
NASA/TM–20205000691/REV 1

Core Flight System (cFS)Training

January 2021

Flight Software Systems Branch, Code 582
Goddard Space Flight Center, Greenbelt, MD

Since its founding, NASA has been dedicated to the advancement
of aeronautics and space science. The NASA scientific and
technical information (STI) program plays a key part in helping
NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency
Chief Information Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The NASA STI program
provides access to the NTRS Registered and its public interface,
the NASA Technical Reports Server, thus providing one of the
largest collections of aeronautical and space science STI in the
world. Results are published in both non-NASA channels and by
NASA in the NASA STI Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of completed research
or a major significant phase of research that present the
results of NASA Programs and include extensive data or
theoretical analysis. Includes compilations of significant
scientific and technical data and information deemed to be of
continuing reference value. NASA counter-part of peer-
reviewed formal professional papers but has less stringent
limitations on manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are preliminary or of
specialized interest, e.g., quick release reports, working
papers, and bibliographies that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and technical findings by
NASA-sponsored contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical conferences,
symposia, seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical, or historical
information from NASA programs, projects, and missions,
often concerned with subjects having substantial public
interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign scientific and
technical material pertinent to
NASA’s mission.

Specialized services also include organizing and publishing
research results, distributing specialized research
announcements and feeds, providing information desk and
personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the
following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA STI Program ... in Profile

Core Flight System (cFS)Training

January 2021

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, MD 20771

Flight Software Systems Branch, Code 582
Goddard Space Flight Center, Greenbelt, MD

NASA/TM–20205000691/REV 1

Notice for Copyrighted Information

This manuscript is a work of the United States Government authored as part of the official duties of employee(s) of
the National Aeronautics and Space Administration. No copyright is claimed by the United States under Title 17,

U.S. Code. All other rights are reserved by the United States Government. Any publisher accepting this
manuscript for publication acknowledges that the United States Government retains a non-exclusive, irrevocable,
worldwide license to prepare derivative works, publish, or reproduce this manuscript, or allow others to do so, for

United States Government purposes.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an
official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program
Mail Stop 148
NASA’s Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

703-605-6000

Available in electronic form at https://www.sti.nasa.gov and https://ntrs.nasa.gov

https://www.sti.nasa.gov/

1

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 1: Introduction

cFS Training- Page 2

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 3

Course Audience & Prerequisites

• Audience: Flight Software Developers

• Prerequisites:

– C programming experience

– Linux experience

• System requirements for hands-on exercises:

– Linux build environment

• With sudo privileges or a /proc/sys/fs/mqueue/msg_max >= 1024

– git, gcc, cmake, clang

– Python 3.8, PyQt5, PyZMQ

cFS Training- Page 4

Course Learning Objectives

• Understand the architecture of the cFS

• Build and execute the cFS

• Interact with the cFS through a ground system

• Add an app to a cFS system

cFS Training- Page 5

Introduction Agenda

• What is cFS?

• cFS Community

• cFS Architectural Overview

6

National Aeronautics and Space Administration

What is cFS?

cFS Training- Page 7

cFS Overview

• A platform and project independent reusable software framework and
set of reusable software applications

– Platform Abstraction Layer supports portability

– Applications provide mission functionality

– Compile-time configuration parameters and run-time command/table parameters
add flexibility and scalability

• Key aspects:

– Dynamic run-time environment

– Layered architecture

– Component-based design

cFS Training- Page 8

cFS Architecture Layers

Tools

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

Core Flight Executive

Core Flight Executive API

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Build System

Unit Tests
Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Performance
Analyzer

Performance
Tools

Application
Generator

Python
Ground System

cFS Training- Page 9

cFS Organization

cFS Training- Page 10

Key Definitions

• Framework – The set of individual services, applications, tools, and
infrastructure supported by the open source community Configuration
Control Board (CCB).

• Bundle – An executable version of the framework configured for a
nominal Linux system. Links compatible versions of the framework
elements as a recommended starting point for new cFS-based systems.

• Component – An individual application, service, or tool that can be
used in a cFS-based system

• Distribution – A set of custom components packaged together with the
framework; generally created and provided by a cFS user (individual or
group) with specific needs (e.g. a NASA center, the GSFC SmallSat
Project Office)

• cFE vs cFS:

– cFE is the Core Flight Executive services and API

– cFS is a general collective term for the framework and the growing set of
components

11

National Aeronautics and Space Administration

cFS
Community

cFS Training- Page 12

Community-based Product Model

• A NASA multi-center configuration control board (CCB) manages releases
of the open source cFS Framework and component specifications

• Community members (regardless of affiliation)
• Supply applications, platforms, and tools
• Create cFS distributions

Tools

Apps

Service

Platform

NASA
cFS

Distributor

Components
Specifications

Component
Supplier

cFS
Distribution

cFS
Framework

Components
• Applications
• Platforms
• Tools

cFS Training- Page 13

Community-based Product Model

• Community component supplier value proposition

– As the number of supported platforms increases then apps become more
valuable

– As the number of apps increases then supporting a cFS platform becomes more
valuable

• In 2019 vendors started to offer processor boards integrated with the
cFS

– AI Tech partnering with Embedded Flight Systems to offer the cFS integrated on
the SP0-S Single Board Computer

– Genesis Engineering developing an integrated GEN6000 (SpaceCube 2.0) cFS
product

– Genesis pursuing a Space Act Agreement (SAA) that would include the creation
of a platform certification test suite

cFS Training- Page 14

User Responsibilities

• The cFS Framework has a NASA NPR-7150.2C Class E classification

“Software developed to explore a design concept or hypothesis but not used to
make decisions for an operational Class A, B, or C system or to-be-built Class A, B,
or C system”

– The cFS Framework provides artifacts to support Class B missions and a subset
of artifacts to support Class A missions

– End-users are responsible for classifying the software system that uses the cFS
Framework

• End-users are responsible for complying with International Traffic in
arms Regulations (ITAR)

• Projects are responsible for verifying all of their requirements

– Many projects treat cFS in the same way as operating systems

cFS Training- Page 15

Obtaining cFS “Products”

• cFS Bundle

– Contains the cFS Framework packaged with additional components to create a
system that can easily be built, executed, and unit tested on a Linux platform

– http://github.com/nasa/cFS

• User Components

– Search https://github.com/nasa/ or do a general web search on NASA cFS

• Distributions

– Listed on a later slide

– Some distributions contain many of the common apps which give you a good
starting point for apps

• Engage with the Community

– Ask the community mailing list (See backup slides)

– Contact a cFS team member (See backup slides)

cFS Training- Page 16

cFS Product Model

App Library

Apps

App Libraries

OS
Abstract

PSPs

Applications
cFE Apps

Support
Tools

Unit TestUnit Test Tools

TableBuild Tools

Core Flight
Executive

Platform
Abstraction

cFE

PSPsOS
Abstract

Package API
Platform Support

Package API
OS Abstraction

API

cFE API

App Library

OS
Abstractions

PSPs

cFE Apps

Unit Test

TableBuild Tools

cFE

Package API
Platform Support

Package API
OS Abstraction

API

cFE API

NASA cFS Framework cFS Distribution

cFS
Framework

• The NASA Configuration Control Board (CCB) manages the “cFS Framework”

• “cFS Distribution” created by augmenting the NASA cFS Framework with
components (platforms, apps, and tools) to create an operational system

cFS Training- Page 17

cFS Distributions

Name/Link Intended Audience Overview

cFS Framework-101 cFS Framework training
package

This is a training tool for individuals to learn how to develop software
with NASA-developed Core Flight software (CFS) framework. No
agreement is necessary through this catalog. Training is created by JSC
and is open source.

cFS Bundle Initial cFS build for a
developer or a project

This repository contains submodules for the cFE, OSAL, and apps, as
well as instructions for building the system. This distribution has been
compiled/linked but has not been verified as an operational system.

NASA Operational
Simulator for Small
Satellites (NOS3)

Initial cFS platform for a
project

NOS3 provides a complete cFS system designed to support satellite
flight software development throughout the project life cycle. It includes
• 42 Spacecraft dynamics and visualization, NASA GSFC
• cFS – core Flight System, NASA GSFC
• COSMOS – Ball Aerospace
• ITC Common – Loggers and developer tools, NASA IV&V ITC
• NOS Engine – Middleware bus simulator, NASA IV&V ITC

OpenSatKit (OSK)
cFS training platform for new
cFS developers

OSK provides a complete cFS system to simplify the cFS learning curve,
cFS deployment, and application development. The kit combines three
open source tools to achieve these goals:

• cFS – core Flight System, NASA GSFC
• COSMOS – command and control platform for embedded systems,
Ball Aerospace
• 42 dynamic simulator, NASA GSFC

cFS Training- Page 18

Community Operational Procedures

• Version Control

– Master Branch – always has the latest code

– Integration Candidates – updated after the weekly CCB meeting

– Release Candidates – periodically tagged from master

• User Contributions

– A Contributor License Agreement (CLA) is required for each contributor to the
open source

• Feature Deprecation
– Mark feature as deprecated on any release

– Provide tools/process that will warn applications when a feature is marked as
deprecated

– Only deprecate on major versions

19

National Aeronautics and Space Administration

Core Flight System
Architectural Overview

cFS Training- Page 20

Architecture Goals

1. Reduce time to deploy high quality flight software

2. Reduce project schedule and cost uncertainty

3. Directly facilitate formalized software reuse

4. Enable collaboration across organizations

5. Simplify sustaining engineering (AKA. On Orbit FSW

maintenance) Missions last 10 years or more

6. Scale from small instruments to Hubble class missions

7. Build a platform for advanced concepts and prototyping

8. Create common standards and tools across the center

cFS Training- Page 21

cFS Architecture Layers

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

Core Flight Executive

Core Flight Executive API

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •
OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

cFS Training- Page 22

Operating System / Boot Layer

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package
• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Provides the commercial, open-source, or custom software interface
between the processor and the FSW. Real-time multi-tasking

preemptive scheduling operating systems used for flight applications.

