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Foreword 
From 1964 to 1979, NASA developed uniform criteria for the design of space vehicles in the four 

following technology areas: 

Chemical Propulsion 

Environment 

Guidance and Control 

Structures 

Individual topics within these technology areas were published in a series of NASA Space Vehicle 

Design Criteria monographs, the NASA SP-8000 document series. A total of 44 NASA design 

criteria monographs on Structures were developed and include four monographs on the design of 

buckling-critical structures: 

NASA SP-8007: Buckling of Thin-Walled Circular Cylinders, Revised August 1968 

NASA SP-8019: Buckling of Thin-Walled Truncated Cones, September 1968 

NASA SP-8032: Buckling of Thin-Walled Doubly Curved Shells, August 1969 

NASA SP-8068: Buckling Strength of Structural Plates, June 1971 

These monographs are known throughout the aerospace industry and provide recommendations 

for the design of buckling-critical thin unstiffened plates and shells subjected to various 

combinations of mechanical and pressure loads. In addition to these NASA monographs, two 

prominent NASA reports were published and are commonly used in the design of stiffened 

cylinders:  

NASA TN D-5561: Buckling of Stiffened Cylinders in Axial Compression and Bending – A 

Review of Test Data, 1969 

NASA CR-124075: Isogrid Design Handbook, 1973 

Recent industry and NASA experience with the development of launch vehicle structures have 

indicated a need for updated monographs for the design of buckling-critical structures that account 

for state-of-the-art structural configurations, material systems, and computational tools. This 

monograph provides an update to NASA SP-8007 and was prepared under the cognizance of the 

NASA Engineering and Safety Center (NESC). It summarizes all significant knowledge and 

experience accumulated from the NESC Shell Buckling Knockdown Factor (SBKF) Assessment 

(NESC Assessment #: 07-010-E) to date for use in the design of buckling-critical thin-walled 

circular cylinders. The lead of the SBKF Assessment and author for this update was Dr. Mark W. 

Hilburger of NASA Langley Research Center.  

A number of other individuals assisted in developing the material and reviewing the drafts. Mr. 

Kenneth Hamm, Ames Research Center, coordinated the completion of this monograph. In 

particular, significant contributions were provided by Dr. Robert P. Thornburgh (Army Research 

Laboratory); Dr. Vinay Goyal, Mr. Pavel Babuska, and Mr. Matthew R. Keough (The Aerospace 

Corporation); Dr. James Smith and Mr. Kauser Imtiaz (Johnson Space Center); and Dr. Marc 
Schultz (Langley Research Center).  

The format and terminology used in this monograph is similar to previous versions of NASA SP-

8007 for ease of understanding and implementation. In addition, as with the design 

recommendations contained in the previous versions of NASA SP-8007, this monograph is to be 

regarded as a guideline to design and not as a NASA requirement, unless specified in formal 



 

iv 

program requirements. Furthermore, it is expected that the guidelines presented in this monograph 

will be updated as appropriate. Designers are advised to stay abreast of updates in the state-of-the-

art and corresponding design criteria. Comments and recommendations on the technical content 

contained herein are invited and should be forwarded to the attention of the Center Chief Engineer, 

NASA Langley Research Center, Hampton, Virginia, 23681. 

November 2020  
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𝑧̃𝑟 Distance of centroid of rings from reference surface (positive when rings are on 
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𝑧̃𝑠 Distance of centroid of stiffeners from reference surface (positive when stiffeners 
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𝛽 Buckle aspect ratio 

𝜒 Corrugation bend angle 

∆𝛾 Increase in buckling correlation factor due to internal pressure 

𝛿 Ratio of honeycomb core density to facesheet density of a sandwich panel 

𝜀 Amplitude of imperfection divided by cylinder wall thickness. 

𝛾 Correlation (or knockdown) factor to account for differences between classical 
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𝜂 Plasticity correction factor for Modulus of Elasticity 

𝜇 Geometric imperfection amplitude 

𝜙 Nondimensional parameter used in the calculation of the knockdown factor γ 

𝜙1, 𝜙2, 𝜙3 Nondimensional parameters used in the design of cylinders with elastic core 

𝜈 Poisson’s Ratio 

𝜈𝑐 Poisson’s Ratio of core material 

𝜈𝑥 Poisson’s Ratio associated with stretching of an orthotropic material in the x-

direction 

𝜈𝑦 Poisson’s Ratio associated with stretching of an orthotropic material in the y-

direction 

𝜃 Angular cylindrical coordinate 

𝜎𝑐 Axial stress in the cylinder wall without a core 

𝜎𝑝 Critical axial stress for a cylinder with an elastic core. 

𝜎𝑥 Axial stress 

𝜎𝑦 Circumferential stress 

𝜏 Applied torque 

𝜏𝑐𝑟 Critical net torque of an unfilled cylinder 

𝜏𝑥𝑦 In-plane shear stress (torsional stress) 
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𝑟
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DOF Degree of Freedom 

ET External Tank (Space Shuttle) 
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FEM Finite Element Model 

IML Inner Mold Line 

KDF Knockdown Factor 

LH2 Liquid Hydrogen 
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NESC NASA Engineering and Safety Center 
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Definitions 

Bending boundary layer 

When a cylinder is attached to a relatively stiff structure or ring, the radial deformations at this 

boundary will be restrained when the cylinder is subjected to loads. The region adjacent to the 

boundary will experience localized bending deformation in the cylinder wall and is referred to as 

the bending boundary layer. 

 

Bifurcation 

Branching. In terms of buckling, it is the load at which, multiple solutions satisfy the equilibrium 

equations, Figure 5-1. 

 

Buckling 

The process by which a structure under load will suddenly change from one equilibrium state to 

another. The load level at which this change occurs is referred to as the buckling load. In uniform 

cylinders, this is typically associated with the global buckling and collapse of the cylinder and 

loss of load carrying capability. In many practical structures that include local detail features, 

components or sections can buckle locally without failure of the whole structure. 

 

Buckling mode or shape 

Deformed configuration of a structure, due to occurrence of buckling: the shape and amplitude of 

the deformed state associated with a buckling event; OR the eigenvectors associated with the 

eigenvalues of a buckling analysis 

 

Classical buckling analysis 

The prediction of the buckling load and mode based on linear eigenvalue analysis. The analysis 

assumes idealized structural geometry, boundary conditions, and uniform idealized applied 

loads. 

 

Destabilizing loads 

Any load that can result in buckling of a structure if sufficiently increased in magnitude. 

 

Eigenmode imperfection 

An assumed geometric imperfection derived from one or more eigenmodes of a linear 

bifurcation/eigenvalue analysis. 

 

Empirical Design Approach 

A method for predicting the buckling load of a structure based on the combination of classical 

buckling load calculations and empirically derived knockdown factors. 

 

Geometric imperfection 

Small unintended variations in the geometry that result from the manufacturing process. In thin-

walled cylindrical structures, this is the difference between the as-built cylinder shell-wall 

geometry (i.e., radial location) and the ideal cylinder geometry. 
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Homogenization / Smeared stiffener theory  

The process of approximating the stiffness of a stiffened structure as a single orthotropic sheet by 

distributing or “smearing” the stiffness properties of the stiffeners over the whole shell. It is 

assumed that the spacing between the stiffeners is sufficiently small relative to any deformation 

pattern or buckling mode shape of the structure. 

 

Imperfection sensitivity 

The degree to which geometric imperfection will reduce the buckling load of a structure from the 

value predicted for an ideal structure.  

 

Imperfection signature 

A geometric imperfection shape that is characteristic of a specific structural concept and a 

manufacturing process. 

 

Instability 

In this document instability refers to a class of structural failures involving a shift from one 

equilibrium deformation state to another, including both bifurcation buckling and limit-point 

behavior. Instability can also be associated with material inelasticity. 

 

Integrally stiffened 

A stiffened structure manufactured as a single part. For integrally stiffened metallic structures the 

stiffener and skin are machined from a single piece of material to the desired configuration. The 

stiffener patterns are typically orthogrid, where the stiffeners form a regular rectangular pattern, 

or isogrid, where the stiffeners form equilateral triangles. Integrally stiffened composite 

structures can also be manufactured using different manufacturing processes including filament 

winding as well as continuous ply layup of the skin and stiffener. 

 

Knockdown Factor (KDF) 

A correlation factor used by designers to account for the difference between classical buckling 

load predictions and buckling loads observed in testing. The KDFs are traditionally based on test 

data, however, the KDFs can also be derived by using high-fidelity analysis methods. 

 

Limit point 

In practical and/or imperfect structures, a loaded structure will undergo a process very similar to 

buckling but with a gradual, rather than a sudden, change in deformation. Thus, rather than a 

buckling load, there is a limit point, or maximum load the structure reaches during the change in 

deformation state, Figure 5-1. Limit point can also be associated with the snap-thru of an arch. In 

that case (when in load control) the response is sudden snap-thru. 

 

Linear bifurcation analysis 

A common method for predicting the buckling load and mode of structures. Predictions can be 

made using analytical closed-form methods or numerical methods such finite elements. The 

buckling load (eigen value) and mode (eigen mode) are computed by a generalized eigen-value 

solution. Also commonly referred to as an eigen-solution or eigenvalue analysis. 
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Load imperfection 

The resulting nonuniform load distribution into a structure due to unintended variations in the 

geometry of the interface surfaces between the structure and adjacent components. 

 

Postbuckling 

The equilibrium state of a structure that has been loaded beyond its buckling load or limit point. 

 

Prebuckling 

The equilibrium state of a loaded structure prior to reaching its buckling load or limit point. 

 

Semi-Empirical Design Approach 

The method combines Koiter’s asymptotic theory of buckling and the wide-column buckling 

approach to produce conservative estimates of the buckling load of a cylinder. The method 

accounts for the effects of initial imperfections, cylinder length, and boundary conditions. 

 

Stabilizing loads 

Any load that will make the structure more resistant to buckling. For example, stabilizing loads 

may include internal pressure or tension. 

 

Stable 

Stability is a property of the equilibrium state of a given structure subjected to static and/or 

dynamic loads. Equilibrium is said to be stable if small perturbations do not cause a significant 

change in the structural configuration.  

 

A buckling response is said to be stable if the transition from the pre-buckling state is gradual 

and relatively benign. 

 

Wide-column buckling 

A form of buckling that occurs in relatively stiff cylinders such as heavily stiffened or thick-

sandwich cylinders or very short cylinders in which the cylinder wall behaves like an infinitely-

wide simply-supported flat plate. 

 

Ultimate Design Load 

The product of the ultimate factor of safety and the limit load, which is the maximum anticipated 

load, or combination of loads that a structure may experience during its design service life under 

all expected conditions of operation 

 

Unstable 

A structure is in unstable equilibrium when small perturbations cause large and abrupt changes in 

the structural configuration. 

 

A buckling response is said to be unstable if the transition from the prebuckling deformation 

state involves a sudden shift with a large reduction in load-carrying capacity.  
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Figure 5-1: Illustration of bifurcation point and limit point. 
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1.0 Introduction 

A structure is said to be unstable under static loading when a relatively small increase in load or a 

small external disturbance will cause the structure to change from one equilibrium configuration 

to another. This process is referred to as buckling. For some structures, the buckling response is 

somewhat benign and large changes in shape develop gradually with an increase in load. In this 

case, the postbuckling response is stable and additional load can be applied to the structure until 

the material fails or the structure collapses. These structural response characteristics are typically 

found in the buckling of a flat plate or shallow curved panel. For other structures, the buckling 

response results in a sudden and significant change in the structural configuration. In this case, the 

initial postbuckling response of the structure is unstable and is typically accompanied by the 

development of large-magnitude deformations and a significant reduction in load carrying 

capability and stiffness. These structural response characteristics are typically found in the 

buckling of thin-walled shells.  

The primary design problem for lightweight aerospace structures is prevention of buckling, large-

magnitude displacements, large reductions in global stiffness, or collapse. The critical or buckling 

load of a structure generally depends on its geometry, the way it is stiffened, material stiffness 

properties, boundary conditions, and loading. Analytical methods for predicting the buckling load 

of shell structures were developed during the period of 1900s through 1960s. However, laboratory 

experiments on thin-walled cylinders, during this same time period, typically yielded buckling 

loads that were substantially lower than the corresponding analytical predictions. This led to the 

development and use of conservative, empirical correlation factors, that have become known as 

buckling knockdown factors (KDFs), in the design of buckling-critical shells. These KDFs were 

determined by establishing lower bounds to the available experimental data and were applied to 

the analytical predictions to account for the observed difference between the prediction and tests. 

In the late 1960s and early 1970s, these KDFs and corresponding design recommendations were 

published in a series of NASA space vehicle design monographs and reports  [1, 2, 3, 4, 5, 6] and 

remain as the most prominent source of recommendations for the design of buckling-critical shells. 

The discrepancy between the experimental buckling loads and predicted buckling loads stimulated 

a large amount of research from the 1940s to present day and has led to many important 

advancements in shell buckling theory, analysis, and design. In particular, it is now well 

recognized that small unintended variations in the shell-wall geometry, traditionally referred to as 

initial geometric imperfections, are the primary reason for the discrepancy between the analytical 

buckling load predictions and the experimental results [7, 8, 9]. It is also recognized that other 

factors, including boundary conditions, nonlinear prebuckling deformations, and variations or 

imperfections in the shell-wall thickness, material properties, and loading, can play an important 

role the buckling response  [10, 11, 12]. The development of advanced nonlinear finite element 

analysis (FEA) software, and high-fidelity structural testing techniques have enabled in-depth 

studies of the buckling response and imperfection sensitivity of thin-walled shells, and the effects 

of imperfections are, for the most part, well understood. In addition, nonlinear FEA can accurately 

account for the effects of initial imperfections, boundary conditions, and nonuniform loads, when 

these details are well characterized through careful measurement and the results from these 

analyses generally correlate well the experimental results (e.g., predicted buckling loads and 

displacements within ±5% of measured [12]. These advances in structural analysis and insights 

into shell buckling and imperfection sensitivity have led to the development of new analysis-based 

design approaches [13, 14, 15], however, their implementation has been somewhat limited. 
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Over the years, the original NASA design recommendations have been used successfully in the 

design of numerous NASA space vehicles including, the Space Shuttle Solid Rocket Boosters 

(SRB) and External Tank (ET), and the Space Launch System (SLS). However, it has been shown 

over time that the KDFs and recommendations provided in the original NASA monographs can 

result in overly conservative buckling load predictions and designs when applied to these modern 

aerospace structures. This is primarily because the lower bound KDFs are comprised of test data 

from cylinders that were manufactured and tested using outdated processes and do not reflect the 

improvements observed in recent testing of modern aerospace-quality shell structures constructed 

using advanced materials and manufacturing processes. In addition, the original monographs do 

not include relevant data or recommendations for the design of modern structures such as large 

integrally machined metallic cylinders or composite cylinders. Thus, designers are left to 

extrapolate the available design recommendations to their design as they deem appropriate. Several 

alternate design methods have been developed in an effort to address these limitations and 

incorporate new knowledge and structural analysis tools [13, 14, 15]; however, their 

implementation has been limited and standardized recommendations for their use have not been 

provided.  

This monograph provides an update to the original NASA SP-8007 (1965, revised in 1968) to 

include new state-of-the-art practices for the design and analysis of thin-walled circular cylindrical 

shells subjected to various types of loading. To this end, a summary of the state of the art is 

presented in Section 2.0and provides the technical basis for the design criteria and 

recommendations. Next, the design criteria and guidelines for compliance are defined in Section 

3.0. Finally, recommended practices for the design of buckling critical cylindrical shells are 

presented in Section 4.0. 
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2.0 State of the Art 

Since the publication of the NASA SP-8007 in 1965 (revised in 1968), a significant amount of 

research has been conducted on the buckling of thin-walled cylindrical shells. This research has 

led to a much-improved understanding of the contribution of imperfection sensitivity on the 

buckling of thin shells, the development of advanced structural analysis methods, and the 

movement towards developing new KDFs and design recommendations for specific applications.  

This section provides a brief assessment of the state of the art, identifies important research 

developments and current trends, and establishes the technological basis for the criteria and 

recommended practices. Common challenges and pitfalls in the design of buckling-resistant 

cylinders are identified and discussed. Considered in this state-of-the-art review are a variety of 

structural configurations including metallic and composite, stiffened, unstiffened, and sandwich 

cylinders; loading conditions such as axial compression, torsion, bending, internal pressure, 

external pressure, combined loads, and lateral point loads; structural details such as cutouts, joints, 

and rings; the effects of boundary conditions and nonuniform loads; prebuckling deformations; 

and the effects of various type of imperfections.  

A brief history of the state of the art in shell buckling and design is presented in Section 2.1, 

followed by an in-depth discussion on factors that influence the buckling response in Section  

2.2. While initial geometric imperfections are considered to be the primary factor in the reduction 

of buckling loads in thin-walled shells (Section 2.2.1), prebuckling deformations and stresses 

(Section 2.2.2), and non-ideal boundary conditions and load introduction (Section 2.2.3) can 

influence the buckling response of cylinders. Different design concepts and features (Section  

2.3) can also influence the buckling response and imperfection sensitivity. For example, stiffening 

elements generally increase the buckling capability and result in less imperfection sensitivity than 

monocoque designs (Section 2.3.1), though the actual increase depends on the characteristics of 

the stiffening elements. Composites offer the benefits of tailoring the ply stacking sequence to 

increase buckling capability of cylinders (Section 2.3.2); however, composites can present a 

challenge, as there are many sources of manufacturing imperfections (e.g., fiber waviness) and 

multiple competing failure modes. For designs where cutouts are employed (Section 2.3.3), 

reinforcements can be added to increase the buckling capability, but some concepts should be 

evaluated carefully as they can result in premature buckling adjacent to the reinforcement. Limited 

published work is available in the literature on joint designs, however selected studies have found 

that local stiffness discontinuity, neutral axis eccentricity, and residual stresses are influential 

factors in the buckling of cylinders (Section 2.3.4). 

Methods of buckling analysis, and their advantages and limitations are discussed in Section 2.4. 

Classical analyses remain as effective tools for design against buckling, however, finite-element 

methods and nonlinear solution algorithms have been shown to be effective and provide an 

opportunity to safely reduce design conservatism, provided all relevant effects are considered. The 

traditional knockdown factor design approach documented in the original version of NASA SP-

8007 (1968) is a reliable conservative method and convenient early in the design process (Section 

2.5.1), while semi-empirical approaches have been shown to reduce conservatism (Section  

2.5.2). Finite element analysis techniques have enabled accurate buckling predictions without 

relying on the traditional knockdown factors (Section 2.5.3). Finally, approaches that utilize a 

database of imperfection data and probabilistic methods have been successfully used to predict 

buckling (Section 2.5.4). 
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2.1 Brief History of Early Shell Buckling Research and NASA Design Criteria 

Research on shell buckling and the development of design recommendations and methods has been 

well documented in the literature and only a select portion of the critical works are presented herein 

as they pertain to this monograph. A more detailed survey of research on shell buckling can be 

found in  [16, 17, 18, 19, 20] and  [21, 22, 23, 24, 25].  

In the late 1920s, aircraft designs began to incorporate thin-walled load-bearing shell structures. 

This led to the increased study of buckling in shells. The buckling of circular cylindrical shells due 

to compression loads was a problem of interest. During this time, it was observed that large 

discrepancies existed between the theoretical buckling loads and the loads at which shell buckled 

during testing. Extensive experimental investigations were conducted to resolve this problem. Not 

only did cylinders buckle at loads sometimes as low as 10 percent of the theoretical values, but 

significant scatter in the data existed, even between nominally identical cylinders tested by the 

same researcher. Lacking an adequate theoretical solution, empirical correlation factors, now more 

commonly referred to as knockdown factors, were established to give engineers a means to predict 

buckling in their designs. As a result, from the mid-1930s to late 1950s, most buckling experiments 

were intended to provide design data rather than insight into the fundamentals of the buckling 

phenomenon. 

Over time, researchers began to resolve the discrepancy between the theoretical buckling load 

predictions and the corresponding test results. The pioneering work of von Karman and Tsien [7] 

showed that the initial postbuckling response was unstable and that there are multiple postbuckling 

equilibrium solution states that exist at lower loads than the classical buckling load. These results 

provided the first indications of how initial imperfections in the shell geometry could cause the 

large reductions in the buckling load observed in experiments. More specifically, this work showed 

that small imperfections could cause the shell to transition from the unbuckled (prebuckling) 

equilibrium state to one of these postbuckling states during loading, thus buckling the shell at a 

lower load than the classical buckling load. In 1950, Donnell and Wan [8] extended this work to 

include the effects of initial geometric imperfections in the analysis. Their results showed that the 

imperfections in the cylinder act as a perturbation and cause the response to deviate from that of 

the idealized perfect cylinder. As a result, the cylinder exhibits a limit point buckling response at 

a load level that can be significantly lower than the corresponding theoretical buckling load of the 

perfect cylinder. This limit point response is illustrated in the normalized axial load versus 

normalized end-shortening response curves shown in Figure 2-1. The figure includes curves for 

seven different normalized imperfection amplitudes defined in terms of the ratio of cylinder radius 

(𝑟) to wall thickness (𝑡), multiplied by the unevenness factor (U). The plots range from a 

geometrically perfect cylinder to 0.4. The results indicate that the cylinder exhibits a marked 

reduction in the buckling or limit load as the imperfection amplitude increases. However, at 

relatively large imperfection amplitudes, the cylinder no longer exhibits a buckling or limit point 

behavior, but rather, it exhibits a monotonically increasing stable response. 

Around the same time, Koiter’s asymptotic theory [9] was applied to cylinders loaded in axial 

compression and provided rigorous mathematical proof of the extreme imperfection sensitivity. 

Koiter’s work went on to form the basis of several semi-empirical design methods such as that 

proposed by Almroth et al. [12], and much of the basic research on the effects of imperfections on 

the buckling of shells. 
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Figure 2-1: Effects of imperfections on the load-end-shortening response of a compression-

loaded monocoque cylinder (recreated from Donnell and Wan [8]).  

U is the unevenness factor and defines amplitude of imperfection, r is the radius of the cylinder, 

and t is the wall thickness. 

While the early work provided tremendous insight into the buckling response and imperfection 

sensitivity of thin-walled shells, the analysis of these shell structures was not trivial, particularly 

prior to the emergence of high-performance digital computers and numerical methods that 

occurred in the 1970s. Simplifications in the analysis limited the results to a qualitative 

demonstration. Consequently, designers continued to use the classical buckling equations and 

apply conservative empirical design factors that they considered appropriate. In the 1960s, NASA 

recognized a need to establish uniform design criteria for space vehicles and began to issue a series 

of monographs to be used as design guidelines. Monographs for the design of buckling-resistant 

shells included NASA SP-8007 “Buckling of Thin-Walled Circular Cylinders”, NASA SP-8019 

“Buckling of Thin-Walled Truncated Cones”, and NASA SP-8032 “Buckling of Thin-Walled 

Doubly Curved Shells”  [1] thru  [3]. These monographs presented equations for determining the 

classical linear buckling load as well as guidance for determining the appropriate knockdown 

factor to use in design. In addition to these NASA monographs, two prominent NASA reports were 

published and are commonly used in the design of stiffened cylinders, including NASA TN  

D-5561 “Buckling of Stiffened Cylinders in Axial Compression and Bending – A Review of Test 

Data” [5] and NASA CR-124075 “Isogrid Design Handbook” [6]. These NASA monographs and 

reports remain widely used throughout the aerospace industry. 

Since the publication of the NASA design monographs in the 1960s, a considerable amount of 

research has been conducted on the buckling of thin-walled shells and has led to many important 

advancements in shell buckling theory, analysis, and design. Three critical areas of advancement 

include, 1) an in-depth understanding of the shell buckling response and imperfection sensitivity, 
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2) the development of improved structural analysis tools and methods, and 3) the development of 

new design approaches that can reduce the dependency on the traditional empirical design 

approach and provide improved, less conservative, buckling load estimates. A summary of 

important advancements and current trends in these three areas is presented in this section and 

provides the technical background for the design criteria and recommended practices presented in 

this monograph. 

2.2 Factors Influencing the Buckling of Thin-Walled Cylinders 

Considerable progress has been made towards understanding the buckling of thin-walled cylinders 

and identifying the key factors that influence their response and imperfection sensitivity. Research 

efforts included analysis-based investigations as well as detailed physical measurements and test. 

The following are the primary factors influencing buckling of thin walled cylinders: (1) geometric 

imperfections, (2) prebuckling deformation and stresses, and (3) boundary conditions and non-

uniform loading.  

 Geometric Imperfections 

Based on the early works of Von Karman and Tsien, Donnell and Wan, and Koiter, initial 

geometric imperfections have been firmly established as the primary reason for the discrepancy 

between the classical buckling load predictions and the buckling loads obtained from test. This 

work has continued to evolve over several decades with great emphasis placed on identifying the 

imperfection sensitivity characteristics for a wide variety of different practical aerospace cylinder 

constructions and loading conditions. In particular, in-depth studies have been conducted on 

isotropic stiffened cylinders (see Section 2.3.1), unstiffened and stiffened composite cylinders and 

sandwich composite cylinders (see Section 2.3.2). 

