sunward wave normal vectors. As the IMF was sunward (out of the plane 155 

in the plasma rest frame or into the plane in the spacecraft frame; also see geometry in Figure 2), 156 

they were right-hand polarized in the plasma rest frame and left-hand polarized in the spacecraft 157 

frame consistent with previous studies (e.g., Hoppe and Russell, 1983; Eastwood et al., 2002). The 158 



same wave period observed by different spacecraft shows similar polarization profile and similar 159 

maximum-to-intermediate eigenvalue ratios (Figures 4c and 4g and Figures 4d, 4h, 4l, and 4p), 160 

but close to the bow shock the ULF waves became more steepened with larger eigenvalue ratios 161 

(Figures 4a, 4f, and 4k). In the magnetosheath (below dashed lines), they were more linearly 162 

polarized with larger wave amplitude and also propagating sunward relative to the ion bulk 163 

velocity (~50 km/s for wave A). Their normal had less GSE-X component just downstream of the 164 

bow shock (Figures 4e and 4o). For other perturbations in the magnetosheath (Figures 4i, 4j, 4m, 165 

and 4n), because they were nearly linearly polarized, their normal direction cannot be trusted.    166 

To summarize, upstream of the bow shock, there was a train of “30 second waves” with right-167 

hand polarization and sunward wave normal vectors. As the ULF waves convected anti-sunward 168 

in the supersonic solar wind and encountered the bow shock, they changed the upstream conditions 169 

periodically because of their large variation in the magnetic field and plasma parameters (Figure 170 

1), which was likely responsible for the periodic reformation of the bow shock. When MMS2 171 

crossed the bow shock, the transition region was gradual (yellow in Figure 3a). ULF wave A was 172 

in the middle of interacting with the bow shock. Both the ULF wave and whistler precursors were 173 

steepened, which caused the extension of the transition region (orange in Figure 1.1). Such a 174 

disturbance at the bow shock generated a nearly linearly polarized compressive perturbation in the 175 

magnetosheath as observed by MMS1 (orange in Figure 1.2). When MMS1 crossed the bow shock, 176 

the bow shock had nearly finished one reformation cycle with a sharp transition region. It is likely 177 

that the sharp (extended) transition region generated the high (low) field strength part of the 178 

magnetosheath perturbation. The one-period magnetosheath perturbation acted as the bow shock 179 

remnant and convected with the magnetosheath plasma flow (with sunward relative propagation) 180 

towards MMS4 and MMS3 (orange in Figures 1.3 and 1.4). Similarly, as waves B and C 181 



approached the bow shock, the bow shock completed another two reformation cycles and 182 

generated two more bow shock remnants in the magnetosheath. The reformation period was the 183 

same as the ULF wave period in the spacecraft frame or the bow shock rest frame (~20s or 2 ion 184 

gyroperiods).     185 

This bow shock reformation process due to the upstream ULF waves is different from 186 

previous simulations and observations (e.g., Scholer et al., 1993; Lefebvre et al., 2009). In the 187 

previous studies, the ULF waves steepened to pulsation-like structures with amplitudes 188 

comparable to the shock, eventually becoming the new shock. The reformation cycle was 189 

determined from the wave steepening time scale due to interaction with the reflected ions, which 190 

was ~10 ion gyroperiods in the simulation by Scholer et al. (1993) and ~35 ion gyroperiods in the 191 

observations by Lefebvre et al. (2009). However, our observations show that the reformation cycle 192 

was one ULF wave period in the bow shock rest frame (~2 ion gyroperiods). In our observations, 193 

only MMS3 observed a pulsation-like structure at wave E (Figure 3g), but it had not participated 194 

in bow shock reformation at least during the observation time interval. We thus interpret that the 195 

observed reformation was due to the periodic variation of upstream conditions by the ULF waves 196 

alone. This result does not mean that steepening to pulsation-like structures cannot result in the 197 

reformation of the quasi-parallel bow shock, but only that the ULF waves in the foreshock are 198 

sufficient to cause bow shock reformation in and of themselves. Simulations are needed to confirm 199 

this process.    200 

Finally, we discuss the response of shock-reflected ions to the bow shock reformation process 201 

(Figure 5). There are two shock-reflected ion populations: thermal ions (<1 keV) and suprathermal 202 

ions (1-10 keV). In Figure 5c, the suprathermal ions had periodic inverse energy dispersion 203 

associated with each wave period. One possibility for the dispersion is that during each reformation 204 



cycle, the varying upstream conditions changed 𝜃𝐵𝑛 significantly from 15° to 75° (Figure 5b). As 205 

a result, the shock drift acceleration energy or the minimum parallel speed for ions to escape 206 

upstream (𝑽𝒔𝒘 ∙ �̂�/ cos 𝜃𝐵𝑛; Burgess et al., 2012) changed accordingly. The calculated energy is 207 

shown in the ion energy spectrum as the black line in Figure 5c (note the time delay for ions to 208 

reach the spacecraft). Although the variation of the bow shock normal is ignored for simplicity, 209 

the black line matches the spectra.  210 

To examine the property of reflected thermal ions, we plot the reduced ion velocity 211 

distributions along the bow shock normal. Right upstream of the extended transition region, MMS2 212 