Core Flight Executive

Core Flight Executive API

cFS Training- Page 23

Platform Abstraction - OSAL

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package
• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

The OS Abstraction Layer (OSAL) is a software library that provides a
single Application Program Interface (API) to the core Flight Executive

(cFE) regardless of the underlying real-time operating system.

Core Flight Executive

Core Flight Executive API

cFS Training- Page 24

Platform Abstraction - PSP

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package
• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

The Platform Support Package (PSP) is a software library that
provides a single Application Program Interface (API) to underlying

avionics hardware and board support package.

Core Flight Executive

Core Flight Executive API

cFS Training- Page 25

Core Flight Executive

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package
• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

The cFE is a portable, platform-independent framework that creates
an application runtime environment by providing services that are

common to most flight applications.

Core Flight Executive

Core Flight Executive API

cFS Training- Page 26

Applications

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package
• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Applications provide mission functionality using a combination of cFS
community apps and mission-specific apps.

Core Flight Executive

Core Flight Executive API

cFS Training- Page 27

Development Tools & Ground Systems

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSB NetworkSchedulerSchedulerMemory Man.Memory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package
• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Development tools and ground systems are used to test and run the
cFS. A variety of ground systems can be used with cFS. Ground

system and tool selection generally vary by project.

Core Flight Executive

Core Flight Executive API

cFS Training- Page 28

cFS Applications

• Can run anywhere the cFS framework has been deployed

• GSFC has released 12 applications that provide common command and
data handling functionality such as

‒ Stored command management and execution

‒ Onboard data storage file management

• Missions use a combination of custom and reused applications

cFS Training- Page 29

Mission Application Example

Inter-app Message Router (Software Bus)

EVS

SC

SCH

HK

ESTIME

FM

Cmd &
Tlm

S-Comm

SB
Command

Ingest
Telemetry

Output

SBC
1553

DS

Spacecraft
Data

Recorder

TBL

CFCS MM MD
Space
Wire

1553 Bus
Controller

S/C
Data

HS

EDAC
Memory
Scrub

DIO

Time
Registers

Instr.
Data

Recorder
Manager

Power &
Support

MAC, BME,
& PSE

LC

GPS

Cmd &
Tlm

Time
Manager

Mission C&DH AppcFE ServiceCFS App Hardware

cFS Training- Page 30

cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files

_defs

cmake
configuration

files

cFS Training- Page 31

cFE Directory Structure

cFE

docs
• VDD
• Users Guide
• App Developers

Guide

fsw Test-and-
ground

• Test Procedures
• Test Results
• Ground System

Files

cfe-core mission_inc platform_inc
Mission configuration
header files

Platform configuration
header files

src
• es
• evs
• fs
• Inc

• make
• sb
• tbl
• time

unit_test
• Procedures
• Results

32

National Aeronautics and Space Administration

Module 1: Backup Charts

cFS References

cFS Training- Page 33

• cFS Framework, http://github.com/nasa/cFS
– Source code
– Requirements and user guides

• OSAL, https://github.com/nasa/osal
– Source code
– Requirements and user guides
– Tools

• Links to GSFC applications, https://cfs.gsfc.nasa.gov

Where is the cFS?

cFS Training- Page 34

GSFC Open Source Apps

Application Function

CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety
Ensures critical tasks check-in, services watchdog, detects CPU hogging, calculates CPU
utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory

Software Bus Network Passes Software Bus messages over various “plug-in” network protocols

Scheduler Schedules onboard activities via (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative)

Stored Command Absolute Allows concurrent processing of up to 5 (configurable) absolute time sequences

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

35

National Aeronautics and Space Administration

Module 1: Backup Charts

Architecture

cFS Training- Page 36

Quality Analysis - 1

• Operability

– The architecture must enable the flight system to operate in an efficient and
understandable way

• Reliability

– The architecture implementation must be known to behave correctly in nominal
and expected off-nominal situations

• Robustness

– The architecture implementation must be predictable and safe in the presence of
unexpected conditions

• Performance

– The architecture implementation must be efficient in runtime resources given the
targeted processing environments

• Testability

– The architecture implementation must be easily and comprehensively testable in
situ in flight like scenarios

• Maintainability

– The architecture implementation must be maintainable in the operational
environment

cFS Training- Page 37

Quality Analysis - 2

• Effective Reuse

– The architecture must support an effective reuse approach. This includes the
software and artifacts (e.g. requirements, design, code, review presentations,
tests, operations guides, command and telemetry databases). The goal is to
achieve 100% reuse of a software component with no code changes.

• Composability

– Properties established at the component level, such as interfaces, timeliness or
testability, also hold at the system level. For an application or node to be
composable the architecture and process must support:

• Independent development of nodes

• Integration of the node into a system should not invalidate services in the value and
temporal domains

• Integration of an additional node into a functioning system should not disturb the correct
operation of the existing nodes

• Replica determinism – identical copies of nodes must produce identical results in an
identical order, within a specified time interval

• Predicable Development Schedule

– Development estimates provided by the FSW team should be reliable

cFS Training- Page 38

Quality Analysis - 3

• Scalability

– The FSW must scale with mission requirements. (Example: instruments or
subsystem processor may only need a small amount of message buffer space.
This should be configurable to avoid wasting memory resources.)

• Adaptability

– The FSW must be capable of supporting a range of platforms and missions.

• Minimized Development Cost

– Costs for mission functions should be as low as possible. The teams must
consider the difference between NRE and costs for a given mission.

• Technology infusion

– The FSW should support the infusion of new hardware and software technologies
with minimal side effects.

cFS Training- Page 39

Layered Service Architecture

• Each layer and service has a
standard API.

• Each layer “hides” its
implementation and
technology details.

• Internals of a layer can be
changed -- without affecting
other layers’ internals and
components.

• Provides Middleware, OS and
HW platform-independence.

Files, Tables

cFS Training- Page 40

Plug and Play

Plug and Play

• cFE APIs support add and remove functions.

• SW components can be switched in and out at
runtime, without rebooting or rebuilding the
system SW.

• Qualified Hardware and cFS-compatible
software both “plug and play”.

Impact

• Changes can be made dynamically during
development, test and on-orbit even as part of
contingency management.

• Technology evolution/change can be taken
advantage of later in the development cycle.

• Testing environment is flexible (can use
different GSE, test apps, simulators, etc.).

This powerful paradigm allows SW components to be switched in and out
at runtime, without rebooting or rebuilding the system SW.

cFS Training- Page 41

41

Reusable Components

Reusable Components
• Common FSW functionality has been

abstracted into a library of reusable
components and services.

• Components are tested and
documented.

• A system is built from:
– Core services

– Reusable components

– Custom mission specific components

– Adapted legacy components

Impact:
• Reuse of tested, certified components

supplies savings in each phase of the
software development cycle.

• Reduces risk.

• Teams focus on the custom aspects of
their project and don’t “reinvent the
wheel”.

Image
Processor

Proximity
Sensor

Science
Process

TLM +
Command

HW
Comp

Orbit
Control

HW
Comp

HW
Comp

42

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2: Core Flight Executive
(cFE)

Services

August 3, 2019

cFS Training- Page 43

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 44

cFE Services - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 45

What are the cFE Services?

Executive Services (ES)

– Manages the software system and creates an application runtime environment

Software Bus (SB) Services

– Provides an application publish/subscribe messaging service

Event Services (EVS)

– Provides a service for sending, filtering, and logging event messages

Time Services (TIME)

– Manages spacecraft time

Table Services (TBL)

– Manages application table images

cFS Training- Page 46

Diagram Notation

Software Bus (SB)
Communications

Non-Software Bus
Information Flow cFS Application

External Hardware Entity
or Data Store (variable/table)

FileInternal Software Module,
Library, or Data Store

• Common data flows such as command inputs to an app and telemetry
outputs from an app are often omitted from context diagrams unless they
are important to the particular situation

cFS Training- Page 47

Common cFE Service Design

• Each cFE service has:
– A library that is used by applications
– An application that provides a ground interface for operators to manage the

service

Service API

Any cFS
App

cFE
Service

App

Service
Library

Commands

Telemetry

Function call

= Software Bus Message

cFS Training- Page 48

Application Runtime Environment

• cFE Services provide an Application Runtime Environment

• The cFE service API provides a functional interface to use the
services

– Very stable. No functional change since 2008

• Obtaining information beyond the housekeeping packet

– Commands to send one time telemetry packets

– Commands to write onboard service configuration data to files

cFS Training- Page 49

Application-Centric Architecture

• Applications are an architectural component that owns cFE and
operating system resources

• Resources are acquired during initialization and released when an
application terminates

– Helps achieve the architectural goal for a loosely coupled system that is scalable,
interoperable, testable (each app is unit tested), and maintainable

• Concurrent execution model

– Each app has its own execution thread and apps can spawn child tasks

• The cFE service and Platform Abstraction APIs provide a portable
functional interface

