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Technical Assessment Report 

1.0 Notification and Authorization  

Mr. Ralph Roe, NASA Chief Engineer, requested the NASA Engineering and Safety Center 

(NESC) to conduct a study to determine the benefits of cyclomatic complexity and basis path 

testing (BPT) for software and whether they should be required. The principal focus of the 

assessment was to assess the use of cyclomatic complexity and BPT on safety-critical software. 

The purpose was to ensure that safety-critical software is not overly complicated to the point of 

increasing coding errors and that verification is more robust than for non-safety-critical software. 

Key stakeholders for this assessment included the NASA Chief Engineer, the Associate 

Administrator for the Human Exploration and Operations Mission Directorate (HEOMD), 

NASA’s Commercial Crew Program, NASA’s Software Engineering and Software Assurance 

communities, NASA program and project managers, and the Office of Safety and Mission 

Assurance (OSMA). 
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4.0 Executive Summary 

After the software failures experienced during Boeing’s Crew Space Transportation (CST)-100 

Orbital Flight Test (OFT), NASA Chief Engineer Ralph Roe expressed a concern that NASA’s 

software testing requirements were potentially insufficient. The head of the HEOMD and 

representatives from the Autonomous Power Controller (APC) System also expressed concern 

regarding the complexity of the software and the amount of testing required. The principal focus 

of the assessment was to assess the use of cyclomatic complexity and basis path testing (BPT) on 

safety-critical software. The purpose was to consider adding requirements for complexity, and 

testing based on complexity metrics, to NASA’s software standards for safety-critical software 

with the overall objective of reducing errors. 

The current version of the NASA Procedural Requirements (NPR) for Software1 contains 

requirements for unit-level testing and the use of static analysis tools. However, the requirements 

do not state what type of unit testing is required, nor which items should be considered in static 

analysis tool results. These decisions are delegated to programs/projects to determine. This 

version of the NPR has no requirement regarding software complexity, whether safety-critical or 

not. The updated NASA Standard for Software Assurance and Software Safety2 contains a 

requirement for assessing the cyclomatic complexity for all safety-critical code modules. This 

standard sets the cyclomatic complexity level for safety-critical functions at 15 or lower. 

An assessment team comprising NASA software engineers, industry partners, military personnel, 

and academia was formed to review the use of cyclomatic complexity and BPT and whether they 

should be applied to NASA projects and programs. The team assessed the current use of these 

techniques at NASA Centers and other agencies and companies. The team examined some 

software products for existing projects to evaluate their complexity levels and the types and 

amount of testing completed. The team also considered tools that could help with determining 

complexity and researched previous software failures and their causes (i.e., whether complexity 

played a factor).  

Assessment team members provided information on the types of software testing available at 

different levels (e.g., unit, configuration item, subsystem, system) and evaluated the types in use. 

Typically, the Agency’s approach to testing involves some unit level testing, continuous 

integration testing, and requirements testing. 

Throughout this investigation, while focused on cyclomatic complexity and BPT, the assessment 

team did not limit itself to those areas. Other data and factors were also evaluated, including 

requirements development and code coverage requirements. The team members agreed that a 

maximum value of 15 should be required when assessing the cyclomatic complexity for safety-

critical software. However, evidence showed that limiting complexity alone would not guarantee 

software less prone to errors and failures. The point of the requirement is to minimize risk, 

minimize testing, and increase reliability associated with safety-critical software code 

components, thus reducing the chance of software failure resulting in a major mishap.  

For the testing method portion of this effort, the assessment team determined that while BPT 

would be beneficial, modified condition/decision coverage (MC/DC) would be a more robust 

 
1 NPR 7150.2C, NASA Software Engineering Requirements 

2 NASA-STD-8739.8A, Software Assurance and Software Safety Standard 
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testing approach. However, MC/DC is likely more taxing to programs/projects in terms of cost 

and schedule. Complete test coverage for software safety-critical code should be required. The 

concept of using untested code in a hazardous condition should not be considered acceptable. 

The updated NASA Standard for Software Assurance and Software Safety requires confirmation 

that 100% code test coverage has been achieved or addressed for all identified software safety-

critical components or provide a risk assessment explaining why the test coverage is not possible 

for the safety-critical code component. If safety-critical code has not been tested, the 

program/project should understand why and discuss the risk associated with the hazard activity 

and the untested code.  

The NESC recommends programs/projects use the MC/DC approach, a code coverage criterion 

commonly used in software testing. MC/DC is similar to condition coverage, but requires testing 

every condition in a decision independently to reach full coverage. The approach means that 

each condition must be executed twice, with the results true and false, but with no difference in 

the truth values of all other conditions in the decision. Also, it must be shown that each condition 

independently affects the decision. 

