

December 2020

NASA/TM−20205011566

NESC-RP-20-01515

Cyclomatic Complexity and

Basis Path Testing Study

Michael D. Squire/NESC

Langley Research Center, Hampton, Virginia

Laura A. Maynard-Nelson

Glenn Research Center, Cleveland, Ohio

Terry A. Brown

Marshall Space Flight Center, Huntsville, Alabama

Robert T. Crumbley

NASA Headquarters, Washington D. C.

Gerald J. Holzmann

Jet Propulsion Laboratory, Pasadena, California

Michael Jennings

U. S. Airforce, Tinker Air Force Base, Oklahoma

Kequan Luu, and Walter F. Moleski

Goddard Space Flight Center, Beltsville, Maryland

Jay D. Marchetti

Carnegie Mellon University–Software Engineering Institute, Pittsburgh, Pennsylvania

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counterpart of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/

and select the “General” help request type.

https://www.sti.nasa.gov/sti-contact-form/

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

December 2020

NASA/TM−20205011566

NESC-RP-20-01515

Cyclomatic Complexity and

Basis Path Testing Study

Michael D. Squire/NESC

Langley Research Center, Hampton, Virginia

Laura A. Maynard-Nelson

Glenn Research Center, Cleveland, Ohio

Terry A. Brown

Marshall Space Flight Center, Huntsville, Alabama

Robert T. Crumbley

NASA Headquarters, Washington D. C.

Gerald J. Holzmann

Jet Propulsion Laboratory, Pasadena, California

Michael Jennings

U. S. Airforce, Tinker Air Force Base, Oklahoma

Kequan Luu, and Walter F. Moleski

Goddard Space Flight Center, Beltsville, Maryland

Jay D. Marchetti

Carnegie Mellon University–Software Engineering Institute, Pittsburgh, Pennsylvania

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

Acknowledgments

The assessment team would like to acknowledge the contributions of both the

Core Flight Software (CFS) and the Autonomous Power Controller (APC) Teams

in providing data on complexity and testing. The team would also like to thank

the following peer reviewers: Tim Barth, Dan Dorney, Caren Ensey, Steve Gentz,

Pam Pittman, and Lorraine Prokop.

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

NESC Document #: NESC-RP-20-01515 Page #: 1 of 22

NASA Engineering and Safety Center

Technical Assessment Report

Cyclomatic Complexity and Basis Path Testing Study

November 16, 2020

NESC Document #: NESC-RP-20-01515 Page #: 2 of 22

Report Approval and Revision History

NOTE: This document was approved at the November 16, 2020, NRB. This document was

submitted to the NESC Director on November 17, 2020, for configuration control.

Approved: Original Signature on File 11/18/20

 NESC Director Date

Version Description of Revision
Office of Primary

Responsibility
Effective Date

1.0 Initial Release

Michael D. Squire

NESC Principal

Engineer, LaRC

11/16/2020

NESC Document #: NESC-RP-20-01515 Page #: 3 of 22

NESC Document #: NESC-RP-20-01515 Page #: 4 of 22

Table of Contents
1.0 Notification and Authorization .. 5

2.0 Signature Page ... 6

3.0 Team List ... 7
3.1 Acknowledgments .. 7

4.0 Executive Summary ... 8

5.0 Assessment Plan .. 10

6.0 Problem Description and Assessment Team Evaluation ... 10

7.0 Cyclomatic/Static Analysis Tools .. 15

8.0 Data Analysis ... 15

9.0 Observations and NESC Recommendations .. 17
9.1 Findings .. 17
9.2 Observations ... 18
9.3 NESC Recommendations ... 18

10.0 Recommended Updates to NASA Standards and Specifications .. 19

11.0 Alternative Viewpoint(s) ... 19

12.0 Other Deliverables ... 20

13.0 Definition of Terms.. 20

14.0 Acronyms and Nomenclature List ... 21

15.0 References .. 22

List of Figures

Figure 6-1. Graphical Representation of Function with Cyclomatic Complexity of Three 11

Figure 6-2. BPT Example ... 13

List of Tables

Table 5-1. External NASA Documents Consulted ... 10

Table 6-1. MC/DC Testing Example .. 14

Table 8-1. Comparison of Test Cases and Time for BPT and MC/DC .. 17

NESC Document #: NESC-RP-20-01515 Page #: 5 of 22

Technical Assessment Report

1.0 Notification and Authorization

Mr. Ralph Roe, NASA Chief Engineer, requested the NASA Engineering and Safety Center

(NESC) to conduct a study to determine the benefits of cyclomatic complexity and basis path

testing (BPT) for software and whether they should be required. The principal focus of the

assessment was to assess the use of cyclomatic complexity and BPT on safety-critical software.

The purpose was to ensure that safety-critical software is not overly complicated to the point of

increasing coding errors and that verification is more robust than for non-safety-critical software.

Key stakeholders for this assessment included the NASA Chief Engineer, the Associate

Administrator for the Human Exploration and Operations Mission Directorate (HEOMD),

NASA’s Commercial Crew Program, NASA’s Software Engineering and Software Assurance

communities, NASA program and project managers, and the Office of Safety and Mission

Assurance (OSMA).