• Write once run anywhere the cFS framework has been deployed

– Defer embedded software complexities due to cross compilation and target
operating systems

– Framework provides seamless application transition from technology efforts to
flight projects

• Reload apps during operations without rebooting

cFS Training- Page 50

Configuration Parameter Scope

• Mission configuration parameters – used for ALL processors in a
mission (e.g. time epoch, maximum message size, etc.)
– Default contained in:

• \cfe\fsw\mission_inc\cfe_mission_cfg.h

• \apps\xx\fsw\mission_inc\xx_mission_cfg.h, xx_perfids.h

• Platform Configuration parameters – used for the specific processor
(e.g. time client/server config, max number of applications, max
number of tables, etc.)
– Defaults contained in:

• \cfe\fsw\platform_inc\cpuX\cfe_platform_cfg.h, cfe_msgids_cfg.h

• \apps\xx\fsw\platform_inc\xx_platform_cfg.h, xx_msgids.h

• \osal\build\inc\osconfig.h

• Just because something is configurable doesn’t mean you want to
change it
– E.g. CFE_EVS_MAX_MESSAGE_LENGTH

cFS Training- Page 51

Unique Identifier Configuration Parameters

• Software Bus Message Identifiers
– cfe_msgids.h (message IDs for the cFE should not have to change)

– app_msgids.h (message IDs for the Applications) are platform configurations

• Executive Service Performance Identifiers
– cFE performance IDs are embedded in the core

– app_perfids.h (performance IDs for the applications) are mission configuration

• Task priorities are not configuration parameters but must be managed
from a processor perspective

• Note cFE strings are case sensitive

cFS Training- Page 52

cFS Application Mission and Platform
Configuration Files

File Purpose Scope Notes

cfe_mission_cfg.h
cFE core mission wide
configuration

Mission

cfe_platform_cfg.h
cFE core platform
configuration

Platform
Most cFE parameters
are here

cfe_msgids.h
cFE core platform
message IDs

Platform

Defines the message
IDs the cFE core will
use on that
Platform(CPU)

osconfig.h
OSAL platform
configuration

Platform

XX_mission_cfg.h
A cFS Application’s
mission wide configuration

Mission

Allows a single cFS
application to be used
on multiple CPUs on
one mission

XX_platform_cfg.h
Application platform wide
configuration

Platform

XX_msgids.h Application message IDs Platform

XX_perfids.h
Application performance
IDs

Platform

cFS Training- Page 53

Exercise 1 – Build and Run the cFE

Part 1 - Setup
To setup the cFS Bundle directly from the latest set of interoperable repositories:

git clone https://github.com/nasa/cFS.git

cd cFS

git checkout bootes-rc2

git submodule init

git submodule update

Copy in the default makefile and definitions:

cp cfe/cmake/Makefile.sample Makefile

cp -r cfe/cmake/sample_defs sample_defs

If running on a standard Linux build as a normal user, allow OSAL “permissive mode” for best effort message queue
depth and task priorities.

• Open the sample_defs/default_osconfig.cmake file

• Find the “OSAL_CONFIG_DEBUG_PERMISSIVE_MODE” parameter and set it to TRUE

Subsequent exercises assume
that cFS was cloned into the

home directory (“~/cFS”)

cFS Training- Page 54

Exercise 1 – Build and Run the cFE

Part 2 – Build and Run
The cFS Framework, including sample applications, will build and run on the pc-linux platform support package (should
run on most Linux distributions), via the steps described in
https://github.com/nasa/cFE/tree/master/cmake/README.md. Quick-start is below:

To prep, compile, and run (from cFS directory above):

make prep

make

make install

cd build/exe/cpu1/

./core-cpu1

Should see startup messages and CFE_ES_Main entering OPERATIONAL state. Note the code must be executed from
the build/exe/cpu1 directory to find the startup script and shared objects.

cFS Training- Page 55

Exercise 1 Recap - cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files

_defs

cmake
configuration

files

cFS Training- Page 56

Exercise 1 Recap - cFE Directory Structure

cFE

docs
• VDD
• Users Guide
• App Developers

Guide

fsw Test-and-
ground

• Test Procedures
• Test Results
• Ground System

Files

cfe-core mission_inc platform_inc
Mission configuration
header files

Platform configuration
header files

src
• es
• evs
• fs
• Inc

• make
• sb
• tbl
• time

unit_test
• Procedures
• Results

cFS Training- Page 57

Exercise 1 Recap

cFE Version

cFE
Services
Started

58

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2a: Executive Services

cFS Training- Page 59

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 60

Executive Services - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 61

Executive Services (ES) – Overview

• Initializes the cFE

– Reports reset type

– Maintains an exception-reset log across processor resets

• Creates the application runtime environment

– Primary interface to underlying operating system task services

– Manages application resources

– Starts initial applications according to cfe_es_startup.scr

– Supports starting, stopping, and loading applications during runtime

• Manages Memory

– Provides a dynamic memory pool service

– Provides Critical Data Stores (CDSs) that are preserved across processor resets

cFS Training- Page 62

Executive Services - Boot Sequence

PROM
Boot

OS
Kernel
Boot

cFE
Boot

FSW
Init

Reset

• The PROM boots the OS kernel linked with the BSP, loader and EEPROM
file system.

‒ Accesses simple file system
‒ Selects primary and secondary images based on flags and checksum validation
‒ Copies OS image to RAM

• The OS kernel boots the cFE
‒ Performs self – decompression (optional)
‒ Attaches to EEPROM File System
‒ Starts up cFE

• cFE boots cFE interface apps and mission components (C&DH, GNC,
Science applications)

‒ Creates/Attaches to Critical Data Store (CDS)
‒ Creates/Attaches to RAM File System
‒ Starts cFE services (ES, EVS, TBL, SB, & TIME)
‒ Starts the applications based on cfe_es_startup.scr

cFS Training- Page 63

Executive Services - Startup

Initialize OS Data
structures (task table,

queues etc.)

Initialize Core
Applications*

Initialize
cFE Apps and shared

libraries (as specified in
ES startup script)

Start
Multitasking

From BSP
Startup

Initialize File Systems

The cFE core is started as one unit. The cFE Core is linked with the RTOS and support libraries and loaded into system
EEPROM as a static executable.

Volatile
File System

Non-Volatile
File System

Startup Script
And cFE Apps/Libs

cFE Core

cFS App 1

cFS App N

Exception and
Reset Log

Log entry

cFE Applications

RAM

*Note:
Service initialization order: ES, EVS, SB, TIME, TBL
Service start order: EVS, SB, ES, TIME, TBL

cFS Training- Page 64

Executive Services - Startup Script

• The startup script is a text file, written by the user that contains a list of
entries (one entry for each application)

– Used by the ES application for automating the startup of applications.

– ES application allows the use of a volatile and nonvolatile startup scripts. The
project may utilize zero, one or two startup scripts.

Object Type CFE_APP for an Application, or CFE_LIB for a library.

Path/Filename This is a cFE Virtual filename, not a vxWorks device/pathname

Entry Point This is the name of the "main" function for App.

CFE Name The cFE name for the APP or Library

Priority This is the Priority of the App, not used for a Library

Stack Size This is the Stack size for the App, not used for a Library

Load Address This is the Optional Load Address for the App or Library. It is currently not implemented
so it should always be 0x0.

Exception
Action

This is the Action the cFE should take if the Application has an exception.

 0 = Do a cFE Processor Reset
 Non-Zero = Just restart the Application

cFS Training- Page 65

Executive Services – Example Script

CFE_APP, /cf/apps/ci_lab.o, CI_Lab_AppMain, CI_LAB_APP, 70, 4096, 0x0, 0;
CFE_APP, /cf/apps/sch_lab.o, SCH_Lab_AppMain, SCH_LAB_APP, 120, 4096, 0x0, 0;
CFE_APP, /cf/apps/to_lab.o, TO_Lab_AppMain, TO_LAB_APP, 74, 4096, 0x0, 0;
CFE_LIB, /cf/apps/cfs_lib.o, CFS_LibInit, CFS_LIB, 0, 0, 0x0, 0;
!
! Startup script fields:
! 1. Object Type -- CFE_APP for an Application, or CFE_LIB for a library.
! 2. Path/Filename -- This is a cFE Virtual filename, not a vxWorks device/pathname
! 3. Entry Point -- This is the "main" function for Apps.
! 4. CFE Name -- The cFE name for the the APP or Library
! 5. Priority -- This is the Priority of the App, not used for Library
! 6. Stack Size -- This is the Stack size for the App, not used for the Library
! 7. Load Address -- This is the Optional Load Address for the App or Library. Currently
not implemented
! so keep it at 0x0.
! 8. Exception Action -- This is the Action the cFE should take if the App has an exception.
! 0 = Just restart the Application
! Non-Zero = Do a cFE Processor Reset
!
! Other Notes:
! 1. The software will not try to parse anything after the first '!' character it sees. That
! is the End of File marker.
! 2. Common Application file extensions:
! Linux = .so (ci.so)
! OS X = .bundle (ci.bundle)
! Cygwin = .dll (ci.dll)
! vxWorks = .o (ci.o)
! RTEMS with S-record Loader = .s3r (ci.s3r)
! RTEMS with CEXP Loader = .o (ci.o)

cFS Training- Page 66

Executive Services – Logs

• Exception-Reset

– Logs information related to resets and exceptions

• System Log

– cFE apps use this log when errors are encountered during initialization before
the Event Services is fully initialized