With this metric, some combinations of condition results are redundant and not counted in the 

coverage result. The coverage of software code is the number of executed statement blocks and 

non-redundant combinations of condition results divided by the number of statement blocks and 

required condition result combinations. 

Code coverage is a way of measuring the effectiveness of test cases. The higher the percentage 

of code covered by testing, the less likely it is to contain errors when compared to code with a 

lower coverage score. Three other types of code coverage are worth considering with MC/DC: 

statement coverage (SC), decision coverage (DC), and multiple condition coverage (MCC). 

The NESC recommends the following two requirements be added to NPR 7150.2: 

3.7.4 The project manager shall ensure that there is 100% code test coverage using the 

MC/DC criterion for all identified safety-critical software. (SWE-208) 

Aerospace and space guidance prioritizes safety in the software development life cycle (SDLC). 

MC/DC represents a compromise that finds a balance between rigor and effort, positioning itself 

between DC and MCC. MC/DC requires a smaller number of test cases in comparison to MCC, 

while retaining a high error-detection probability. 

3.7.5 The project manager shall ensure all identified safety-critical software components have 

a cyclomatic complexity value of 15 or lower for each software component. (SWE-209) 

Cyclomatic complexity is a software metric used to measure code complexity. These metrics 

measure independent paths through source code. The point of the requirement is to minimize 

risk, minimize testing, and increase reliability associated with safety-critical software code 

components. The developer should assess all software safety-critical components with a 

cyclomatic complexity score over 15 for testability, maintainability, and code quality. 

The assessment team members felt it was important to understand that while these proposed 

requirements will help to create better software systems, they are not the only areas to consider. 

The team provided a list of factors they consider critical to a robust software system, including 

architectural complexity, requirements analysis, complete verification approach, and independent 

code reviews. This assessment was narrowly focused; a broader assessment of the overall 

approach to software development may be warranted. 
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5.0 Assessment Plan 

While not required, an informal plan was developed as a starting point for the team. Assessment 

team members reviewed the approaches being followed across the software discipline internal to 

NASA, and across industry, the military, and academia. Table 5-1 lists the external (to NASA) 

standards and guidelines that were discussed. The assessment team also spoke to software 

personnel with experience from Blue Origin, AT&T Bell Labs, Google, Uber, and Codemanship 

(a software consulting firm). Also considered were what tools are available to help determine 

cyclomatic complexity for different applications and were shown demonstrations of some of 

those tools. The team reviewed a limited number of software sets, but enough to understand how 

complex some software systems are and how effective BPT can be. Team members interviewed 

software developers who have employed various software testing techniques to gauge what the 

best approach for safety-critical software might be. Finally, the team assessed problems and 

errors in software development and previous space flight missions to understand what areas of 

software development might have benefited from more rigor.  

Table 5-1. External NASA Documents Consulted 

Safety Design Criteria for Nuclear Weapons Systems Software, USAF 91-119 
Medical Device Software Life Cycle Process, IEC62304 
Motor Industry Software Reliability Association (MISRA) Rule Set, 1997 
MISRA Rule Set, 2004 

Joint Software System Safety Committee Software System Safety Handbook, 1999 
European Space Agency Coding Rules, 2000  
Goddard Flight Software Branch Coding Rules, 2000 
Mars Reconnaissance Orbiter Coding Rules, 2002 
JPL Multi-Mission System Architecture Platform Coding Rules, 2005 

Joint Strike Fighter Air Vehicle Rules, Rev. C, 2005 

JPL Space Interferometry Mission Realtime Control Subsystem Coding Rules, 2005 

JPL Mars Science Laboratory Coding Rules, 2006 

JPL Power of Ten Rules, 2006 

JPL Institutional Coding Standard, 2008 

6.0 Problem Description and Assessment Team Evaluation 

Software systems have become more complex over the past several years while becoming 

increasingly responsible for running critical spacecraft systems. It is vital that these software 

systems are fully verified to ensure the safety of crew members and vehicles. As seen during the 

CST-100 OFT flight, insufficient decision-testing coverage may have contributed to potentially 

catastrophic errors going undetected until flight. The more complex the code, the more difficult it 

is to adequately test and verify.  