NESC Document #: NESC-RP-20-01515 Page #: 6 of 22

2.0 Signature Page

Submitted by:

Team Signature Page in File – 12/3/2020

Mr. Michael D. Squire Date

Significant Contributors:

Ms. Laura A. Maynard-Nelson Date Mr. Terry A. Brown Date

Mr. Robert T. Crumbley Date Mr. Gerard J. Holzmann Date

AG Michael Jennings Date Mr. Kequan Luu Date

Mr. Jay D. Marchetti Date Mr. Walter F. Moleski Date

Mr. Michael A. Riley Date

NESC Document #: NESC-RP-20-01515 Page #: 7 of 22

3.0 Team List

Name Discipline Organization

Core Team

Michael Squire NESC Lead NESC

Laura Maynard-Nelson Technical Lead GRC

Tim Crumbley OSMA HQ

Terry Brown Software Engineer MSFC

Gerard Holzmann Software Engineer Nimble Research/JPL

Michael Jennings Software Sustainment Senior Lead U.S. Air Force

Suzanne Knispel Software Testing Engineer Boeing

Kequan Luu Software Engineer GSFC

Jay Marchetti Software Engineer CMU–SEI

Walter Moleski Software Testing Engineer GSFC

Mike Riley Software Engineer CMU–SEI

Consultants

Lorraine Prokop NASA Technical Fellow for Software JSC

Business Management

Tejal Fairfield Program Analyst LaRC/MTSO

Assessment Support

Jocelyn Santos Project Coordinator LaRC/AMA

Tejal Fairfield Planning and Control Analyst LaRC/AMA

Jenny DeVasher Technical Editor LaRC/AS&M

3.1 Acknowledgments

The assessment team would like to acknowledge the contributions of both the Core Flight

Software (CFS) and the Autonomous Power Controller (APC) Teams in providing data on

complexity and testing. The team would also like to thank the following peer reviewers: Tim

Barth, Dan Dorney, Caren Ensey, Steve Gentz, Pam Pittman, and Lorraine Prokop.

NESC Document #: NESC-RP-20-01515 Page #: 8 of 22

4.0 Executive Summary

After the software failures experienced during Boeing’s Crew Space Transportation (CST)-100

Orbital Flight Test (OFT), NASA Chief Engineer Ralph Roe expressed a concern that NASA’s

software testing requirements were potentially insufficient. The head of the HEOMD and

representatives from the Autonomous Power Controller (APC) System also expressed concern

regarding the complexity of the software and the amount of testing required. The principal focus

of the assessment was to assess the use of cyclomatic complexity and basis path testing (BPT) on

safety-critical software. The purpose was to consider adding requirements for complexity, and

testing based on complexity metrics, to NASA’s software standards for safety-critical software

with the overall objective of reducing errors.

The current version of the NASA Procedural Requirements (NPR) for Software1 contains

requirements for unit-level testing and the use of static analysis tools. However, the requirements

do not state what type of unit testing is required, nor which items should be considered in static

analysis tool results. These decisions are delegated to programs/projects to determine. This

version of the NPR has no requirement regarding software complexity, whether safety-critical or

not. The updated NASA Standard for Software Assurance and Software Safety2 contains a

requirement for assessing the cyclomatic complexity for all safety-critical code modules. This

standard sets the cyclomatic complexity level for safety-critical functions at 15 or lower.

An assessment team comprising NASA software engineers, industry partners, military personnel,

and academia was formed to review the use of cyclomatic complexity and BPT and whether they

should be applied to NASA projects and programs. The team assessed the current use of these

techniques at NASA Centers and other agencies and companies. The team examined some

software products for existing projects to evaluate their complexity levels and the types and

amount of testing completed. The team also considered tools that could help with determining

complexity and researched previous software failures and their causes (i.e., whether complexity

played a factor).

Assessment team members provided information on the types of software testing available at

different levels (e.g., unit, configuration item, subsystem, system) and evaluated the types in use.

Typically, the Agency’s approach to testing involves some unit level testing, continuous

integration testing, and requirements testing.

Throughout this investigation, while focused on cyclomatic complexity and BPT, the assessment

team did not limit itself to those areas. Other data and factors were also evaluated, including

requirements development and code coverage requirements. The team members agreed that a

maximum value of 15 should be required when assessing the cyclomatic complexity for safety-

critical software. However, evidence showed that limiting complexity alone would not guarantee

software less prone to errors and failures. The point of the requirement is to minimize risk,

minimize testing, and increase reliability associated with safety-critical software code

components, thus reducing the chance of software failure resulting in a major mishap.

For the testing method portion of this effort, the assessment team determined that while BPT

would be beneficial, modified condition/decision coverage (MC/DC) would be a more robust

1 NPR 7150.2C, NASA Software Engineering Requirements

2 NASA-STD-8739.8A, Software Assurance and Software Safety Standard

NESC Document #: NESC-RP-20-01515 Page #: 9 of 22

testing approach. However, MC/DC is likely more taxing to programs/projects in terms of cost

and schedule. Complete test coverage for software safety-critical code should be required. The

concept of using untested code in a hazardous condition should not be considered acceptable.

The updated NASA Standard for Software Assurance and Software Safety requires confirmation

that 100% code test coverage has been achieved or addressed for all identified software safety-

critical components or provide a risk assessment explaining why the test coverage is not possible

for the safety-critical code component. If safety-critical code has not been tested, the

program/project should understand why and discuss the risk associated with the hazard activity

and the untested code.

The NESC recommends programs/projects use the MC/DC approach, a code coverage criterion

commonly used in software testing. MC/DC is similar to condition coverage, but requires testing

every condition in a decision independently to reach full coverage. The approach means that

each condition must be executed twice, with the results true and false, but with no difference in

the truth values of all other conditions in the decision. Also, it must be shown that each condition

independently affects the decision.

With this metric, some combinations of condition results are redundant and not counted in the

coverage result. The coverage of software code is the number of executed statement blocks and

non-redundant combinations of condition results divided by the number of statement blocks and

required condition result combinations.

Code coverage is a way of measuring the effectiveness of test cases. The higher the percentage

of code covered by testing, the less likely it is to contain errors when compared to code with a

lower coverage score. Three other types of code coverage are worth considering with MC/DC:

statement coverage (SC), decision coverage (DC), and multiple condition coverage (MCC).