– Mission apps can also use it during initialization

• Recommended that apps should register with event service immediately after
registering with ES so app events are captured in the EVS log

– Implemented as an array of bytes that has variable length strings produced by
printf() type statements

cFS Training- Page 67

Executive Services – Reset Behavior

• Power-on Reset
– Operating system loaded and started prior to cFE

– Initializes file system

– Critical data stores and logs cleared (initialized by hardware first)

– ES starts each cFE service and then the mission applications

• Processor Reset Preserves
– File system

– Critical Data Store (CDS)

– ES System Log

– ES Exception and Reset (ER) log

– Performance Analysis data

– ES Reset info (i.e. reset type, boot source, number of processor resets)

– Time Data (i.e. MET, STCF, Leap Seconds)

• A power-on reset will be performed after a configurable number of
processor resets
– Ground responsible for managing processor reset counter

cFS Training- Page 68

Executive Services – Retrieving Onboard State

• Telemetry
– Housekeeping Status

• Log file states, App, Resets, Performance Monitor, Heap Stats

• Telemetry packets generated by command
– Single App Information
– Memory Pool Statistics Packet

• Files generated by command
– System Log
– Exception-Reset Log
– Performance Monitor
– Critical Data Store Registry
– All registered apps

– All registered tasks

cFS Training- Page 69

Executive Services -
System Integration and App Development (1 of 2)

• Child Tasks

– Recommend creating during app initialization

– Relative parent priority depends on child’s role

• Performing lengthy process may be lower

• Servicing short duration I/O may be higher

OS Call

POSIX/Linux pthread_create()

RTEMS rtems_task_create()

VxWorks taskSpawn()

cFS Training- Page 70

Executive Services -
System Integration and App Development (2 of 2)

• Query startup type (Power On vs Processor)

– Not commonly used since CDS performs data preservation

• Critical Data Store (CDS)

– E.g. Data Storage maintains open file management data in a CDS

– Typical code idiom in app’s initialization
Result = CFE_ES_RegisterCDS()

if (Result == CFE_SUCCESS)

Populate CDS

else if (Result == CFE_ES_CDS_ALREADY_EXISTS)

Restore CDS data

… Continually update CDS as application executes

• Memory Pool

– Ideally apps would allocate memory pools during initialization but
there aren’t any restrictions

– cFE Examples: Software Bus, Tables, and Events

– App Examples: CFDP and Housekeeping

cFS Training- Page 71

Executive Services - APIs

Memory Pool Functions Purpose

CFE_ES_PoolCreateNoSem
Initializes a memory pool created by an application without using a semaphore during
processing

CFE_ES_PoolCreate
Initializes a memory pool created by an application while using a semaphore during
processing

CFE_ES_PoolCreateEx Initializes a memory pool created by an application with application specified block sizes

CFE_ES_GetPoolBuf
Gets a buffer from the memory pool created by #CFE_ES_PoolCreate or
#CFE_ES_PoolCreateNoSem

CFE_ES_GetPoolBufInfo Gets info on a buffer previously allocated via #CFE_ES_GetPoolBuf

CFE_ES_PutPoolBuf
Releases a buffer from the memory pool that was previously allocated via
#CFE_ES_GetPoolBuf

CFE_ES_GetMemPoolStats Extracts the statistics maintained by the memory pool software

cFS Training- Page 72

Executive Services - APIs

API List (1 of 2) Purpose

CFE_ES_GetResetType Return the most recent Reset Type

CFE_ES_ResetCFE Reset the cFE Core and all cFE Applications

CFE_ES_RestartApp Restart a single cFE App

CFE_ES_ReloadApp Reload a single cFE App

CFE_ES_DeleteApp Delete a cFE App

CFE_ES_ExitApp Exit a cFE Application

CFE_ES_RunLoop Check for Exit, Restart, or Reload commands

CFE_ES_WaitForSystemState Allow an Application to Wait for a minimum global system state

CFE_ES_WaitForStartupSync Allow an Application to Wait for the "OPERATIONAL" global system state

CFE_ES_GetAppIDByName Get an Application ID associated with a specified Application name

CFE_ES_GetAppID Get an Application ID for the calling Application

CFE_ES_GetAppName Get an Application name for a specified Application ID

CFE_ES_GetAppInfo Get Application Information given a specified App ID

CFE_ES_GetTaskInfo Get Task Information given a specified Task ID

cFS Training- Page 73

Executive Services - APIs

API List (2 of 2) Purpose

CFE_ES_CreateChildTask Creates a new task under an existing Application

CFE_ES_RegisterChildTask Registers a cFE Child task associated with a cFE Application

CFE_ES_IncrementTaskCounter Increments the execution counter for the calling task

CFE_ES_DeleteChildTask Deletes a task under an existing Application

CFE_ES_ExitChildTask Exits a child task

CFE_ES_WriteToSysLog Write a string to the cFE System Log

CFE_ES_CalculateCRC Calculate a CRC on a block of memory

CFE_ES_RegisterCDS Reserve space (or re-obtain previously reserved space) in the Critical Data Store (CDS)

CFE_ES_CopyToCDS Save a block of data in the Critical Data Store (CDS)

CFE_ES_RestoreFromCDS Recover a block of data from the Critical Data Store (CDS)

CFE_ES_RegisterGenCounter Register a generic counter

CFE_ES_DeleteGenCounter Delete a generic counter

CFE_ES_IncrementGenCounter Increments the specified generic counter

CFE_ES_SetGenCount Set the specified generic counter

CFE_ES_GetGenCount Get the specified generic counter count

CFE_ES_GetGenCounterIDByName Get the Id associated with a generic counter name

CFE_ES_ProcessCoreException Process an exception detected by the underlying OS/PSP

cFS Training- Page 74

Executive Services – Command List

Command List Purpose

CFE_ES_StartPerfDataCmd Start performance data
CFE_ES_StopPerfDataCmd Stop performance data
CFE_ES_SetPerfFilterMaskCmd Set performance filter mask
CFE_ES_SetPerfTriggerMaskCmd Set performance trigger mask
CFE_ES_HousekeepingCmd On-board command (HK request)
CFE_ES_NoopCmd ES task ground command (NO-OP)
CFE_ES_ResetCountersCmd ES task ground command (reset counters)
CFE_ES_RestartCmd Restart cFE (may reset processor)
CFE_ES_ShellCmd Pass thru string to O/S shell
CFE_ES_StartAppCmd Load (and start) single application
CFE_ES_StopAppCmd Stop single application
CFE_ES_RestartAppCmd Restart a single application
CFE_ES_ReloadAppCmd Reload a single application
CFE_ES_QueryOneCmd Request tlm packet with single app data
CFE_ES_QueryAllCmd Write all app data to file
CFE_ES_QueryAllTasksCmd Write all Task Data to a file
CFE_ES_ClearSyslogCmd Clear executive services system log
CFE_ES_OverWriteSyslogCmd Set syslog mode
CFE_ES_WriteSyslogCmd Process Cmd to write ES System Log to file
CFE_ES_ClearERLogCmd Clear The exception and reset log
CFE_ES_WriteERLogCmd Process Cmd to write exception & reset log to a file
CFE_ES_VerifyCmdLength Verify command packet length
CFE_ES_ResetPRCountCmd ES task ground command (Processor Reset Count)
CFE_ES_SetMaxPRCountCmd Set Maximum Processor reset count
CFE_ES_DeleteCDSCmd Delete Specified Critical Data Store
CFE_ES_SendMemPoolStatsCmd Telemeter Memory Pool Statistics
CFE_ES_DumpCDSRegistryCmd Dump CDS Registry to a file

cFS Training- Page 75

Executive Services –
Configuration Parameters

Command List Purpose

CFE_PLATFORM_ES_MAX_APPLICATIONS Max Number of Applications
CFE_PLATFORM_ES_MAX_LIBRARIES Max Number of Shared libraries
CFE_PLATFORM_ES_ER_LOG_ENTRIES Max Number of ER (Exception and Reset) log entries
CFE_PLATFORM_ES_ER_LOG_MAX_CONTEXT_SIZE Maximum size of CPU Context in ES Error Log
CFE_PLATFORM_ES_SYSTEM_LOG_SIZE Size of the cFE System Log
CFE_PLATFORM_ES_OBJECT_TABLE_SIZE Number of entries in the ES Object table
CFE_PLATFORM_ES_MAX_GEN_COUNTERS Max Number of Generic Counters
CFE_PLATFORM_ES_APP_SCAN_RATE ES Application Control Scan Rate
CFE_PLATFORM_ES_APP_KILL_TIMEOUT ES Application Kill Timeout
CFE_PLATFORM_ES_RAM_DISK_SECTOR_SIZE ES Ram Disk Sector Size
CFE_PLATFORM_ES_RAM_DISK_NUM_SECTORS ES Ram Disk Number of Sectors
CFE_PLATFORM_ES_RAM_DISK_PERCENT_RESERVED Percentage of Ram Disk Reserved for Decompressing Apps
CFE_PLATFORM_ES_RAM_DISK_MOUNT_STRING RAM Disk Mount string
CFE_PLATFORM_ES_CDS_SIZE Critical Data Store Size
CFE_PLATFORM_ES_USER_RESERVED_SIZE User Reserved Memory Size
CFE_PLATFORM_ES_RESET_AREA_SIZE ES Reset Area Size
CFE_PLATFORM_ES_NONVOL_STARTUP_FILE ES Nonvolatile Startup Filename
CFE_PLATFORM_ES_VOLATILE_STARTUP_FILE ES Volatile Startup Filename
CFE_PLATFORM_ES_DEFAULT_SHELL_FILENAME Default Shell Filename
CFE_PLATFORM_ES_MAX_SHELL_CMD Max Shell Command Size
CFE_PLATFORM_ES_MAX_SHELL_PKT Shell Command Telemetry Pkt Segment Size
CFE_PLATFORM_ES_DEFAULT_APP_LOG_FILE Default Application Information Filename
CFE_PLATFORM_ES_DEFAULT_TASK_LOG_FILE Default Application Task Information Filename
CFE_PLATFORM_ES_DEFAULT_SYSLOG_FILE Default System Log Filename
CFE_PLATFORM_ES_DEFAULT_ER_LOG_FILE Default Exception and Reset (ER) Log Filename