The complexity of a software-intensive system expresses itself in two primary ways: 

architectural complexity and structural, or source code, complexity. Software architecture is the 

fundamental organization of a system, as embodied in its components and their relationships to 

each other and the environment. All software systems have an architecture, whether known and 

documented or not. Coupling and cohesiveness among a system’s components and subsystems 

reflect the dependency view of its architecture. Both the number and types of interdependencies 
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among the constituent elements of a system indicate the level of the system’s architectural 

complexity. Systems containing source files that are highly interdependent or have numerous 

bidirectional or cyclic dependencies in effect encode system information, and hence complexity, 

through their dependencies. Such systems are often referred to as “brittle” to indicate that they 

are difficult to test, reuse, and maintain over the SDLC. Certain architectural patterns—for 

example, layering—are often used by software architects as mitigations against otherwise 

unconstrained dependencies and the increased software architectural complexity they precipitate.  

Alternatively, the complexity within the source code of a single module, function, or block is 

structural complexity. Several metrics correlated to structural code complexity are in use and 

supported by various code analysis tools. These include source lines of code (SLOC), function 

points, and Halstead’s complexity measures. However, the most common structural complexity 

metric is cyclomatic complexity [ref.11], which measures the number of decisions within the 

code based upon its control flow graph. Cyclomatic complexity is defined as equal to the number 

of test cases required to test all linearly independent, or “basis,” paths through the code (see 

Figure 6-1). Hence, BPT, one form of structured, or “white-box,” testing, is driven by the code’s 

cyclomatic complexity and has become a commonly used criterion for measuring software 

testing coverage. To be “linearly independent” means that each path has at least one edge that is 

not in one of the other paths. For instance, if the source code contained no control flow 

statements (i.e., conditionals or decision points), the cyclomatic complexity would be one, since 

there would be only a single path through the code. If the code had one single-condition IF 

statement, there would be two paths through the code: one where the IF statement evaluates 

TRUE and another where it evaluates to FALSE, so the cyclomatic complexity in this case is 

two. Two nested single-condition IFs, or one IF with two conditions, would produce a 

cyclomatic complexity of three. Figure 6-1 shows a graphical representation of a function with a 

cyclomatic complexity of three. It is important to note that the cyclomatic complexity is not tied 

directly to the number of SLOC. A function that runs start to finish with no options has a 

cyclomatic complexity of one, regardless of the number of lines. 

 
Figure 6-1. Graphical Representation of Function with Cyclomatic Complexity of Three 

There are different types of cyclomatic complexity. For example, standard cyclomatic 

complexity (CC or CC1) is equal to the number of decisions + 1 for the code in question, as 
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described above. Strict cyclomatic complexity (CC2) [see ref. 11] adds one for each Boolean 

condition within a compound decision predicate, rendering CC2 difficult to “game” 

(i.e., lowering the measured complexity through moving otherwise nested code decision blocks 

into complex multi-condition decision logic). Another variation, modified cyclomatic complexity 

(CC3), reduces the penalty on multi-way decision branches, such as switch() statements in the C 

language, by counting them as one decision. CC3 may be sensible for certain non-safety-critical 

application types that use event handlers or finite state machines heavily. It is important to 

understand and choose which type of cyclomatic complexity will be used, as many tools support 

one or more and their specific terminology may differ from that described here. 

Throughout NASA, cyclomatic complexity is used by some Centers, but is not universally 

required. Some projects are collecting the metric, but may or may not modify code based on its 

value. Notably, the two largest NASA programs with safety-critical flight software (i.e., Space 

Launch Systems (SLS) and Multi-Purpose Crew Vehicle) determine cyclomatic complexity and 

assess code that exceeds defined thresholds to determine whether it is acceptable or needs to be 

modified. Other projects use the cyclomatic complexity number during peer reviews and 

inspections to increase understanding of the software. In all cases where cyclomatic complexity 

is used, rules have been established for handling cases where functions exceed the target value. 

According to presentations the assessment team received from the U.S. Air Force, industry, and 

academia, cyclomatic complexity is not used universally, but those who use it find it helpful. In 

data collected from industry, there was no evidence that cyclomatic complexity played a 

dominant role in software development. However, it was one of several factors identified with 

code defect density, along with metrics describing others such as code churn (i.e., how often 

code is changed), assertion density (the percentage of code that performs self-checking functions, 

e.g., in the form of an assertion—a typical target for safety-critical code is an assertion density of 

2% or higher), and inter-module dependencies. Incomplete or missing requirements and 

insufficient requirements traceability were also identified as causes for software problems, 

especially those found later in the mission life cycle. Several study papers reviewed by the 

assessment team discussed the use of cyclomatic complexity and other metrics in software 

development [refs. 1-6]. Scholarly data on code complexity metrics to reduce software errors are 

mixed because of the difficulty in performing controlled studies across different application 

areas, programming team skill levels, and software languages. Most general software coding and 

quality standards (e.g., ISO 25010, Systems and Software Engineering—Systems and Software 

Quality Requirements and Evaluation (SQuaRE)) do not include cyclomatic complexity. 