These studies were aided using analytical, semi-analytical, and finite element analysis (FEA) tools 

that could perform imperfection sensitivity studies by including the effects of eigen-mode or 

axisymmetric imperfections [26]. A traditional analysis-based sensitivity study would typically 

use one or more eigenmode shapes to generate an imperfection pattern and then a range of 

imperfection amplitudes would be assumed to generate an estimate of the imperfection sensitivity. 

This approach has the advantage in that it is simple to implement and can provide good insight 

into the imperfection sensitivity of the structure.  

The disadvantage in this approach is that the geometric imperfection found in actual as-built 

structures is not typically the same shape as the eigen-modes. As a result, the choice of modes and 

amplitudes to use can be somewhat arbitrary unless there is measurement data to justify their use. 

Another disadvantage is that certain eigen-mode imperfections used in a geometrically nonlinear 

analysis of a compression-loaded cylinder can result in a significant reduction in the prebuckling 

stiffness of the shell, a phenomenon not seen in actual tests [27]. Thus, this approach is often used 

to only provide qualitative information about the buckling and imperfection sensitivity of the 

structure rather a predicted design buckling load. 

Efforts have been made to acquire complete surveys of actual cylinder geometries and characterize 

initial geometric imperfections. These efforts first began in the late 1960s by Arbocz and Babcock 

on laboratory-scale unstiffened isotropic cylinders. Analytical and numerical investigations were 

then carried out using these measured imperfections [26, 28], to determine the critical role 

imperfection plays in the buckling of cylinders loaded in axial compression.  
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This work was expanded to acquire complete imperfection surveys of full-scale cylindrical shells 

manufactured by the aerospace industry [29]. The goal was to collect data from these imperfection 

surveys into an imperfection data bank that would allow future designers to more accurately 

predict buckling loads based on the manufacturing method used to build the shell structure [30]. 

After measuring the imperfection, the data would be fit with a Fourier series representation, thus 

expressing the imperfection in terms of axial half-waves and circumferential full-waves. Their 

work revealed several common characteristics of the imperfection associated with a manufacturing 

process, later referred to as an imperfection signature. For example, the imperfection signature of 

large cylinders manufactured from a fixed number of curved panel sections was shown to have 

three primary components making up the signature: a global ovalization component, a component 

with the number of circumferential full-waves equal to the number of panel sections, and a 

component with the circumferential wave number equal to integer multiples of the number of panel 

sections. The magnitude of each of these components varied depending on specifically how the 

cylinder was constructed, but the overall character of the imperfection signature was consistent 

across similarly constructed cylinders. Further examples are described in detail in [25]. 

Other interesting experimental work was conducted on the effects of an initial lateral point load 

on the buckling of isotropic cylinders by Ricardo and Okubo et al.  [31, 32]. These works primarily 

focused on studying the buckling behavior and imperfection sensitivity of a thin-walled cylinder 

under various loading conditions with the objective to better understand the buckling mechanism 

and process. The lateral point load results in a known imperfection in the form of a local inward 

dimple in the cylinder wall. By varying the magnitude of the lateral load, imperfection sensitivity 

characteristics could be investigated. 

 Prebuckling Deformations and Stresses 

The classical methods for calculating the critical buckling load in cylindrical shells assume that 

only uniform membrane stresses are present, the cylinder is free to expand radially and that there 

is no local bending in the cylinder prior to buckling. In practice, however, local bending 

deformations arise from the support conditions between the shell and the adjacent structure. In 

experimental test configurations, support fixtures are typically used to restrain the ends and apply 

uniform loading and boundary conditions. As a cylindrical shell is loaded, any radial movement 

of the shell wall (e.g., due to Poisson expansion, internal or external pressure) is restrained at the 

boundary by the fixture and creates localized bending deformations. This region of bending near 

the boundary is referred to as the bending boundary layer. The magnitude and attenuation 

characteristics of this bending boundary layer are dependent on the radius of the cylinder, the shell 

wall stiffness properties, and the loading and boundary conditions. Similar behavior can occur near 

stiff rings, commonly found in aerospace structures, although the character of the response can be 

slightly different depending on the relative stiffness properties of the shell and the stiff ring 

structures. The importance of the effects of prebuckling deformations and stresses on the buckling 

of circular cylindrical shells was extensively investigated in the early 1960s [33, 34, 35]. It has 

been shown that prebuckling deformations in unstiffened isotropic cylinders in compression can 

result in a 10%-20% reduction in the buckling load of the cylinder, and somewhat smaller 

reductions for stiffened cylinders [36]. In contrast, however, sufficiently short unstiffened and 

stiffened cylinders can exhibit large increases in the buckling load. The increase in the buckling 

load is primarily dependent on boundary conditions and the stiffener properties and orientation.  

Localized prebuckling deformations can also occur in the vicinity of other stiffness discontinuities 

in the cylinder such as cutouts (see Section 2.3.3), joints (see Section 2.3.4), stiffener terminations, 
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or abrupt changes in the shell thickness and shell-wall mid-surface eccentricities. In many cases, 

the resulting prebuckling deformations and stresses in the shell can act like an imperfection and 

affect the buckling response in a similar manner to an initial geometric imperfection. The radial 

deformations grow nonlinearly with increasing load, which can result in internal load redistribution 

and can cause the shell to buckle long before the load reaches the classical buckling load value. In 

addition, the classical linear bifurcation analysis might not only over predict the buckling load, but 

also incorrectly predict the buckling mode. In some cases, this nonlinear effect has been observed 

to produce deformations large enough to eliminate instability all together. The consequence of this 

highly nonlinear behavior is that linear bifurcation buckling analyses may be inappropriate for 

determining the response of the shell. Examples of this are given in [37, 38, 39, 40, 41].  

 Boundary Conditions and Nonuniform Loading 

While initial geometric imperfections are considered to be the primary factor in reducing buckling 

loads in thin-walled shells, variations in the boundary conditions can influence the buckling 

response of cylinders.  

Typical theoretical analyses assume simply supported or clamped boundary conditions. It was 

shown by Hoff [42] and Ohira [43] that, for certain cylinders, a simply supported boundary 

condition with no in-plane shear load resulted in buckling loads equal to approximately half the 

classical values. Similar behavioral trends were observed in ring-stiffened cylinders. These results 

were confirmed in 1965 when Hoff and Soong published the results of an extensive investigation 

of eight possible boundary conditions on the buckling of cylinders in compression, assuming a 

membrane prebuckling state. It was acknowledged that while the free circumferential boundary 

condition is not realized in application, it does provide an extreme bounding case relative to elastic 

boundary conditions. Later work by Simitses, et al. [44] showed that the reduction in buckling load 

of circular cylinders caused by geometric imperfection could be greatly influenced by the boundary 

conditions at the ends, with some combinations even resulting in relatively imperfection-

insensitive cylinders.  

Hilburger, et al. [10, 11, 13, 45] investigated the effects of elastic boundary conditions 

representative of those used in laboratory-scale and large-scale cylinder tests. These studies were 

conducted to determine the effects of as-tested boundary conditions to improve test and analysis 

correlation. These elastic boundary conditions primarily affect the rotations and radial 

displacements in the bending boundary layer near the ends of the shell. In most of the limited cases 

studied, the elastic boundary conditions had a minimal effect on the buckling load  

(e.g., <  2% difference) but often resulted in a noticeable change in the overall character of the 

prebuckling deformation response and in some instances changed the location where buckling was 

predicted to initiate. 

Nonuniform loading (a.k.a., loading imperfections) has also been shown to strongly affect the 

buckling response and buckling load of cylinders. Nonuniform loading can come about in an as-

built structure due to manufacturing variabilities or machining tolerances of the structural 

interface, which can cause deviations from the idealized uniform loading. Geier et al. and 

Zimmermann [46, 47]
 
studied nonuniform loading by installing a thin shim layer to apply a local 

load imperfection in experimental tests on composite shells. The nonuniform loading caused a 

local dimple to form in the bending boundary layer of the cylinder above the shim layer location. 

This local dimple acted like an initial imperfection and caused the buckling of the cylinder to occur 

at lower load than the corresponding cylinder without the shim. They also determined that the 
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imperfection sensitivity was affected by laminate stiffness properties (i.e., fiber orientation and 

stacking sequence). Additional studies by Huhne et al. and Kriegesmann et al. looked at the 

combined effects of geometric and loading imperfections on the buckling of compression loaded 

shells [48, 49]. Detailed studies on the effects of as-measured loading surface imperfections on the 

response of small-scale and large-scale compression-loaded cylinder test articles have been 

conducted by Hilburger et al. [10, 11]. The measured loading surface imperfections from the test 

articles, which results in non-uniform loading, were relatively small in magnitude and smoothly 

varying around the circumference of the cylinder. Results from an imperfection sensitivity study 

indicated that these small magnitude loading imperfections, by themselves, could reduce the 

buckling load by 3%-5% and could affect the buckling mode. However, when studied in 

combination with measured geometric imperfections, the effect of the loading imperfection 

remained relatively small, i.e., less than 1%, and the initial shell-wall geometric imperfection 

remained the primary factor in determining the actual buckling load of the cylinder. The practical 

implications of nonuniform loading on the design of a launch vehicle component is illustrated in 

[50]. Overall, results in the literature indicate that loading imperfections can play an important role 

in determining the buckling load of the cylinder, but in most cases studied, the geometric 

imperfection remains the dominant factor.  

2.3 Effects of Design Concepts and Features on the Buckling of Thin-Walled Cylinders  

Design concept and features incorporated into the design, can significantly affect buckling 

response and load-carrying capability of thin-walled cylinders. The state-of-the-art for the 

following design concepts and features are discussed: (1) Stiffened Isotropic Cylinders,  

(2) Composite Cylinders, (3) Cutouts, and (4) Joints. 

 Stiffened Isotropic Cylinders 

Stiffened cylinders are very common in the design of aerospace structures due to their improved 

structural efficiency over unstiffened monocoque cylinders. As a result, a great amount of 

experimental and analytical work has been conducted on the buckling of stiffened cylinders. In 

general, stiffened cylinders exhibit higher buckling loads and less imperfection sensitivity than 

corresponding unstiffened cylinders of equivalent mass. The increased buckling load primarily 

depends on the stiffener cross section and spacing, stiffener eccentricity (inside or outside), and 

stiffener direction or pattern (axial, circumferential, etc.) [51]. Weller and Singer determined that 

the degree of imperfection sensitivity depends on the area parameter, which is defined as the ratio 

of stiffener cross sectional area (𝐴𝑠) to the product of the thickness of the shell (𝑡) times the spacing 

(𝑏𝑟) between rings (i.e., 𝐴𝑠/(𝑏𝑟 𝑡)). Experimental results from Gerard, Schulz, and Singer et al. 

[52, 53, 54] and analytical results from Thielemann [55] showed that axially stiffened cylinders 

are more sensitive to imperfections than circumferentially stiffened ones and that lightly stiffened 

cylinders were more sensitive than heavily stiffened ones. However, Thielemann also found that, 

for a given stiffener cross section and eccentricity, a geometrically perfect axially stiffened 

cylinder in compression can achieve higher buckling loads than the corresponding 

circumferentially stiffened cylinder. Hutchinson and Amazigo [56] as well as Budiansky and 

Hutchinson [15] used Koiter’s asymptotic b‐factor method and revealed that cylinders with 

external stiffeners have a higher imperfection sensitivity than cylinders with internal stiffeners. 

Singer’s work also confirmed that boundary conditions can be of equal or greater importance than 

geometric imperfections on the buckling of stiffened cylinder [57].  

In summary, for the most part, the response of stiffened cylinders and their imperfection sensitivity 

characteristics are well understood. However, given the different, and often competing, variables 
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that govern buckling capability and imperfection tolerance of stiffened cylinder designs, there is 

no clear recommendation for a stiffening method without accounting explicitly for the effects of 

imperfections and boundary conditions of the design in question. 

 Composite Cylinders 

The high stiffness-to-weight ratios of modern fiber-reinforced composites makes them obvious 

candidates for use in light-weight aerospace shell structures. Like metallic cylinders, composite 

cylinders can be of stiffened, unstiffened, or sandwich construction. Manufacturing methods such 

as automated fiber placement allow for extensive tailoring and reinforcement of these structures.  

Shortcoming of traditional design and analysis approaches: The design and analysis of composite 

structures can be challenging due to the large number of design parameters and competing failure 

modes. Design parameters include material selection (fiber and matrix), material form  

(e.g., unidirectional, 2D fabric), ply layup, and total thickness. Failure modes include matrix 

cracking, delaminations, fiber failure, and fiber-matrix debonding. These failure modes can reduce 

stiffness and precipitate local buckling, or exacerbate prebuckling deformation and trigger other 

failure modes which eventually result in global buckling [58]. Because of the anisotropic nature 

of these structures, potential for spatial variation of shell stiffness due to structural tailoring, and 

complexity in failure modes, the use of classical methods for determining buckling loads can be 

challenging. 

Challenges due to imperfections from manufacturing: Manufacturing of composites can result in 

irregularities in shell thickness and variations in stiffness resulting from “building up” of the 

composite material on a tool. Fiber waviness, surface irregularities on the non-tool surface, and 

undulations in the surface contour are some of the most common imperfections. Since most 

aerospace shell structures are too large to manufacture in a single layup, manufacturers either butt 

multiple laminae together or overlap them. Gaps between adjacent plies have been observed in the 

manufacturing of thin cylinder lab-scale articles [10]. These ply gaps can be of some concern, 

because they have been shown to have an effect on the buckling capability of very thin unstiffened 

composite cylinders in axial compression (e.g., 2%-11% reduction in buckling load) [10, 11, 59]. 

For multiple reasons, including design for stability, plies are usually overlapped to avoid the 

formation of gaps between adjacent lamina plies during the layup and curing process. 

Alternatively, some large-scale applications are less sensitive to and can better tolerate the 

thickness variations, small undulations, surface irregularities and other imperfections due to the 

relatively small imperfection size compared to other structural dimensions. 

Tailoring of composites and imperfection sensitivity: One of the inherent benefits of composite 

materials is the ability to optimize fiber orientation and stiffness properties. The buckling response 

of composite cylinders can be significantly influenced by the fiber orientation [60, 61]. Geier et 

al. found that the buckling load can be increased by a factor of two compared to quasi-isotropic 

laminates by simply modifying the stacking sequence [62]. Khot and Venkayya [63, 64, 65, 66] 

showed that anisotropic laminated cylinders resulted in increased imperfection sensitivity despite 

possessing increased buckling capability due to optimal laminate designs (e.g., stacking sequence). 

However, it is possible to specifically tailor composites to increase buckling load and decrease 

imperfection sensitivity. When compared to isotropic cylinders, Almroth found that unstiffened 

composite cylinders exhibited less imperfection sensitivity [67].  

Effects of stiffening elements and analysis methods: There is consensus that stiffening elements 

can increase the buckling capability of composite cylinders, like what is observed for isotropic 
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stiffened cylinders. In one study, isogrid stiffener designs under axial compression forced the 

cylinders to fail by material failure rather than by buckling [68]. An analytical study of grid 

stiffened composites cylinders, anchored to test data, predicted that increasing skin thickness 

increases buckling capability; that stiffener orientation and spacing has a significant effect on the 

buckling load [69]. A significant paper was published studying the optimal design of generally 

stiffened composite circular cylinders for buckling with strength constraints using genetic 

algorithms [70]. The optimization study found that axial and transverse stiffener spacing, stiffener 

height and thickness, skin-laminate stacking sequence, and stiffening configuration all play a key 

role in buckling capability. The study found that grid stiffened composite structures optimized for 

axial compression load had a greater buckling capability than axially stiffened composites. Finally, 

buckling of axially loaded stiffened shells has been shown to be influenced by eccentricity, 

orientations, and size of stiffeners [71]. 

On the analysis of stiffened composite cylinders, Nemeth [72] presented classical buckling 

solutions for multiple configurations of cylinders subjected to a variety of loading conditions 

including axial compression, uniform external pressure, uniform hydrostatic pressure, torsion, and 

combinations of loads. The classical solutions would need to be adjusted to account for the effects 

of geometric imperfections or other factors described in Section 2.2. While finite element modeling 

of stiffened composite structures has been used with success, modeling the details of the stiffening 

elements can be computationally expensive, especially if nonlinear models are employed. In one 

study, rigorously derived smeared (homogenized) mechanical properties representing the isogrid 

and orthogrid stiffened shells were presented, and models using homogenized properties were then 

compared to buckling predictions from detailed finite element models [73]. Generally, the error 

was less than 20% between the detailed models and the homogenized models, which indicated that 

homogenization approaches can be useful but limitations should be well understood. 

Sandwich Structures: Since the 1960s, many buckling solutions were developed for sandwich 

structures in axial compression, for example the work funded by the US Forest Service Study [74]. 

Elastic buckling solutions were also provided for simply supported curved plates and cylinders of 

sandwich construction [75]. Linear theory for buckling of axially compressed orthotropic 

sandwich cylinders presented in [76] was investigated in terms of various material parameters, and 

their work resulted in simplified design equations which approximate this theory. This theory was 

then compared with other available approximations in the literature [77]. A practical design 

manual was developed by General Dynamics [78] and contains solutions for structures made of 

sandwich construction.  

One important piece of work by Peterson and Anderson [79] demonstrated that tests and 

corresponding analysis indicated (1) that the adhesive and core in bonded honeycomb sandwich 

plates can contribute substantially in enhancing plate stiffnesses and load carrying capability,  

(2) that buckling of cylinders with moderately heavy cores can be predicted by procedures which 

utilize linear, classical buckling theory with reduction factors based on tests of conventional thin-

wall cylinders, and (3) that core buckling normally precedes cylinder buckling; core buckling has 

considerable influence on the contribution of the core to facesheet stiffnesses and should be taken 

into account in structural calculations. 

Closed form solutions for buckling under axial compression of shear deformable sandwich 

cylinders with anisotropic facesheets, orthotropic facesheets, and isotropic facesheets were 

developed and presented [80]. In this work, it was found that reducing transverse shear stiffness 
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leads to lower buckling values. The publication documents solutions in terms of the buckling mode 

wave numbers and parameters defining the core and laminate facesheets.  

Reese and Bert [81] identified that due to the influence of imperfections the closed-form buckling 

predictions for finite-length sandwich cylinders clamped at both edges and loaded in axial 

compression, pure bending, or a combination of these loadings are higher than experimental 

results. Later work by Schultz et al. [82] achieved good agreement between test and analysis when 

the model accounted for the test fixturing, nonlinear material properties, and initial geometric and 

thickness imperfections. Finally, the work by Cha and Schultz [83] demonstrated a practical 

approach to understanding imperfection sensitivity for such sandwich designs subjected to uniform 

axial compression using nonlinear finite elements while considering imperfection sensitivity.  

Buckling prediction of sandwich cylinders is generally challenging as many competing failure 

modes exist, such as core failure, intercellular buckling, crimpling, core-to-facesheet debonding, 

and facesheet failure modes. While closed form solutions exist, it is imperative to use them with 

appropriate knockdown factors when applicable in preliminary design, and then refine the analysis 

using more advanced methods as the methods are validated by test.  

 Cutouts 

It is common for cylindrical shell structures to have one or more cutouts to allow access to the 

interior of the shell. Cutouts can have a significant influence on the buckling response of the shell 

depending on the size and shape of the cutout and the type of cutout reinforcement implemented 

[84, 85, 86, 87, 88, 89].  

Experimental results for compression-loaded cylinders with cutouts from [84] and [86] indicate 

that sufficiently small, unreinforced cutouts have a minimal effect on the buckling response and 

that other imperfections in the shell govern the buckling response in the shell. However, for larger 

unreinforced cutouts, local bending deformations develop near the edges of the cutout, which and 

can result in a stable local buckling response around the cutout or initiate a global collapse. Starnes 

[84] found that the character of the buckling response of the cylinder is dependent on a 

nondimensional parameter that is a function of the cutout radius (𝑟𝑐), cylinder radius (𝑟), and wall 

thickness (𝑡); i.e., 𝑟𝑐
2/(𝑟𝑡). Hilburger et al. derived a similar nondimensional stiffness-weighted 

parameter for cutouts in composite cylinders [87]. 

For most practical applications, however, some type of reinforcement is typically applied around 

the cutout to control local stresses and deformations. If done correctly, the reinforcement should 

restore the cylinder to its full load-carrying capacity. However, it has been noted by Toda and 

Hilburger that some local reinforcement concepts such as very thick pad-ups can cause buckling 

to occur in areas adjacent to the reinforcement if an abrupt stiffness change and mid-surface 

eccentricity exists between the acreage and the reinforcement [85, 88, 89].  

In addition, the local prebuckling displacements and stresses in shells near sufficiently large 

unreinforced or reinforced cutouts can result in large reductions in local stiffness and cause the 

shell to buckle long before the load reaches the predicted linear bifurcation buckling load, as 

described in Section 2.2.2. In these cases, linear bifurcation analyses may not always produce a 

conservative buckling load estimate and a geometrically nonlinear analysis is required. 

 Joints 

Many large cylinders are manufactured by joining multiple curved panel sections to form the 

complete cylinder. Different joining methods are available depending on the materials and 
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manufacturing methods used and include welding, mechanical fastening, and bonding. It is known 

that joints can play an important role in the buckling of cylinders since they are often associated 

with local variations in geometry, stiffness, and loading. Unfortunately, very little work has been 

published on this topic, presumably because joints are unique to a specific design and 

manufacturing process, and thus general design guidelines for the design of joints in cylinders are 

not available. 

However, some work has been performed on large compression-loaded stiffened metallic cylinders 

with axial welded joints [90], and provides good insight on how this type of joint can affect the 

buckling of cylinders. In general, the results indicate that the relatively thick, unstiffened axial 

weld land regions typically have a higher effective membrane stiffness than the adjacent thin-

walled stiffened acreage and, thus, tend to attract axial load. In addition, the local stiffness 

discontinuity and neutral axis eccentricity between the weld land and the stiffened acreage can 

cause the weld land to exhibit significant inward radial prebuckling deformations when subjected 

to axial compression. Local welding-induced geometric distortions and residual stresses can 

further exacerbate the formation of these inward deformations. Because the unstiffened weld land 

has relatively low bending stiffness, as compared to the stiffened acreage, the combination of these 

prebuckling deformations, local geometric distortions, and increased axial line load can lead to 

premature buckling at the weld land. In general, the effects of a joint on the buckling capability of 

the cylinder will be influenced by the local neutral axis eccentricities, the relative membrane and 

bending stiffnesses present, and the loading conditions. 

Since axial and circumferential joints can pose a buckling concern, joint designs or local stiffness 

tailoring that delay the onset of buckling should be sought. This can include the development of a 

stiffness-neutral joint such as a scarf joint when joining composite sandwich panels together. The 

stiffness-neutral joint concept attempts to provide a joint between two adjacent cylindrical panels 

while minimizing discontinuities in stiffness, and load-path/mid-surface eccentricities. If a 

stiffness-neutral joint design option is not available or practical, as may be the case in welded 

metallic construction, local bending stiffness can be increased by adding additional stiffeners 

adjacent to the joint, e.g. additional axial, circumferential or diagonal stiffeners. In particular, the 

addition of diagonal stiffeners adjacent to an axial weld land has been found to be particularly 

effective in delaying the onset of buckling by providing additional twisting stiffness. 

2.4 Analysis Methods 

Considerable progress has been made on the development of improved theories and computational 

tools for the analysis of shells. Particular areas of emphasis included the development of special-

purpose analytical and semi-analytical codes, and finite-element methods (FEM). The FEM can 

provide accurate simulations of the complex unstable collapse response of thin-walled shell 

structures, and improved shell theories that can provide more accurate solutions for the buckling 

of shells as compared to the Donnell-type shell theory. The development of these shell theories 

and computational tools have provided researchers and engineers with the ability to gain 

tremendous insight into the buckling response of many different types of shell structures. In 

particular, FE models and nonlinear solution algorithms have been shown to be very effective in 

predicting the buckling response of both metal and composite shells, provided that careful attention 

is paid to capturing all of the effects that are known to influence the buckling behavior [10, 11, 

12]. In addition, these models enable detailed studies on the individual effects of structural features 

and manufacturing tolerances on the buckling response and determine response sensitivities.  
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While FEM-based structural analyses tend to get most of the attention in the recent literature, the 

classical analytical and semi-analytical methods can still play a critical role in the analysis and 

design of thin-walled shells. Summaries of the important work in this area are provided in several 

references, notably [20, 21, 22, 23, 24, 25] and [91]. A brief summary of methods used in analysis 

and design are presented here.  