cFS Training- Page 76

Command List Purpose

CFE_PLATFORM_ES_DEFAULT_PERF_DUMP_FILENAME Default Performance Data Filename
CFE_PLATFORM_ES_DEFAULT_CDS_REG_DUMP_FILE Default Critical Data Store Registry Filename
CFE_PLATFORM_ES_DEFAULT_SYSLOG_MODE Default System Log Mode
CFE_PLATFORM_ES_PERF_MAX_IDS Max Number of Performance IDs
CFE_PLATFORM_ES_PERF_DATA_BUFFER_SIZE Max Size of Performance Data Buffer
CFE_PLATFORM_ES_PERF_FILTMASK_NONE Filter Mask Setting for Disabling All Performance Entries
CFE_PLATFORM_ES_PERF_FILTMASK_ALL Filter Mask Setting for Enabling All Performance Entries
CFE_PLATFORM_ES_PERF_FILTMASK_INIT Default Filter Mask Setting for Performance Data Buffer

CFE_PLATFORM_ES_PERF_TRIGMASK_NONE
Default Filter Trigger Setting for Disabling All Performance
Entries

CFE_PLATFORM_ES_PERF_TRIGMASK_ALL Filter Trigger Setting for Enabling All Performance Entries
CFE_PLATFORM_ES_PERF_TRIGMASK_INIT Default Filter Trigger Setting for Performance Data Buffer
CFE_PLATFORM_ES_PERF_CHILD_PRIORITY Performance Analyzer Child Task Priority
CFE_PLATFORM_ES_PERF_CHILD_STACK_SIZE Performance Analyzer Child Task Stack Size
CFE_PLATFORM_ES_PERF_CHILD_MS_DELAY Performance Analyzer Child Task Delay

CFE_PLATFORM_ES_PERF_ENTRIES_BTWN_DLYS
Performance Analyzer Child Task Number of Entries Between
Delay

CFE_PLATFORM_ES_DEFAULT_STACK_SIZE Default Stack Size for an Application
CFE_PLATFORM_ES_EXCEPTION_FUNCTION cFE Core Exception Function
CFE_PLATFORM_ES_START_TASK_PRIORITY ES Task Priority
CFE_PLATFORM_ES_START_TASK_STACK_SIZE ES Task Stack Size
CFE_PLATFORM_ES_CDS_MAX_NUM_ENTRIES Maximum Number of Registered CDS Blocks
CFE_PLATFORM_ES_MAX_PROCESSOR_RESETS Number of Processor Resets Before a Power On Reset
CFE_PLATFORM_ES_CDS_MAX_BLOCK_SIZE ES Critical Data Store Max Memory Pool Block Size
CFE_PLATFORM_ES_STARTUP_SYNC_POLL_MSEC Poll timer for startup sync delay
CFE_PLATFORM_ES_STARTUP_SCRIPT_TIMEOUT_MSEC Startup script timeout

Executive Services –
Configuration Parameters

cFS Training- Page 77

Exercise 2 - Command cFE Executive Service

Part 1 – Start the Ground System
The cFS-GroundSystem tool can be used to send commands and receive telemetry (see
https://github.com/nasa/cFS-GroundSystem/tree/master/Guide-GroundSystem.txt, the Guide-GroundSystem.txt).
Note it depends on PyQt5 and PyZMQ:

1. Ensure that cFE is running

2. Open a new terminal

3. Compile cmdUtil and start the ground system executable

cd ~/cFS/tools/cFS-GroundSystem/Subsystems/cmdUtil

make

cd ../..

python3 GroundSystem.py

4. Select "Start Command System"

5. Select "Enable Tlm"

6. Enter IP address of system executing cFS (127.0.0.1 if running locally)

into the "Input" field and click "Send"

7. In the original ground system window, select "Start Telemetry System"

At this point, telemetry should be visible in the ground system

cFS Training- Page 78

Exercise 2 - Command cFE Executive Service

Part 2 – Command Executive Services
8. On the Command System Main Page, select "ES No-Op".

• A no-op message should appear in the cFS screen.

9. Reload an application.

• On the Command System Main Page, click the "Display Page"
button beside "Executive Services CPU1".

• Click the "Send" button beside "Stop and Unload Application".

• Enter "SCH_LAB_APP" in the "Input" field.

• Click "Send".

**NOTE: "SCH_LAB_APP" is the cFE name specified for one of the
apps in the cfe_es_startup.scr file. Many cFE ES commands require
the cFE name of an application or library as a parameter**

cFS Training- Page 79

Exercise 2 Recap

cFS Training- Page 80

Exercise 2 Recap

After Step 7, cFE
housekeeping packet
counts should start
incrementing

cFS Training- Page 81

Exercise 2 Recap

Enable Tlm
Command

ES No-Op
Command

ES
Reload

App
Command

82

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2b: Software Bus
Services

cFS Training- Page 83

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 84

Software Bus - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 85

• Provides a portable inter-application message service using a
publish/subscribe model

• Routes messages to all applications that have subscribed to the
message (i.e. broadcast model)

– Subscriptions are done at application startup

– Message routing can be added/removed at runtime

– Sender does not know who subscribes (i.e. connectionless)

• Reports errors detected during the transferring of messages

• Outputs Statistics Packet and the Routing Information when
commanded

Software Bus (SB) Services - Overview

cFS Training- Page 86

Software Bus - Context

Software
Scheduler

cFE
Software Bus

Receiving
cFS

App(s)

Sending
cFS
App

HK
Requests

CFE_SB_SendMsg()

CFE_SB_RcvMsg()

cFS Training- Page 87

Software Bus – Messages (1 of 2)

• Messages
– Data structures used to transfer data between applications

• By default Consultative Committee for Space Data Systems (CCSDS)
packets used to implement messages
– In theory other formats could be used but has not occurred in practice

– Simplifies data management since CCSDS standards are used for flight-ground
interfaces

• CCSDS Primary Header (Always big endian)

cFS Training- Page 88

Software Bus – Messages (2 of 2)

• “Packet” often used instead of “message” but not quite synonymous
– “Message ID” (first 16-bits) used to uniquely identify a message

– “App ID” (11-bit) CCSDS packet identifier

• Extended APID
– cFE 6.6 supports CCSDS extended APID, but testing has been limited

• CCSDS Command Packets
– Secondary packet header contains a command function code

– cFS apps typically define a single command packet and use the function code to
dispatch a command processing function

– Commands can originate from the ground or from onboard applications

• CCSDS Telemetry Packets
– Secondary packet header contains a time stamp of when the data was produced

– Telemetry is sent on the software bus by apps and can be ingested by other apps,
stored onboard and sent to the ground

cFS Training- Page 89

Software Bus – Message Formats

• cFE abstracts the message format

• Implementation currently includes CCSDS format

• Software Bus provides functions to access message header (e.g.
CFE_SB_SetCmdCode, CFE_SB_SetMsgTime etc.)

typedef struct{

CCSDS_PriHdr_t Pri;

CCSDS_CmdSecHdr_t Sec;

} CFE_SB_CmdHdr_t;

typedef struct{

CCSDS_PriHdr_t Pri;

CCSDS_TlmSecHdr_t Sec;

} CFE_SB_TlmHdr_t;

cFS Training- Page 90

Software Bus – Reset Behavior

• No data is preserved for either a Power-On or Processor Reset

– All routing is reestablished as application create pipes and subscribe to messages

– Any packet in transit at the time of the reset is discarded

– All packet sequence counters reset to 1

cFS Training- Page 91

Software Bus – Retrieving Onboard State

• Telemetry
– Housekeeping Status

• Counters (No subscribers, send errors, pipe overflows, etc.), Memory Stats

• Telemetry packets generated by command
– Statistics
– Subscription Report

• Files generated by command
– Routing Info
– Pipe Info
– Message ID to Route

cFS Training- Page 92

Software Bus - System Integration

• Message IDs should be unique across the system if possible

• The software bus places no restrictions on who can send or receive
messages
– One-to-one

– One-to-many

– Many-to-one

– Many-to-many

• The Software Bus Network application can be used to extend the
software bus across multiple processors

cFS Training- Page 93

Software Bus – App Development (1 of 3)

• Apps must create a pipe in order to receive messages

– Apps can create multiple pipes if necessary

• Apps must subscribe to each individual message ID they want to
receive

– Apps typically subscribe to at least 2 MIDs: one for housekeeping requests and
one for commands

• Commands are typically grouped under a single MID with multiple command codes

– Apps can subscribe and unsubscribe to messages at any time

• Sending Messages:

• Receiving Messages:

CFE_SB_InitMsg CFE_SB_SetCmdCode CFE_SB_SendMsg

CFE_SB_CreatePipe CFE_SB_Subscribe CFE_SB_RcvMsg

cFS Training- Page 94

Software Bus – App Development (2 of 3)

• Multiple ways to send messages

Function Purpose

CFE_SB_SendMsg Most basic and most common means
of sending a message.