However, some safety-critical coding standards do. One example is the Joint Strike Fighter (JSF) 

coding standard, which uses a cyclomatic complexity maximum of 20.  

For the NASA Centers that use cyclomatic complexity, many projects with safety-critical 

functions used complexity levels of 20 or less. The Air Force uses a complexity level of 15-20, 

whereas the academia and industry examples the assessment team reviewed (e.g., MISRA, 

AUTOSAR, Hersteller Initiative Software (HIS), JSF AV++) used complexity requirements in 

the 10–20 range. Code with lower complexity also translates into software that is easier to 

maintain. The maintainability index for a given piece of software is a combination of SLOC, 

cyclomatic complexity, and Halstead Volume. Software with a low cyclomatic complexity 

requires less unit testing and validation and will allow for fewer significant architectural changes 

during the SDLC.  
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Based on this, the assessment team chose a maximum of 15 for safety-critical software, with the 

understanding that this may change in the future to reflect the state of Agency software 

development. The team did not reach a consensus on which version to require (i.e., CC1, CC2, or 

CC3), deferring to programs/projects to decide how strict or lenient they felt appropriate and 

assuming adequate rationale. It is important that NASA not use cyclomatic complexity alone, but 

rather with other metrics, such as architectural complexity, code and requirements changes, and 

defect density, when evaluating software for errors.  

The second objective of this assessment involved the testing of complex software. Developers 

across the Agency typically focus software testing on meeting system-level requirements, but are 

not required to verify that every decision or branch is performed correctly at the unit level. Unit-

level testing is required, but it is not always clear to what depth it should occur, since most of 

NASA’s testing revolves around requirements verification and many developers are concerned 

only with meeting those requirements. Ideally, the primary objective of software testing should 

be meeting requirements to reduce risk, rather than prioritizing nontechnical aspects, such as 

style and formatting. The strategy of blindly meeting requirements without ensuring the 

requirements are correct has led to potentially mission-critical errors. Finally, every defect or 

anomaly discovered post-release reveals a flaw in testing and should be addressed through 

additional testing, requirements, or both.  

Many types of software testing can be used for unit-level testing. BPT is tightly coupled with 

cyclomatic complexity, requiring more testing effort for code of higher complexity, which is 

itself an incentive for developers to keep their code below some reasonable threshold. MC/DC, 

being even more rigorous than BPT, is more robust and thus suitable for safety-critical software 

applications when used in conjunction with functional and requirements testing. It is important to 

understand that this type of testing needs to occur at the unit level and be developed along with 

the software code to be most effective and less costly if problems are found.  

BPT, or structured testing, is a white-box method for designing test cases. The method analyzes 

the software control flow graph of a software program to find a set of linearly independent paths 

of execution. The method normally uses cyclomatic complexity to determine the number of 

linearly independent paths and generates test cases for each path. BPT guarantees 

complete branch coverage (i.e., all edges of the control flow graph), but achieves that without 

covering all possible paths. Figure 6-2 provides an example of a function with cyclomatic 

complexity and three paths for BPT; the fourth path, shown in yellow, is redundant. 

 

Figure 6-2. BPT Example 

https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Branch_coverage
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)
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MC/DC is a code coverage criterion used in software testing that requires all of the following 

during testing: 

• Each entry and exit point is invoked. 

• Each decision takes every possible outcome. 

• Each condition in a decision takes every possible outcome. 

• Each condition in a decision is shown to independently affect the outcome of the decision. 

• Independence of a condition is shown by proving only one condition changes at a time. 

MC/DC is used in avionics software development guidance (DO-178B and DO-178C3) to ensure 

adequate testing of the most critical (Level A) software, (i.e., software that could provide or 

prevent failure of continued safe flight and landing of an aircraft). Table 6-1 shows an example 

of the use of MC/DC for testing a function of code. 

Table 6-1. MC/DC Testing Example 

Example:  if (A && B && C) {statement block;} 

Test # A B C Result 

7 1 1 1 1 

6 1 1 0 0 

5 1 0 1 0 

4 1 0 0 0 

3 0 1 1 0 

2 0 1 0 0 

1 0 0 1 0 

0 0 0 0 0 

To meet MC/DC decision coverage aspect:  Perform tests #7 and #6 

To meet independent condition coverage: 

Variable A  
Perform tests 7 and 3 

Variable B 
Perform tests 7 and 5 

Variable C 
Perform tests 7 and 6 

Result: Four test cases needed 

As the example shows, MC/DC provides a robust testing methodology because it ensures all 

decisions and paths are verified in a given function. The projects using cyclomatic complexity as 

a metric and containing safety-critical code are using MC/DC for their testing approach. Other 

standards, such as the FAA’s DO-178C,4 require full MC/DC test coverage for safety-critical 

avionics systems.  