The most commonly used linear bifurcation buckling analysis for the design of cylindrical shells 

is based on the Donnell-type shell theory [92]. The analysis assumes the shell to be geometrically 

perfect, under a membrane state of stress (i.e., the effects of prebuckling bending deformations 

due to edge restraints are neglected), and simply supported boundary conditions. The governing 

system of partial differential equations are solved using a double Fourier series approximation to 

reduce the solution to a standard linear eigenvalue problem. This approach yields, the well-known 

classical solution for isotropic shells, as shown in Batdorf [93] and Becker & Gerard  [94]. Other 

forms of the Donnell-type shell theory can be used to analyze perfect and imperfect isotropic and 

orthotropic stiffened shells [28], making this method ideally suited for efficient study of the 

buckling and imperfection sensitivity of a wide range of practical cylindrical shell configurations. 

However, Donnell’s theory has some approximations that limit its applicability to cylinders of 

moderate length. Donnell’s equations can result in significant errors in the buckling-load 

predictions for long compression-loaded cylinders and cylinders subjected to live external pressure 

loads.  

Sanders’ equations capture effects not addressed by Donnell’s equations because they include 

additional terms that Donnell’s theory does not [72]. Sanders [95] developed a theory that results 

in more accurate predictions compared to Donnell’s theory. This improved accuracy is achieved 

by including additional mid-surface rotational terms in the nonlinear membrane and bending strain 

fields. Sanders’ theory can provide accurate buckling load predictions for the full spectrum of 

cylinder length-to-radius ratios including Euler column buckling load predictions for very long 

compression-loaded tubes and the interaction between cylinder and column buckling that occurs 

at intermediate lengths. 

A semi-analytical approach can be used to develop a more accurate solution to the Donnell or 

Sanders-type equations by including the effects of boundary conditions and a nonlinear 

prebuckling state. In this case, the solution assumes a Fourier series approximation in the 

circumferential direction, and then the resulting set of ordinary differential equations for the axial 

direction can be solved numerically by means of the shooting method or the finite difference 

method  [96]. By using this approach, the specified boundary conditions and the effect of edge 

restraint can be satisfied rigorously. These semi-analytical approaches have also been extended to 

solve the equations for cylinders with axisymmetric and asymmetric imperfections. Such an 

analysis can be used to study the effects of classical boundary conditions or elastic boundary 

conditions in combination with initial geometric imperfections and provide a more accurate 

assessment of the buckling and imperfection sensitivity characteristics of thin shells. The semi-

analytical methods can also provide valuable results for the development and verification of 

detailed FEMs of imperfect shells. Due to its relative simplicity and efficiency semi-analytical 

solutions can used as an intermediate step between the classical linear eigenbuckling analysis and 

geometrically nonlinear finite element analysis. A detailed description of analytical and semi-

analytical methods for the buckling of cylinders is presented by Arbocz [97]. 

Finite-element methods are now very common in the detailed design and analysis of shell 

structures using two-dimensional (2D) and three-dimensional (3D) discretizations. Highly 
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accurate solutions can be obtained in which all nonlinear effects and initial geometric 

imperfections are properly accounted for and structural detail features such as cutouts, joints, and 

stiffeners. However, complex FEMs must be carefully assembled to accurately reflect physical 

loads, geometry, and local stiffness of the real as-built structure; and the modeling assumptions 

and sources of uncertainty need to be fully understood, as the results can be very sensitive to a 

wide range of modeling inputs and details. Similarly, a variety of solution routines  

(e.g., geometrically linear and nonlinear, quasi-static and transient dynamic) are available to 

predict the prebuckling, buckling, and postbuckling response of the shell. Different solution 

methods (e.g., Newton-Raphson, Riks arc length) and settings (convergence tolerance, artificial 

solution damping) and their implementation should be well understood. Improper use of these 

complex methods could result in erroneous results. It is not uncommon that the time required to 

create and validate an accurate FEM far exceeds the computational time needed to analyze the 

model.  

One of the drawbacks to using detailed FEMs in the early stages of design is the relatively long 

model development and solution times required as compared to the simpler analytical or semi-

analytical methods. However, automated and adaptive model generation and methods can be used 

to reduce model development and solution time and could help bring higher levels of fidelity into 

earlier stages of the design process. For example, it is envisioned that detailed design studies could 

use these advanced modeling tools to provide improved data and insight necessary to make better 

design decisions, especially in cases where novel design concepts and configurations are being 

considered and for which no historical data or experience is available. Reduced basis methods for 

the nonlinear analysis of shells have been proposed in an effort to reduce the number of degrees 

of freedom in a nonlinear system. These reduced basis techniques can be implemented both 

analytically and numerically (referred to as reduction methods). The Koiter-Newton approach has 

been developed by Liang et al. [98] for the numerical solution of the buckling of thin-walled shells. 

The method combines concepts from Koiter’s initial postbuckling analysis and Newton arc-length 

correction methods to obtain a solution algorithm that can predict the prebuckling, buckling, and 

postbuckling equilibrium path in a FEA setting. Unfortunately, these reduced-basis methods have 

not yet found their way into commercial finite element codes. Similarly, special-purpose analytical 

and semi-analytical tools have been developed that enable rapid design-level analysis for the 

nonlinear buckling of shells with detail features, such as cutouts, bonded repairs, and discrete 

stiffeners, and can be useful for preliminary design studies [99, 100]. The results of these models 

can also be useful in developing and verifying FEMs and analysis results. 

2.5 Design Approaches 

The original NASA SP-8007 monograph provided empirical design factors (KDFs) and design 

recommendations based on the best information available at the time and has been the primary 

source of design factors and recommendations for buckling of cylindrical shells since its 

publication in 1965 (revised in 1968). However, KDFs and recommendations provided in the 

original NASA monographs can result in overly conservative buckling load predictions and 

designs when applied to modern aerospace structures. In addition, the original monographs do not 

include relevant data or recommendations for the design of modern structures such as large 

integrally machined metallic cylinders or sandwich composite cylinders. Thus, designers are left 

to extrapolate the available recommendations to their design as they deem appropriate. Several 

alternate design methods have been developed in an effort to address these limitations and 

incorporate new knowledge and structural analysis tools including semi-analytical approaches and 
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analysis-based approaches [13, 14, 15]. However, their implementation has been limited and 

standardized recommendations for their use have not been provided. Often, these alternate 

approaches have been used in parallel with the traditional empirical design approach from  

SP-8007 and have enabled designers to safely remove some design conservatism.  

 Traditional Empirical Design Approach 

The traditional approach for the preliminary design of a thin-walled buckling-resistant shell is to 

predict the buckling load of the shell using a classical linear eigenvalue analysis or approximate 

closed-form solution and then apply an empirical correlation factor, commonly known as a 

knockdown factor, to account for the difference between the predicted buckling load and the actual 

buckling load determined from tests. The classical eigenvalue analysis assumes nominal structural 

dimensions and material properties, a membrane prebuckling stress state, and simply supported 

boundary conditions of a moderately long circular cylinder (i.e., length effects are neglected).  

In this document, buckling load equations and design knockdown factors for a variety of cylinder 

constructions including unstiffened isotropic and orthotropic cylinders, isotropic sandwich 

cylinders, and stiffened cylinders. Included in the considered loading conditions are axial 

compression, bending, torsion, and external and internal pressure, and combined loads. The design 

knockdown factors are based on lower bounds to experimental data that were available at the time 

[101]. The majority of the test data was from approximately 200 tests of isotropic cylinders in 

compression [102, 103, 104, 105, 106, 107], [108, 109, 110, 111, 112, 113], [114] and 145 

cylinders in bending [103] from 1928 to 1960. The cylinder radius-to-thickness ratios ranged from 

around 80 to 4150 and the length-to-radius ratio ranged from 0.5 to 5.0. The test specimens were 

constructed from materials such as aluminum, steel, Mylar, and duralumin.  

Guidance is given for orthotropic cylinders and isotropic sandwich cylinders. The term 

“orthotropic cylinders” is taken to include cylinders made of one or more orthotropic layers, as 

well as stiffened cylinders with stiffener spacing sufficiently small enough such that that the 

bending and extensional properties can be approximated by a single orthotropic sheet (i.e., smeared 

stiffener approximation). For unstiffened orthotropic cylinders the recommendation is to use a 

slightly modified version of the knockdown factors derived for unstiffened isotropic cylinders. 

However, this recommendation is based solely on the experimental results from three two-layer 

cylinders made of aluminum and reinforced plastic presented in [115] and nine filament-wound 

glass-epoxy cylinders presented in [116]. Similarly for isotropic sandwich cylinders, the 

recommendation is to use a modified version of the empirical knockdown factors derived for the 

unstiffened isotropic cylinders based on the results of two analytical investigations [74, 75].  

For axially compressed cylinders with closely spaced moderately large stiffeners, the previous 

NASA SP-8007 (1968), suggests a buckling knockdown factor of 0.75. This recommendation is 

based on experimental data from [117, 118, 119, 120, 121, 122] and [123, 36]. However, this factor 

is rarely used in practice in favor of a more conservative factor of 0.65, which was suggested in 

the NASA TN D-5561  [5] and was derived from a review of data from a variety of experimental 

tests on stiffened cylinders and corresponds to the lowest observed buckling load across all of the 

tests [117, 118] and [36, 124, 125, 126]. 

Another commonly used design document is the Isogrid Design Handbook [6]. This handbook 

provides guidance on calculating effective material properties for isogrid-stiffened constructions 

and recommendations on calculating buckling loads for isogrid shells. For lightly stiffened 

cylinders, it was suggested to calculate the buckling knockdown factor using NASA SP-8007 
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(1968) [1]. The user should use this NASA SP-8007 revision for these calculations. For moderately 

or heavily stiffened cylinders, the knockdown factor of 0.65 from [5] is recommended.  

Overall, the knockdown-factor-based design approach is a reliable and convenient approach; but 

it can result in overly conservative buckling load predictions and designs. The conservatism is 

likely due to several factors. First, the experimental data were gathered between 1928 and 1964, 

and thus reflects the quality of the manufacturing processes used during this time. In addition, the 

importance of initial geometric imperfections on the buckling of the shells was not recognized 

until around 1950, and thus may have resulted in a large variation in the quality of the test articles 

and the corresponding test data, as strict controls on specimen quality and test set-up were not 

emphasized. It is interesting to note that much of the test data generated later in that time period 

(1950s−1960s), corresponded to higher buckling loads, presumably due to the increased attention 

placed on imperfections and manufacturing quality. It is not uncommon for the buckling loads 

from high-precision tests to be 70% to 90% of the classical value, significantly higher than what 

would be prescribed by a traditional empirical KDF [127]. In addition, it has been shown that 

stiffened cylinders typically exhibit reduced imperfection sensitivity as compared to an equivalent 

monocoque cylinder [128]. One might also expect that the inclusion of local detail features such 

as joints, cutouts, or discrete loads associated with attachments can reduce the imperfection 

sensitivity as these local details can produce local perturbations in the response that act as 

imperfections. 

As the design cycle evolves, FEM-based linear eigenvalue analyses are typically used and may 

include the effects of additional design details such as cutouts, joints, hard-points for attachments, 

discrete stiffeners, and more accurate representations of primary and secondary loads. The same 

knockdown factor from the preliminary design phase is often retained and applied to the FEM-

based buckling load of the detailed structure. 

 Semi-Empirical Design Approach 

The traditional design approach remains the most commonly used approach for preliminary design, 

and may remain so for the foreseeable future, due to its ease of use and demonstrated reliability. 

However, several semi-empirical design approaches have also been proposed [12, 129] to reduce 

design conservatism and provide a more general approach for the design of practical aerospace 

cylindrical structures. Industry has successfully implemented the approach proposed by Almroth 

et al. in the design of many space vehicle applications, most notably, in the design of the Space 

Shuttle External Tank (ET). Their proposed design approach was developed to extend existing 

empirical design data to more practical cylinder designs, such as stiffened, laminated composite, 

or cylinders stabilized by an elastic core (e.g., solid propellant rocket motor). This method is 

described in detail in Section 4.2. 

The ET design successfully employed a semi-empirical design approach in parallel with the 

previous NASA SP-8007 (1968) design recommendations to take advantage of enhancements due 

to internal pressure in combination with both axial and shear loads, and the interaction of combined 

axial compression, bending, and shear in the margin-of-safety calculations. 

 Analysis-based Design Approach 

More recently, advancements in the speed and memory of digital computers and the newly 

available FEA codes are enabling the development of highly accurate predictions of the buckling 

response of aerospace shells structures [13, 14]. The models used to generate these predictions 

require detailed representations of the as-measured initial geometric imperfections, thickness and 
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material property variations, and nonuniform loading (i.e., loading imperfections) and elastic 

boundary conditions, as well as any structural detail features such as cutouts, joints, and discrete 

stiffeners; and provide exceptional correlation between the predicted results and the actual 

buckling loads and buckling failure modes. Such analyses have been used to conduct detailed 

imperfection and design sensitivity studies and provide design buckling loads for several modern 

launch vehicles including the Space Shuttle solid rocket booster (SRB) cases and ET, and the 

Space Launch System (SLS) core stage [41, 130, 131, 132, 133]. 

For example, the SRB case design process utilized the Analysis-Based Design Approach. The 

analysis used a geometrically nonlinear FEA method and included the effects of the measured shell 

geometric imperfection and material properties, and accurate SRB-to-ET interface and field joint 

representations. The nonlinear analysis results for the SRB hardware were correlated to the results 

from a full-scale buckling test. This design approach led to a reduction in structural mass as 

compared to the overly conservative traditional KDF approach while demonstrating a positive 

margin of safety. The results of this work also allowed an increase in the pre-launch wind-speed 

allowable and a reduction in the probability of a flight delay or abort.  

Similarly, the Space Shuttle Super Light Weight ET liquid hydrogen (LH2) tank, liquid oxygen 

(LOX) tank, and intertank thrust panels were analyzed using a geometrically nonlinear analysis 

that included the effects of initial geometric imperfections. Early in the Super Lightweight ET 

design effort, a nonlinear FEM analysis of a detailed LH2 tank model with eigenmode 

imperfections was performed with various shell stability computer programs [130, 131]. Later, a 

buckling analysis was performed on the LOX tank using STAGS (Structural Analysis of General 

Shells) FEA code [132] and considered both eigenmode and measured geometric imperfection 

shapes. The intertank thrust panels were analyzed using a nonlinear NASTRAN analysis, used 

linear eigenvector shapes as the initial geometric imperfection for the FEM, and included a 

sensitivity analysis with respect to imperfection amplitude [133]. In all cases, subsequent structural 

qualification tests indicated safe design margins. 

In general, these works by industry and NASA clearly indicate a desire and willingness to use 

alternative methods to the traditional Empirical Design Approach. However, the use of these 

methods require knowledge of or assumptions regarding imperfections and structural details, 

experience and understanding of buckling and imperfection sensitivity, and may require testing if 

there is significant uncertainty or lack of knowledge and experience. 

 Other Methods and Trends 

A broader approach to improving structural design methods was proposed by Nemeth and Starnes 

[134]. This work assessed the limitations of the NASA design monographs and suggested a path 

forward for improving the design of buckling-critical shells. Their proposed approach separated 

the critical design parameters (those that are known to affect the buckling load) into those that are 

known and can be modeled in a deterministic manner (e.g., boundary conditions) and those that 

are better represented in a probabilistic manner (e.g., imperfection and material variance). They 

suggest a hybrid approach where the probabilistic uncertainties are incorporated into the 

calculation of improved knockdown factors and applied to accurate analytical models. Another 

issue highlighted in their work was use of a select number of high-fidelity experiments designed 

to validate the analysis tools rather than a vast number of experiments to characterize the design 

space. The analysis tools would then be used to perform numerical studies to determine shell 

buckling behavioral trends and design recommendations.  
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A key aspect of these alternate approaches is to have some preexisting knowledge of the 

characteristic geometric imperfection of the structure. Many researchers over the years have 

promoted the measurement and use of geometric imperfection data for the design of buckling-

critical shells. To this end, their goal has been the establishment of an imperfection databank, 

which would facilitate the understanding of what imperfection signatures are common to a shell 

and manufacturing process. Thus, a future designer would be able to use nonlinear analysis 

methods since the imperfection could be estimated early in the design phase. The imperfection 

data obtained indicated that the considered manufacturing processes resulted in a repeatable 

characteristic imperfection shape with some amount of variability. This characteristic imperfection 

shape was eventually referred to as an imperfection signature and became the basis for new design 

criteria based on these signatures [13]. In addition, it was recognized that the variability in the 

imperfection could be quantified and used in the development of a probabilistic design approach 

such as that proposed by Arbocz, but a sufficient amount of data is required to establish a 

statistically meaningful result. Similar signatures have been investigated to a lesser extent for 

thickness variations and loading imperfections, some of which will be presented in this 

monograph. 
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3.0 Criteria 

During design, a buckling assessment should consider all combinations of ground and flight loads 

that cause compressive in-plane stresses the structure will experience during its operational life. 

Loads include external pressure, internal pressure, mechanical loads, inertial loads, residual 

stresses, and loads induced by thermal effects. The design of structural components consisting of 

thin, curved isotropic, orthotropic, or composite walls with or without stiffening shall meet the 

following criteria: 

(1) Destabilizing loads of the structure shall be identified. It is essential to evaluate all loading 

conditions to identify those that are truly destabilizing. Even when the loading appears to be 

stabilizing, such as internal pressure loads, destabilizing loads can exist. For example, elliptical 

domes subjected to internal pressure can buckle near the boundary, in this instance, buckling is 

due to hoop compression stress that arises during a geometrically nonlinear response. 

(2) Buckling that results in the collapse of the cylinder shall not occur due to the application of 

ultimate design loads and shall account for the factors that affect buckling as described in Section 

2.2. If a component of the loading (e.g., internal pressure) is determined to stabilize or increase the 

buckling capability, then the ultimate design factor of safety is not applied to that load. The 

ultimate design factor of safety shall only be applied to the other destabilizing loads such as axial 

compression, torsion, etc. The structural design margin verification can be performed by test, 

analysis, or a combination depending on the information available to the program. Design 

verification by analysis may only be acceptable by the program when the methods and models are 

(i) Sufficiently test-validated with a correlation goal of 10%, (ii) Models include bounding or 

measured geometric imperfections expected during the life of the program, and (iii) Models 

realistically and correctly represent the geometry, loading configurations, and boundary 

conditions. 

(3) Prebuckling deformations which occur prior to limit or yield design conditions shall not 

adversely affect the functional and structural performance of the structure: During design analysis, 

it is insufficient to only consider the stability limit of a structure; the prebuckling deformations 

must also be examined. The designer should ensure that the deformations are sufficiently small 

such that they do not create interferences with other components. Pre-buckling deformation can 

also produce changes in the internal load distributions that are not predicted by linear analysis and 

may lead to unexpected failure modes. Fully quantifying the deformation during loading is also 

critical for meeting the design criteria for repetitively loaded structures. In addition, the changes 

in structural stiffness induced by prebuckling deformation can sometimes be undesirable, 

particularly regarding structural dynamics. 
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4.0 Recommended Practices 

The following three different approaches for the estimation of buckling loads for circular 

cylindrical shells subjected to various loading conditions are described in this section:  

(1) Empirical Approach (Section 4.1): The Empirical Approach relies on cylinder buckling test 

data to experimentally derive knockdown factors (KDFs), and then applies the KDF to the 

predicted buckling eigenvalue for a specific geometry and loading condition. This approach is 

suitable for use (i) during the preliminary design process when insufficient information is available 

to derive a high fidelity analysis-based buckling load prediction; or (ii) when the primary failure 

mode is not driven by buckling and conservative buckling load calculations are adequate for 

producing design margins. If buckling is the driving mode, then weight savings can be achieved if 

a Semi-Empirical or Analysis-Based design approach is used as they could result in a safe but less 

conservative knockdown factor. 

(2) Semi-Empirical Approach (Section 4.2): The Semi-Empirical Approach was developed to 

provide improved buckling load predictions for the design of orthotropic, stiffened, and core-filled 

cylinders and overcome the impracticality of testing all possible combinations of influential design 

parameters that would be needed to support a purely empirical design approach. The approach 

combines Koiter’s asymptotic theory and the wide-column buckling approach to produce 

conservative estimates of the buckling load, and accounts for the effects of initial imperfections.  

The Semi-Empirical Approach is suitable for any cylinder configuration, but is most beneficial for 

configurations that exhibit reduced imperfection sensitivity as compared to a simply-supported, 

isotropic cylinder. Examples of these cases include stiffened cylinders, composite cylinders, short 

cylinders, cylinders with elastic core, pressurized cylinders, and cylinders with clamped boundary 

conditions. It is recommended that the Empirical Approach be employed in parallel with this 

approach as a confidence check. 

(3) Analysis-Based Approach (Section 4.3): The Analysis-Based Approach is to use high-fidelity 

nonlinear analysis simulations to determine the buckling design loads. However, the methods and 

models utilized in this approach often require significant development and validation testing. 

These models must incorporate measured or worst-expected imperfections and accurately or 

conservatively represent the structural and loading configurations. This approach is suitable when 

buckling drives the design, the weight needs to be optimized, and all necessary data and all 

validated models are available to perform this high-fidelity Analysis-Based Approach.  

Section 4.0 from the previous version of the NASA SP-8007 (1968)  [1] has been expanded to 

include the Semi-Empirical Approach and the Analysis-Based Approach, both of these approaches 

have the potential for cost and weight savings for a given application. In addition, improvements 

and additional configurations were added to the Empirical Approach (Section 4.1), such as Special 

Design Features (e.g., cutouts, joints).  

Generally, a summary of the approaches is presented when practical, or the procedures are merely 

outlined when they are complicated and are suitably available in a reference. In all cases, 

recommended procedures are not a replacement for sound engineering judgement and experience 

and should be modified as needed if supported by technical rational and/or by physical testing. 
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4.1 Empirical Design Approach 

This section provides closed form or graphical solutions for buckling criteria of cylinders under 

various loading and geometric configurations. A correlation factor or knockdown factor 𝛾 is used 

to correlate the linear buckling solution with the experimental results.  

Throughout this section, many of the empirical equations will depend on the curvature parameter 

𝑍. Depending on the value of 𝛾𝑍 and load case under consideration, cylinders are classified as 

short, moderately long, or long cylinders. The user should recognize that these definitions apply 

only to that specific load case and that different analyses may have different definitions. In 

addition, these definitions are not rigid and are only intended to aid in the solution process. 

Engineering judgement must always be used to determine the applicability of a solution to a 

specific problem. 

 Isotropic Unstiffened Cylinders 

Unstiffened isotropic circular cylinders subjected to various loading conditions are considered in 

this section. In the theoretical analysis of cylinders, it is usually necessary to take account of 

prebuckling deformations and stresses [34] and end conditions [42, 135, 136] as they can have a 

significant influence on the buckling response. However, the difference between rigorous solutions 

for various end support conditions can be obscured by the effects of initial geometric 

imperfections. Furthermore, the actual support conditions that exist in aerospace hardware are 

typically not well defined in the preliminary stages of design and the characteristics of the actual 

geometric imperfection may not be known. It is therefore customary to use simplified theoretical 

calculations that are adjusted by using a knockdown factor to account for the differences between 

theory and test. 

 Axial Compression 

Buckling and collapse are identical states for isotropic circular cylinders subjected to axial 

compression. An equation for the buckling line load of a simply supported cylinder under axial 

compression, 𝑁𝑥, has been derived based on Donnell’s shell theory [93] 

𝑁𝑥 =  𝑘𝑥

𝜋2𝐷

𝐿2  1 

where 𝑘𝑥 is the buckling coefficient, 𝐷 is the wall flexural stiffness per unit width: 

𝑘𝑥 = 𝑚2(1 + 𝛽2)2 +
12

𝜋4

(𝛾𝑍)2

𝑚2(1 + 𝛽2)2 2 

𝐷 =
𝐸𝑡3

12(1 − 𝜈2)
 3 

𝑍 =
𝐿2

𝑟𝑡
√1 − 𝜈2

 4 

𝛽 =
𝑛𝐿

𝑚𝜋𝑟
 5 

The cylinder length, radius, and wall thickness are respectively denoted by 𝐿, 𝑟, and 𝑡; the Young’s 

Modulus and Poisson’s Ratio are respectively denoted by 𝐸 and 𝑣; and the number of axial half-

waves and circumferential full waves of the buckling mode shape are respectively denoted by 𝑚 

and 𝑛. 𝑍 is the curvature parameter, and 𝛽 is the buckle aspect ratio. 

The buckling knockdown factor 𝛾  has been added to the second term in Eq. 2 (associated with the 

cylinder curvature) to account for the differences between theoretical buckling loads and loads 
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obtained from tests. The form of the buckling coefficient first appeared in the SP-8007 1965 and 

is likely derived from results provided in [137]. Minimization of Eq. 2 with respect to 𝑚 and  

results in the variation of the buckling coefficient with 𝛾𝑍, Figure 4-1.  

 
Figure 4-1: Buckling coefficients for simply supported isotropic circular cylinders subjected to 

axial compression. 