CFE_SB_PassMsg Similar to CFE_SB_SendMsg, but
intended for messages that are not
generated by the sending application.

CFE_SB_ZeroCopySend Eliminates an extra copy of the
message. Can be used to improve
performance. Requires the use of the
helper function
CFE_SB_ZeroCopyGetPtr

CFE_SB_ZeroCopyPass

cFS Training- Page 95

Software Bus – App Development (3 of 3)

• Must first subscribe to messages

• To receive messages, can pend or poll using
the TimeOut parameter
int32 CFE_SB_RcvMsg(CFE_SB_MsgPtr_t *BufPtr,

CFE_SB_PipeId_t PipeId,

int32 TimeOut)

Function Purpose

CFE_SB_Subscribe Subscribes to the message ID using
default parameters for Quality of
Service and Message Limit

CFE_SB_SubscribeEx Subscribes to the message ID
specifying custom parameters for
Quality of Service and Message Limit

cFS Training- Page 96

Software Bus – Configuration Parameters

Parameter Purpose

CFE_PLATFORM_SB_MAX_MSG_IDS
Maximum Number of Unique Message IDs SB Routing Table can
hold

CFE_PLATFORM_SB_MAX_PIPES Maximum Number of Unique Pipes SB Routing Table can hold

CFE_PLATFORM_SB_MAX_DEST_PER_PKT
Maximum Number of unique local destinations a single MsgId can
have

CFE_PLATFORM_SB_DEFAULT_MSG_LIMIT Default Subscription Message Limit

CFE_PLATFORM_SB_BUF_MEMORY_BYTES Size of the SB buffer memory pool

CFE_PLATFORM_SB_MAX_PIPE_DEPTH Maximum depth allowed when creating an SB pipe

CFE_PLATFORM_SB_HIGHEST_VALID_MSGID Highest Valid Message Id

CFE_PLATFORM_SB_DEFAULT_ROUTING_FILENAME Default Routing Information Filename

CFE_PLATFORM_SB_DEFAULT_PIPE_FILENAME Default Pipe Information Filename

CFE_PLATFORM_SB_DEFAULT_MAP_FILENAME Default Message Map Filename

CFE_PLATFORM_SB_FILTERED_EVENT[1-8] SB Event Filtering

CFE_PLATFORM_SB_FILTER_MASK[1-8] SB Event Filtering Mask

CFE_PLATFORM_SB_MEM_BLOCK_SIZE_[01-16] Define SB Memory Pool Block Sizes

CFE_PLATFORM_SB_MAX_BLOCK_SIZE Defines Max SB Memory Pool Block Size
CFE_PLATFORM_SB_DEFAULT_REPORT_SENDER Default Sender Information Storage Mode
CFE_PLATFORM_SB_START_TASK_PRIORITY SB Task Priority

CFE_PLATFORM_SB_START_TASK_STACK_SIZE SB Task Stack Size

cFS Training- Page 97

cFE Software Bus APIs

SB APIs Purpose

CFE_SB_CreatePipe API to create a pipe for receiving messages

CFE_SB_DeletePipe
Will unsubscribe to all routes associated with the given pipe id, then remove pipe from the
pipe table

CFE_SB_SetPipeOpts Sets pipe options

CFE_SB_GetPipeOpts Gets the current pipe options

CFE_SB_SubscribeEx API to globally subscribe to a message when QOS and MsgLim defaults are insufficient

CFE_SB_SubscribeLocal
CFE Internal API to locally subscribe to a message when QOS and MsgLim defaults are
insufficient

CFE_SB_Subscribe API to locally subscribe to a message when QOS and MsgLim defaults are sufficient

CFE_SB_Unsubscribe API used to unsubscribe to a message

CFE_SB_UnsubscribeLocal CFE Internal API used to locally unsubscribe to a message

CFE_SB_SendMsg API used to send a message on the software bus

CFE_SB_PassMsg API used to send a message on the software bus

CFE_SB_RcvMsg API used to receive a message from the software bus

CFE_SB_GetLastSenderId API used for receiving sender Information of the last message received on the given pipe

CFE_SB_ZeroCopyGetPtr API used for getting a pointer to a buffer (for zero copy mode only)

CFE_SB_ZeroCopyReleasePtr API used for releasing a pointer to a buffer (for zero copy mode only)

CFE_SB_ZeroCopySend
API for sending messages in zero copy mode (with telemetry source sequence count
incrementing)

CFE_SB_ZeroCopyPass
API for sending messages in zero copy mode (telemetry source sequence count is
preserved)

cFS Training- Page 98

cFE Software Bus Utility APIs

SB Utility APIs Purpose

CFE_SB_GetMsgId Get the message ID of a software bus message

CFE_SB_SetMsgId Set the message ID of a message in CCSDS header format

CFE_SB_MessageStringGet Copies a string out of a software bus message

CFE_SB_MessageStringSet Copies a string into a software bus message

CFE_SB_InitMsg Initialize the header fields of a message

CFE_SB_MsgHdrSize Get the size of a message header

CFE_SB_GetUserData Get a pointer to the user data portion of a message

CFE_SB_GetUserDataLength Get the length of the user data of a message (total size – header size)

CFE_SB_SetUserDataLength Set the length field in the primary header

CFE_SB_GetTotalMsgLength
Get the total length of the message which includes the secondary header and the
user data field

CFE_SB_SetTotalMsgLength Set the length field, given the total length of the message

CFE_SB_GetMsgTime Get the time field from a message

CFE_SB_SetMsgTime Set the time field from a message

CFE_SB_TimeStampMsg Set the time field to the current time

CFE_SB_GetCmdCode Get the opcode field of message

CFE_SB_SetCmdCode Set the opcode field of message

CFE_SB_GetChecksum Get the checksum field of message

CFE_SB_GenerateChecksum Calculate and Set the checksum field of message

CFE_SB_ValidateChecksum Validate the checksum field of message

cFS Training- Page 99

cFE Software Bus Command List

SB Command List Purpose

CFE_SB_NoopCmd Handler function the SB command

CFE_SB_ResetCountersCmd Handler function the SB command

CFE_SB_EnableSubReportingCmd Handler function the SB command

CFE_SB_DisableSubReportingCmd Handler function the SB command

CFE_SB_SendHKTlmCmd Function to send the SB housekeeping packet

CFE_SB_EnableRouteCmd SB internal function to enable a specific route

CFE_SB_DisableRouteCmd SB internal function to disable a specific route

CFE_SB_SendStatsCmd SB internal function to send a Software Bus statistics packet

CFE_SB_SendRoutingInfoCmd SB internal function to handle processing of 'Send Routing Info' command

CFE_SB_SendPipeInfoCmd SB internal function to handle processing of 'Send Pipe Info' command

CFE_SB_SendMapInfoCmd SB internal function to handle processing of 'Send Map Info' command

CFE_SB_SendPrevSubsCmd
SB function to build and send an SB packet containing a complete list of current
subscriptions

CFE_SB_GetPipeName Get the pipe name for a given ID

CFE_SB_GetPipeIdByName Get the pipe ID by pipe name

cFS Training- Page 100

Exercise 3 - Command cFE Software Bus

1. Ensure that cFE is running

2. Open a new terminal

3. Start the ground system executable (as in Exercise 2)

4. Enable Telemetry (as in Exercise 2)

5. Send an SB No-Op command

• Click the “SB No-Op" button beside "Software Bus"

• Click the "Send" button beside "Software Bus No-Op"

• Click "Send"

6. Send a "Write Map Info to a File" command

• Click the “Display Page” button beside “Software Bus”

• In the "Software Bus" window, click the "Send" button beside “CFE_SEND_MAP_INFO_CC"

• Enter "/cf/map.bin" in the "Input" field next to "Filename"

• Click "Send“
– Nothing appears in the cFE window unless debug messages have been enabled, but the file "map.bin" now exists in the

build/exe/cpu1/cf directory. View with "hexdump -C cf/map.bin"

**NOTE: The "Write Map Info to a File" command is one of several commands that together provide the full
routing information for the software bus. This can be useful for troubleshooting purposes**

cFS Training- Page 101

Exercise 3 Recap

cFS Training- Page 102

Exercise 3 Recap

SB No-Op
Command

cFS Training- Page 103

Exercise 3 Recap

File Header

Msg ID

Routing Table
Index

New File

cFS Training- Page 104

CCSDS References

• Consultative Committee for Space Data Systems

• CCSDS Home: https://public.ccsds.org/default.aspx

• CCSDS Space Packet Protocol:
https://public.ccsds.org/Pubs/133x0b1s.pdf

105

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2c: Event Services

cFS Training- Page 106

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Time Services

c) Event Services

d) Software Bus

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 107

Event Services - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 108

Event Services (EVS) - Overview

• Provides an interface for sending time-stamped text messages on the
software bus
– Considered asynchronous because they are not part of telemetry periodically

generated by an application
– Processor unique identifier
– Optionally logged to a local event log
– Optionally output to a hardware port