While SC and DC are subsets of MD/DC, MCC is actually similar to MC/DC, though it is more 

extreme. In MCC, all statements must be executed and all combinations of truth values in each 

decision must occur at least once to reach full coverage. In the Table 6-1 example, if a developer 

runs all seven test cases, they are performing MCC. While performing all seven test cases is 

more complete, there is no value added since the independent outcome is what really matters and 

that is covered by MC/DC. 

 
3 DO-178C, Software Considerations in Airborne Systems and Equipment Certification (replaced DO-178B in 2012)  

4 DO-178C, Software Considerations in Airborne Systems and Equipment Certification 
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7.0 Cyclomatic/Static Analysis Tools  

Numerous available static analysis tools can calculate cyclomatic complexity for one or more 

source code files. Some tools, such as the Unified Code Counter (UCC) produced by the Center 

for Systems and Software Engineering at the University of Southern California, are freely 

available. UCC produces SLOC values and standard cyclomatic complexity (CC1) for each 

function or method in a multi-file source code system. Other commercial static analyzers, such as 

Scientific Toolworks’ Understand, can identify all varieties of cyclomatic complexity (i.e., CC1, 

CC2, and CC3), the maximum function or method cyclomatic complexity for each file within the 

application, and visualizations of the code base that show the cyclomatic “hot spots” for drilling 

down via closer human analysis. Beyond these two tools, many other static analyzers and some 

integrated development environments (e.g., Atlasean’s Bamboo) measure and display cyclomatic 

complexity for utilization by software developers, testers, and quality assurance analysts. 

Tools are also available for assessing risk associated with cyclomatic complexity. One 

methodology is the Risk Management Framework, described in NIST 800-37 [ref. 10]. This 

standard uses six steps when accounting for risk: categorize risk, select controls, implement 

controls, assess controls, authorize their use, and monitor the implemented controls. This method 

of risk oversight helps ensure the associated design controls implemented to deal with risk are 

constantly monitored. If a design control becomes inadequate, constant monitoring will highlight 

additional control needs. 

Similarly, dependency analysis for assessing architectural complexity is supported by 

commercial static analysis tools, such as Understand, Lattix Architect, and Silverthread. Lattix 

Architect and Silverthread use dependency structure matrix visualizations of software 

dependencies to show system coupling and cohesion, as well as to isolate cyclic dependencies 

within the codebase. These tools can also be used to enforce desired architectural design 

constraints on the system during the SDLC when run as part of a continuous integration stack. 

Some organizations that use the Silverthread tool also use the MITRE Code Assessment Toolset  

for automated static analysis. The key to these tools is that they are used frequently, starting in 

the development phase of the life cycle; based on a consistent set of rules and parameters; and 

automated so results can be compared on a regular basis.  

The prevalence of MC/DC for testing safety-critical avionics software has led to MC/DC 

coverage support by a number of software test coverage tool vendors, including Rapita Systems, 

VectorCAST, LDRA, and Parasoft. These tools can assist software testers in creating test cases 

and calculating the resulting test coverage.  

8.0 Data Analysis 

This assessment team reviewed three software sets to understand complexity levels in flight 

software projects at this time: the SLS Flight Software, the Core Flight Software (CFS) bundle 

and applications, and the APC system. SLS Flight Software is a major in-house-built software 

system. The CFS bundle is in wide use and has been for several years, being added to by the 

open-source user community. The APC software is a Glenn Research Center in-house product in 

development, with interim deliveries to JSC for concept verification and potential use in future 

NASA missions.  

For the SLS Flight Software, the applied coding standard required cyclomatic complexity of no 

higher than 20. For any units exceeding that level, either the code was reworked or a waiver was 
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processed. An exception to this rule was allowed for large switch statements. Cyclomatic 

complexity was calculated using the QAC++ tool from Programming Research Limited (PRQA, 

now owned by Perforce Software). NASA Independent Verification and Validation also 

calculated cyclomatic complexity using a different toolset and reported results to the SLS Flight 

Software Team. The results indicated that the average complexity of the SLS Flight Software 

code is ~2.9. Only one waiver was processed for a portion of legacy guidance, navigation, and 

control code. 