The NESC recommends the following two requirements be added to NPR 7150.2:

3.7.4 The project manager shall ensure that there is 100% code test coverage using the

MC/DC criterion for all identified safety-critical software. (SWE-208)

Aerospace and space guidance prioritizes safety in the software development life cycle (SDLC).

MC/DC represents a compromise that finds a balance between rigor and effort, positioning itself

between DC and MCC. MC/DC requires a smaller number of test cases in comparison to MCC,

while retaining a high error-detection probability.

3.7.5 The project manager shall ensure all identified safety-critical software components have

a cyclomatic complexity value of 15 or lower for each software component. (SWE-209)

Cyclomatic complexity is a software metric used to measure code complexity. These metrics

measure independent paths through source code. The point of the requirement is to minimize

risk, minimize testing, and increase reliability associated with safety-critical software code

components. The developer should assess all software safety-critical components with a

cyclomatic complexity score over 15 for testability, maintainability, and code quality.

The assessment team members felt it was important to understand that while these proposed

requirements will help to create better software systems, they are not the only areas to consider.

The team provided a list of factors they consider critical to a robust software system, including

architectural complexity, requirements analysis, complete verification approach, and independent

code reviews. This assessment was narrowly focused; a broader assessment of the overall

approach to software development may be warranted.

NESC Document #: NESC-RP-20-01515 Page #: 10 of 22

5.0 Assessment Plan

While not required, an informal plan was developed as a starting point for the team. Assessment

team members reviewed the approaches being followed across the software discipline internal to

NASA, and across industry, the military, and academia. Table 5-1 lists the external (to NASA)

standards and guidelines that were discussed. The assessment team also spoke to software

personnel with experience from Blue Origin, AT&T Bell Labs, Google, Uber, and Codemanship

(a software consulting firm). Also considered were what tools are available to help determine

cyclomatic complexity for different applications and were shown demonstrations of some of

those tools. The team reviewed a limited number of software sets, but enough to understand how

complex some software systems are and how effective BPT can be. Team members interviewed

software developers who have employed various software testing techniques to gauge what the

best approach for safety-critical software might be. Finally, the team assessed problems and

errors in software development and previous space flight missions to understand what areas of

software development might have benefited from more rigor.

Table 5-1. External NASA Documents Consulted

Safety Design Criteria for Nuclear Weapons Systems Software, USAF 91-119
Medical Device Software Life Cycle Process, IEC62304
Motor Industry Software Reliability Association (MISRA) Rule Set, 1997
MISRA Rule Set, 2004

Joint Software System Safety Committee Software System Safety Handbook, 1999
European Space Agency Coding Rules, 2000
Goddard Flight Software Branch Coding Rules, 2000
Mars Reconnaissance Orbiter Coding Rules, 2002
JPL Multi-Mission System Architecture Platform Coding Rules, 2005

Joint Strike Fighter Air Vehicle Rules, Rev. C, 2005

JPL Space Interferometry Mission Realtime Control Subsystem Coding Rules, 2005

JPL Mars Science Laboratory Coding Rules, 2006

JPL Power of Ten Rules, 2006

JPL Institutional Coding Standard, 2008

6.0 Problem Description and Assessment Team Evaluation

Software systems have become more complex over the past several years while becoming

increasingly responsible for running critical spacecraft systems. It is vital that these software

systems are fully verified to ensure the safety of crew members and vehicles. As seen during the

CST-100 OFT flight, insufficient decision-testing coverage may have contributed to potentially

catastrophic errors going undetected until flight. The more complex the code, the more difficult it

is to adequately test and verify.

The complexity of a software-intensive system expresses itself in two primary ways:

architectural complexity and structural, or source code, complexity. Software architecture is the

fundamental organization of a system, as embodied in its components and their relationships to

each other and the environment. All software systems have an architecture, whether known and

documented or not. Coupling and cohesiveness among a system’s components and subsystems

reflect the dependency view of its architecture. Both the number and types of interdependencies

NESC Document #: NESC-RP-20-01515 Page #: 11 of 22

among the constituent elements of a system indicate the level of the system’s architectural

complexity. Systems containing source files that are highly interdependent or have numerous

bidirectional or cyclic dependencies in effect encode system information, and hence complexity,

through their dependencies. Such systems are often referred to as “brittle” to indicate that they

are difficult to test, reuse, and maintain over the SDLC. Certain architectural patterns—for

example, layering—are often used by software architects as mitigations against otherwise

unconstrained dependencies and the increased software architectural complexity they precipitate.

Alternatively, the complexity within the source code of a single module, function, or block is

structural complexity. Several metrics correlated to structural code complexity are in use and

supported by various code analysis tools. These include source lines of code (SLOC), function

points, and Halstead’s complexity measures. However, the most common structural complexity

metric is cyclomatic complexity [ref.11], which measures the number of decisions within the

code based upon its control flow graph. Cyclomatic complexity is defined as equal to the number

of test cases required to test all linearly independent, or “basis,” paths through the code (see

Figure 6-1). Hence, BPT, one form of structured, or “white-box,” testing, is driven by the code’s

cyclomatic complexity and has become a commonly used criterion for measuring software

testing coverage. To be “linearly independent” means that each path has at least one edge that is

not in one of the other paths. For instance, if the source code contained no control flow

statements (i.e., conditionals or decision points), the cyclomatic complexity would be one, since

there would be only a single path through the code. If the code had one single-condition IF

statement, there would be two paths through the code: one where the IF statement evaluates

TRUE and another where it evaluates to FALSE, so the cyclomatic complexity in this case is

two. Two nested single-condition IFs, or one IF with two conditions, would produce a

cyclomatic complexity of three. Figure 6-1 shows a graphical representation of a function with a

cyclomatic complexity of three. It is important to note that the cyclomatic complexity is not tied

directly to the number of SLOC. A function that runs start to finish with no options has a

cyclomatic complexity of one, regardless of the number of lines.