For moderately long cylinders, where 𝛾𝑍 > 2.85, or >
𝜋2√3

6
, the buckling coefficient can be 

approximated by Eq. 6. 

𝑘𝑥 =
4√3

𝜋2
𝛾𝑍 

6 

Substitution of Eq. 6 into Eq. 1 results in a reduced form of 𝑁𝑥 from which the critical axial stress 

can be determined by dividing 𝑁𝑥 by the shell thickness, 𝑡. 

𝜎𝑥 =
𝛾 𝐸

√3(1 − 𝜈2)
 
𝑡

𝑟
 7 

= 0.605 𝛾 𝐸
𝑡

𝑟
  (for  𝜈 = 0.3) 8 

By assuming a value of 𝛾 equal to 1.0, one obtains the theoretical buckling equation given in [93]. 

However, on the basis of various experimental data, it is recommended that a knockdown factor 𝛾 

less than 1.0 be used to account for difference between the predicted buckling load and the actual 

buckling load determined from tests. An empirical factor (i.e., correlation factor, knockdown 

factor) recommended from [101] is given by 

𝛾 = 1 − 0.901(1 − 𝑒−𝜙) 9 
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where 

𝜙 =
1

16
√

𝑟

𝑡
 (for 

𝑟

𝑡
< 1500) 10 

Equation 9 is shown graphically in Figure 4-2 and provides a good lower bound for most test data 

that was compiled from the 1930s to the 1960s. The multiplier 0.606 in Figure 4-2 best provides 

the curve fit from the data and it comes from Reference [103].  

 

 

Figure 4-2: Lower bound design recommendation for thin-walled isotropic  

cylinders subjected to axial compression.  

(Top: actual test data with a 0.606 multiplier on  on linear scale; Bottom:  

Eq.9 on log-linear scale) per [103] 
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It should be noted that Donnell’s buckling load predictions given by Eq. 1 cannot predict column 

buckling or the interaction between shell buckling (i.e., general instability) and column buckling 

[72]. In particular, the buckling load given by Eq. 1 becomes unconservative for large 𝐿/𝑟 ratios. 

If designing thin-walled cylindrical struts or long tanks without intermediate ring frames, the 

column buckling failure mode and shell buckling-column buckling interaction should be 

evaluated. Sanders’ nonlinear shell theory [95] is better suited for the prediction of the theoretical 

buckling loads for long cylinders. Additionally, the knockdown factor, 𝛾, given by Eq. 9 should 

be used with caution for cylinders with ratios of 𝐿/𝑟 >  5 since correlation has not been verified 

by experiment in this range. Finally, it is generally accepted that the knockdown factor equation 

in Eq. 9 is likely to bound what is expected in the design of aerospace-quality cylinders which 

have well-controlled manufacturing processes. Testing has shown that buckling loads are higher 

than the lower bound design curve given by Eq. 9. These higher loads are most likely a result of 

greater quality control associated with the fabrication and testing of these structures, which 

minimizes the effects of initial geometric imperfections and loading nonuniformities. Alternate 

methods for defining less conservative, realistic knockdown factors are presented in Section 

4.2and Section 4.3. 

When geometry and material properties are such that the computed buckling stresses are in the 

plastic range, the value of Young’s Modulus, 𝐸, in Eq. 3 and 8 should be replaced by the value 𝜂𝐸 

where 

𝜂 =
√𝐸𝑠𝑒𝑐𝐸𝑡𝑎𝑛

𝐸
 

11 

Equation 11 is an approximation of the plasticity factors given in [137, 138] and applies to 

moderately long cylinders. For extremely short cylinders (𝑍 → 0), the appropriate plasticity factor 

as presented in [139], is given by: 

𝜂 =
𝐸𝑡𝑎𝑛

𝐸
 12 

For cylinders with a length between those for which Eq. 11 and Eq. 12 apply, it is presumed that 

a linear interpolation with 𝑍 between the factors given by Eq. 11 and Eq. 12 would provide 

satisfactory results. 

 Bending 

Buckling and collapse are identical states for isotropic cylinders subjected to bending. In [140], 

Seide showed that the predicted maximum buckling axial stress due to pure bending for a finite 

length simply supported cylinder was approximately equal to that for uniform axial compression. 

Thus, the procedures given for compression-loaded isotropic cylinders may be used to obtain the 

critical maximum stress for isotropic cylinders in bending except that a correlation factor specific 

for the bending load condition should be used. The critical bending moment, 𝑀𝑐𝑟, can be 

approximated by 

𝑀𝑐𝑟 = 𝜋𝑟2𝑁𝑥 = 𝑘𝑥

𝜋3𝐷𝑟2

𝐿2  13 
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where 𝑘𝑥 is represented by Eq. 2, identical to the case for axial compression. 

The knockdown factor for cylinders in bending is taken from [103] as 

𝛾 = 1 − 0.731(1 − 𝑒−𝜙) 14 

where 

𝜙 =
1

16
√

𝑟

𝑡
  (for 

𝑟

𝑡
< 1500) 15 

Equation 15 should be used with caution for 
𝑟

𝑡
>  1500 because experimental data are not available 

in this range. Although the theoretical critical stress is assumed to be the same for axial 

compression and bending, the correlation factor for bending is greater than that for compression 

due to the reduced imperfection sensitivity exhibited by cylinders in bending.  

Designs should be verified to protect against cross section collapse. For sufficiently long shells, it 

has been found [141] that a circular cylindrical tube cross section ovalizes progressively when an 

initially straight tube is subjected to uniform bending and this, in turn, reduces the flexural stiffness 

and results in premature cross-sectional buckling of the tube. This cross-sectional buckling is 

characterized by the formation of a crease followed by complete flattening of cross-section and 

significant loss of structural stiffness [142]. For sufficiently long shells, the critical bending 

moment for cross section collapse is given by 

𝑀𝑐𝑟 =  0.987 
𝐸 𝑟 𝑡2

√1 − 𝜈2
   16 

It was demonstrated in [143] that bifurcation buckling occurs before the cross-sectional collapse 

limit point regardless the level of internal pressure, indicating that cross-sectional collapse may 

not always be the only design driver. Stephens et al. studied cylinders loaded by pure bending and 

cylinders under combined loads of bending and internal or external pressure [144]. Their work 

found that critical moment increased relative to increasing internal pressure of the cylinder. 

Conversely, critical moment was found to decrease relative to increasing external pressure, below 

the critical moment associated with cross-sectional collapse in unpressurized cylinders. 

 External Pressure 

Two types of external pressure are considered: hydrostatic and lateral. Except for short cylinders, 

the critical buckling pressures for hydrostatic and lateral are essentially the same.  

The term lateral pressure corresponds to an external pressure, 𝑝, which acts only on the curved 

walls of the cylinders and not on the ends (e.g., bulkheads). Circumferential stress, 𝜎𝑦, and 

circumferential line load, 𝑁𝑦, are related through thickness and to the applied external pressure, 𝑝, 

and are given by 

𝜎𝑦 =
𝑝𝑟

𝑡
=

𝑁𝑦

𝑡
 17 
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The term hydrostatic pressure corresponds to an external pressure, 𝑝, which acts on both the 

curved walls and the ends of the cylinder. In this case, the circumferential loads are identical to 

Eq. 17 and axial loads in the shell wall are given by 

𝜎𝑥 =
𝑝𝑟

2𝑡
=

𝑁𝑥

𝑡
 18 

Except for sufficiently short cylinders (𝛾𝑍 <  100), the critical pressures for the two different 

types of loads are not significantly different. An approximate equation for the buckling of cylinders 

subjected to lateral pressure is given in [93] as  

𝑁𝑦 = 𝑘𝑦

𝜋2𝐷

𝐿2  19 

where the buckling coefficient is 

𝑘𝑦 =
𝑝𝑟𝐿2

𝜋2𝐷
=

1

𝛽2
[(1 + 𝛽2)2 +

12

𝜋4

𝛾2𝑍2

(1 + 𝛽2)2
]. 20 

The equation for buckling of cylinders subjected to hydrostatic pressure is obtained by replacing 

the 𝑘𝑦 in Eq. 19 by 𝑘𝑝 and the factor 𝛽2 before the bracketed expression in Eq. 20 is replaced by 

(𝛽2 +
1

2
). That is 

𝑁𝑦 = 𝑘𝑝

𝜋2𝐷

𝐿2  21 

where the buckling coefficient is 

𝑘𝑝 =
𝑝𝑟𝐿2

𝜋2𝐷
=

1

(𝛽2 +
1
2
)
[(1 + 𝛽2)2 +

12

𝜋4

𝛾2𝑍2

(1 + 𝛽2)2
] 22 

The term 𝛾2 has been added to Eq. 20 and Eq. 22 as a correction for the difference between theory 

and test. 

The minimum values of 𝑘𝑦 for lateral pressure and 𝑘𝑝 for hydrostatic pressure are obtained by 

allowing the buckle aspect ratio, 𝛽 to vary continuously and are shown in Figure 4-3. For 

 𝛾𝑍 > 100, 𝑘𝑦 and 𝑘𝑝 are given by the following equation  [93]:  

𝑘𝑦 = 𝑘𝑝 = 1.04 √𝛾𝑍 23 

The critical pressure then corresponds to 

𝑝𝑐𝑟 =
0.855

(1 − 𝜈2)
3
4

 
𝐸√𝛾

(
𝑟
𝑡
)

5
2
(
𝐿
𝑟
)

  
24 

For 𝜈 = 0.316, Eq. 24 further simplifies to 

𝑝𝑐𝑟 = 0.926 
𝐸√𝛾

(
𝑟
𝑡
)

5
2
(
𝐿
𝑟
)
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For large values of 𝛾𝑍 (𝛾𝑍 > 4000) in Figure 4-3, the buckling mode corresponds to an oval shape 
(𝑛 =  2)and the corresponding buckling coefficient in this instance is given by: 

𝑘𝑦 = 𝑘𝑝 =
3

𝜋2
 

𝛾𝑍
𝑟
𝑡
√1 − 𝜈2

 26 

 

Figure 4-3: Buckling coefficients for simply supported isotropic circular cylinders subjected to 

external pressure. 

By assuming a value of 𝛾 equal to 1.0 in Eq. 27, one obtains the theoretical buckling equation 

given in [137]. However, based on various experimental data, it is recommended that a knockdown 

factor 𝛾 less than 1.0 be used to account for the difference between the predicted buckling load 

and the actual buckling load determined from tests.  

𝑝𝑐𝑟 =
𝛾𝐸

4 (1 − 𝜈2)
 (

𝑡

𝑟
)
3

 27 

It has been shown analytically, e.g., [135], [145], and [146], that restraining longitudinal 

movement of the cylinder ends can increase the theoretical buckling pressure by as much as 50%. 

Rotational constraints on the edges only affected the buckling load of relatively short cylinders. 

These results indicate that the effects of the boundary conditions should be assessed carefully. 

Experimental data for cylinders which buckle with more than two circumferential waves, 

 𝛾𝑍 < 11.8 (
𝑟

𝑡
)
2
(1 − 𝜈2), show considerable scatter about the theoretical buckling coefficient 

values given by Eq. 20 and Eq. 22 when 𝛾 is unity [147]. There are several sources to the observed 

scatter. The end restraint of the test specimens was not always considered in detail in the analysis 

of the test data. The reported test data may also include lower buckling loads based on isolated 

buckles appearing in cylinders with large (
𝑟

𝑡
) or small (

𝐿

𝑟
) before a pressure was reached at which 

a global buckle pattern appeared around the entire circumference. The definition of the buckling 
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for these cases is a matter of individual judgement and may vary in different tests by different 

investigators. For cylinders subjected to hydrostatic pressure, the induced axial compression load 

and imperfection sensitivity characteristics may also have a significant influence on the buckling 

response. Later work [20] indicated significantly better correlation between test and analysis due 

to improved testing methods and specimen fabrication. However, because some of the test loads 

from previous testing are as much as 25% below the theoretical results, a conservative correlation 

factor of  

√𝛾 = 0.75,   𝛾 =  0.5625 28 

is recommended for use with Eq.23-25. 

For long cylinders that buckle into an oval shape, there is less of a discrepancy between theory and 

experiment [148] and a correlation factor of  

𝛾 = 0.90 29 

is recommended for use with Eq. 26 and 27. 

For relatively short cylinders (𝛾𝑍 <  5) under lateral pressure, the plasticity factor for long, simply 

supported plates in axial compression may be used [139] and is shown by 

𝜂 =
𝐸𝑠𝑒𝑐

𝐸
(
1

2
+

1

2
√

1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
) 30 

For 100 < 𝛾𝑍 < 11.8 (
𝑟

𝑡
)
2
(1 − 𝜈2), the approximate plasticity factor is obtained from [148] as 

𝜂 =
𝐸𝑠𝑒𝑐

𝐸
√(

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
)

1
2
(
1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
) 

31 

For 𝛾𝑍 > 11.8 (
𝑟

𝑡
)
2
(1 − 𝜈2) the approximate plasticity factor is obtained from [137] as 

𝜂 =
𝐸𝑠𝑒𝑐

𝐸
(
1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
) 32 

No plasticity factor is available for the range 5 < 𝛾𝑍 < 100; satisfactory results may, however, be 

achieved by linear interpolation with the parameter 𝑍 between the values of 𝜂 given by  

Eq. 30 and 31. 

Plasticity factors for the biaxial stress state of hydrostatic pressure are unavailable. For lack of 

better information, the plasticity factors given by Eq. 30-32 may be used. 

 Torsion 

Buckling generally corresponds with collapse loads for unstiffened cylinders in torsion. The 

theoretical buckling coefficient for cylinders in torsion, 𝑘𝑥𝑦, can be obtained from Figure 4-4, 

which is taken from [93]. For very short cylinders, the value of the critical shear-stress coefficient 

approaches the value of a flat plate in shear equal to 5.34 when the edges are simply supported. 

The straight-line portion of the curve is given by 

𝑘𝑥𝑦 =
𝑁𝑥𝑦𝐿2

𝜋2𝐷
= 0.85 (𝛾𝑍)

3
4  33 
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Figure 4-4: Buckling coefficients for simply supported isotropic circular cylinders subjected to 

torsion. 

𝑁𝑥𝑦 is the critical torsion load per unit length around the circumference of the cylinder. The 

correlation factor 𝛾 has been included to account for the differences between theory and test. 

Torsional critical stress, 𝜏𝑐𝑟, can be expressed as 

𝜏𝑐𝑟 = 
𝑁𝑥𝑦

𝑡
 =

0.747 𝛾
3
4 𝐸

(
𝑟
𝑡
)

5
4
(
𝐿
𝑟
)

1
2

 34 

To approximate the lower bound to most buckling data provided in [93], the value 

𝛾
3
4 = 0.67 

35 

is recommended for moderately long cylinders, 50 < 𝛾𝑍 < 78 (
𝑟

𝑡
)
2
(1 − 𝜈2). 

For very long cylinders, 𝛾𝑍 > 78 (
𝑟

𝑡
)
2
(1 − 𝜈2), the cylinder buckles into a mode shape with two 

circumferential waves (𝑛 =  2). The critical buckling stress given in [149] is 

𝜏𝑐𝑟 =
𝛾𝐸

3√2 (1 − 𝜈2)
3
4

(
𝑡

𝑟
)

3
2

 36 

and corresponds to a buckling coefficient of 

𝑘𝑥𝑦 = 
2√2 𝛾𝑍

𝜋2 (
𝑟
𝑡
)

1
2 (1 − 𝜈2)

1
4

 37 
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For very long cylinders, the following knockdown factor is recommended. 

𝛾 = 0.80 38 

Critical buckling stress from Eq. 36 can be related to critical buckling torque load, 𝑇𝑐𝑟, through 

the following equation 

𝑇𝑐𝑟 =
𝐽 ∗ 𝜏𝑐𝑟

𝑟
=

𝜋(𝑟𝑜
4 − 𝑟𝑖

4)𝜏𝑐𝑟

2𝑟
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Plasticity may be taken into account by applying the plasticity factor, 𝜂, from [148] into  

Eq. 34 and 36, where 

𝜂 =
𝐸𝑠𝑒𝑐

𝐸
 40 

The quantity 𝐸𝑠𝑒𝑐 is obtained from a uniaxial stress-strain curve at a normal stress equal to twice 

the critical shear stress. Equation 40 applies to cylinders of all lengths. 

 Combined Loads 

Typical load combinations encountered in practice are treated here. Generally, the recommended 

practice to account for combinations of two or more loading conditions that may cause buckling 

is to assume that the sum of the various critical load ratios is equal to unity. However, it has been 

shown theoretically and experimentally, [20] and [137], that this assumption can be conservative 

(e.g., combined compression and torsion; combined bending and torsion). Alternate approaches 

used to account for the effects of combined loads can yield more accurate and less conservative 

buckling load estimates; however, it is advised that these alternate approaches be substantiated by 

test or validated buckling load predictions. 

4.1.1.5.1 Combined Axial Compression and Bending 

The recommended interaction equation for combined axial compression and bending is 

𝑅𝑐 + 𝑅𝑏 = 1 41 

where the quantities 𝑅𝑐 and 𝑅𝑏 are the compressive and bending load given by 

𝑅𝑐 =
𝑃

𝑃𝑐𝑟
 42 

and 

𝑅𝑏 =
𝑀

𝑀𝑐𝑟
 43 

𝑃 and 𝑀 are the applied compressive load and applied bending load, respectively. 𝑃𝑐𝑟 is the 

allowable axial load, which can be derived from the axial stress in Eq. 7, and 𝑀𝑐𝑟 is the allowable 

bending moment which can be found directly from Eq. 13. 

4.1.1.5.2 Combined Axial Compression and External Pressure 

The recommended interaction equation for combined axial compression and external pressure is 

𝑅𝑐 + 𝑅𝑝 = 1 44 
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The quantities 𝑅𝑐 and 𝑅𝑝 are the compressive and hydrostatic- or lateral-pressure load ratios, where 

𝑅𝑝 is given by  

𝑅𝑝 =
𝑝

𝑝𝑐𝑟
 45 

where 𝑝 is the applied pressure load and 𝑝𝑐𝑟 is the allowable pressure load given by Eq. 24 in 

Section 4.1.1.3 for cylinders subjected to external pressure. 

4.1.1.5.3 Combined Axial Compression and Torsion 

For cylindrical shells subjected to combined axial compression and torsion, the analytical 

interaction curve is a function of 𝑍. The experimental test data suggest the use of a straight-line 

interaction equation 

𝑅𝑐 + 𝑅𝑡 = 1 46 

The quantities 𝑅𝑐 and 𝑅𝑡 are the compressive and torsion load ratios, respectively, where 𝑅𝑡 is 

given by 

𝑅𝑡 =
𝑇

𝑇𝑐𝑟
 47 

and 𝑇 is the applied torque load and 𝑇𝑐𝑟 is the allowable torque load given in Section 4.1.1.4for 

cylinders subjected to torsion. 

4.1.1.5.4 Combined Axial Compression and Internal Pressure 

Buckling and collapse typically match for cylinders subjected to combined internal pressure and 

axial compression. The internal pressure increases the buckling load of the cylinder in the 

following ways: 

1. The total axial compressive load must be greater than the tensile pressurization load in 

the shell wall 𝑝𝜋𝑟2 before buckling can occur. 

2. The destabilizing effect of initial imperfections is reduced.  

3. The circumferential tensile stress induced by the pressurization can inhibit the 

formation of the classical diamond-shaped buckling pattern, and, at sufficiently high 

pressures, the cylinder buckles into the classical axisymmetric mode at approximately 

the classical buckling stress. 

Lower bound curves giving the increase in buckling load as a function of internal pressure, based 

on the results for Mylar cylinders, are given in [150] for various radius-to-thickness ratios. Because 

these curves are unsubstantiated at present for other materials, the more conservative values given 

in [109] are recommended for design use. It is therefore recommended that the total load for 

buckling, unless substantiated by test, be obtained by the addition of the pressurization load 𝑝𝜋𝑟2, 

the buckling load for the unpressurized cylinder (Eq. 1), and an increase in the buckling load 

caused by the pressurization; that is 

𝑃𝑝𝑟𝑒𝑠𝑠 = 2𝜋𝐸𝑡2  (
𝛾

√3(1 − 𝜈2)
+ 𝛥𝛾) + 𝑝𝜋𝑟2

 48 
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where 𝑃𝑝𝑟𝑒𝑠𝑠 is the load at collapse of an internally pressurized cylinder, Δ𝛾 is obtained from Figure 

4-5. For 𝜈 = 0.3, Eq. 48 simplifies to 

𝑃𝑝𝑟𝑒𝑠𝑠 = 2𝜋𝐸𝑡2 (0.605𝛾 + 𝛥𝛾) + 𝑝𝜋𝑟2
 49 

The Δ𝛾 curve provided in Figure 4-5 should only be used with the equations presented here. 

Application of data from Figure 4-5 to other untested cylinder configurations or use with other less 

conservative knockdown factors could result in unconservative designs.  

4.1.1.5.5 Combined Bending and Internal Pressure 

For cylinders subjected to combined internal pressure and bending, collapse loads are considerably 

higher than buckling loads  [151, 152, 153], with the increase being substantially more than the 

tension stress induced by the pressurization. For example, very thin-walled cylinders (
𝑟

𝑡
= 6000) 

have been shown to experience pressure stiffening characteristics where the collapse load is as 

much as twice the initial buckling load [154]. The theoretical collapse load is, however, 

unattainable unless large undesirable deformations are present. It is therefore recommended that 

the collapse moment for pressurized cylinders be obtained by adding the moment-carrying 

capability of a pressurized membrane cylinder (taken for design purposes as 80% of the theoretical 

value), the collapse moment for the unpressurized cylinder (Eq. 13), and an increase in the critical 

moment caused by pressurization. Then 

𝑀𝑝𝑟𝑒𝑠𝑠 = 𝜋𝑟𝐸𝑡2  (
𝛾

√3(1 − 𝜈2)
+ 𝛥𝛾) + 0.8 𝑝𝜋𝑟3

 50 

where 𝑀𝑝𝑟𝑒𝑠𝑠 is the bending moment of collapse of an internally pressurized cylinder, Δ𝛾 is 

obtained from Figure 4-5. For 𝜈 = 0.3, Eq. 50 simplifies to 

𝑀𝑝𝑟𝑒𝑠𝑠 = 𝜋𝑟𝐸𝑡2 (0.605𝛾 + 𝛥𝛾) + 0.8 𝑝𝜋𝑟3
 51 

 

Figure 4-5: Increase in axial buckling knockdown factor (correlation coefficient) for pressurized 

cylinders. 
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4.1.1.5.6 Combined Axial Compression, Bending, and Internal Pressure 

For internally pressurized cylinders subjected to combined axial compression and bending, Eq. 41 

is recommended for use in combination with Eq. 48 and Eq. 50.  

 Orthotropic Cylinders 

The term orthotropic cylinders covers a wide variety of cylinder configurations. In the strictest 

sense, it denotes cylinders made of a single orthotropic material or of multiple orthotropic layers. 

It also denotes stiffened cylinders for which the stiffener geometry and spacing is such that the 

cylinder can be approximated by a fictitious layer whose orthotropic bending and extensional 

properties include those of the individual stiffening element averaged or smeared out over 

representative widths or areas. Generally, the directions of the axes of orthotropy are taken to 

coincide with the longitudinal and circumferential directions of the cylinder. 

The buckling behavior of various types of orthotropic cylinders may be described by a single 

theory, the elements of which are equations of equilibrium for the buckled structure, and stress-

strain relations. For cylinders of a single orthotropic layer, it is generally permissible to neglect 

coupling between membrane stresses and bending strains, and between moment resultants and 

extensional strains. The theory is then similar to that for isotropic cylinders. For stiffened cylinders 

or for cylinders having multiple orthotropic layers, however, the neglect of coupling terms can 

lead to significant errors.  

For example, cylinders that have stiffeners on the inner surface or on the outer surface will exhibit 

bending-extension coupling due to the eccentricity of the stiffeners relative to the mid-surface of 

the cylinder wall. In addition, the character of the coupling will be different depending on the 

orientation of the stiffeners and if the stiffeners are on the inside or the outside, and can have a 

significant influence on the buckling response of the cylinder [155, 156, 157, 158, 159]. In 

particular, the eccentricity effect is very pronounced for axially stiffened cylinders in compression. 

Similarly, laminated composite cylinders can exhibit various types of elastic coupling even if the 

laminate is balanced and symmetric [160].  

In stiffened cylinders, other failure modes should also be investigated including local skin buckling 

between stiffeners, as well as stiffener buckling and stiffener crippling. In addition, the adequacy 

of the smeared stiffener theory should be investigated if the spacing of the stiffeners becomes 

sufficiently large, or if large-magnitude geometrically nonlinear prebuckling deformations are 

anticipated [25]. 