• Four event types defined
– Debug, Informational, Error, Critical

• Event message control
– Apps can filter individual messages based on identifier
– Enable/disable event types at the processor and application scope

cFS Training- Page 109

Event Services - Context

cFE
Event

Services

Event Message

Any cFS
Application

Event Message

CFE_EVS_SendEvent

Local
Event
Log

Output
Port

cFS Training- Page 110

Event Services – Message Format

• Spacecraft time

– Retrieved via CFE_TIME_GetTime()

• Event Type

– Debug, Informational, Error, Critical

• Spacecraft ID (not shown) defined in cfe_mission_cfg.h

• Processor ID defined in cfe_platform_cfg.h

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

cFS Training- Page 111

Event Services – Message Format

• Application

– cFE Service or app name defined in cfe_es_startup.scr

• Event ID is unique within an application

• Event Text is created using printf() format options

– “Short Format” platform option allows messages to be sent without text portion

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

cFS Training- Page 112

Event Services – Event Filtering

• Applications register events for filtering during initialization
– Registering immediately after ES app registration allows events to be used rather

than syslog writes

• Bit-wise AND “filter mask”
– Boolean AND performed on event ID message counter, if result is zero then the

event is sent
– Mask applied before the sent counter is incremented
– 0x0000 => Every message sent
– 0x0003 => Every 4th message sent
– 0xFFFE => Only first two messages sent

• CFE_EVS_MAX_FILTER_COUNT (cfe_evs_task.h) defines maximum
count for a filtered event ID
– Once reached event becomes locked
– Prevents erratic filtering behavior with counter rollover
– Ground can unlock filter by resetting or deleting the filter

cFS Training- Page 113

Event Services – No Filtering Example

Explicit Filter

NULL Filter

static CFE_EVS_BinFilter_t CFE_TO_EVS_Filters[] =
{/* Event ID mask */

{TO_INIT_INF_EID, 0x0000},
{TO_CRCMDPIPE_ERR_EID, 0x0000},
{TO_SUBSCRIBE_ERR_EID, 0x0000},
{TO_TLMOUTSOCKET_ERR_EID, 0x0000},
{TO_TLMOUTSTOP_ERR_EID, 0x0000},
{TO_MSGID_ERR_EID, 0x0000},
{TO_FNCODE_ERR_EID, 0x0000},
{TO_NOOP_INF_EID, 0x0000}

};

CFE_EVS_Register(CFE_TO_EVS_Filters,
sizeof(CFE_TO_EVS_Filters)/sizeof(CFE_EVS_BinFilter_t),
CFE_EVS_EventFilter_BINARY);

CFE_EVS_Register(NULL, 0, CFE_EVS_BINARY_FILTER);

CFE_EVS_Register(NULL, 0, CFE_EVS_NO_FILTER);

or

The “Explicit
Filter” pattern is
used for adding
non-empty
filters

cFS Training- Page 114

Event Services - Ports

• cFE supports up to 4 ports

– Port behavior can be customized in cfe_evs_utils.c

– By default, all ports call OS_printf

• Event messages are sent to enabled ports in addition to the software
bus

• By default, enabled ports are defined with the configuration parameter:
CFE_PLATFORM_EVS_PORT_DEFAULT

– Enabled ports can be changed in runtime with the command
CFE_EVS_EnablePortsCmd

cFS Training- Page 115

Event Services – Message Control

• Processor scope
– Enable/disable event messages based on type

• Debug, Information, Error, Critical

• Application scope
– Enable/disable all events
– Enable/disable based on type

• Event message scope
– During initialization apps can register events for filtering for up to

CFE_PLATFORM_EVS_MAX_EVENT_FILTERS defined in cfe_platform_cfg.h
– Filters can be modified by command

cFS Training- Page 116

Event Services – Reset Behavior

• Power-on Reset
– No data preserved
– Application initialization routines register with the service
– If configured local event log enabled

• Processor Reset
– If configured with an event log, preserves

• Messages
• Mode: Discard or Overwrite
• Log Full and Overflow status

cFS Training- Page 117

Event Services – Retrieving Onboard State

• Housekeeping Telemetry
– Log Enabled, Overflow, Full, Enabled
– For each App: AppID, Events Sent Count, Enabled

• Write application data to file. For each app
– Active flag – Are events enabled
– Event Count
– For each filtered event

• Event ID
• Filter Mask
• Event Count – Number of times Event ID has been issued

• Local event log
– If enabled, events are written to a local buffer
– Log “mode” can be set to over write or discard
– Serves as backup to onboard-recorder during initialization or error scenarios
– Suitable for multi-processor architectures
– Command to write log to file

cFS Training- Page 118

Event Services -
System Integration and App Development

• System Integration

– DEBUG logging level should be disabled in flight

– Telemetry Output should subscribe to and downlink event messages

• App Development

– Any app can subscribe to event messages (like any other software bus message)

– An app must register with event services before it can send any events

• Apps should write to the ES system log if event services cannot be registered

– Apps can send events with CFE_EVS_SendEvent or
CFE_EVS_SendTimedEvent

• These calls will have no effect if the app is not registered with EVS

– cFE libraries cannot register with EVS

cFS Training- Page 119

Event Services - Key Configuration Parameters

Parameter Purpose

CFE_PLATFORM_EVS_START_TASK_PRIORITY EVS Task Priority

CFE_PLATFORM_EVS_START_TASK_STACK_SIZE EVS Task Stack Size

CFE_PLATFORM_EVS_MAX_EVENT_FILTERS
Maximum Number of Event Filters per
Application

CFE_PLATFORM_EVS_LOG_ON Enable or Disable EVS Local Event Log

CFE_PLATFORM_EVS_DEFAULT_LOG_FILE Default Event Log Filename

CFE_PLATFORM_EVS_LOG_MAX
Maximum Number of Events in EVS Local
Event Log

CFE_PLATFORM_EVS_DEFAULT_APP_DATA_FILE Default EVS Application Data Filename

CFE_PLATFORM_EVS_PORT_DEFAULT Default EVS Output Port State

CFE_PLATFORM_EVS_DEFAULT_TYPE_FLAG Default EVS Event Type Filter Mask

CFE_PLATFORM_EVS_DEFAULT_LOG_MODE Default EVS Local Event Log Mode

CFE_PLATFORM_EVS_DEFAULT_MSG_FORMAT_MODE Default EVS Message Format Mode

cFS Training- Page 120

Event Services - APIs

Application Functions Purpose

CFE_EVS_Register
Register the application with event services. All Applications
must register with EVS

CFE_EVS_Unregister Cleanup internal structures used by the event manager

CFE_EVS_SendEvent
Request to generate a software event. Event message will be
generated based on filter settings

CFE_EVS_SendEventWithAppID
Generate a software event as though it came from the specified
cFE Application

CFE_EVS_SendTimedEvent Generate a software event with a specific time tag

CFE_EVS_ResetFilter Resets the calling application’s event filter for a single event ID

CFE_EVS_ResetAllFilters Resets all of the calling application’s event filters

cFS Training- Page 121

Event Services – Command List

Command List Purpose

CFE_EVS_NoopCmd
This function processes "no-op" commands received on the EVS
command pipe

CFE_EVS_ClearLogCmd
This function processes "clear log" commands received on the EVS
command pipe

CFE_EVS_ReportHousekeepingCmd Request for housekeeping status telemetry packet

CFE_EVS_ResetCountersCmd
This function resets all the global counter variables that are part of the
task telemetry

CFE_EVS_SetFilterCmd
This routine sets the filter mask for the given event_id in the calling
task's filter array

CFE_EVS_EnablePortsCmd This routine sets the command given ports to an enabled state

CFE_EVS_DisablePortsCmd This routine sets the command given ports to a disabled state

CFE_EVS_EnableEventTypeCmd
This routine sets the given event types to an enabled state across all
registered applications

CFE_EVS_DisableEventTypeCmd
This routine sets the given event types to a disabled state across all
registered applications

CFE_EVS_SetEventFormatModeCmd This routine sets the Event Format Mode

CFE_EVS_EnableAppEventTypeCmd
This routine sets the given event type for the given application identifier
to an enabled state

cFS Training- Page 122

Event Services – Command List

Command List Purpose

CFE_EVS_DisableAppEventTypeCmd
This routine sets the given event type for the given application identifier
to a disabled state

CFE_EVS_EnableAppEventsCmd
This routine enables application events for the given application
identifier

CFE_EVS_DisableAppEventsCmd
This routine disables application events for the given application
identifier

CFE_EVS_ResetAppCounterCmd
This routine sets the application event counter to zero for the given
application identifier

CFE_EVS_ResetFilterCmd
This routine sets the application event filter counter to zero for the
given application identifier and event identifier

CFE_EVS_ResetAllFiltersCmd
This routine sets all application event filter counters to zero for the
given application identifier

CFE_EVS_AddEventFilterCmd
This routine adds the given event filter for the given application
identifier and event identifier

CFE_EVS_DeleteEventFilterCmd
This routine deletes the event filter for the given application identifier
and event identifier

CFE_EVS_WriteAppDataFileCmd
This routine writes all application data to a file for all applications that
have registered with the EVS

cFS Training- Page 123

Exercise 4 - Command cFE Event Service

Part 1 – Test a Debug Event Message
1. Ensure that cFE is running

2. Open a new terminal

3. Start the ground system executable (as in Exercise 2)

4. Enable Telemetry (as in Exercise 2)

5. Send an EVS No-Op command

• Click the “EVS No-Op“ button beside “Event
Services”

6. Send a CI_LAB No-Op command

• Click the “CI No-Op“ button beside “Command
Ingest”

cFS Training- Page 124

Exercise 4 - Command cFE Event Service

Part 2 – Enable and Show a Debug Message
7. Send a command to disable informational messages

• Click the “Display Page” button beside “Event Services”

• In the Event Services command window, click the "Send" button

beside “CFE_EVS_DISABLE_EVENT_TYPE_CC"

• Enter "2" as the "BitMask" Input and "0" as the "Spare" input.