Figure 6-1. Graphical Representation of Function with Cyclomatic Complexity of Three

There are different types of cyclomatic complexity. For example, standard cyclomatic

complexity (CC or CC1) is equal to the number of decisions + 1 for the code in question, as

NESC Document #: NESC-RP-20-01515 Page #: 12 of 22

described above. Strict cyclomatic complexity (CC2) [see ref. 11] adds one for each Boolean

condition within a compound decision predicate, rendering CC2 difficult to “game”

(i.e., lowering the measured complexity through moving otherwise nested code decision blocks

into complex multi-condition decision logic). Another variation, modified cyclomatic complexity

(CC3), reduces the penalty on multi-way decision branches, such as switch() statements in the C

language, by counting them as one decision. CC3 may be sensible for certain non-safety-critical

application types that use event handlers or finite state machines heavily. It is important to

understand and choose which type of cyclomatic complexity will be used, as many tools support

one or more and their specific terminology may differ from that described here.

Throughout NASA, cyclomatic complexity is used by some Centers, but is not universally

required. Some projects are collecting the metric, but may or may not modify code based on its

value. Notably, the two largest NASA programs with safety-critical flight software (i.e., Space

Launch Systems (SLS) and Multi-Purpose Crew Vehicle) determine cyclomatic complexity and

assess code that exceeds defined thresholds to determine whether it is acceptable or needs to be

modified. Other projects use the cyclomatic complexity number during peer reviews and

inspections to increase understanding of the software. In all cases where cyclomatic complexity

is used, rules have been established for handling cases where functions exceed the target value.

According to presentations the assessment team received from the U.S. Air Force, industry, and

academia, cyclomatic complexity is not used universally, but those who use it find it helpful. In

data collected from industry, there was no evidence that cyclomatic complexity played a

dominant role in software development. However, it was one of several factors identified with

code defect density, along with metrics describing others such as code churn (i.e., how often

code is changed), assertion density (the percentage of code that performs self-checking functions,

e.g., in the form of an assertion—a typical target for safety-critical code is an assertion density of

2% or higher), and inter-module dependencies. Incomplete or missing requirements and

insufficient requirements traceability were also identified as causes for software problems,

especially those found later in the mission life cycle. Several study papers reviewed by the

assessment team discussed the use of cyclomatic complexity and other metrics in software

development [refs. 1-6]. Scholarly data on code complexity metrics to reduce software errors are

mixed because of the difficulty in performing controlled studies across different application

areas, programming team skill levels, and software languages. Most general software coding and

quality standards (e.g., ISO 25010, Systems and Software Engineering—Systems and Software

Quality Requirements and Evaluation (SQuaRE)) do not include cyclomatic complexity.

However, some safety-critical coding standards do. One example is the Joint Strike Fighter (JSF)

coding standard, which uses a cyclomatic complexity maximum of 20.

For the NASA Centers that use cyclomatic complexity, many projects with safety-critical

functions used complexity levels of 20 or less. The Air Force uses a complexity level of 15-20,

whereas the academia and industry examples the assessment team reviewed (e.g., MISRA,

AUTOSAR, Hersteller Initiative Software (HIS), JSF AV++) used complexity requirements in

the 10–20 range. Code with lower complexity also translates into software that is easier to

maintain. The maintainability index for a given piece of software is a combination of SLOC,

cyclomatic complexity, and Halstead Volume. Software with a low cyclomatic complexity

requires less unit testing and validation and will allow for fewer significant architectural changes

during the SDLC.

NESC Document #: NESC-RP-20-01515 Page #: 13 of 22

Based on this, the assessment team chose a maximum of 15 for safety-critical software, with the

understanding that this may change in the future to reflect the state of Agency software

development. The team did not reach a consensus on which version to require (i.e., CC1, CC2, or

CC3), deferring to programs/projects to decide how strict or lenient they felt appropriate and

assuming adequate rationale. It is important that NASA not use cyclomatic complexity alone, but

rather with other metrics, such as architectural complexity, code and requirements changes, and

defect density, when evaluating software for errors.

The second objective of this assessment involved the testing of complex software. Developers

across the Agency typically focus software testing on meeting system-level requirements, but are

not required to verify that every decision or branch is performed correctly at the unit level. Unit-

level testing is required, but it is not always clear to what depth it should occur, since most of

NASA’s testing revolves around requirements verification and many developers are concerned

only with meeting those requirements. Ideally, the primary objective of software testing should

be meeting requirements to reduce risk, rather than prioritizing nontechnical aspects, such as

style and formatting. The strategy of blindly meeting requirements without ensuring the

requirements are correct has led to potentially mission-critical errors. Finally, every defect or

anomaly discovered post-release reveals a flaw in testing and should be addressed through

additional testing, requirements, or both.

Many types of software testing can be used for unit-level testing. BPT is tightly coupled with

cyclomatic complexity, requiring more testing effort for code of higher complexity, which is

itself an incentive for developers to keep their code below some reasonable threshold. MC/DC,

being even more rigorous than BPT, is more robust and thus suitable for safety-critical software

applications when used in conjunction with functional and requirements testing. It is important to

understand that this type of testing needs to occur at the unit level and be developed along with

the software code to be most effective and less costly if problems are found.

BPT, or structured testing, is a white-box method for designing test cases. The method analyzes

the software control flow graph of a software program to find a set of linearly independent paths

of execution. The method normally uses cyclomatic complexity to determine the number of

linearly independent paths and generates test cases for each path. BPT guarantees

complete branch coverage (i.e., all edges of the control flow graph), but achieves that without

covering all possible paths. Figure 6-2 provides an example of a function with cyclomatic

complexity and three paths for BPT; the fourth path, shown in yellow, is redundant.