 Axial Compression 

An equation for the buckling of orthotropic cylinders in compression [161] is given by: 

𝑁𝑥 = (
𝐿

𝑚 𝜋
)
2
|

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

|

|
𝐴11 𝐴12

𝐴21 𝐴22
|

 𝑓𝑜𝑟 𝑛 ≥ 4 
52 

or 

𝑁𝑥 (
𝑚 𝜋

𝐿
)
2

= 𝐴33 + 𝐴23 (
𝐴13𝐴12 − 𝐴11𝐴23

𝐴11𝐴22 − 𝐴12
2 ) + 𝐴13 (

𝐴12𝐴23 − 𝐴13𝐴22

𝐴11𝐴22 − 𝐴12
2 ) 53 
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where 

𝐴11 = 𝐸̅𝑥 (
𝑚 𝜋

𝐿
)
2

+ 𝐺̅𝑥𝑦 (
𝑛

𝑟
)
2

 54 

𝐴22 = 𝐸̅𝑦 (
𝑛

𝑟
)
2

+ 𝐺̅𝑥𝑦 (
𝑚 𝜋

𝐿
)
2

 55 

𝐴33 = 𝐷̅𝑥 (
𝑚 𝜋

𝐿
)
4

+ 𝐷̅𝑥𝑦 (
𝑚 𝜋

𝐿
)
2

(
𝑛

𝑟
)
2

+ 𝐷̅𝑦 (
𝑛

𝑟
)
4

+
𝐸̅𝑦

𝑟2
+

2 𝐶𝑦̅

𝑟
(
𝑛

𝑟
)

2

+
2 𝐶̅𝑥𝑦

𝑟
(
𝑚 𝜋

𝐿
)
2
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𝐴12 = 𝐴21 = (𝐸̅𝑥𝑦 + 𝐺̅𝑥𝑦) 
𝑚 𝜋

𝐿
 
𝑛

𝑟
 57 

𝐴23 = 𝐴32 = (𝐶𝑥̅𝑦 + 2𝐾𝑥𝑦) (
𝑚 𝜋

𝐿
)
2 𝑛

𝑟
+

𝐸̅𝑦

𝑟

𝑛

𝑟
+ 𝐶𝑦̅ (

𝑛

𝑟
)
3
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𝐴31 = 𝐴13 =
𝐸̅𝑥𝑦

𝑟
 
𝑚 𝜋

𝐿
+ 𝐶𝑥̅ (

𝑚 𝜋

𝐿
)
3

+ (𝐶𝑥̅𝑦 + 2𝐾𝑥𝑦)
𝑚 𝜋

𝐿
(
𝑛

𝑟
)
2

 59 

Values of the stiffnesses 𝐸̅𝑥, 𝐸̅𝑥𝑦, 𝐸̅𝑦, 𝐺̅𝑥𝑦, 𝐷̅𝑥, 𝐷̅𝑥𝑦, 𝐷̅𝑦, 𝐶̅𝑥, 𝐶̅𝑥𝑦, 𝐶̅𝑦, and 𝐾̅𝑥𝑦, for various types of 

construction are given in Section 4.1.2.6. Prebuckling deformations are not considered in the 

derivation of the equation. The cylinder edges are assumed to be simply supported, that is the radial 

displacements are restrained (pinned) but rotation about the tangent is unrestrained (free). These 

conditions are assumed to be representative of rings that are rigid in their own plane but offer no 

resistance to rotation or bending out of their plane. For ring-stiffened corrugated cylinders, a 

similar but not identical theory is given in [117, 162]. For given cylinder and stiffener dimensions, 

the values of m and n (the number of axial half waves and circumferential full-waves, respectively) 

to be used are those that minimize the buckling load 𝑁𝑥. The above equations become less accurate 

for moderately long cylinders when 𝑛 ≤ 4, as compared to Love or Sanders. Errors can range from 

10% − 40%. 

The large number of parameters in Eq. 52 does not permit a complete treatment of results to be 

shown. However, some generalizations can be made, and references are provided. For 

combinations of parameters representative of stiffened shells, calculations indicate that external 

stiffening, whether rings or axial stiffeners (stringers) or both, can be more effective than internally 

stiffened cylinders for axial compression. Generally, calculations neglecting stiffener eccentricity 

yield unconservative values of the buckling load of internally stiffened cylinders and conservative 

values of the buckling load for externally stiffened cylinders [163]. In addition, boundary 

conditions and loading can have a significant effect on these trends [57]. An extensive 

investigation of the variation of the buckling load with various stiffener parameters is reported in 

[128, 155]. Experimental data [117, 118, 119, 120, 121] [57, 164, 165, 166, 167, 168] for cylinders 

with closely spaced stiffeners and comparisons to linear buckling results were investigated for a 

range of geometric parameters. Comparisons improve with increasing area parameter greater than 

0.3, which is defined as the ratio of cross-sectional area of rings to thickness of the shell times the 

spacing between rings. 

Experimental buckling loads have been shown to be as low as 65% of the predicted classical 

buckling load. Thus, it is recommended that the buckling loads for a uniform cylinder with closely 

spaced, moderately large stiffeners calculated from Eq. 52 be multiplied by a factor of 0.65. While 
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[1] suggested a knockdown factor equal to 0.75, a knockdown factor of 0.65 is recommended based 

on the results presented in [5] and [6]. Less conservative analysis-based factors can be derived 

based on an approach outlined in Section 4.3.  

Knockdown factors covering the transition from unstiffened cylinders to cylinders with closely 

space stiffeners have not been fully investigated and may require investigation via detailed analysis 

and or experimental testing. While theory and experiment [123] indicate that restraint against edge 

rotation and longitudinal movement can significantly increase the buckling load, not enough is 

known about the edge restraint of actual cylinders to warrant taking advantage of these effects 

unless substantiated by detailed analysis or tests. 

For layered or unstiffened orthotropic cylinders, the available test data have increased substantially 

since [1] was written and the results indicate higher buckling loads as compared to older isotropic 

data and the lower-bound design curve of Eq. 9 and Figure 4-2. Additional test data is available 

for filament-wound cylinders [169, 170, 171, 172], laminated composite cylinders [10, 11] [173, 

174, 175, 176, 177, 178], and stiffened composite cylinders [179]. However, due to the tremendous 

number of possible design variables and structural configurations, no new empirical guidelines 

have been developed based on this data. Thus, the KDF 𝛾 is taken to be of the same form as for 

the isotropic cylinders (Eq. 9) with the thickness 𝑡 replaced by the geometric mean of the radii of 

gyration for the axial and circumferential directions. Thus 

𝛾 = 1 − 0.901(1 − 𝑒−𝜙) 60 

where  

𝜙 =
1

29.8
 

[
 
 
 
 
 

 
𝑟

√
𝐷̅𝑥𝐷̅𝑦

𝐸̅𝑥𝐸̅𝑦

4

 

]
 
 
 
 
 
 
1
2
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As discussed above, more recent testing has produced buckling loads that are often significantly 

higher than the lower bound design curve given by Eq. 9. It is not uncommon to obtain 

experimental buckling loads for uniform cylinders of 70−90% of the theoretical predictions. These 

higher loads are most likely a result of greater quality control associated with the fabrication and 

testing of these structures, which minimizes the effects of initial geometric imperfections and 

loading nonuniformities. However, given the extreme imperfection sensitivity of compression-

loaded thin-walled cylinders, the design factors provided herein should be used unless alternate 

values can be justified. Alternate methods, including Semi-Empirical and high-fidelity analysis-

based methods, for determining less conservative knockdown factors are presented in Sections 4.2 

and 4.3. 

 Bending 

Theoretical and experimental results for stiffened cylinders in bending can be found in [124, 125, 

126] [162] [180, 181, 182, 183, 184]. The results indicate that the critical maximum load of a 

stiffened cylinder in bending can exceed the critical load in axial compression. However, in the 

absence of an extensive investigation, it is recommended that the critical maximum load of a 

uniform cylinder with closely spaced stiffeners be taken as equal to the critical load in axial 

compression, calculated from Eq. 52 multiplied by a factor 𝛾 =  0.75, which is slightly greater 
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than the factor for compression loaded cylinders due to the reduced imperfection sensitivity. In 

addition, as with compression-loaded stiffened cylinders, local skin buckling can also occur prior 

to global buckling, as in the case of widely spaced stiffeners, and should be checked.  

For layered or unstiffened orthotropic cylinders, it is recommended that the correlation factor  

𝛾 = 1 − 0.731(1 − 𝑒−𝜙) 62 

be used where  

𝜙 =
1

29.8
 

[
 
 
 
 
 

 
𝑟

√
𝐷̅𝑥𝐷̅𝑦

𝐸̅𝑥𝐸̅𝑦

4

 

]
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 External Pressure 

The counterpart of Eq. 52 for orthotropic cylinders under lateral pressure the critical pressure is 

found by determining the minimum value of  

𝑝𝑐𝑟 =
𝑟

𝑛2

|

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

|

|
𝐴11 𝐴12

𝐴21 𝐴22
|
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For hydrostatic pressure, the quantity 𝑛2 in Eq. 64 is replaced by 

𝑛2 +
1

2
 (

𝑚 𝜋 𝑟

𝐿
)
2

 65 

In the case of lateral pressure, 𝑚 is equal to unity while 𝑛 must be varied to yield a minimum value 

of the critical pressure, but not less than 2. In the case of hydrostatic pressure, the value of 𝑚 

should be varied along with 𝑛. For long cylinders, Eq. 64 is replaced by 

𝑝𝑐𝑟 =

3(𝐷̅𝑦 −
𝐶𝑦̅

2

𝐸𝑦
)

𝑟3  

66 

If the coupling coefficients can be neglected (i.e., are equal to or close to zero valued), the critical 

buckling pressure can be approximated by: 

𝑝𝑐𝑟 ≈
5.513

𝐿 𝑟
3
2

[
𝐷̅𝑦

3
(𝐸̅𝑥𝐸̅𝑦 − 𝐸̅𝑥𝑦

2
)

𝐸̅𝑦
]

1
4
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for the case of 

(
𝐷̅𝑦

𝐷̅𝑥
)

3
2

(
𝐸̅𝑥𝐸̅𝑦 − 𝐸̅𝑥𝑦

2

12 𝐸̅𝑦𝐷̅𝑥
)

1
2 𝐿2

𝑟
 > 500 

68 

Equation 64 has been investigated primarily for isotropic cylinders with ring stiffeners [184, 185, 

186]. For closely spaced ring stiffening, it is shown that the effectiveness of inside or outside rings 

depends on the cylinder and ring geometries. Generally, for cylinders with values of 𝑍 less than 

100, outside rings are more effective, while for value of 𝑍 greater than 500, the reverse is true. As 

the ring geometry varies, the effectiveness of the outside stiffening tends to increase as the stiffness 

of the rings relative to the cylinder increases. Somewhat lower buckling pressures are given by the 

more complex but more accurate theory of [187]; however, the differences are not so significant 

as to warrant its use. 

The experimental results for ring-stiffened cylinders described in [188, 189, 190, 191] are in 

reasonably good agreement with the theoretical results of Eq. 64. For cylinders of all types, it is 

recommended that the buckling pressure calculated from Eq. 64 be multiplied by a factor of 0.75, 

as has been recommended for unstiffened isotropic cylinders of moderate length. 

 Torsion 

Buckling of orthotropic cylinders in torsion has been treated in [94, 192, 193]. If coupling effects 

are negligible, the critical torsion load for moderately long cylinders can be estimated based on the 

equations provided in [94] as follows: 

𝑇𝑐𝑟 ≈ 21.75 𝐷̅𝑦

5
8 (

𝐸̅𝑥𝐸̅𝑦 − 𝐸̅𝑥𝑦
2

𝐸̅𝑦
)

3
8

 
𝑟

5
4

𝐿
1
2
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for the case of 

(
 𝐷̅𝑦

 𝐷̅𝑥
)

5
6

(
𝐸̅𝑥𝐸̅𝑦 − 𝐸̅𝑥𝑦

2

12 𝐸̅𝑦𝐷̅𝑥
)

1
2

 
𝐿2

𝑟
≳ 500 
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However, [193] indicates that coupling effects can be quite important for cylinders stiffened with 

closely spaced rings. For long cylinders, internal rings are generally more effective than outside 

rings; for short cylinders, the reverse is true. In the absence of general formulas or graphs for the 

range of practical parameters, the equations in [191] should be solved for each specific case 

considered. 

The limited test data of [194] for relatively short stiffeners are in good agreement with theoretical 

predictions but are insufficient to provide an adequate test of the theory for more practical designs. 

It is therefore recommended that theoretical critical torsion load 𝑇𝑐𝑟 be multiplied by a factor of 

0.67 for moderately long cylinders. 

 Combined Loads 

Based on theory [162, 180, 195] and limited test data [117, 162], interaction equations found in 

Section 4.1.1.5 for isotropic cylinders are recommended.  
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However, as discussed in Section 4.1.1.5, it has been shown theoretically and experimentally that 

this assumption can be somewhat conservative (e.g., combined compression and torsion and 

combined bending and torsion) [20, 137]. Alternate approaches used to account for the effects of 

combined loads can yield more accurate and less conservative buckling load estimates; however, 

it is advised that these alternate approaches be substantiated by test or validated buckling load 

predictions. 

 Elastic Constants 

Equations for the elastic constants for commonly used cylinder wall constructions are provided in 

this section, including: Stiffened Multilayered Orthotropic Cylinders, Isotropic Cylinders with 

Rings and Stringers, Isotropic Isogrid-Stiffened Cylinders, Ring-Stiffened Corrugated Cylinders. 

Equations for determining elastic constants for other stiffener patterns and structural 

configurations are presented in Nemeth, including Hexagonal stiffener pattern, Kagome stiffener 

pattern, and sandwich plates with nonidentical anisotropic facesheets [196]. 

4.1.2.6.1 Stiffened Multilayered Orthotropic Cylinders 

Commonly used expressions for the elastic constants for multilayered cylinders with isotropic 

rings and stringers are [161]: 

𝐸̅𝑥 = ∑ (
𝐸𝑥

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘 +
𝐸𝑠𝐴𝑠

𝑏𝑠

𝑁

𝑘=1
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𝐸̅𝑦 = ∑ (
𝐸𝑦

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘 +
𝐸𝑟𝐴𝑟

𝑏𝑟

𝑁

𝑘=1
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𝐸̅𝑥𝑦 = ∑ (
𝜈𝑥𝐸𝑦

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘 = ∑ (
𝜈𝑦𝐸𝑥

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘

𝑁

𝑘=1

𝑁

𝑘=1
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𝐺̅𝑥𝑦 = ∑(𝐺𝑥𝑦)
𝑘
𝑡𝑘

𝑁

𝑘=1
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𝐷̅𝑥 = ∑ (
𝐸𝑥

1 − 𝜈𝑥𝜈𝑦
)

𝑘

(
1

12
𝑡𝑘
3 + 𝑡𝑘  𝑧̃𝑘

2) +
𝐸𝑠𝐼𝑠
𝑏𝑠

+ 𝑧̃𝑠
2

𝑁

𝑘=1

𝐸𝑠𝐴𝑠

𝑏𝑠
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𝐷̅𝑦 = ∑ (
𝐸𝑦

1 − 𝜈𝑥𝜈𝑦
)

𝑘

(
1

12
𝑡𝑘
3 + 𝑡𝑘  𝑧̃𝑘

2) +
𝐸𝑟𝐼𝑟
𝑏𝑟

+ 𝑧̃𝑟
2

𝑁

𝑘=1

 
𝐸𝑟𝐴𝑟

𝑏𝑟
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𝐷̅𝑥𝑦 = ∑ (4 𝐺𝑥𝑦 +
𝜈𝑥𝐸𝑦

1 − 𝜈𝑥𝜈𝑦
+

𝜈𝑦𝐸𝑥

1 − 𝜈𝑥𝜈𝑦
)

𝑘

(
1

12
𝑡𝑘
3 + 𝑡𝑘  𝑧̃𝑘

2) +
𝐺𝑠𝐽𝑠
𝑏𝑠

+

𝑁

𝑘=1

𝐺𝑟𝐽𝑟
𝑏𝑟

 77 

𝐶𝑥̅ = ∑ (
𝐸𝑥

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘  𝑧̃𝑘 + 𝑧̃𝑠

𝐸𝑠𝐴𝑠

𝑏𝑠

𝑁

𝑘=1

 78 
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𝐶𝑦̅ = ∑ (
𝐸𝑦

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘  𝑧̃𝑘 + 𝑧̃𝑟

𝐸𝑟𝐴𝑟

𝑏𝑟

𝑁

𝑘=1
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𝐶𝑥̅𝑦 = ∑ (
𝜈𝑦𝐸𝑥

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘  𝑧̃𝑘 = ∑ (
𝜈𝑥𝐸𝑦

1 − 𝜈𝑥𝜈𝑦
)

𝑘

𝑡𝑘  𝑧̃𝑘

𝑁

𝑘=1

𝑁

𝑘=1
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𝐾𝑥𝑦 = ∑(𝐺𝑥𝑦)
𝑘
 𝑡𝑘  𝑧̃𝑘

𝑁

𝑘=1

 81 

where 𝐸, 𝐺, 𝜈 denote the Young’s Modulus, shear modulus, and Poisson’s Ratio of the skin and 

stiffener materials. The subscripts 𝑥 and 𝑦 are associated with the skin properties and correspond 

to the axial and circumferential coordinates of the cylinder, and the subscripts 𝑠 and 𝑟 refer to the 

stringer and ring stiffeners. The subscript 𝑘 refers to the 𝑘𝑡ℎ layer of an 𝑁-layer cylinder wall. The 

thickness of the 𝑘𝑡ℎlayer is denoted by 𝑡𝑘 and the location of the layer midsurface relative to the 

wall reference surface is defined as 𝑧̃𝑘, and is positive valued for layers radially outside of the 

reference surface (see Figure 4-6). The reference surface is typically taken to be associated with 

the mid-surface of the laminate; however, this is not a requirement. Area, moment of inertia, and 

torsional constant for the ring and stringer stiffeners are denoted by (𝐴𝑟 , 𝐴𝑠), (𝐼𝑟 , 𝐼𝑠), and (𝐽𝑟 , 𝐽𝑠), 

respectively. The moments of inertia of the ring and stringer stiffeners are calculated relative to 

the reference-surface of the skin. Stringer spacing in the circumferential direction is denoted by 𝑏𝑠 

while the ring spacing in the axial direction is denoted by 𝑏𝑟. Stiffener eccentricities, 𝑧̃𝑟 and 𝑧̃𝑠, 

are defined as the distances between the shell-wall reference surface and the stiffener centroid, as 

shown in Figure 4-7. 

 

Figure 4-6: Multilayered orthotropic cylindrical shell wall geometry. 
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Figure 4-7: Ring- and stringer-stiffened shell wall geometry. 

4.1.2.6.2 Isotropic Cylinders with Rings and Stringers 

For an isotropic cylinder with rings and stringers and a reference surface at the mid-surface of the 

skin, Eqs. 71 to 81 reduce to the following. 

𝐸̅𝑥 =
𝐸 𝑡

1 − 𝜈2
+

𝐸𝑠 𝐴𝑠

𝑏𝑠
 82 

𝐸̅𝑦 =
𝐸 𝑡

1 − 𝜈2
+

𝐸𝑟  𝐴𝑟

𝑏𝑟
 83 

𝐸̅𝑥𝑦 =
𝜈 𝐸 𝑡

1 − 𝜈2 84 

𝐺̅𝑥𝑦 =
𝐸 𝑡

2(1 + 𝜈)
 85 

𝐶𝑥̅ = 𝑧̃𝑠

𝐸𝑠 𝐴𝑠

𝑏𝑠
 86 

𝐶𝑦̅ = 𝑧̃𝑟

𝐸𝑟  𝐴𝑟

𝑏𝑟
 87 

 𝐶𝑥̅𝑦 = 𝐾𝑥𝑦 = 0 88 
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𝐷̅𝑥 =
𝐸 𝑡3

12(1 − 𝜈2)
+

𝐸𝑠 𝐼𝑠
𝑏𝑠

+ 𝑧̃𝑠
2
𝐸𝑠 𝐴𝑠

𝑏𝑠
 89 

𝐷̅𝑦 =
𝐸 𝑡3

12(1 − 𝜈2)
+

𝐸𝑟  𝐼𝑟
𝑏𝑟

+ 𝑧̃𝑟
2
𝐸𝑟  𝐴𝑟

𝑏𝑟
 90 

𝐷̅𝑥𝑦 =
𝜈 𝐸 𝑡3

6(1 − 𝜈2)
+

𝐸 𝑡3

6(1 + 𝜈)
+

𝐺𝑠 𝐽𝑠
𝑏𝑠

+
𝐺𝑟  𝐽𝑟
𝑏𝑟

 91 

4.1.2.6.3 Isotropic Isogrid-Stiffened Cylinders  

A derivation of stiffness parameters for a general orthogonal stiffener pattern with diagonal 

stiffener elements is presented in [196]. From that, stiffness parameters for the traditional waffle 

grid pattern can be derived. In addition, a common stiffener pattern, somewhat related to the waffle 

pattern, consisting of an equilateral triangle pattern, commonly referred to as an isogrid stiffener 

pattern (see Figure 4-8). 

The stiffnesses for isogrid-stiffened isotropic cylinders are given by 

𝐸̅𝑥 = 𝐸̅𝑦 =
𝐸 𝑡

1 − 𝜈2
+

3√3

4

𝐸 𝐴𝑠

𝑎
 

92 

𝐸̅𝑥𝑦 =
𝜈 𝐸 𝑡

1 − 𝜈2
+

√3

4

𝐸 𝐴𝑠

𝑎
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𝐺̅𝑥𝑦 =
𝐸 𝑡

2(1 + 𝜈)
+

√3

4

𝐸 𝐴𝑠

𝑎
 94 

𝐶𝑥̅ = 𝐶𝑦̅ = 𝑧̃𝑠

3√3

4

𝐸 𝐴𝑠

𝑎
 

95 

𝐶𝑥̅𝑦 = 𝐾𝑥𝑦 = 𝑧̃𝑠

√3

4

𝐸 𝐴𝑠

𝑎
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𝐷̅𝑥 = 𝐷̅𝑦 =
𝐸 𝑡3

12(1 − 𝜈2)
+

3√3

4

𝐸 𝐼𝑠
𝑎

+
√3

4

𝐺 𝐽𝑠
𝑎

 97 

𝐷̅𝑥𝑦 =
𝜈 𝐸 𝑡3

6(1 − 𝜈2)
+

𝐸 𝑡3

6(1 + 𝜈)
+

3√3

2𝑎
𝐸 𝐼𝑠 +

√3

2𝑎
𝐺 𝐽𝑠  98 

where a is the stiffener length. 
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Figure 4-8: Isogrid geometry definition. The fillet details in this figure are commonly found in 

integrally stiffened metallic designs, however, effects of fillets are neglected in the stiffness 

calculations. 

4.1.2.6.4 Ring-Stiffened Corrugated Cylinders 

The following equations are commonly used to calculate the elastic constants for ring-stiffened 

corrugated cylinders [124]. These properties assume that each segment of the corrugation has the 

length 𝑐 and pitch 𝑗. The corrugated shell geometry definition is given in Figure 4-9. 

𝐸̅𝑥 = 𝐸𝑡̅ 99 

𝑡̅ =
2 𝑡𝑐

1 + 𝑐𝑜𝑠 𝜒
 100 

𝐸̅𝑦 =
𝐸𝑟  𝐴𝑟

𝑏𝑟
 101 

𝐺̅𝑥𝑦 = 𝐺 𝑡𝑐 (
𝑡𝑐
𝑡̅
) 102 

𝐷̅𝑥 = 𝐸 𝐼  ̅ 103 

𝐼 ̅ =
𝑡𝑐  𝑗

2

3
(

𝑠𝑖𝑛2 𝜒 

1 + 𝑐𝑜𝑠 𝜒
) 104 

𝐷̅𝑦 =
𝐸𝑟  𝐼𝑟
𝑏𝑟

+ 𝑧̃𝑟
2 𝐸𝑟  𝐴𝑟

𝑏𝑟
 105 
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𝐷̅𝑥𝑦 =
𝐺𝑟  𝐽𝑟
𝑏𝑟

 106 

𝐶𝑦̅ = 𝑧̃𝑟

𝐸𝑟  𝐴𝑟

𝑏𝑟
 107 

𝐸̅𝑥𝑦 = 𝐶𝑦̅ = 𝐶𝑥̅𝑦 = 𝐾𝑥𝑦 = 0 108 

 

Figure 4-9: Corrugated shell geometry definition 

 Other Design Considerations in Stiffened Cylinders 

4.1.2.7.1 Local Skin Buckling 

In some stiffened cylinder designs, the skin may buckle before the global buckling and collapse of 

the cylinder. A buckled skin is less stiff than an unbuckled skin. The decreased stiffness can be 

calculated by methods similar to those presented in [120, 126, 197] and incorporated in the global 

buckling calculation. In some designs, local bending associated with the bending boundary layer 

response at the end of the cylinder or local bending near stiffness discontinuities can cause 

premature skin buckling. This type of local skin buckling is typically identified in the detailed 

design phase by using geometrically nonlinear analyses of detailed FEMs. Mass allowances 

typically cover any additional reinforcement required to mitigate this buckling response if 

necessary. In other cases, local skin buckling may be intentionally allowed so that skin thicknesses 

may be decreased to further reduce weight.  