For the CFS, 34 of 975 functions had a cyclomatic complexity level greater than 15. For the CFS 

applications, 111 of 2,426 functions exceeded that level. For the APC, it was 67 of 2,498. The 

interesting aspect is that without a requirement to do so, the CFS and APC teams kept their 

complexity levels low for the majority of their code. The CFS applications code was not written 

by one team, but by the CFS community, and with no guidance, fewer than 5% of the 

applications exceed a complexity of 15. As parts of the APC software were recoded to use the 

CFS bundle as their base, the complexity level of the functions decreased, with only 1 function 

of 113 exceeding the complexity level of 15. 

The CFS and APC development teams were not required to follow either BPT or MC/DC testing 

methodologies. CFS followed the Goddard Open Learning Design Rules for Systems Testing 

and Requirements Verification. The developers followed their internal unit test standard and best 

practices for continuous integrated testing of the units and coverage testing. An independent 

team of software personnel tested all the requirements. The APC team had a bare minimum set 

of software unit level testing due to a limited team size.  

The assessment team asked the APC developers to perform BPT on two or three functions, at 

least one with a high cyclomatic complexity value and one with a lower value. The results 

provided an evaluation of not just how difficult and time-consuming BPT is, but also where 

complexity levels become burdensome. The APC software lead chose three functions with 

cyclomatic complexity levels of 28, 9, and 5. The software lead documented how long it took to 

create a flow diagram, determine the test cases, and write the tests. For a complexity level of 28, 

these tasks took 31 hours, compared to less than one hour for the lowest complexity function 

level of 5. The software lead estimated his confidence level for each of these functions achieving 

full testing coverage. For the lower complexity levels, the estimate was close to 100% confident 

full coverage would be obtained, while for the higher complexity function, the estimated 

confidence level was 30%. This could be improved with independent verification that all paths 

were tested, but would increase the time and resources necessary to complete the testing.  

The assessment team asked the APC developers to perform a similar activity for MC/DC. The 

developers used the same functions assessed for BPT, as well as an additional function with a 

complexity of 18. The developers indicated that the rules of MC/DC made it easier to create and 

evaluate the truth table associated with each function and determine which paths to test to 

achieve the desired results of testing full nominal and off-nominal functionality. The number of 

tests decreased for most functions, and the amount of time to develop those tests also decreased. 

It was also noted that the smaller the cyclomatic complexity, the smaller the difference in the 

number of tests for BPT and MC/DC. In some cases, the number was identical. Table 8-1 shows 

the difference in the number of test cases and the time it took to develop testing for different 

complexity (MCC) functions, using BPT and MC/DC. For the more complex functions, the time 

savings between BPT and MC/DC methodologies was 30 to 50%. 
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Table 8-1. Comparison of Test Cases and Time for BPT (top) and MC/DC (bottom) 

FUNCTION MCC SLOC 
BPT 

Tests 

Time to 
Create Flow 
Diagram & 
Determine 
Test Case 

Paths 

Time  
to Write 

Tests 

Total 
Time  

(hours) 

ServiceLoadShedMsm::HandleLoadShedGatewayPrm 28 108 28 16.000 15.000 31.000 

ServiceEnergyAvailabilityPpe::InitSocProfiles 9 23 9 0.800 0.850 1.650 

EnergyAvailableGatewayPrm::GetEnergyPerPhase 5 17 5 0.167 0.583 0.750 

FUNCTION MCC SLOC 
MC/DC 
Tests 

Est Time: 
 Create 

Truth Table 

Time  
to Write 

Tests 

Total 
Time  

(hours) 

ServiceLoadShedMsm::HandleLoadShedGatewayPrm 28 108 17 1.000 3.000 4.000 

ServiceEnergyAvailabilityPpe::InitSocProfiles 9 23 6 0.167 0.650 0.817 

EnergyAvailableGatewayPrm::GetEnergyPerPhase 5 17 5 0.083 0.500 0.583 

PowerSystem::GetSwitchState 18 18 15 0.500 2.500 3.000 

9.0 Observations and NESC Recommendations 

9.1 Findings 

The assessment team identified the following findings: 

F-1. While there is often some degree of correlation, the number of SLOC does not indicate 

the complexity of the code. For example, straight-line code with zero decisions (e.g., no 

“if,” “while,” or “for” constructs) could possess a high SLOC count, but have a 

cyclomatic complexity equal to one. 

F-2. There is a direct correlation between code complexity and the effort required to 

adequately test the code. 

F-3. MC/DC testing is more suitable for safety-critical software when used in conjunction 

with functional and requirements testing, requires less time (i.e., 30–50%) to execute than 

BPT, is more robust than BPT, and reduces the redundant path testing of other code 

coverage criteria like MCC. 