Figure 6-2. BPT Example

https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Branch_coverage
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)

NESC Document #: NESC-RP-20-01515 Page #: 14 of 22

MC/DC is a code coverage criterion used in software testing that requires all of the following

during testing:

• Each entry and exit point is invoked.

• Each decision takes every possible outcome.

• Each condition in a decision takes every possible outcome.

• Each condition in a decision is shown to independently affect the outcome of the decision.

• Independence of a condition is shown by proving only one condition changes at a time.

MC/DC is used in avionics software development guidance (DO-178B and DO-178C3) to ensure

adequate testing of the most critical (Level A) software, (i.e., software that could provide or

prevent failure of continued safe flight and landing of an aircraft). Table 6-1 shows an example

of the use of MC/DC for testing a function of code.

Table 6-1. MC/DC Testing Example

Example: if (A && B && C) {statement block;}

Test # A B C Result

7 1 1 1 1

6 1 1 0 0

5 1 0 1 0

4 1 0 0 0

3 0 1 1 0

2 0 1 0 0

1 0 0 1 0

0 0 0 0 0

To meet MC/DC decision coverage aspect: Perform tests #7 and #6

To meet independent condition coverage:

Variable A
Perform tests 7 and 3

Variable B
Perform tests 7 and 5

Variable C
Perform tests 7 and 6

Result: Four test cases needed

As the example shows, MC/DC provides a robust testing methodology because it ensures all

decisions and paths are verified in a given function. The projects using cyclomatic complexity as

a metric and containing safety-critical code are using MC/DC for their testing approach. Other

standards, such as the FAA’s DO-178C,4 require full MC/DC test coverage for safety-critical

avionics systems.

While SC and DC are subsets of MD/DC, MCC is actually similar to MC/DC, though it is more

extreme. In MCC, all statements must be executed and all combinations of truth values in each

decision must occur at least once to reach full coverage. In the Table 6-1 example, if a developer

runs all seven test cases, they are performing MCC. While performing all seven test cases is

more complete, there is no value added since the independent outcome is what really matters and

that is covered by MC/DC.

3 DO-178C, Software Considerations in Airborne Systems and Equipment Certification (replaced DO-178B in 2012)

4 DO-178C, Software Considerations in Airborne Systems and Equipment Certification

NESC Document #: NESC-RP-20-01515 Page #: 15 of 22

7.0 Cyclomatic/Static Analysis Tools

Numerous available static analysis tools can calculate cyclomatic complexity for one or more

source code files. Some tools, such as the Unified Code Counter (UCC) produced by the Center

for Systems and Software Engineering at the University of Southern California, are freely

available. UCC produces SLOC values and standard cyclomatic complexity (CC1) for each

function or method in a multi-file source code system. Other commercial static analyzers, such as

Scientific Toolworks’ Understand, can identify all varieties of cyclomatic complexity (i.e., CC1,

CC2, and CC3), the maximum function or method cyclomatic complexity for each file within the

application, and visualizations of the code base that show the cyclomatic “hot spots” for drilling

down via closer human analysis. Beyond these two tools, many other static analyzers and some

integrated development environments (e.g., Atlasean’s Bamboo) measure and display cyclomatic

complexity for utilization by software developers, testers, and quality assurance analysts.

Tools are also available for assessing risk associated with cyclomatic complexity. One

methodology is the Risk Management Framework, described in NIST 800-37 [ref. 10]. This

standard uses six steps when accounting for risk: categorize risk, select controls, implement

controls, assess controls, authorize their use, and monitor the implemented controls. This method

of risk oversight helps ensure the associated design controls implemented to deal with risk are

constantly monitored. If a design control becomes inadequate, constant monitoring will highlight

additional control needs.

Similarly, dependency analysis for assessing architectural complexity is supported by

commercial static analysis tools, such as Understand, Lattix Architect, and Silverthread. Lattix

Architect and Silverthread use dependency structure matrix visualizations of software

dependencies to show system coupling and cohesion, as well as to isolate cyclic dependencies

within the codebase. These tools can also be used to enforce desired architectural design

constraints on the system during the SDLC when run as part of a continuous integration stack.

Some organizations that use the Silverthread tool also use the MITRE Code Assessment Toolset

for automated static analysis. The key to these tools is that they are used frequently, starting in

the development phase of the life cycle; based on a consistent set of rules and parameters; and

automated so results can be compared on a regular basis.

The prevalence of MC/DC for testing safety-critical avionics software has led to MC/DC

coverage support by a number of software test coverage tool vendors, including Rapita Systems,

VectorCAST, LDRA, and Parasoft. These tools can assist software testers in creating test cases

and calculating the resulting test coverage.

8.0 Data Analysis

This assessment team reviewed three software sets to understand complexity levels in flight

software projects at this time: the SLS Flight Software, the Core Flight Software (CFS) bundle

and applications, and the APC system. SLS Flight Software is a major in-house-built software

system. The CFS bundle is in wide use and has been for several years, being added to by the

open-source user community. The APC software is a Glenn Research Center in-house product in

development, with interim deliveries to JSC for concept verification and potential use in future

NASA missions.

For the SLS Flight Software, the applied coding standard required cyclomatic complexity of no

higher than 20. For any units exceeding that level, either the code was reworked or a waiver was

NESC Document #: NESC-RP-20-01515 Page #: 16 of 22

processed. An exception to this rule was allowed for large switch statements. Cyclomatic

complexity was calculated using the QAC++ tool from Programming Research Limited (PRQA,

now owned by Perforce Software). NASA Independent Verification and Validation also

calculated cyclomatic complexity using a different toolset and reported results to the SLS Flight

Software Team. The results indicated that the average complexity of the SLS Flight Software

code is ~2.9. Only one waiver was processed for a portion of legacy guidance, navigation, and

control code.