4.1.2.7.2 Effects of Smeared Stiffener Approximation 

In general, the smeared stiffener theory is often adequate in the preliminary design of cylinders. 

The predicted linear bifurcation buckling load with this assumption is generally valid for closely 

spaced stiffeners. Some cases have been identified where the effects of discrete stiffeners on the 

buckling response must be assessed [25], especially in cases where stiffeners exhibit out-of-plane 

deformations (i.e., rolling), local skin deformations between the stiffeners leads to a loss of 

stiffness in the cylinder, or nonlinear interactions between local and global deformations. Such 

situations may arise in the prebuckling range of loading of the cylinder near cutouts, joints, or 

other stiffness discontinuities in the cylinder. The loss of effective stiffness of the stiffener or skin 

can invalidate the smeared stiffener approximation. 

 Isotropic Sandwich Cylinders 

The term isotropic sandwich refers to a layered construction formed by two thin isotropic 

facesheets separated by a thicker core. Generally, the thin facesheets provide most of the bending 

stiffness of the construction. The core separates the facesheets and provides the transverse shear 

stiffness of the sandwich construction. 
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Sandwich construction should be checked for two possible modes of instability failure:  

(1) general instability, i.e., global buckling, where the shell fails with the core and facesheets acting 

together, and (2) local instability failure taking the form of facesheet dimpling or wrinkling (see 

Figure 4-10). 

 

Figure 4-10: Types of failure in sandwich shells. 

If the isotropic sandwich cylinder has thin facesheets, and the core with core height h. The core 

has relatively low bending stiffness, then for unequal thickness facesheets, the bending stiffness is 

given by 

𝐷1 =
𝐸 𝑡1 𝑡2 ℎ

2

(1 − 𝜈2)(𝑡1+𝑡2)
 109 

and for equal thickness facesheets by 

𝐷1 =
𝐸 𝑡𝑓  ℎ2

2(1 − 𝜈2)
 110 

The extensional stiffness for unequal thickness facesheets is given by  

𝐵1 =
𝐸

(1 − 𝜈2)
(𝑡1+𝑡2) 111 

and for equal thickness facesheets by 

𝐵1 =
2 𝐸 𝑡𝑓

(1 − 𝜈2)
 112 

The transverse shear stiffness for an isotropic core and unequal thickness face sheets is given by 

𝐷𝑞 = 𝐺𝑥𝑧

ℎ2

(ℎ −
(𝑡1+𝑡2)

2
)

 113 
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and for equal thickness facesheets by 

𝐷𝑞 = 𝐺𝑥𝑧

ℎ2

(ℎ − 𝑡𝑓)
 114 

The stiffnesses of other types of sandwich construction are given in [196, 198, 199, 200, 201]. 

 Axial Compression 

The buckling response of isotropic sandwich cylinders is similar to the response of unstiffened 

isotropic cylinders described in Section 4.1.1.1, except that they can be heavily influenced by 

transverse shear effects. For most practical unstiffened cylinders, the transverse shear stiffness is 

relatively large compared to the bending stiffness of the cylinder wall, so transverse shear 

deformations can be safely neglected in analysis. However, as the thickness of a sandwich structure 

increases, the bending stiffness increases disproportionately to the transverse shear stiffness. This 

results in the actual cylinder buckling at a lower load level than predicted by classical analysis that 

neglects transverse shear.  

Investigations into the buckling behavior of isotropic sandwich cylinders in axial compression 

have been reported in [74, 75]. These references provide two methods for computation of the axial 

buckling load of isotropic sandwich cylinders that consider the effect of transverse shear 

flexibility. The design information from these references are given in Figure 4-11, Figure 4-12, 

and Figure 4-13.  

Method 1 is the corollary to Eq. 2 and Figure 4-1, and it uses the knockdown factor from Figure 

4-13 and the buckling coefficient from Figure 4-11. It is only applicable when the longitudinal and 

circumferential transverse shear stiffnesses are equal (
𝐺𝑥𝑧

𝐺𝑦𝑧
= 1.0). 

The first step is to compute the knockdown using the ratio of the cylinder radius to the sandwich 

wall thickness, 
𝑟

ℎ
, with the data presented in Figure 4-13. This knockdown factor is based Eq. 60, 

given for orthotropic cylinders, with the parameter 𝜙 as 

𝜙 =
√2

29.8
√

𝑟

ℎ
  115 

Once the buckling knockdown factor is calculated, it can be combined with the curvature 

parameter, 𝑍, and the buckling coefficient can be obtained from Figure 4-11. Different curves are 

provided for different values of transverse shear flexibility coefficient. 𝑅 is given by 

𝑅 =
𝜋2 𝐷1

𝐿2 𝐷𝑞
 116 

Method 2 is often more convenient, and it is applicable for  

𝛾𝑍 >
𝜋2

1 + 𝑅
 117 
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First, the knockdown is computed using Figure 4-13, as is done in Method 1. Next, the reference 

buckling load, 𝑁𝑂, is computed as  

𝑁𝑜  =
2 𝛾 𝐸 

√1 − 𝜈2
 
ℎ 

𝑟
√𝑡1 𝑡2 118 

which is the load at which axial buckling would occur if transverse shear flexibility were neglected. 

The ratio of the actual buckling load to the reference buckling load, 
𝑁𝑥

𝑁𝑂
, is then computed by using 

𝑁𝑂

𝐷𝑞
 and Figure 4-12. Note that Figure 4-12 presents two curves for different ratios of the 

longitudinal and circumferential transverse shear stiffnesses (
𝐺𝑥𝑧

𝐺𝑦𝑧
), so some interpolation maybe be 

required if the ratio is not unity.  

The case of no transverse shear flexibility (𝐺𝑥𝑧 → ∞) correspondes to the condition of  

𝐷𝑞 → ∞ and 𝑅 = 0. For this case the curve in Figure 4-11 is comparable in shape to the buckling 

coefficient presented in Figure 4-1, and Figure 4-12 shows 
𝑁𝑥

𝑁𝑜
 approaching unity. As transverse 

shear stiffness decreases and the shear flexibility coefficient, R, increases, the shearing 

deformations become more pronounced and the response diverges from the response computed 

using the classical equations. 

 

Figure 4-11: Buckling coefficients for simply supported isotropic sandwich circular cylinders 

subjected to axial compression, 𝐺𝑥𝑧/𝐺𝑦𝑧 = 1.0. 
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Figure 4-12: Buckling load scaling for moderately long, simply-supported, isotropic sandwich 

circular cylinders subjected to axial compression. 

 

Figure 4-13: KDFs for isotropic sandwich circular cylinders subjected to axial compression. 

Sandwich plates with light honeycomb cores are susceptible to additional modes of deformation, 

and failure may result from intracell buckling, facesheet wrinkling, or an interaction of one or both 

modes with a global cylinder buckling mode. In addition, small buckle-like deformations have 

been known to occur in actual structures long before the theoretical buckling load is reached. See, 

for example, page 217 of [154]. This behavior requires that the structure be capable of resisting 

internal moments and shears in addition to the directly applied loads. In the case of sandwich 

cylinders, the moments and shears may cause buckling or shear failure of the core. 

The only known method for preventing these core failures is to use relatively heavy cores, which 

have considerable strength in crushing and shear. Some guidance as to how heavy the cores should 

be can perhaps be gleaned from the bending tests that have been made on multi-web beams. The 
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internal structure of these beams is subjected to the same types of loads as the cores of loaded 

sandwich plates. One reference [202] indicates that honeycomb cores with a density ratio of  
𝛿 = 0.03 should be adequate to prevent core failure. Large margins against failure in intracell 

buckling and wrinkling can be obtained with rather heavy cores 𝛿 > 0.03 with little or no weight 

penalty. Moreover, when heavy cores are used, approximate equations are adequate for predicting 

failures in the intracell buckling and facesheet wrinkling modes. The following may be used for 

this purpose. For intercell buckling [203, 204]: 

𝜎𝑥 = 2.5 𝐸𝑅 (
𝑡

𝑆
)
2

 119 

where 𝑆 is the core cell size and characterized as the diameter of the largest inscribed circle, 

𝐸𝑅 =
4 𝐸 𝐸𝑡𝑎𝑛

(√𝐸 + √𝐸𝑡𝑎𝑛)
2 120 

where 𝐸 and 𝐸𝑡𝑎𝑛 are the elastic and tangent moduli of the facesheet material, respectively. If 

initial facesheet dimpling is to be checked, the following equation should be used: 

𝜎𝑥 = 2.2 𝐸𝑅 (
𝑡

𝑆
)
2

 121 

The sandwich will still carry the load if initial dimpling occurs.  

Critical wrinkling stresses are predicted by [154, 201] as 

𝜎𝑥 = 0.50 (𝐸𝑠𝑒𝑐  𝐸𝑧 𝐺𝑥𝑧)
1
3 

122 

where 𝐸𝑧 is the modulus of the core in the direction perpendicular to the core and 𝐺𝑥𝑧 is the 

transverse shear modulus of the core in the x-z plane. Here Esec is the secant modulus of the core. 

If biaxial compressive stresses are applied to the sandwich, then the coefficients of the equations 

must be reduced per [205] by the factor 

(1 + 𝑓3)−
1
3 

123 

where  

𝑓 =
minimum principal compressive strain in facesheets

maximum principal compressive strain in facesheets
 124 

Wrinkling and intracell buckling equations, which consider strength of bond, strength of 

foundation, and initial waviness of the facesheets are given in [203, 206, 207]. 

The plasticity correction factors given in Eqs. 11 and 12 for isotropic cylinders in axial 

compression may also be applied to isotropic sandwich cylinders. The factor is applicable to 

sandwich cylinders with stiff cores and becomes somewhat conservative as the shear stiffness of 

the core is decreased [208].  

 Bending 

The buckling equations given in Section 4.1.1.1 for circular cylinders in axial compression may 

be used for cylinders in bending, provided the knockdown factor 𝛾 is taken from Figure 4-14. The 

knockdown factor curve in Figure 4-14 is based on Eq. 62, given earlier for orthotropic cylinders 

in bending. 
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Figure 4-14: Knockdown factors for isotropic sandwich cylindrical shell subjected to bending. 

 Lateral Pressure 

A plot of buckling coefficient 𝑘𝑦 as a function of 𝛾𝑍, based on data from [209], is given in Figure 

4-15. The straight-line portion of the curve in Figure 4-15 for a sandwich cylinder with rigid core 
(𝑅 = 0) is given by the equation  

𝑘𝑦 =
𝑁𝑦𝐿2

𝜋2𝐷1
= 0.56√𝛾𝑍 125 

There are no experimental data to substantiate Figure 4-15; experience with isotropic cylinders, 

however, suggests that a knockdown factor 𝛾 = 0.56 should be used with this configuration. 

 

Figure 4-15: Buckling coefficients for isotropic sandwich circular cylinders subjected to lateral 

pressure and 
𝐺𝑥𝑧

𝐺𝑦𝑧
= 1.0. 

Here, as with sandwich cylinders in axial compression or bending, designs should be limited to 

sandwich cylinders for which the density ratio 𝛿 > 0.03, unless the design is substantiated by tests. 
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The plasticity factors for isotropic cylinders subjected to external pressure, expressed by Eqs. 30-

32, may be used for isotropic sandwich cylinders subjected to lateral pressure. 

 Torsion 

Isotropic sandwich cylinders in torsion have not received the same attention as cylinders in 

compression. Rigid- and weak-core cases are reasonably well defined. While the transition 

between rigid and weak core is not well defined, it is probably enough for design purposes. 

Information on the transition region is given in [209, 210], the latter of which was used to construct 

the plot shown in Figure 4-16, which applies to sandwich cylinders with core exhibiting isotropic 

shear behavior 
𝐺𝑥𝑧

𝐺𝑦𝑧
= 1.0. The slopes curves in Figure 4-16 are continuous at the value of 𝛾𝑍 where 

the buckling coefficient 𝑘𝑥𝑦 become equal to 
1

𝑅
 (or the inverse of the shear flexibility coefficient), 

associated with a change in buckling mode at that point. In [210], the aforementioned behavior is 

not supported, but it does not cover a sufficiently wide range of geometric proportions. In addition, 

[210] indicates that there was some scatter in the calculated results used to construct the charts in 

that reference. In the ranges where comparisons between data could be made, only relatively small 

discrepancies were noticed  [209, 210]. The straight-line portion of the curve in Figure 4-16 for a 

rigid core (𝑅 = 0) is given by the equation 

𝑘𝑥𝑦 =
𝑁𝑥𝑦 𝐿2

𝜋2 𝐷1
= 0.34(𝛾𝑍)

3
4⁄  . 126 

Experimental data are not available to substantiate Figure 4-16 for most sandwich cylinders. 

Experience with isotropic cylinders suggests that a knockdown factor 𝛾 = 0.586 should be used 

with this figure. Here, as with sandwich cylinders in axial compression or bending, designs should 

be limited to sandwich cylinders for which the density ratio 𝛿 > 0.03 or greater, unless the design 

is substantiated by tests. \ 

 

Figure 4-16: Buckling coefficients for isotropic sandwich circular cylinders subjected to torsion 

and 
𝐺𝑥𝑧

𝐺𝑦𝑧
= 1.0. 
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The plasticity factor for isotropic cylinders subjected to torsion, expressed by Eq. 40, may be used 

for isotropic sandwich cylinders subjected to torsion. 

 Cylinders with an Elastic Core 

The term cylinder with an elastic core refers to a thin-walled cylindrical shell that encloses an 

elastic material that can be either solid or have a hole in its center. This type of cylinder closely 

approximates a propellant-filled missile or solid rocket motor. Only the solid propellant is typically 

a viscoelastic material and therefore is strain-rate sensitive. The core modulus should be obtained 

from tension or compression test of the core material simulating its expected strain rate. 

Although there are some analytical data for orthotropic shells [211], design curves are given only 

for isotropic shells and cores. The inverse problem of a cushion or foam material on the outside of 

the cylinder is analyzed in [212]. Not enough data are available, however, to recommend design 

curves for this problem. 

 Axial Compression 

The buckling of isotropic cylindrical shells with a solid elastic core in axial compression is 

presented in [213]. This solution conservatively assumes that the axial load is carried entirely by 

the cylinder and that the effect of the core is to increase the bending stiffness of the cylinder wall. 

Thus, the effect of the core is to increase the axial stress in the cylinder wall at which buckling 

occurs, 𝜎𝑝, relative to a cylinder without a core, 𝜎𝑐. The core is assumed to be isotropic, with 

modulus of elasticity 𝐸𝑐 and Poisson’s Ratio 𝜈𝑐. Analytical results obtained from this reference are 

shown graphically in Figure 4-17. For small values of 𝜙1 

𝜎𝑝

𝜎𝑐
≈ 1 + 𝜙1 127 

where this quotient is the stress for the combined cylinder-core system relative to the stress that 

would be in a cylinder without an elastic core, and  

𝜎𝑐 =
𝛾𝐸

√3(1 − 𝜈2)

𝑡

𝑟
 128 

 

𝜙1 =
√12(1 − 𝜈2)4

4(1 − 𝜈𝑐
2)

 
𝐸𝑐

𝐸
 (

𝑟

𝑡
)

3
2

 129 

This approximation is accurate for 𝜙1 < 0.5. For larger values of 𝜙1, say 𝜙1 > 3.0, Eq. 127 

becomes 

𝜎𝑝

𝜎𝑐
≈

3

2
(𝜙1)

2
3 130 

The experimental data provided in [213] suggest that the KDF 𝛾 in Eq. 128 can be taken as that 

for isotropic cylinders in compression as in Eqs. 9 and 10. 
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Figure 4-17: Compressive buckling stress vs. core stiffness parameter. 

 External Pressure 

Analytical curves for lateral pressure are presented in [213]. The buckling pressure coefficient 

(𝑘𝑝𝑐) versus a geometric non-dimensional parameter 
𝜋𝑟

𝐿
 is plotted for 

𝑟

𝑡
 = 100, 200, 500, and 1000 

in Figure 4-18. The parameter 𝑘𝑝𝑐 is defined as 

𝑘𝑝𝑐 =
𝑝𝑟3

𝐷
 131 

These curves are to be used for finite length cylinders loaded by lateral pressure. However, some 

cylinders are long enough for the critical pressure to be independent of length; in such cases, the 

single curve shown in Figure 4-19 can then be used. The straight-line portion of the curve can be 

approximated by the equation 

𝑘𝑝𝑐

(1 +
𝐸𝑐 𝑟

𝐸 𝑡 (1 − 𝜈𝑐)
)

= 3(𝜙2)
2
3  132 

where  

𝜙2 =
3(1 − 𝜈2)

1 − 𝜈𝑐
2  

𝐸𝑐

𝐸
 (

𝑟

𝑡
)
3
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Figure 4-18: Variation of buckling pressure coefficient with length and modulus ratio  

(𝜈 = 0.3, 𝜈𝑐 = 0.5). 
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Figure 4-19: Buckling pressure coefficients for long cylinder with an elastic core. 

 Torsion 

The buckling behavior of cylindrical shells with an elastic core subjected to a torsion load is 

presented in [214] and is shown graphically in Figure 4-20. 

For small values for 𝜙3 < 7, the analytical results can be approximated by 

𝜏

𝜏𝑐𝑟
= 1 + 0.16 𝜙3 134 

where  

𝜙3 = (
𝐸𝑐

𝐸
)  (

𝐿

𝑟
) (

𝑟

𝑡
)
2
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and 𝜏𝑐𝑟 is torsional buckling stress given by Eq. 34, with the correlation factor 𝛾 equal to unity. 

When 𝜙3 is > 10, the analytical results follow the curve 

𝜏

𝜏𝑐𝑟
= 1 + 0.25 𝜙3

3
4 136 

Experimental data are not available for this loading condition. The experimental points obtained 

for cylinders with elastic core for axial compression and external pressure, however, show better 

correlation with theory than the corresponding hollow cylinders. Hence, conservative design 

curves can be obtained by calculating 𝜏𝑐𝑟 in Eqs. 134 and 136 with the correlation and plasticity 

factors for isotropic cylinders of Eqs. 30-32. 
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Figure 4-20: Torsional buckling coefficients for cylinders with an elastic core. 

 Combined Axial Compression and External Pressure 

Interaction curves for cylinders with an elastic core subjected to combined axial compression and 

lateral pressure are shown in Figure 4-21. These curves were obtained analytically in [213] and 

indicate that for sufficiently stiff core, the critical axial stress is insensitive to the lateral pressure 

and, similarly, the critical lateral pressure is insensitive to the axial compression. However, until 

more experimental data become available, the use of a straight-line interaction curve is 

recommended for conservative design. 

 

Figure 4-21: Interaction curves for cylinders with an elastic core (
𝑟

𝑡
= 300). 
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 Other Design Considerations 

 Joints 

A limited amount of information is available in the open literature on the design of joints in 

buckling-critical cylinders. However, a detailed study on the effects of axial weld lands, and to a 

lesser extent, circumferential weld lands has been conducted for large-scale cylinders [90, 213]. 

Results in [90] indicate that axial weld lands in large-scale compression-loaded orthogrid-stiffened 

cylinders can lead to a significant reduction in the buckling load on the order of 25% or more. The 

general conclusion from the study was that the weld land region has relatively high membrane 

stiffness compared to the stiffened acreage, typically composed of thin skin and tall stiffeners. 

However, because of low bending resistance, the weld land buckles at much lower load levels than 

the stiffened acreage.  

Since axial and circumferential joints can generally pose a buckling concern, joint designs or local 

stiffness tailoring that delay the onset of buckling should be sought. This can include the 

development of a stiffness-neutral joint such as a scarf joint when joining composite sandwich 

panels together. The stiffness-neutral joint concept attempts to provide a joint between two 

adjacent cylindrical panels while minimizing discontinuities in stiffness, or load-path/mid-surface 

eccentricities. If a stiffness-neutral joint design option is not available or practical, as may be the 

case in welded metallic construction, local bending stiffness can be increased by adding additional 

stiffeners adjacent to the joint, e.g. additional axial, circumferential or diagonal stiffeners. In 

particular, the addition of diagonal stiffeners adjacent to an axial weld land has been found to be 

particularly effective in delating the onset of buckling by providing additional twisting stiffness. 

Increasing the thickness of the weld land does not always result in an improvement, but rather, can 

attract more load and reduce the buckling load further. 

 Cutouts 

Experimental results have shown that small cutouts have minimal effect on the buckling response 

of cylinders, since other imperfections govern the global buckling response of the shell. For cutouts 

whose width is less than approximately 10 percent of the cylinder diameter and whose height is 

less than approximately 20 percent of the cylinder height, the empirically-based equations of 

Section 4.1 are sufficient for the preliminary design of the cylinder. However, the designer should 

expect the structure to require some reinforcement around the cutout to control local stresses and 

deformations. Reinforcement concepts should be designed to control local displacement and stress 

concentrations near the cutout to within allowable values while maintaining a smooth transition 

from the reinforcement to the acreage. Designs should avoid abrupt stiffness changes and load path 

eccentricities to prevent localized failures such as buckling adjacent to the reinforcement. The 

reinforcement should also be tailored to prevent the detrimental effects of prebuckling 

displacements, which are known to instigate buckling at load levels lower than predicted with the 

classical buckling load value. For larger cutout sizes, this approach may still be used, but it 

becomes increasingly difficult to reinforce the cutout to compensate for the larger changes in stress 

distribution in the cylinder walls and to restore the cylinder to full load-carrying capacity. Further, 

if the cutout is sufficiently large, the buckling response of the structure reaches a point that it can 

no longer be described as cylinder buckling and geometrically nonlinear finite-element methods 

are required to predict the buckling load. Thus, an analysis approach, as described in Section 4.3, 

is recommended for cylinders with large cutouts. 
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 Design of Ring Frames 

Limited amount of information is available in the open literature on the design of stiff ring frames 

for cylinders. The criterion from [201] is frequently cited as applicable to cylinders subjected to 

bending or compression loads. Unfortunately, this criterion is empirical and is based on data from 

test cylinders with configurations that are not often relevant to the design of modern vehicles. A 

few verifications made on cylinders in use have indicated that the criterion is usually conservative, 

but this may not be so in certain cases [162, 215]. 

A less direct procedure for designing rings may be used. The procedure consists of calculating the 

global buckling response (i.e., general instability), which involves failure of the rings and cylinder, 

as well as calculation of the buckling response of the cylinder between the rings (inter-ring 

buckling). Both calculations are made for several ring configurations. The buckling loads are then 

plotted against ring weight (structural efficiency curves), and the ring design and weight necessary 

to produce the desired mode can be determined. It is likely that there may be some interaction 

between failure modes; thus, somewhat heavier rings than those indicated by the calculations 

should be used. These interactions should be assessed by using a geometrically nonlinear analysis 

and validated through suitable testing as necessary. 

This method of designing rings is, of course, applicable to all types of loading and to all types of 

wall construction. The method also has the advantage of giving the designer some feeling for the 

influence of the various factors that determine the ring weight. 

A review of  [215, 216], which present general linear analyses of ring-stiffened isotropic cylinders 

in torsion and of orthotropic cylinders in compression, indicates that the recommended procedure 

gives the same result as general theory for all cylinders except those with a single ring dividing 

the cylinder into two equal-length bays. 

4.2 Semi-Empirical Design Approach 

In 1970, Almroth et al. proposed a semi-empirical design approach for compression-loaded 

cylindrical shells in an attempt to incorporate knowledge that had been acquired from the 

1940s−1960s into the design process [12]. These research efforts led to a good understanding of 

the basic reasons for the poor correlation between the theoretical buckling loads and the 

corresponding test loads, but that results from that research had “not been utilized to devise better 

methods for practical analysis.” Furthermore, for orthotropic/composite shells, stiffened shells, 

and other practical cylinder configurations, the number of design parameters becomes so large that 

a purely empirical design approach becomes infeasible. Thus, a semi-empirical design approach 

was developed based on [9] in combination with a wide-column buckling investigation in [119]. 

This approach has been used successfully in the design of several aerospace structures over the 

years. A brief summary of this Semi-Empirical Design Approach (per the definition included in 

the front-matter) is presented in this section. 