observed ions with sunward normal velocity at 50-200 km/s which were the solar wind ions 213 

reflected at the bow shock (Figure 5d). Further upstream, reflected ions periodically occur around 214 

the beginning of each wave period, because small 𝜃𝐵𝑛 (Figure 5b; also note a few second time 215 

delay for ions to reach the spacecraft) favors the reflected ions to escape upstream (e.g., Burgess 216 

et al., 2012). The velocity dispersion was likely due to the time-of-flight effect. When MMS1 217 

crossed the bow shock, reflected ions were also observed right and further upstream of the bow 218 

shock (Figure 5f). At MMS4, as a new bow shock formed upstream of an old remnant, some 219 

reflected ions were trapped between them (Figure 5h), which convected to MMS3 (Figure 5j). As 220 

another new bow shock formed at MMS3, some more reflected ions were trapped (Figure 5j). This 221 

scenario was similar to simulations by Su et al. (2012a). Some of these trapped ions would 222 

eventually merge with magnetosheath ions and contribute to magnetosheath heating, and some of 223 

them might experience acceleration and escape upstream.    224 

The significantly varying 𝜃𝐵𝑛 likely plays an important role in the reformation process. When 225 

a ULF wave just started to interact with the bow shock, the bow shock became quasi-parallel. This 226 

might explain the gradual transition region as observed by MMS2. The quasi-parallel bow shock 227 



did not dissipate all the incident ions but reflected some of them forming the foreshock.  Later, the 228 

bow shock became quasi-perpendicular resulting in a sharp transition region. The reflected ions 229 

cannot escape and gyrated back downstream contributing to the dissipation process (e.g., 230 

Treumann, 2009). As another ULF wave arrived, the whole cycle repeated. This process 231 

complicated how the bow shock and reflected ions interact with the ULF waves.        232 

4. Conclusions  233 

In summary, by using the MMS spacecraft in a string-of-pearls formation, we present the 234 

reformation of an oblique bow shock from modulation caused by the “30 second waves” in the ion 235 

foreshock. Each time a period of the foreshock ULF waves encountered the bow shock, the bow 236 

shock started to reform via an extended transition region. Meanwhile, right downstream in the 237 

magnetosheath, a nearly linearly polarized compressive perturbation was generated and convected 238 

downstream. After the interaction with one period of the ULF wave, a new bow shock formed with 239 

a sharp transition region upstream of the old bow shock remnant. The bow shock experienced three 240 

reformation cycles when the four spacecraft crossed it. The reformation mechanism was likely the 241 

periodical variation of the upstream conditions caused by the foreshock ULF waves. The 242 

reformation process modulated the reflected ions.    243 

  244 



Figures 245 

246 



Figure 1. Overview of MMS2, 1, 4, and 3 observations (corresponding to Figures 1.1-1.4, 247 

respectively). From top to bottom are the magnetic field, density, ion bulk velocity, ion energy 248 

flux spectra, electron energy flux spectra, and electron temperature. Note that MMS4 does not 249 

have electron data since 2018. Each shaded region with the same color indicates the bow shock 250 

and its remnant in the magnetosheath observed by different spacecraft. The darker color is used 251 

for the more newly formed bow shock. 252 

  253 



 254 

Figure 2. The geometry of the event using Merka et al. (2005) bow shock model (in GSE). The 255 

four MMS spacecraft were in a string-of-pearls formation roughly along the bow shock normal. 256 

The wavy lines indicate the upstream ULF waves and the magnetosheath perturbations with k 257 

vector labeled (from Figure 4). The black arrows indicate the solar wind (sw) and magnetosheath 258 

(msh) flow direction.  259 

  260 



 261 



Figure 3. The comparison of the magnetic and electric field among four spacecraft. The color-262 

coded shaded regions (same as Figure 1) indicate the bow shock remnants, the reformed bow shock, 263 

and the corresponding upstream ULF waves. The upstream ULF waves are labeled with A-F. 264 

Enhanced electric field indicates strong magnetic variation.265 



266 



Figure 4. The evolution of the magnetic field (start from the cross symbol) within waves A-D and 267 

their magnetosheath responses. The horizontal and vertical axes are intermediate and maximum 268 

variance direction from MVA, respectively. As the k unit vectors are intrinsically sunward based 269 

on the spacecraft timing listed on top of each panel, IMF points out of the plane in the plasma rest 270 

frame or into the plane in the spacecraft frame. The intermediate-to-minimum and maximum-to-271 

intermediate eigenvalue ratios (ratio1 and ratio2) are listed on the right of each panel. The upstream 272 

and downstream regions are separated by dashed lines. The magnetic field in the solar wind points 273 

out of the plane, whereas in the magnetosheath the k vector was nearly perpendicular to the 274 

background magnetic field. 275 

  276 



 277 



Figure 5. MMS observations of reflected ions. From top to bottom are: (a)-(d) MMS2 observations 278 

of the magnetic field, 𝜃𝐵𝑛, ion energy spectrum (the black line is calculated from the shock drift 279 

acceleration model), and the reduced ion velocity distributions along the bow shock normal 280 

direction Vn; (e)-(j) MMS1, 4 and 3 observations of the magnetic field and reduced ion Vn 281 

distribution, respectively.  282 
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