For the CFS, 34 of 975 functions had a cyclomatic complexity level greater than 15. For the CFS

applications, 111 of 2,426 functions exceeded that level. For the APC, it was 67 of 2,498. The

interesting aspect is that without a requirement to do so, the CFS and APC teams kept their

complexity levels low for the majority of their code. The CFS applications code was not written

by one team, but by the CFS community, and with no guidance, fewer than 5% of the

applications exceed a complexity of 15. As parts of the APC software were recoded to use the

CFS bundle as their base, the complexity level of the functions decreased, with only 1 function

of 113 exceeding the complexity level of 15.

The CFS and APC development teams were not required to follow either BPT or MC/DC testing

methodologies. CFS followed the Goddard Open Learning Design Rules for Systems Testing

and Requirements Verification. The developers followed their internal unit test standard and best

practices for continuous integrated testing of the units and coverage testing. An independent

team of software personnel tested all the requirements. The APC team had a bare minimum set

of software unit level testing due to a limited team size.

The assessment team asked the APC developers to perform BPT on two or three functions, at

least one with a high cyclomatic complexity value and one with a lower value. The results

provided an evaluation of not just how difficult and time-consuming BPT is, but also where

complexity levels become burdensome. The APC software lead chose three functions with

cyclomatic complexity levels of 28, 9, and 5. The software lead documented how long it took to

create a flow diagram, determine the test cases, and write the tests. For a complexity level of 28,

these tasks took 31 hours, compared to less than one hour for the lowest complexity function

level of 5. The software lead estimated his confidence level for each of these functions achieving

full testing coverage. For the lower complexity levels, the estimate was close to 100% confident

full coverage would be obtained, while for the higher complexity function, the estimated

confidence level was 30%. This could be improved with independent verification that all paths

were tested, but would increase the time and resources necessary to complete the testing.

The assessment team asked the APC developers to perform a similar activity for MC/DC. The

developers used the same functions assessed for BPT, as well as an additional function with a

complexity of 18. The developers indicated that the rules of MC/DC made it easier to create and

evaluate the truth table associated with each function and determine which paths to test to

achieve the desired results of testing full nominal and off-nominal functionality. The number of

tests decreased for most functions, and the amount of time to develop those tests also decreased.

It was also noted that the smaller the cyclomatic complexity, the smaller the difference in the

number of tests for BPT and MC/DC. In some cases, the number was identical. Table 8-1 shows

the difference in the number of test cases and the time it took to develop testing for different

complexity (MCC) functions, using BPT and MC/DC. For the more complex functions, the time

savings between BPT and MC/DC methodologies was 30 to 50%.

NESC Document #: NESC-RP-20-01515 Page #: 17 of 22

Table 8-1. Comparison of Test Cases and Time for BPT (top) and MC/DC (bottom)

FUNCTION MCC SLOC
BPT

Tests

Time to
Create Flow
Diagram &
Determine
Test Case

Paths

Time
to Write

Tests

Total
Time

(hours)

ServiceLoadShedMsm::HandleLoadShedGatewayPrm 28 108 28 16.000 15.000 31.000

ServiceEnergyAvailabilityPpe::InitSocProfiles 9 23 9 0.800 0.850 1.650

EnergyAvailableGatewayPrm::GetEnergyPerPhase 5 17 5 0.167 0.583 0.750

FUNCTION MCC SLOC
MC/DC
Tests

Est Time:
 Create

Truth Table

Time
to Write

Tests

Total
Time

(hours)

ServiceLoadShedMsm::HandleLoadShedGatewayPrm 28 108 17 1.000 3.000 4.000

ServiceEnergyAvailabilityPpe::InitSocProfiles 9 23 6 0.167 0.650 0.817

EnergyAvailableGatewayPrm::GetEnergyPerPhase 5 17 5 0.083 0.500 0.583

PowerSystem::GetSwitchState 18 18 15 0.500 2.500 3.000

9.0 Observations and NESC Recommendations

9.1 Findings

The assessment team identified the following findings:

F-1. While there is often some degree of correlation, the number of SLOC does not indicate

the complexity of the code. For example, straight-line code with zero decisions (e.g., no

“if,” “while,” or “for” constructs) could possess a high SLOC count, but have a

cyclomatic complexity equal to one.

F-2. There is a direct correlation between code complexity and the effort required to

adequately test the code.

F-3. MC/DC testing is more suitable for safety-critical software when used in conjunction

with functional and requirements testing, requires less time (i.e., 30–50%) to execute than

BPT, is more robust than BPT, and reduces the redundant path testing of other code

coverage criteria like MCC.

F-4. Where cyclomatic complexity is applied, it is typically used on safety- and mission-

critical functions, with a maximum value between 10 and 20 typically chosen as the

requirement or used in a coding standard.

F-5. Agency software verification focuses on meeting the requirements, but does not verify

that every decision or branch of code performs correctly. Software developers are

required to perform unit level testing, but no level of robustness or type of unit testing is

specified.

F-6. Several NASA projects using MC/DC as a testing approach have found MC/DC to limit

software coding errors by providing full path coverage.

NESC Document #: NESC-RP-20-01515 Page #: 18 of 22

F-7. Results from academic studies on code complexity metrics are inconclusive because of

the difficulty of performing controlled studies across different application areas,

programming team skill levels, and languages (e.g., C++, Ada, Java).

F-8. Low cyclomatic complexity values (i.e., less than 15) will simplify and expedite code

verification and testing.

F-9. Code churn (i.e., how often code is changed) and inter-module dependencies are also

effective indicators for tracking coding errors.

F-10. Prevailing industry standards (e.g., DO-178C) recommend, or even require, MC/DC for

safety-critical software testing strategy.

F-11. Availability of tools to support MC/DC testing is more prevalent than for any other

testing technique.