Assumptions 

This Semi-Empirical Design Approach assumes that initial geometric imperfections in the shell 

wall are the primary reason for the discrepancy between theory and test. The assumptions in this 

theory are that the initial imperfection is axisymmetric and of small amplitude. Additionally, it is 

assumed that both the Koiter method and the wide-column buckling approach produce 

conservative estimates of the buckling load and that the higher of the two predictions is to be used 

as the design buckling load. 
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Approach 

For any given cylindrical shell being analyzed, an equivalent monocoque cylinder is defined in 

terms of an effective radius-to-thickness ratio, (
𝑟

𝑡
)
𝑒
, where  

(
𝑟

𝑡
)
𝑒

= 0.289 
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An empirical knockdown factor that corresponds to a given (
𝑟

𝑡
)
𝑒
 can be calculated using Eq. 9 or 

Eq. 14 for cylinders subjected to axial compression or bending, respectively. This knockdown 

factor is then used to calculate a normalized imperfection amplitude 𝜀 that would cause the same 

reduction in buckling load based on the curve presented by Koiter [9], and shown in Figure 4-22 

for ν = 0.3. 𝜀 represents the ratio of imperfection amplitude to effective wall thickness. The 

relationship between 𝛾 and 𝜀 is given by 

𝛾 = 1 + 𝛼 𝜀 − √𝛼 𝜀 (2 +  𝛼 𝜀), 138 

where 

 𝛼 =  
3

4
 √3(1 − 𝜈2) 
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Figure 4-22: Knockdown factor from Koiter's theory based on small deviation imperfection when 

normalized to wall thickness for conditions when 𝜈 = 0.3. 

It is then assumed that the cylinder under consideration has the same imperfection amplitude as 

the equivalent cylinder and a design buckling load can then be calculated using the analysis for 

imperfect cylinder as described by Almroth (see Appendix A of [12]). 

Almroth found however, that this analysis approach had limitations and was overly conservative 

when applied to core-filled cylinders and short stringer-stiffened (i.e., axially stiff) cylinders and 

that the wide-column buckling load predictions, as proposed by Peterson and Dow, were more 

applicable. Thus, it is recommended that the wide column buckling load also be calculated and 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e





 

60 

compared to the Semi-Empirical Approach, with the larger of the two values being used as the 

design buckling load. This Semi-Empirical procedure is summarized in a flow chart in Figure 4-23. 

A general process flow for calculating buckling loads with this method is presented below in 

Figure 4-23. Here are the steps that need to be followed: 

(1) Calculate an equivalent (
𝑟

𝑡
)
𝑒
 for the design in question using Eq. 137. 

(2) Using this equivalent (
𝑟

𝑡
)
𝑒
, calculate the appropriate knockdown factor, 𝛾, for axial or bending 

loading conditions of an equivalent isotropic cylinder. 

(3) Next, calculate the normalized imperfection amplitude, 𝜀, using Eq. 138 that corresponds to 

the knockdown factor calculated from step 2. 

(4) With this imperfection amplitude, calculate the cylinder buckling load and the wide column 

buckling load using Appendix A of [12].  

(5) The buckling load should be chosen as the higher of the two buckling predictions, both buckling 

loads are expected to be conservative [12]. 

  

Figure 4-23: Process for calculating the buckling load using Almroth’s Semi-Empirical 

Approach. 

4.3 Analysis-Based Design Approach 

Analysis-based buckling load predictions can be a viable alternative to Empirical and Semi-

Empirical Approaches presented in Sections 4.1 and 4.2, respectively. In particular, improved 

nonlinear structural analysis tools, improved theories of elastic stability and imperfection 

sensitivity in shell structures, and advanced testing and measurement technologies are enabling 

realistic buckling load predictions of thin-walled shell structures. Thus, high-fidelity numerical 

Calculate KDF:

Bending:

Axial:

Calculate equivalent monocoque 

radius-to-thickness ratio: 

Buckling Load = Max {P1 , P2}

Calculate e (imperfection amplitude/ wall thickness) with Koiter’s equation:

Calculate wide column buckling load (P1) and cylinder buckling load (P2) from

𝛾 = 1 − 0.731 1 − 𝑒−𝜙
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simulations can be used in place of physical tests and provide a more accurate and less conservative 

estimate of the actual buckling load. However, thorough model development and validation are 

required to ensure that the model adequately and correctly represents the physics of the structural 

response. While accuracy of the prediction can be defined on a case-by-case basis to meet specific 

program needs, it is generally recommended that the high-fidelity model should provide buckling 

load predictions to within ±10% of the validation test loads and capture the overall character of 

the response and failure mode.  

These high-fidelity simulations can be used to (1) Design a structure to a desired buckling load, 

and then can be used to calculate design margins for buckling or strength, or (2) Develop new 

analysis-based KDFs for a family of designs that exhibit similar behavioral characteristics and 

share similar manufacturing processes and controls and imperfection signatures.  

The recommended approach used in the development and validation of these high-fidelity models 

and simulations and there use in an analysis-based design approach is presented next. 

 Model Development  

Recommended procedures and considerations for developing finite-element-based high-fidelity 

models are presented in this section. These recommended procedures are not a replacement for 

sound engineering judgement and experience. These recommended procedures can be modified as 

needed if supported by technical rational and/or by physical testing. While all discussions are 

related to the development of finite element-based models, this does not preclude the use of other 

modeling techniques if they provide similar levels of fidelity.  

 Overview 

To develop a high-fidelity model of the buckling response of a thin-walled cylinder subjected to 

combined mechanical, pressure and thermal loads, the model shall accurately predict all relevant 

structural response characteristics up to and including the buckling of the cylinder. For example, 

effective stiffness (i.e., load versus end-displacement response), prebuckling and buckling 

displacement and strain response, buckling mode, and the buckling load.  

The accuracy of the model is naturally limited by how well the structural details are known, e.g., 

geometry, material properties, and loading and boundary conditions, and how well the details are 

represented in the model. Thus, the development of a high-fidelity model will require additional 

information on the cylinder and thorough model development and validation beyond what is 

required for the Empirical and Semi-Empirical Design Approaches defined in Sections 4.1 and 

4.2. The model development is presented in the following subsections. Suggested model validation 

methods and metrics are discussed in Section 4.3.2. 

 Structural Idealization 

Structural idealization is the process of converting the physical design into a mathematical 

representation. Details that can significantly influence the buckling response, stiffness, loads and 

load paths, and local and global deformations should be assessed carefully. Some examples of 

common modeling details and considerations are described here.  

For the majority of thin-walled unstiffened and stiffened cylinders considered in this monograph, 

2D shell elements are sufficient to accurately model the elastic cylinder buckling response. 

However, it is almost always required that discrete stiffeners and other flexible structural 

components that contribute to or influence the overall structural behavior need to be modeled 

explicitly. The smeared stiffener theory is often inadequate for the development of a high-fidelity 



 

62 

model as the flexibility of the individual stiffener and skin elements can significantly influence the 

prebuckling and buckling response. Modeling stiffeners and other detail features explicitly enable 

accurate predictions of the interaction between local and global effects. Local detail features such 

as fillets are often ignored in lower-fidelity design-level models; however, they may contribute 

additional stiffness necessary to accurately model local or global displacement and stiffness 

responses, especially if the fillet radius is large relative to other structural element dimensions. 

Examples and modeling strategies are presented in reference  [217]. In general, however, modeling 

local features such as fillets is typically reserved for detailed test and analysis correlation activities 

and are typically not required for developing design buckling load predictions. 

Material overlap should be minimized at 2D shell element intersections as it adds additional local 

stiffness and mass. Shell wall mid-surface offsets should be incorporated into the model to 

represent any mid-surface eccentricities such as those associated with local reinforcements or 

thickness changes as these contribute to local bending, load redistribution, and premature buckling.  

Stiffness discontinuities should be modeled. Discontinuities include cutouts, structural joints, or 

large load-bearing secondary structures. Proper modeling of joint stiffness may require additional 

subcomponent test or detailed models to assess the adequacy of the modeling approach especially 

for bolted joints, attachments, and interfaces. Bolted or riveted connections can be modeled as 

smeared or discrete connections. However, if used, the adequacy of the smeared modeling 

approach should be assessed and may require detailed subcomponent models or tests if inter-rivet 

or inter-bolt buckling, flexibility, or movement is expected.  

Adjacent structures to the component of interest can be simulated using lower-fidelity models as 

long as they produce an adequate representation of load paths and interface flexibility, including 

membrane and bending flexibility.  

A hierarchical or building-block approach is recommended for model development. A basic 

uniform cylinder should be modeled and analyzed first, and the results compared to known closed-

form solutions. From here, additional structural details can be added knowing that the foundational 

model is adequate, and the analyst has some basis for comparison when more complex details and 

loading conditions are added to the model. If there is some uncertainty in the structural details 

(e.g., their design and/or modeling), then it is recommended that a sensitivity study be conducted 

to determine the effects of these uncertainties and provide bounds to the predicted response. It may 

also be found over time and with experience, that certain structural details can be simplified or 

omitted if the end result provides a reasonable and conservative estimate of the buckling response. 

 Discretization 

The discretization process, which is equivalent to finite-element meshing, includes choosing 

element type, element shape, element distribution, etc. A list of common discretization 

considerations are as follows:  

The majority of thin-walled cylinder buckling problems can be treated using standard linear or 

quadratic quadrilateral shell elements. Elements with transverse shear capability are often 

necessary for sandwich cylinders or cylinders that may exhibit localized out-of-plane 

deformations, for example, short wave length displacement responses near cutouts and other 

significant stiffness discontinuities or cylinders with discrete stiffeners that may exhibit local 

rotations relative to the cylinder skin. Triangular shell elements may also be used but in the past 
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have been shown to possess some undesirable characteristics due to shear locking. Thus, higher-

order triangular elements can be used to minimize the effects of shear locking. 

When stiffeners are explicitly modeled the choice of using either shell or beam elements should 

be investigated to ensure compatible deformations between the stiffening element and the skin.  

For sandwich cylinders with relatively thick core and a high degree of transverse shear flexibility, 

standard 2D shell elements with transverse shear flexibility might not be adequate. These models 

may require the use of other element types such as special-purpose sandwich elements, or a 

combination of 2D and 3D elements to model facesheets and core material. 

Ultimately, the choice of elements and spatial distribution necessary for a high-fidelity buckling 

simulation should be determined and justified through a systematic study or based on relevant past 

experience. Closed-form solutions should be used in the early stages of model development when 

possible for comparison with the FEM. Additionally, a large-scale detailed FEM does not equate 

to a high-fidelity FEM. The former implies the use of many finite elements. The latter implies that 

the mathematical model adequately and correctly represents the physics of the systems for its 

intended purpose. 

 Material Properties 

The material properties and material model selected is a function of the material form and the 

anticipated structural response of the cylinder. The basis of the material model, the required 

material data for input, and the limitations of the material model need to be understood.  

For elastic buckling simulations of metallic cylinders, linear elastic isotropic material properties 

are often assumed and are typically adequate. However, there are certain high-performance alloys 

that exhibit bi-modulus properties, that is, different tension and compression moduli. The effects 

of bi-modulus materials on the buckling response will be a function of the loading conditions and 

the relative difference between the tension and compression moduli. If the prebuckling response 

of the cylinder results in local stresses that approach the yield strength of the material, then an 

elastoplastic or elastic perfectly plastic material model may be required to account for local 

material yielding and load redistribution.  

Cylinders constructed from laminated composite materials such as graphite-epoxy have been 

shown to exhibit nonlinear elastic prebuckling stiffness behavior. The nonlinearity can be a result 

of matrix nonlinearity, as seen in angle-ply laminates, or fiber nonlinearity [218, 219]. These 

nonlinearities can be accounted for by using a nonlinear elastic material model with data 

determined from coupon testing. Laminated composite structures can also possess orthotropic or 

anisotropic stiffness properties that depend on the laminate stacking sequence and can be 

particularly important to the buckling and imperfection sensitivity of thin-walled cylinders, as 

described in Section 4.1.2.  

High-fidelity model development will typically require coupon test data obtained from witness 

panels or tag ends from the tested cylinder in order to provide the most accurate set of material 

properties and to verify the adequacy of the material model. If these data are not available, then a 

sensitivity study should be conducted to bound the predicted response characteristics based on 

existing material property data. 

 Boundary Conditions 

In general, models will incorporate either an analytical definition of the boundary conditions  

(e.g., classical clamped or simple support) or an explicit modeling of the interface/boundary 
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conditions and adjacent structure. In a design setting, conservative analytical boundary conditions 

are often utilized and are appropriate. However, for most high-fidelity buckling simulations such 

as those used for detailed test and analysis correlation or the development of analysis-based design 

buckling loads, the modeling of the actual adjacent structure may be necessary to properly account 

for structure to structure interactions that may influence load introduction, interface flexibility 

(e.g., bolted, bonded, or potted joints), and overall system kinematics  [217]. In addition, modeling 

approaches that can simulate nonuniform loading due to geometric imperfections at the interfaces 

(i.e., interface surface geometry variations due to manufacturing tolerances that results in gaps 

between the interfaces) may need to be implemented. It is also conceivable that joints that have 

contacting surfaces that can open and close as a function of loading may also require the use of 

contact elements. Nonuniform loading due to loading surface imperfections will be discussed in 

more detail in Section 4.3.1.7. The level of detail required is contingent on the end use and level 

of fidelity required. 

 Loading Conditions 

Modeling test loading conditions are typically straightforward as long as the test interfaces and 

loading structure are understood, characterized, and modeled adequately. As discussed previously, 

many high-fidelity models will require accurate models of the boundary conditions and adjacent 

structure, and in the case of a structural test, representations of the load fixtures and discrete load 

application points should be available for load application. However, if additional secondary loads 

are applied directly to the cylinder, e.g., lateral loads to simulate internal payloads, or external 

booster loads, then the representation of these point loads and local affects should be addressed. 

Modeling complex flight loading conditions that include vehicle accelerations, aerodynamic 

pressure, thermal loads, and cryogenic fuel slosh loads are altogether different as they are 

associated with surface load distributions and body forces. As such, care must be taken in applying 

these distributed loads onto a discretized model [41].  

In both cases, test loading conditions and flight loading conditions, problems involving load 

sequencing for combined loads, deformation dependent loading (follower loads), and quasi-static 

versus transient-dynamic and time-dependent loading, may also arise.  

 Initial Imperfections and Loading Nonuniformities 

Initial geometric and thickness imperfections (i.e., manufacturing-process-induced variations in 

the as-built geometry) and loading nonuniformities due to interface surface geometry variations 

can have a significant influence on the buckling response of thin-walled cylinders (see Section  

2.2 and Section 2.3). Efforts have been made to characterize these imperfections and 

nonuniformities in order to establish characteristic imperfection signatures that are associated with 

different cylinder manufacturing processes. With this information established, high-fidelity 

buckling analyses and robust design criteria can be developed. It is now standard practice to 

measure these imperfections as part of any structural test campaign and they are typically used to 

verify that the manufactured part meets the design requirements as well as provide data for the 

development of detailed structural models. As-built geometry of complex structures can be 

measured routinely by using commercially available geometry measurement systems such as 

structured light scanners, laser trackers, or coordinate measurement machines. The resulting 

measurement data can be included in finite-element models by using simple user-written scripts 

or subroutines. 
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However, situations may exist during the early stages of design where actual measured 

imperfections may not be available for use in developing analysis-based design buckling load 

estimates. In this case, several options can be considered. Pre-existing knowledge of a worst-

expected imperfection amplitude and shape may be available from heritage structures and 

manufacturing processes. In this case the worst-expected imperfection can be used to develop 

preliminary analysis-based design buckling loads as long as those heritage structures and 

manufacturing processes or their derivatives are to be employed in the new design. Once the new 

structure is designed and manufactured, imperfection measurements can be obtained and used to 

update the assumed imperfection data and corresponding design buckling load. If no imperfection 

data or information is available, then an imperfection sensitivity study based on eigenmode 

imperfections can be employed. In this case, the following procedure is recommended;  

1. Conduct a linear bifurcation buckling analysis to predict all global buckling loads and 

modes within 20% of the lowest global buckling load. It is further recommended that 

this linear buckling analysis should include the effects of the prebuckling stress state if 

large prebuckling deformations are anticipated. The closer the prebuckling stress state 

is to the critical buckling stress state, the more influential the eigenmodes will be on 

the imperfection sensitivity. 

2. Run a series of nonlinear analyses to predict the buckling load of the cylinder for 

different eigenmode imperfection shapes. Use the individual eigenmodes as well as a 

linear combination of the eigenmodes as initial imperfection shapes and assume several 

different imperfection amplitudes that combine up to a RMS (root mean square) value 

of 50% of the wall thickness to assess the imperfection sensitivity of the cylinder. 

Several important imperfection types are described next: 

Initial geometric and thickness imperfections 

The OML and inner mold line (IML) geometry of cylinder can be measured routinely by using 

commercially available geometry measurement systems such as structured light scanners, laser 

trackers, or coordinate measurement machines. These data can then be used to characterize the as-

built geometric imperfection and thickness imperfection of the cylinder. The geometric 

imperfection corresponds to the difference between the measured OML or IML surface geometry 

and an ideal circular cylinder. Similarly, the as-built thickness is obtained by subtracting the 

measured IML radius from the measured OML radius. 

A typical measured geometric imperfection of a large-scale metallic launch vehicle tank cylinder 

section is presented as a contour plot in Figure 4-24. The color contours indicate the difference 

between the as-built geometry and the idealized perfect circular cylinder. Inward radial 

imperfections are denoted by negative contour values and outward radial imperfections are 

denoted by positive contour values. This cylinder was constructed from eight curved panels that 

were friction stir welded together to form a complete cylinder. The measured imperfection exhibits 

distinct inward imperfections at the axial weld lands of approximately -0.90 inches and smaller 

magnitude variations in the acreage of the cylinder. The cylinder had a 165.5-inch OML radius 

and a length of 240 inches. The skin thickness was approximately 0.090 in., and the thickness of 

the weld lands was 0.320 inches. Other measurements of large-scale cylinders can be found in 

Section 9.6.2 of the ECSS Handbook on Buckling of Structures  [71]. Of interest are the 

measurements from the ARIANE interstage I/II cylinder displayed in Figure 9-14 of that reference. 
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These cylinders were also constructed from eight panel segments and exhibit similar imperfection 

characteristics as the welded cylinder imperfection in Figure 4-24. 

 

Figure 4-24: Geometric imperfection for a large-scale metallic cylinder with eight axial weld 

lands. 

The measured imperfection data can be represented by a 2D Fourier series given by 

𝜇 = ∑ ∑ 𝑐𝑜𝑠 (
𝑚 𝜋 𝑥

𝐿
) [𝐻𝑚𝑛

𝑐 𝑐𝑜𝑠(𝑛𝜃) + 𝐻𝑚𝑛
𝑠 𝑠𝑖𝑛(𝑛𝜃)]

𝑛=0𝑚=0

 140 

where 𝐿 is the cylinder length; 𝑥 and 𝜃 are the axial and circumferential coordinates; and 𝑚 and 𝑛 

are integers corresponding to the number of axial half-waves and circumferential full waves, 

respectively. Using a representation of this type enables convenient analysis and comparison of 

imperfection distributions from different cylinders and different manufacturing processes. For 

example, the coefficient distribution for the measured imperfection shape from Figure 4-24 is 

presented in Figure 4-25. The largest magnitude component of the imperfection is associated with 

the 𝑚 =  0, 𝑛 =  8 coefficients and corresponds to the large magnitude inward imperfection at 

the eight weld lands. In addition, noticeable contributions to the imperfection are associated with 

𝑛 equal to integer multiples of eight, 𝑛 =  16, 24, 32, and 40. Other contributions to the 

imperfection are associated with long-wavelength circumferential modes, 𝑛 =  2 (ovalization) 

and 𝑛 =  3 (tri-ovalization). Axial half-waves of 𝑚 >  4 were omitted from the plot for clarity, 

however, those components of the imperfection are typically small in cylinders without specific 

design features that might induce short wavelength axial imperfections such as circumferential 

joints. Other mathematical representations can be used. 

This is a good example of where imperfection measurements from heritage designs are available 

and could be useful in the development of preliminary worst-case imperfections for cylinders 

constructed from multiple curved panel sections. 

An example of the measured thickness distribution of a large-scale sandwich composite cylinder 

is presented next. OML and IML geometry measurements of this large-scale sandwich cylinder 

test article were obtained and used to calculate the as-built thickness distribution for the cylinder 

[219]. This cylinder was specifically designed for a buckling test and had relatively thin core and 

facesheets. In Figure 4-26, it is seen that the top and bottom of the cylinder  
(𝑥 >  30 in. and 𝑥 <  −30 in.) have the greatest thickness due to structural pad-ups on each end, 

indicated by the orange and red contours. The global thickness-variation pattern in the acreage of 

the cylinder (−30 in. <  𝑥 <  30 in.), indicated by the blue/green contours appears to be 

correlated primarily to the core layout, and the use of rectangular core sheets with slightly different 

thicknesses. Additional horizontal, vertical, and angled features appear in the contour pattern and 

are associated with gaps and overlaps between adjacent lamina plies that can occur during the 
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manufacturing process. It was found that the thickness variation had a significant effect on the 

buckling load and mode due to it having a relatively thin core and high degree of imperfection 

sensitivity.  

 

Figure 4-25: Coefficient distribution of Fourier series representation of measured imperfection 

given in Figure 4-24. 

Similarly, measured thickness of thin-walled laboratory-scale laminated composite cylinders can 

also be found in [11, 59]. However, most practical sandwich cylinder designs have a relatively 

thick core and are designed to exhibit a strength failure mode rather than a buckling failure mode, 

and so thickness variations will likely play a much smaller role in the response. It is recommended 

that the designers evaluate whether these thickness variations play an important role in their 

specific design of interest. 

Loading surface/interface surface imperfections 

Loading surface imperfections can lead to loading nonuniformities, changes in behavior, and 

reduce the buckling load of thin-walled cylinders [11, 59, 217]. Loading surface or interface 

surface geometry should be characterized through detailed measurement. Example loading surface 

geometry measurement results are presented in Figure 4-27 for an 8-ft-diameter cylinder test 

article. Figure 4-27a and Figure 4-27b show contours of top and bottom attachment ring interface 

surface imperfections, deviations of the measured geometry from best-fit planes 𝑢𝑖𝑚𝑝. Data traces 

are extracted from the contour data at a fixed radius of 48.0 inches and are shown in Figure 4-27c. 

The results indicate long-wavelength imperfections around the circumference of the cylinder, with 

two full waves on the bottom ring and approximately three full waves on the top ring. These results 

appear to be typical for cylinders that are machined using a rotating turntable-type machining 

approach. It is recommended that the interface geometry be well characterized in order to perform 

an appropriate assessment of the effects of the loading nonuniformity on the structural response. 

Shims are often used at these structural interfaces to reduce the effects of the interface surface 

nonuniformities, however, gaps may still exist and should be verified and dealt with appropriately. 
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Figure 4-26: Measured thickness distribution of a sandwich cylinder test article. 

 

a: Top attachment ring 

 
b: Bottom attachment ring 

 

c: Extracted top and bottom attachment ring imperfection data (curve-fitting was used to fill in 

missing data from imperfection measurement) 

Figure 4-27: Measured attachment ring interface surface imperfections. 
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 Analysis Approach 

Preliminary Linear Analysis. A sequence of analyses is recommended when first developing a 

model. First, a linear elastic stress analysis of the FEM should be performed to verify the overall 

performance and quality of the model, including stiffness, displacement response, and internal 

stress and strain distributions.  

Linear Bifurcation Buckling Analysis. Next, a linear bifurcation buckling analysis of the cylinder 

should be conducted. The solution for the bifurcation buckling of cylinders is typically 

characterized by the existence of multiple buckling or eigen modes at or in the vicinity of the 

critical buckling load value. Thus, it is recommended that multiple eigenmodes be obtained during 

the analysis as there may be a variety of different local and global modes shapes. In addition, this 

clustering of eigenmodes can lead to numerical solution difficulties and thus convergence of the 

solution should be carefully assessed and solution convergence tolerances may need to be adjusted. 

Eigenvalue analyses can provide additional insight into the state of the FEM even when an 

eigenvalue analysis is not required. The eigenvectors (or mode shapes) can give an indication of 

the anticipated deformation patterns that may be expected and the adequacy of the finite element 

mesh to represent those patterns. Consideration should be given to these items: (1) Convergence 

criteria for the eigenvalue analysis. (2) Solution procedure for extracting the eigenpairs and 

sufficiency of the solution space in representing deformation states. (3) Influence of finite-element 

meshing and assessment of the finite-element mesh in capturing short-wavelength mode shapes. 

Geometrically Nonlinear Analysis. Finally, because cylinder buckling is inherently a highly 

nonlinear response problem, a geometrically nonlinear quasi-static and/or transient dynamic 

analysis should be performed to obtain a high-fidelity prediction of the buckling response of the 

cylinder. A further mesh refinement study may be necessary at this point if the predicted 

deformations and stresses are significantly different from those predicted by the linear static and 

linear eigenvalue analyses. Often the prebuckling load-displacement response is quasi-linear up to 

the buckling load and a quasi-static Newton-Raphson or Riks arc-length procedure can be used. 