F-4. Where cyclomatic complexity is applied, it is typically used on safety- and mission-

critical functions, with a maximum value between 10 and 20 typically chosen as the 

requirement or used in a coding standard. 

F-5. Agency software verification focuses on meeting the requirements, but does not verify 

that every decision or branch of code performs correctly. Software developers are 

required to perform unit level testing, but no level of robustness or type of unit testing is 

specified.  

F-6. Several NASA projects using MC/DC as a testing approach have found MC/DC to limit 

software coding errors by providing full path coverage. 
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F-7. Results from academic studies on code complexity metrics are inconclusive because of 

the difficulty of performing controlled studies across different application areas, 

programming team skill levels, and languages (e.g., C++, Ada, Java). 

F-8. Low cyclomatic complexity values (i.e., less than 15) will simplify and expedite code 

verification and testing. 

F-9. Code churn (i.e., how often code is changed) and inter-module dependencies are also 

effective indicators for tracking coding errors. 

F-10. Prevailing industry standards (e.g., DO-178C) recommend, or even require, MC/DC for 

safety-critical software testing strategy. 

F-11. Availability of tools to support MC/DC testing is more prevalent than for any other 

testing technique.  

9.2 Observations 

The assessment team identified the following observations: 

O-1. The complexity of the architecture is also a critical element that should be considered. 

Dependency analysis can reveal that even cyclomatically simple code may be so 

interdependent as to be difficult to test or reuse. Hence, it is important to keep functions 

less structurally complex, but not if it forces the overall architectural complexity to 

become unmanageably interwoven. 

O-2. Inadequate or unclear requirements are prone to cause software problems/errors later in 

the project life cycle. 

O-3. In addition to the verification and risk reasons for limiting cyclomatic complexity, 

software maintainability efforts will indirectly benefit from lower complexity.  

O-4. Software defects or anomalies discovered post-release reveals a flaw in testing and 

should be addressed either through additional testing, requirements, or both. 

9.3 NESC Recommendations 

The assessment team identified the following NESC recommendations, directed to NASA and 

NASA contractor software developers. 

R-1. Use MC/DC testing methodology in conjunction with functional and requirements testing 

for software projects with safety-critical code. (F-2, F-3, F-6, F-10, F-11) 

R-2. Employ a cyclomatic complexity less than or equal to 15, or provide a credible rationale 

for not meeting that metric, for safety-critical software. Use in conjunction with other 

software metrics (see R-3) and recognize the possibility of changing the value based on 

future Agency software development. (F-2, F-4, F-8) 

R-3. Track and minimize code churn and inter-module architectural and design dependencies, 

keeping both to a minimum. (F-9) 

R-4. Run at least one, but preferably more, commercial static source code analyzers with a 

strict set of rules on every build and discuss the results in module code reviews; the ratio 

of warnings to SLOC should be minimized. (F-1, F-5, F-9, O-4)  

• Examples of suitable analyzers include: Coverity, Codesonar, Semmle, and 

KlockWork. 
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R-5. Consider using the Risk Management Framework found in NIST 800-37 when 

accounting for risk associated with cyclomatic complexity. (F-2, F-4, F-8) 

R-6. Focus requirement compliance on reducing risk rather than simply nontechnical features 

(e.g., checking for style and formatting). (F-1, O-1, O-2, O-3, O-4) 

R-7. Ensure that all code compiles without warnings, with warnings enabled at the highest 

possible level (e.g., gcc–Wall–pedantic) and map warnings to errors (i.e., compiler 

warnings stop the build). (O-1, O-2, O-3, O-4) 

R-8. Every defect or anomaly discovered post-release reveals a flaw in testing and should be 

addressed through additional testing, requirements, or both. (O-1, O-2, O-3, O-4) 

R-9. Complete test coverage for software safety-critical code should be required. (F-6) 

10.0  Recommended Updates to NASA Standards and Specifications 

The assessment team recommends adding two new requirements to NPR7150.2, NASA Software 

Engineering Requirement, for current and future HEO programs/projects: 

3.7.4 The project manager shall ensure that there is 100% code test coverage using the 

MC/DC criterion for all identified safety-critical software. (SWE-208) 

Rationale: In MC/DC coverage, every condition in a decision must be tested independently to 

reach full coverage. Each condition must be executed twice, with the results true and false, but 

with no difference in the truth values of all other conditions in the decision. In addition, it must 

be shown that each condition independently affects the decision.  

Aerospace and space guidance prioritizes safety in the SDLC. MC/DC represents a compromise 

that balances rigor and effort, positioning itself between DC and MCC. MC/DC requires a 

smaller number of test cases in comparison to MCC, while retaining a high error-detection 

probability. 