9.2 Observations

The assessment team identified the following observations:

O-1. The complexity of the architecture is also a critical element that should be considered.

Dependency analysis can reveal that even cyclomatically simple code may be so

interdependent as to be difficult to test or reuse. Hence, it is important to keep functions

less structurally complex, but not if it forces the overall architectural complexity to

become unmanageably interwoven.

O-2. Inadequate or unclear requirements are prone to cause software problems/errors later in

the project life cycle.

O-3. In addition to the verification and risk reasons for limiting cyclomatic complexity,

software maintainability efforts will indirectly benefit from lower complexity.

O-4. Software defects or anomalies discovered post-release reveals a flaw in testing and

should be addressed either through additional testing, requirements, or both.

9.3 NESC Recommendations

The assessment team identified the following NESC recommendations, directed to NASA and

NASA contractor software developers.

R-1. Use MC/DC testing methodology in conjunction with functional and requirements testing

for software projects with safety-critical code. (F-2, F-3, F-6, F-10, F-11)

R-2. Employ a cyclomatic complexity less than or equal to 15, or provide a credible rationale

for not meeting that metric, for safety-critical software. Use in conjunction with other

software metrics (see R-3) and recognize the possibility of changing the value based on

future Agency software development. (F-2, F-4, F-8)

R-3. Track and minimize code churn and inter-module architectural and design dependencies,

keeping both to a minimum. (F-9)

R-4. Run at least one, but preferably more, commercial static source code analyzers with a

strict set of rules on every build and discuss the results in module code reviews; the ratio

of warnings to SLOC should be minimized. (F-1, F-5, F-9, O-4)

• Examples of suitable analyzers include: Coverity, Codesonar, Semmle, and

KlockWork.

NESC Document #: NESC-RP-20-01515 Page #: 19 of 22

R-5. Consider using the Risk Management Framework found in NIST 800-37 when

accounting for risk associated with cyclomatic complexity. (F-2, F-4, F-8)

R-6. Focus requirement compliance on reducing risk rather than simply nontechnical features

(e.g., checking for style and formatting). (F-1, O-1, O-2, O-3, O-4)

R-7. Ensure that all code compiles without warnings, with warnings enabled at the highest

possible level (e.g., gcc–Wall–pedantic) and map warnings to errors (i.e., compiler

warnings stop the build). (O-1, O-2, O-3, O-4)

R-8. Every defect or anomaly discovered post-release reveals a flaw in testing and should be

addressed through additional testing, requirements, or both. (O-1, O-2, O-3, O-4)

R-9. Complete test coverage for software safety-critical code should be required. (F-6)

10.0 Recommended Updates to NASA Standards and Specifications

The assessment team recommends adding two new requirements to NPR7150.2, NASA Software

Engineering Requirement, for current and future HEO programs/projects:

3.7.4 The project manager shall ensure that there is 100% code test coverage using the

MC/DC criterion for all identified safety-critical software. (SWE-208)

Rationale: In MC/DC coverage, every condition in a decision must be tested independently to

reach full coverage. Each condition must be executed twice, with the results true and false, but

with no difference in the truth values of all other conditions in the decision. In addition, it must

be shown that each condition independently affects the decision.

Aerospace and space guidance prioritizes safety in the SDLC. MC/DC represents a compromise

that balances rigor and effort, positioning itself between DC and MCC. MC/DC requires a

smaller number of test cases in comparison to MCC, while retaining a high error-detection

probability.

3.7.5 The project manager shall ensure all identified safety-critical software components have

a cyclomatic complexity value of 15 or lower for each software component. (SWE-209)

Rationale: Cyclomatic complexity is a metric used to measure the complexity of a software

program. These metrics measure independent paths through the source code. The point of the

requirement is to minimize risk, minimize testing, and increase reliability associated with safety-

critical software code components, thus reducing the chance of software failure during a

hazardous event. The software developer should assess all software safety-critical components

with a cyclomatic complexity score over 15 for testability, maintainability, and code quality.

In addition, NPR 7150.2C, NASA Software Engineering Requirement, should be updated with

detailed guideline information on architectural and cyclomatic complexity and MC/DC testing to

guide developers in meeting these requirements and understanding their interactions.

11.0 Alternative Viewpoint(s)

There was one alternative viewpoint, as expressed in the following by Gerard Holzmann:

A minority of the team held that the most effective method for increasing code quality and

reducing the residual defect density of software is not to bound the number of SLOC or the

NESC Document #: NESC-RP-20-01515 Page #: 20 of 22

cyclomatic complexity of functions, but rather to adopt strict adherence to the following

development practices:

1. Ensuring compliance with a sensible coding standard for safety-critical code, focused

specifically on risk reduction. The JPL Institutional Standard for the C Programming

Language (JPL-D-60411, March 2009) is an example.

2. Running at least one, but preferably more, strong commercial static source code analyzers

on every build of the code that include checkers for the rules in the coding standard used.

3. Requiring that all code be compiled with all available warnings in the compiler enabled at

their highest level (e.g., -pedantic), while generating zero warnings.

4. Maintaining an average assertion density for all code modules of at least 2%. (Assertion

density has been shown to correlate strongly with post-release fault density in studies

done at Microsoft Research [ref. 4].)

5. Tracking all higher-level software requirements into the code and deriving test suites

directly from the requirements. If full MC/DC code coverage is not realized in this way,

it would mean requirements were incomplete or part of the code was redundant. In both

cases, the issue should be analyzed and addressed. Note that a function that computes a

square root and/or sorts data cannot be assumed to have been sufficiently tested if only

full MC/DC coverage is realized: the function should be tested to actually compute the

square root or sort the data, including in corner cases, to reject invalid inputs. This can be

done only when tests are derived from higher-level requirements.