The transient buckling response and initial postbuckling response is best predicted by using 

transient dynamic analysis solution routine. Sensitivity of the postbuckling response to the solution 

step size should be evaluated to ensure accuracy of the solution. This dynamic analysis can be 

either explicit or implicit. Quasi-static Newton-Raphson or Riks arc-length methods typically fail 

in predicting the buckling response of the cylinder due to the highly complex transient mode 

jumping phenomena that accompanies the buckling response [220].  

Implementation of Solution Controls. Specific solution controls for nonlinear solution procedures 

can help alleviate convergence difficulties and or aid with tracking the progress of the analyses. 

These controls include: (1) Convergence metrics such as change in residuals, change in 

displacement increments, and change in energy. (2) Specified convergence tolerance – too small 

and no solution is obtained; too large and the solution will “drift” from solution equilibrium.  

(3) Solution control procedure such as load control, displacement control, or arc-length control. 

(4) Solution damping too high could cause unrealistic erroneous predictions. (5) Nonlinear solution 

algorithm (Newton-Raphson procedure, modified Newton-Raphson procedure, quasi-Newton 

procedures). (6) Number of negative roots in the tangent stiffness matrix decomposition (e.g., more 

than the number of Lagrange-multiplier constraints). Default values for these and other solution 

parameters should be assessed, and solution sensitivities should be understood. 

Results Interpretation. In some cylinder buckling analyses (e.g., symmetric, geometrically perfect 

cylinder model that exhibit minimal prebuckling nonlinear behavior), it is not uncommon for the 
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quasi-static solution to obtain equilibrium solutions on the primary equilibrium path at load levels 

above the critical buckling load. These solutions are mathematically feasible but physically 

unstable. An unstable equilibrium solution can be identified when negative roots appear in the 

tangent stiffness matrix (or the number of negative roots becomes great than the number of 

Lagrange constraints when present). In other instances, erroneous solutions can be obtained when 

using default solution parameters and specifically, artificial solution damping, common to 

commercial codes, that is used to help traverse unstable equilibrium paths. One should be skeptical 

of any global buckling solution that is obtained when artificial damping is used in the solution 

procedure. Therefore, the results should be carefully reviewed to ensure that the results are 

physically meaningful. 

Identify and Quantify Sources of Error and Uncertainty. Sources of uncertainty and assumptions 

should be identified to help determine the limitations and risks associated with the modeling and 

analysis results. Common sources of uncertainty include geometry, material properties, part-to-

part variability in material properties and geometry due to manufacturing processes variability, 

statistical basis of material properties, distribution and magnitude of mechanical and/or thermal 

loading, and boundary conditions.  

Similarly, assumptions are made in the process of developing the model based on the known 

information and modeling needs. Sensitivity studies should be conducted to assess the effects 

uncertainties and modeling assumptions. Understanding the response sensitivities can help guide 

testing and data collection requirements and identify model development and refinement needs. 

 Special Considerations for Composite Cylinders 

All recommendations for metallic structures also apply to composite systems. However, there are 

additional special considerations in the modeling of composite cylinders that need special attention 

described as follows: 

Ply Stacking Sequence. Ply stacking sequence can be significant in the buckling prediction, 

especially in thin-ply composites where bend-twist anisotropy can be significant (even in 

balanced-symmetric laminates), and therefore, the actual ply stacking sequence should be specified 

in the model. Angle-ply structures (e.g., [±45]4𝑠 and [±45]8𝑠) can exhibit significant nonlinear 

behavior due to fiber scissoring and matrix nonlinearity. These nonlinear prebuckling response 

characteristics may need to be accounted for in the buckling evaluation. 

Features. For thin-walled cylinders (
𝑟

𝑡
>  100), over-laps and gaps can be an important 

consideration as the local mid-plane eccentricity that is associated with local thickness variation 

can be a driver for buckling. In most cases local mid-surface eccentricities can cause a local 

bending response at the onset of loading. Local thickness variations are likely less of a feature for 

composite sandwich structures or thick monolithic composites.  

Sandwich Structures. For sandwich composite structures, classical plate theory may not be 

adequate for buckling calculations and shear locking can be an issue. Therefore, the buckling 

response should be investigated with multiple models/modeling techniques (shell, axisymmetric, 

global-local, closed-form) to assess modeling sensitivity. 

For fluted-core, structured core, and corrugated core sandwich shells, the radius filler (noodle) can 

play a significant role in the structural response. The influence of the radius filler may be even 

more pronounced than the fillet in stiffened metallic shells, especially when the radius filler 

composed of unidirectional material. The transverse shear stiffness perpendicular to the internal 
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cells can also be quite low, being mostly dependent on bending of the faces and webs, can be 

highly nonlinear, and needs to be modeled with a sufficiently refined model. Accounting for this 

low transverse shear stiffness can be very important for buckling calculations. 

Imperfections. In some cases, thickness variations can play a role in the buckling capability and 

should be included when deemed to be critical [221]. Note the NESC Technical Bulletin No.  

16-01 [222] cautions about the use of the existing empirical recommendations for composites. 

Therefore, imperfection sensitivity studies should examine ply angle, thickness variations, and 

geometric imperfections.  

Composite Failure Modes. Composite failure modes may influence the buckling capability of a 

composite cylinder. Models intended for buckling predictions are generally insufficient to capture 

local failure modes in sandwich structures such as facesheet wrinkling and dimpling, core 

crushing/tearing and shear failure, facesheet separation, core crimping, etc. Therefore, failure 

calculations using the face bending stiffness can deviate significantly from those that use the 

effective modulus and should be investigated with appropriate sandwich composite failure 

calculations. When material and stability failure margins are close, failure modes can be coupled 

(for example, core shear failures can occur at a prebuckling dimple) and a model capable of 

predicting both accurately is recommended. Finally, if the onset of buckling is predicted to occur 

in the vicinity of a stiffness discontinuity (e.g., a ply drop, etc.), it is important to assess material 

failure caused by prebuckling deformations, especially for lightweight cores. 

 Model Validation 

In general, model validation requirements are determined by modeling and data needs. For the 

development of high-fidelity cylinder buckling predictions, key response characteristics for 

validation include: (1) Prebuckling stiffness, characterized by axial load versus end-displacement, 

moment versus end-rotation, etc. (characteristic global displacement versus applied load); (2) 

Prebuckling and buckling displacement response (axial, circumferential, radial) such as load 

versus point displacements and full-field displacement distributions; (3) Prebuckling strains (axial 

and circumferential) such as load versus point strain and full-field strain distributions; and  

(4) buckling load.  

Required accuracy of the analysis predictions is determined by individual project needs. High-

fidelity models have been shown to routinely produce load and displacement results to within ±5% 

of measured values. Prebuckling stiffnesses and prebuckling displacement response are expected 

to correlate with experimental measurements reasonably well (e.g., ±2%). Overall character of 

the full-field prebuckling and buckling displacement response should also correlate well. In 

particular, the character and location of the initiation of buckling should be similar to that observed 

in test, thus, indicating that the physics of the buckling response is well represented. Because of 

cylinders’ extreme sensitivity to variations in geometry, load distribution, and boundary 

conditions, slight variations in the as-tested cylinder configuration can and often will shift the 

buckling initiation location. Thus, an analysis-based sensitivity study can be used to bound the test 

results and provide additional confidence in the analysis model. Local or point strain 

measurements are often the most difficult to correlate due to strains gradients or variations that can 

result from local bending, slight variations in loading, and variations in the as-built versus as-

modeled geometry and material properties. Thus, the overall character of the strain response and 

amplitudes should be assessed for correlation. 
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Validation testing and data requirements follow directly from the model validation needs, such as 

those listed above. Comprehensive instrumentation and measurement techniques will be necessary 

during validation testing in order to obtain required data to correlate with analysis predictions. A 

combination of displacement and strains sensors should be used to measure displacements and 

strains at key locations on the cylinder test article and any adjacent load-introduction structure. In 

addition, full-field digital image correlation (DIC) type techniques are recommended in order to 

characterize prebuckling and buckling displacement response over as much of the cylinder as 

possible. Several successful validation test programs on the buckling of large-scale integrally-

stiffened metallic cylinders are documented in  [217] and include detailed information on the 

testing approach.  

Typical measured data needed for high-fidelity model validation and measurement considerations 

include: 

Effective Stiffness. Effective stiffness provides a means for assessing the overall global stiffness 

response of the structure. The effective stiffness is characterized by load versus displacement 

response curves. The displacement measurements can be directly obtained from the cylinder being 

tested. However, it is important not to rely solely on load actuator displacement measurements as 

they may be influenced by flexibility of the attachments and adjacent loading structure. Part of the 

model validation phase is to ensure that the flexibility of the adjacent loading structure is fully 

understood. 

Prebuckling and Buckling Displacement Response. The displacement response is a key 

characteristic comparing the predicted response and the measured response, primarily because pre-

buckling deformations can influence the final buckling load and mode. These measurements can 

be obtained as point measurements by using standard displacement instrumentation. However, 3D 

DIC techniques can be used to measure full-field displacement response and provide a more 

complete characterization of the displacement response. Low-speed DIC systems are routinely 

used to measure the quasi-static response, while high-speed DIC systems are used to measure 

buckling initiation and transient collapse response. 

Load Introduction. Nonuniformity of the load introduction into the structure can influence the 

buckling load and displacement response and should be characterized. Back-to-back strain sensors 

can be installed on the cylinder test article near ends to characterize the load introduction, and the 

membrane and bending responses. Similarly, back-to-back strain sensors installed on adjacent load 

introduction structures can aid in the characterization of the load introduction. 3D DIC of 

displacement and strain at the cylinder interface region can also aid in the characterization of the 

load introduction and identify any anomalous behavior. 

Boundary Flexibility. All DOF at the boundary may need to be monitored. The boundary flexibility 

can be characterized by using a combination of displacement and strain sensors and 3D DIC, 

including sensors used for load introduction characterization. 

As-Built vs. As-Installed/As-Tested Geometry and Interface Conditions. Installation of the test 

article into the test facility may result in slight change in geometry and induce an initial pre-stress 

due to fit-up tolerances. This effect can be caused by a mismatch in radius and circularity and 

interface surface flatness. As a consequence it may be necessary to characterize the change in 

geometry during installation by using 3D DIC or other high-resolution geometry measurement 

techniques. It may also be necessary to characterize any resulting pre-stress by recording test 

article strain data during installation process. 
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Manufacturing. Residual stresses and variations in material properties may occur during 

manufacturing. The extent of these manufacturing effects and their importance should be assessed 

as part of the manufacturing process development. Analysis-based sensitivity studies should be 

used to determine their importance on the buckling of the cylinder. 

 Knockdown Factor Development Approach 

A typical vehicle design approach includes several phases, including a conceptual/preliminary 

design phase and a detailed design phase. Other design approaches may be used, but it is assumed 

that all will follow a similar multi-phased approach that also includes increasing levels of analysis 

fidelity as the design is refined. The conceptual/preliminary design phase is performed in the 

beginning of the design process to determine overall structural sizing and mass estimates, and to 

perform basic material and configuration trades. Buckling load predictions are typically based on 

classical closed-form buckling analyses of idealized geometrically perfect cylinders with smeared 

stiffener properties and the use of an empirical KDF, as described in Section 4.1. The detailed 

design phase begins after some of the basic design decisions have been made, such as structural 

concept, material type, manufacturing approach, and geometry. In the detailed design phase, the 

buckling load predictions are often based on detailed FEMs of a geometrically perfect structure 

and will begin to include many of the relevant detail features, such as stiffeners, joints, cutouts, 

attachments, and skin thickness tailoring. Although these features may be incrementally added to 

the FEM as the design proceeds, it is expected that the final FEM will reflect all of the relevant 

features of the final design. 

In both phases of the design, however, it is assumed that a buckling knockdown factor (KDF) is 

needed to account for the differences between the predicted buckling load results (classical 

solution or idealized FEM) and the expected buckling load of the as-built cylinder. Since many of 

the assumptions used to develop the equations and KDFs in Section 4.1 are not used with detailed 

FEMs, new KDFs must be identified that are appropriate to the more detailed models of the 

structure. Since it is not practical to conduct experimental testing of a structure during early phases 

of design, an approach for developing analysis-based KDFs is proposed. 

 Development Approach 

As discussed earlier in this document, a KDF can be described as the ratio of the expected load at 

which an as-built cylinder will buckle relative to the load predicted by an analysis. In the empirical 

design approach described in Section 4.1, the expected buckling load was based on a lower bound 

to historical experimental data and the predicted buckling load was from classical linear eigenvalue 

analysis. Thus, the KDF is a single scale factor that captures all the differences between the as-

tested cylinder and the idealized cylinder that classical analysis assumes. With a FEM, the analyst 

has an opportunity to explicitly model many design features rather than rely on the simplifying 

assumptions made in the classical analysis. So rather than relying on a single KDF, it can be 

advantageous to define the overall KDF as the combination of several different KDFs with each 

of the different KDFs used to account for the effects of one or more design features such as initial 

geometric imperfections, nonuniform loading/interface tolerances, joints, internal pressure, 

stiffeners, geometric nonlinearities, etc. Since the different effects can be treated explicitly and 

individually, a hierarchy of KDFs can be developed. The choice of KDFs is then based on the 

fidelity of the analysis used in the design process (e.g., classical solution versus finite element-

based linear eigenanalysis), the quality of the cylinder (i.e., imperfection amplitude), loading 

conditions, and structural details present. Another key difference in this approach is that, rather 
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than relying on experimental data, the expected buckling load for the as-built cylinder is from an 

experimentally-validated, high-fidelity FEM, as described in Section 4.3.1. 

It is important to note that the proposed analysis-based KDFs are not intended to be computed by 

the designer, but would be developed by a separate analysis effort prior to the design process. Like 

an experimental test, the high-fidelity FEM used to produce analysis-based KDF data represents a 

single specific structural configuration. The set of analysis cases used to develop new KDFs must 

be sufficient to bound the design space of all structural configurations needed for the design 

process, and the geometric imperfection and build tolerances must be representative of that 

produced by the intended manufacturing process. Similarly, the finite-element modeling and 

analysis techniques used to produce the analysis-based KDFs should be representative of the FEMs 

used during the design process (i.e. similar representations for stiffeners, mesh sizes, boundary 

conditions, etc.).  

The recommended approach of this knockdown factor development effort is to treat the nonlinear 

high-fidelity FEM results as quasi-experimental data that represent the expected cylinder buckling 

load, and identify conservative KDFs that relate the results from the lower-fidelity analyses to this 

expected buckling load for a range of structural configurations. This is admittedly a time-

consuming process that may not be appropriate for all design projects. However, if done properly 

it can result in a set of KDFs that have a minimal amount of conservatism and maximize prediction 

accuracy throughout the entire design process. The design process thereby becomes much more 

efficient, because it is less likely that the addition of a design detail will result in an unexpected 

change in the buckling characteristics of the structure that would require an extensive redesign. 

This approach can be particularly effective when considering modifications to or redesign of an 

existing aerospace structure that uses a similar manufacturing process and for which heritage 

information is available. 

 Implementation Example 

An example of how this hierarchical set of individual KDFs can be developed for thin-walled 

cylinders will now be presented (also see [200]). Note that this is merely an example assuming a 

simple axial load case and that this methodology is applicable for any set of loads (bending, torsion, 

pressure, thermal). Engineering judgement should be used to develop a consistent set of individual 

KDFs based on the specific analyses used in structural design process. 

First assume in the conceptual/preliminary design phase, a classical linear bifurcation buckling 

analysis of an idealized geometrically perfect cylinder is used to predict the buckling load of a 

cylinder, 𝑃𝑐𝑙, such as that given in Sections 4.1.1 - 4.1.5. The analysis-based KDF, 𝛤, is defined as 

𝛤 =
𝑃𝑐𝑟

𝑃𝑐𝑙
 141 

where 𝑃𝑐𝑟 is the predicted buckling load from an experimentally-validated, high-fidelity FEM, as 

described in Section 4.3.1, and represents the expected buckling load for an as-built cylinder design 

of interest. 

An intermediate step between the classical linear analysis and the high-fidelity nonlinear FEM is 

to conduct a linear bifurcation buckling analysis using the detailed FEM. Thus, it is convenient to 

rewrite the KDF defined in Eq. 141 as the product of a pair of individual KDFs 

 

𝛤 = 𝛤1𝛤2 142 
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where 

𝛤1 =
𝑃𝑏𝑖𝑓

𝑃𝑐𝑙
 143 

and 

𝛤2 =
𝑃𝑐𝑟

𝑃𝑏𝑖𝑓
 144 

𝑃𝑏𝑖𝑓 is the predicted buckling load from the linear bifurcation buckling analysis of the detailed 

FEM. This FEM should be based on an idealized version of the high-fidelity model used to predict 

𝑃𝑐𝑟 , i.e., geometrically perfect, uniform loading, to ensure consistency in the calculations. 

The KDF, 𝛤1, given by Eq. 143 is relatively straightforward and can be regarded as a first-order 

approximation of the effects of structural details on the buckling load of the cylinder. For example, 

a series of design data or curves can be generated that account for the effects of a variety of 

structural details of interest such as cutouts, joints, or discrete stiffeners. Similarly, 𝛤2 given by  

Eq. 144 is a KDF that accounts for the effects of geometric and material nonlinearities as well as 

geometric imperfections, nonuniform loading, elastic boundary conditions, and other structural 

details and behavioral characteristics that are included in the high-fidelity buckling load prediction, 

𝑃𝑐𝑟, but are not captured in the linear bifurcation buckling analysis. 

As discussed above, the details included in the detailed FEM may change as the design proceeds, 

so the individual KDFs, 𝛤1 and 𝛤2, can be further subdivided as necessary to characterize the effects 

of individual features and response characteristics included in some analyses but not others. These 

subdivisions can continue as long as mathematical consistency is maintained, or conservatism is 

demonstrated. For example, it may be advantageous to define 𝛤2 as follows: 

𝛤2 =
𝑃𝑐𝑟(𝑔)

𝑃𝑏𝑖𝑓

𝑃𝑐𝑟(𝑔, 𝑙)

𝑃𝑐𝑟(𝑔)
 145 

where 𝑃𝑐𝑟(𝑔) corresponds to the buckling load of cylinder with only geometric imperfections, 

indicated by the (𝑔), and 𝑃𝑐𝑟(𝑔, 𝑙) corresponds to the buckling load of a cylinder with geometric 

and loading imperfections indicated by (𝑔, 𝑙). Equation 145 can be rewritten as the product of two 

new individual KDFs 

𝛤2 = 𝛤2(𝑔)𝛤2(𝑙) 146 

where 

𝛤2(𝑔) =
𝑃𝑐𝑟(𝑔)

𝑃𝑏𝑖𝑓
 147 

and 

𝛤2(𝑙) =
𝑃𝑐𝑟(𝑔, 𝑙)

𝑃𝑐𝑟(𝑔)
 148 

During the analysis-based KDF development process, the various predictions for the buckling load 

of each analysis case would be computed along with 𝑃𝑐𝑟 from the experimentally-validated, high-

fidelity FEM. Together, they are used with Eqs. 141 - 148 to compute the knockdown of each 

case. The analyst must then synthesize this data across the range of structural configurations and 

identify a hierarchical set of set of KDFs that is conservative and broadly applicable across the 

design space. It may be possible to identify trends within the data in which individual KDFs can 

be represented as functions of design variables, such as in Eqs. 9 - 10, or design curves and 
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equations such as those presented in [200]. Identification of these trends will minimize the 

conservatism of the individual KDFs, and thus minimize structural mass during the design process. 

These design curves can also provide useful data to perform performance versus cost trade studies. 

Once the hierarchical set of KDFs has been developed, the individual KDFs can be combined in a 

mathematically consistent manner as the fidelity of the design and corresponding analysis models 

improve. In this example, a design buckling load 𝑃𝑐𝑟̂ can be calculated for preliminary and detailed 

design using the following relationships: 

For conceptual/preliminary design where 𝑃𝑐𝑙 is calculated, 

𝑃𝑐𝑟̂ = 𝛤1𝛤2𝑃𝑐𝑙  149 

and for detailed design where 𝑃𝑏𝑖𝑓 is calculated, 

𝑃𝑐𝑟̂ = 𝛤2𝑃𝑏𝑖𝑓  150 

and late during the design process when prototypes have been built and geometric imperfection 

has been measured  

𝑃𝑐𝑟̂ = 𝛤2(𝑙)𝑃𝑐𝑟(𝑔) 151 

In this example, 𝛤2(𝑙) is retained to account for the effects of non-uniform loading. 

 Summary of the Approach 

The development of analysis-based KDFs is a powerful tool that leverages the convenience of 

KDFs during design and the ease of high-fidelity analysis relative to experimental structural 

testing. It is important to emphasize that this approach is dependent upon a nonlinear high-fidelity 

analysis that has been experimentally validated for the class of structural designs under 

consideration. It requires that the range of possible imperfections be understood and included in 

the analysis. This is not always possible for new structural concepts, but the hierarchical nature of 

this method means that a conservative estimate for the imperfection can be made initially, and the 

individual KDF that includes the effect of the geometric imperfection can later be refined once 

measurement data becomes available. Provided that these conditions are met, KDFs can be 

developed for a range of structural configurations and load cases, beyond those presented in 

Section 4.1. Alternatively, KDFs can be refined for a structural configuration to minimize their 

conservatism and minimize the mass of that structural design concept. As with any powerful 

analysis tool, sound engineering judgement must be used to ensure that it is safely used and that 

the assumptions incorporated into the analysis-based KDFs are appropriate for the specific design 

case being analyzed.  

 Example Application 

This section provides a top-level summary of the work described in the paper “On the 

Development of Shell Buckling Knockdown Factors for Stiffened Metallic Launch Vehicle 

Cylinders” [200] as it clearly illustrates the development and application of analysis-based shell 

buckling knockdown factors (KDFs) for a modern launch vehicle structure using the approach 

described in Section 4.3.3.2. Several important topics are covered in this work including the 

development of high-fidelity FEMs of integrally-stiffened orthogrid cylinders subjected to uniform 

axial compression (Sec. III), the development of analysis-based KDFs for specific design features 

and loading conditions (Sec. IV), and an example problem to illustrate the use of the analysis-

based KDF design approach (Sec. V) in the optimal design of an integrally-stiffened cylinder in 

compression. 
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In Section III, the high-fidelity finite-element models and analysis methods used to develop 

analysis-based KDFs were described. Important topics from this section include the detailed 

representation of the skin, stiffeners, and weld land details, mesh convergence studies, and 

modeling of the measured geometric imperfection. 

In Section IV, the KDF development approach is described. First, general assumptions related to 

the structural configuration and the KDF limitations are presented in Section IV-A. In particular, 

the KDF development assumed the following: 1) cylinder OML diameter is 27.5-ft; 2) the 

cylinders are constructed from eight integrally-stiffened curved panels that are joined together 

along eight axial weld lands using conventional friction-stir welding; 3) the cylinder is subjected 

to uniform axial compression and internal pressure; 4) the KDFs will account for initial geometric 

imperfections, and the effects of axial weld land details. Then the KDF development approach is 

described in Section IV-B and follows a similar hierarchical KDF development approach presented 

herein. Finally, three different analysis-based KDFs are derived in Section IV-C, one KDF, 1, 
that provides a first-order approximation of the effects of discrete stiffeners and weld lands on the 

buckling load, one KDF, 2, that accounts for the effects of initial geometric imperfections, and 

one KDF that accounts for the effects of internal pressure loads, D. The KDFs are based on the 

results from experimentally validated high-fidelity finite-element analyses. These KDFs have been 

developed such that they can be tailored and evolve as the design matures during the design cycle.  

Section V of [200] presents a simulated design cycle to illustrate the use of the hierarchical 

analysis-based KDFs in the design process. The first phase of the design cycle uses an in-house 

design optimization code that includes the hierarchical KDF definitions derived in Section IV and 

produces an optimal cylinder design. This optimization code predicts the global cylinder buckling 

load based on a classical linear eigenvalue analysis and then applies the appropriate analysis-based 

KDFs 1 and 2 to calculate the design load. In the second phase, the buckling behavior of the 

optimal cylinder was then assessed using a detailed finite-element model. The model included a 

detailed representation of the skin, stiffeners, and weld lands, and assumed simply supported 

boundary conditions and a uniform axial compression load. A linear bifurcation buckling analysis 

of the geometrically perfect cylinder model was conducted to predict the buckling load and 2 was 

applied to account for the effects of initial geometric imperfections. In the final step, the final 

cylinder design is analyzed using a high-fidelity finite-element model to verify the new analysis-

based KDFs and predicted design buckling loads. This high-fidelity FE model was based on the 

same detailed model used in the linear bifurcation buckling analysis but was modified to also 

include initial measured geometric imperfections. The results from all three models produced 

design buckling loads within 4% of each other. This result is significant because it shows that the 

analysis-based KDFs can be used along with traditional preliminary design level analyses to 

develop an optimal design, and that these KDFs can be tailored for use with higher fidelity FEM-

based calculations as the design process evolves, and can be done so in a consistent manner. 
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