3.7.5 The project manager shall ensure all identified safety-critical software components have 

a cyclomatic complexity value of 15 or lower for each software component. (SWE-209) 

Rationale:  Cyclomatic complexity is a metric used to measure the complexity of a software 

program. These metrics measure independent paths through the source code. The point of the 

requirement is to minimize risk, minimize testing, and increase reliability associated with safety-

critical software code components, thus reducing the chance of software failure during a 

hazardous event. The software developer should assess all software safety-critical components 

with a cyclomatic complexity score over 15 for testability, maintainability, and code quality.  

In addition, NPR 7150.2C, NASA Software Engineering Requirement, should be updated with 

detailed guideline information on architectural and cyclomatic complexity and MC/DC testing to 

guide developers in meeting these requirements and understanding their interactions. 

11.0 Alternative Viewpoint(s) 

There was one alternative viewpoint, as expressed in the following by Gerard Holzmann: 

A minority of the team held that the most effective method for increasing code quality and 

reducing the residual defect density of software is not to bound the number of SLOC or the 
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cyclomatic complexity of functions, but rather to adopt strict adherence to the following 

development practices: 

1. Ensuring compliance with a sensible coding standard for safety-critical code, focused 

specifically on risk reduction. The JPL Institutional Standard for the C Programming 

Language (JPL-D-60411, March 2009) is an example. 

2. Running at least one, but preferably more, strong commercial static source code analyzers 

on every build of the code that include checkers for the rules in the coding standard used. 

3. Requiring that all code be compiled with all available warnings in the compiler enabled at 

their highest level (e.g., -pedantic), while generating zero warnings. 

4. Maintaining an average assertion density for all code modules of at least 2%. (Assertion 

density has been shown to correlate strongly with post-release fault density in studies 

done at Microsoft Research [ref. 4].) 

5. Tracking all higher-level software requirements into the code and deriving test suites 

directly from the requirements. If full MC/DC code coverage is not realized in this way, 

it would mean requirements were incomplete or part of the code was redundant. In both 

cases, the issue should be analyzed and addressed. Note that a function that computes a 

square root and/or sorts data cannot be assumed to have been sufficiently tested if only 

full MC/DC coverage is realized: the function should be tested to actually compute the 

square root or sort the data, including in corner cases, to reject invalid inputs. This can be 

done only when tests are derived from higher-level requirements. 

12.0 Other Deliverables 

No unique hardware, software, or data packages, outside those contained in this report, were 

disseminated to other parties outside this assessment. 

13.0 Definition of Terms  

BPT One form of structured, or “white-box” testing, driven by the code’s 

cyclomatic complexity. The method analyzes the control flow graph of 

a program to find a set of linearly independent paths of execution. It 

has become a commonly used criterion for measuring software testing 

coverage. 

Code Coverage A measure used to describe the degree to which the source code is 

executed when a particular test suite runs. Software with high test 

coverage, measured as a percentage, has had more of its source code 

executed during testing, suggesting it has less chance of containing 

undetected software errors compared to a code with low test coverage. 

Cyclomatic Complexity Measures the number of decisions within the code based upon its 

control flow graph. Equal to the number of test cases required to test 

all linearly independent, or “basis,” paths through the code.  

Halstead Volume Describes the size of the implementation of an algorithm. The 

computation is based on the number of operations performed and 

operands handled in the algorithm. 

https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Execution_(computing)
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Linearly Independent Each code path has at least one edge that is not in another path. 

Software Testing An investigation conducted to provide stakeholders with information 

about the quality of the software product or service under test. 

14.0 Acronyms and Nomenclature List 

APC Autonomous Power Controller  

BPT  Basis Path Testing 

CC or CC1 Standard Cyclomatic Complexity  

CC2 Strict Cyclomatic Complexity  

CC3 Modified Cyclomatic Complexity  

CFS Core Flight Software  

DC Decision Coverage  

GSFC Goddard Space Flight Center 

HEOMD  Human Exploration and Operations Mission Directorate  

JPL Jet Propulsion Laboratory 

JSF Joint Strike Fighter  

LaRC Langley Research Center 

MC/DC Modified Condition/Decision Coverage  

MCC Multiple Condition Coverage  

MSFC Marshall Space Flight Center 

NESC NASA Engineering and Safety Center  

NPR  NASA Procedural Requirements  

OFT  Orbital Flight Test 

OSMA  Office of Safety and Mission Assurance  

SC Statement Coverage  

SDLC  Software Development Life Cycle  

SDLC Software Development Life Cycle 

SLOC Source Lines of Code  

UCC Unified Code Counter  
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