12.0 Other Deliverables

No unique hardware, software, or data packages, outside those contained in this report, were

disseminated to other parties outside this assessment.

13.0 Definition of Terms

BPT One form of structured, or “white-box” testing, driven by the code’s

cyclomatic complexity. The method analyzes the control flow graph of

a program to find a set of linearly independent paths of execution. It

has become a commonly used criterion for measuring software testing

coverage.

Code Coverage A measure used to describe the degree to which the source code is

executed when a particular test suite runs. Software with high test

coverage, measured as a percentage, has had more of its source code

executed during testing, suggesting it has less chance of containing

undetected software errors compared to a code with low test coverage.

Cyclomatic Complexity Measures the number of decisions within the code based upon its

control flow graph. Equal to the number of test cases required to test

all linearly independent, or “basis,” paths through the code.

Halstead Volume Describes the size of the implementation of an algorithm. The

computation is based on the number of operations performed and

operands handled in the algorithm.

https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Execution_(computing)

NESC Document #: NESC-RP-20-01515 Page #: 21 of 22

Linearly Independent Each code path has at least one edge that is not in another path.

Software Testing An investigation conducted to provide stakeholders with information

about the quality of the software product or service under test.

14.0 Acronyms and Nomenclature List

APC Autonomous Power Controller

BPT Basis Path Testing

CC or CC1 Standard Cyclomatic Complexity

CC2 Strict Cyclomatic Complexity

CC3 Modified Cyclomatic Complexity

CFS Core Flight Software

DC Decision Coverage

GSFC Goddard Space Flight Center

HEOMD Human Exploration and Operations Mission Directorate

JPL Jet Propulsion Laboratory

JSF Joint Strike Fighter

LaRC Langley Research Center

MC/DC Modified Condition/Decision Coverage

MCC Multiple Condition Coverage

MSFC Marshall Space Flight Center

NESC NASA Engineering and Safety Center

NPR NASA Procedural Requirements

OFT Orbital Flight Test

OSMA Office of Safety and Mission Assurance

SC Statement Coverage

SDLC Software Development Life Cycle

SDLC Software Development Life Cycle

SLOC Source Lines of Code

UCC Unified Code Counter

NESC Document #: NESC-RP-20-01515 Page #: 22 of 22

15.0 References

1. M. Shepperd and D.C. Ince, “A critique of three metrics,” J. Systems Software, 1994, Vol.

26, pp. 197-210.

2. M. Alfadel, A. Kobilica, and J. Hassine, “Evaluation of Halstead and cyclomatic complexity

metrics in Measuring defect density,” 9th IEEE-GCC Conference, 2017.

3. Y. Tashtoush et al, “The correlation among software complexity metrics with case study,”

Int. J. of Advanced Computer Research, Vol. 4, No. 2, June 2014.

4. G. Kudrjavets, N. Nagappan, and T. Ball, “Assessing the relationship between software

assertions and code quality: an empirical investigation,” Proc. 2006 17th Int. Symp.

On Software Reliability Engineering, https://www.microsoft.com/en-us/research/

wp-content/uploads/2016/02/tr-2006-54.pdf.

5. G. Holzmann, Test Fatigue, IEEE Software, 2020, Vol. 37, No. 4, pp. 11-16.

6. Personal communication, Dr. N. Nagappan (Microsoft Research), Ben Cichy (Blue Origin),

Owen Cheng (Uber Advanced Technologies).

7. Better Embedded System SW, 2014, Phil Koopman (Carnegie Mellon), Jay Marchetti

(Carnegie Mellon).

8. Identifying Error-Prone Software—An Empirical Study, IEEE Transactions on Software

Engineering, Vol. SE-11, 1984, Vincent Y. Shen, Tse-Jie Yu, Stephen M. Thebaut, Lorri R.

Paulsen.

9. Brader, Larry; Hilliker, Howie; Wills, Alan (March 2, 2013). “Chapter 2 Unit Testing:

Testing the Inside.” Testing for Continuous Delivery with Visual Studio 2012. Microsoft.

p. 30. ISBN 1621140180. Retrieved 16 June 2016.

10. National Institute of Standards and Technology (NIST) Special Publication 800-37, Guide

for Applying the Risk Management Framework to Federal Information Systems.

11. A Complexity Measure, Thomas J. McCabe, IEEE Transactions on Software Engineering,

Vol SE-2, No. 4, December, 1976.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF

 ABSTRACT

18. NUMBER

 OF

 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

12/15/2020 Technical Memorandum

Cyclomatic Complexity and Basis Path Testing Study

Squire, Michael D.; Maynard-Nelson, Laura A.; Brown, Terry A.;

Crumbley, Robert T.; Hozmann, Gerald J.; Jennings, Michael; Luu, Kequan;

Moleski, Walter F.; Marchetti, Jay D.

NASA Langley Research Center

Hampton, VA 23681-2199 NESC-RP-20-01515

National Aeronautics and Space Administration

Washington, DC 20546-0001

860921.01.23.01.01

NASA

NASA/TM-20205011566

Unclassified - Unlimited

Subject Category 61 Computer Programming and Software

Availability: NASA STI Program (757) 864-9658

The NASA Chief Engineer requested the NASA Engineering and Safety Center (NESC) to conduct a study to determine the

benefits of cyclomatic complexity and basis path testing (BPT) for software and whether they should be required. The

principal focus of the assessment was to assess the use of cyclomatic complexity and BPT on safety-critical software. The

purpose was to ensure that safety-critical software is not overly complicated to the point of increasing coding errors and that

verification is more robust than for non-safety-critical software. This document contains the outcome of the assessment

Cyclomatic Complexity; NASA Engineering and Safety Center; Basis Path Testing

U U U UU 27

STI Help Desk (email: help@sti.nasa.gov)

(443) 757-5802