• Click send

The "2" bitmask argument specifies the informational event type

8. Send a CI_LAB No-Op command

• On the “Command System Main Page” window, click the “CI No-Op“ button beside “Command Ingest”

Unlike the first time, nothing should show up in the cFE window. The CI_LAB no-op event message is an
information level event message. Therefore, it was enabled until step #7 disabled informational messages.

9. [Optional] Re-enable informational messages

• Click the “Display Page” button beside “Event Services”

• In the Event Services command window, click the "Send" button beside
“CFE_EVS_ENABLE_EVENT_TYPE_CC"

• Enter "2" as the "BitMask" Input and "0" as the "Spare" input.

• Click send

cFS Training- Page 125

Exercise 4 Recap

CI No-Op
Command

126

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2d: Time Services

cFS Training- Page 127

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 128

Time Services - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 129

Time Services - Overview

• Provides time correlation, distribution and synchronization services

• Provides a user interface for correlation of spacecraft time to the
ground reference time (epoch)

• Provides calculation of spacecraft time, derived from mission elapsed
time (MET), a spacecraft time correlation factor (STCF), and optionally,
leap seconds

• Provides a functional API for cFE applications to query the time

• Distributes a “time at the tone” command packet, containing the
correct time at the moment of the 1Hz tone signal

• Distributes a “1Hz wakeup” command packet

• Forwards tone and time-at-the-tone packets

• Designing and configuring time is tightly coupled with the mission
avionics design

cFS Training- Page 130

Time Services – Time Formats

• Supports two formats

• International Atomic Time (TAI)

– Number of seconds and sub-seconds elapsed since the ground epoch

– TAI = MET + STCF

• Mission Elapsed Counter (MET) time since powering on the hardware containing the
counter

• Spacecraft Time Correlation Factor (STCF) set by ground ops

• Note STCF can correlate MET to any time epoch so TAI is mandated

• Coordinated Universal Time (UTC)

– Synchronizes time with astronomical observations

– UTC = TAI – Leap Seconds

– Leap Seconds account for earth’s slowing rotation

cFS Training- Page 131

Time Services - Context

Any cFS
Application

HK
Requests

Software
Scheduler

Time Requests

Time Data

Local Timing
Hardware

Local/External
Tone Source

Tone interrupt

Local Clock,
1Hz interrupt

Time
1Hz

Child Task

PSP

Time
1Hz Tone
Child Task

cFE
Time Services

Tone Message

1Hz Wakeup
Message

cFS Training- Page 132

Time Services – “Flywheeling”

• Flywheeling occurs when TIME is not getting a valid tone signal or
external "time at the tone" message. While this has minimal impact on
internal operations, it can result in the drifting apart of times being
stored by different spacecraft systems.

• Flywheeling occurs when at least one of the following conditions is
true:

– loss of tone signal

– loss of "time at the tone" data packet

– signal and packet not within valid window

– commanded into fly-wheel mode

cFS Training- Page 133

Time Services – Reset Behavior

• Power-On-Reset

– Initializes all counters in housekeeping telemetry

– Validity state set to Invalid

– STCF, Leap Seconds, and 1 Hz Adjustment set to zero

• Processor reset, preserves:

– MET

– STCF

– Leap Seconds

– Clock Signal Selection

– Current Time Client Delay (if applicable)

– Uses ‘signature’ to determine validity of saved time. If signature fails then power-
on-reset initialization is performed

cFS Training- Page 134

Time Services – Retrieving Onboard State

• Telemetry
– Housekeeping Status

• Clock state, Leap Seconds, MET, STCF 1Hz Adjust

• Telemetry packets generated by command
– Diagnostic Packet

• Files generated by command
– None

cFS Training- Page 135

Time Services – Configuration Considerations

• What is your time format?

• Are you setting time or receiving time?

• Is your MET provided by local hardware?

• Is time coming from an external source?

• How long can you go without synchronizing time?

cFS Training- Page 136

Time Services – Configuration Parameters

CFE_PLATFORM_TIME_CFG_SERVER
CFE_PLATFORM_TIME_CFG_CLIENT

Server Only Server and Client

CFE_PLATFORM_TIME_CFG_VIRTUAL
CFE_PLATFORM_TIME_CFG_SOURCE
CFE_PLATFORM_TIME_MAX_DELTA_SECS
CFE_PLATFORM_TIME_MAX_DELTA_SUBS

Source Only

CFE_PLATFORM_TIME_CFG_SRC_MET
CFE_PLATFORM_TIME_CFG_SRC_GPS
CFE_PLATFORM_TIME_CFG_SRC_TIME

CFE_PLATFORM_TIME_CFG_BIGENDIAN
CFE_PLATFORM_TIME_CFG_SIGNAL
CFE_PLATFORM_TIME_MAX_LOCAL_SECS
CFE_PLATFORM_TIME_MAX_LOCAL_SUBS
CFE_PLATFORM_TIME_CFG_TONE_LIMIT
CFE_PLATFORM_TIME_CFE_START_FLY
CFE_PLATFORM_TIME_CFE_LATCH_FLY

Only one
can be
TRUE

Only one
can be
TRUE

cFS Training- Page 137

Time Services - APIs

Basic Clock Functions Purpose

CFE_TIME_GetTime Get the current spacecraft time

CFE_TIME_GetUTC Get the current UTC time

CFE_TIME_GetTAI Get the current TAI time

CFE_TIME_MET2SCTIME Converts MET to Spacecraft time

CFE_TIME_GetMET Get the current value of the mission-elapsed time

CFE_TIME_GetMETseconds Get the current seconds count of the mission-elapsed time

CFE_TIME_GetMETsubsecs Get the current sub-seconds count of the mission-elapsed time

CFE_TIME_GetSTCF Get the current value of the spacecraft time correction factor (STCF)

CFE_TIME_GetLeapSeconds Get the current value of the leap seconds counter

CFE_TIME_GetClockState Get the current state of the spacecraft clock

CFE_TIME_GetClockInfo Get clock information

CFE_TIME_Compare Compare two CFE_TIME_SysTime_t values

CFE_TIME_Print Create text string representing date and time

CFE_TIME_RegisterSynchCallback Register synch callback function

CFE_TIME_UnregisterSynchCallback Unregister synch callback function

cFS Training- Page 138

Time Services - APIs

External Time Sources Purpose

CFE_TIME_ExternalTone Latch the local time at the 1Hz tone signal

CFE_TIME_ExternalMET Provide the MET from an external source

CFE_TIME_ExternalGPS
Provide the time from an external source that has data common to GPS
receiver

CFE_TIME_ExternalTime
Provide the time from an external source that measures time relative to a
known epoch

Time Manipulation Functions Purpose

CFE_TIME_Add Add two time values

CFE_TIME_Subtract Subtract one time value from another

Time Conversion Functions Purpose

CFE_TIME_Sub2MicroSecs Convert a sub-seconds count to an equivalent number of microseconds

CFE_TIME_Micro2SubSecs Convert a number of microseconds to an equivalent sub-seconds count

CFE_TIME_CFE2FSSeconds Convert cFE seconds to File System Seconds

CFE_TIME_FS2CFESeconds Convert File System seconds to cFE seconds

cFS Training- Page 139

Time Services Commands

Command Functions Purpose

CFE_TIME_Add1HZAdjustmentCmd Time task ground command (1Hz adjust: Add)

CFE_TIME_AddAdjustCmd Time task ground command (Add delta adjust)

CFE_TIME_AddDelayCmd Time task ground command (add tone delay)

CFE_TIME_SendDiagnosticTlm Time task ground command (diagnostics)

CFE_TIME_NoopCmd Time task ground command (NO-OP)

CFE_TIME_ResetCountersCmd Time task ground command (reset counters)

CFE_TIME_SetLeapSecondsCmd Time task ground command (set leaps)

CFE_TIME_SetMETCmd Time task ground command (set MET)

CFE_TIME_SetSignalCmd Time task command (primary/redundant tone signal selection)

CFE_TIME_SetSourceCmd Time task command (set time source)

CFE_TIME_SetStateCmd Time task command (set clock state)

CFE_TIME_SetSTCFCmd Time task ground command (set STCF [time server only])

CFE_TIME_SetTimeCmd
Time task ground command (Basically sets STCF...but if time format is UTC, removes
leap seconds [should also be time server only])

CFE_TIME_Sub1HZAdjustmentCmd Time task ground command (1Hz adjust: Subtract)

CFE_TIME_SubAdjustCmd Time task ground command (Subtract delta adjust)

CFE_TIME_SubDelayCmd Time task ground command (subtract tone delay)

cFS Training- Page 140

Exercise 5 - Command cFE Time Service

1. Ensure that cFE is running

2. Open a new terminal

3. Start the ground system executable (as in Exercise 2)

4. Enable Telemetry (as in Exercise 2)

5. Send a TIME No-Op command

• Click the “Time No-Op“ button beside “Time Services”

cFS Training- Page 141

Exercise 5 Recap

TIME
No-Op

Command

142

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2e: Table Services

cFS Training- Page 143

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Time Services

c) Event Services

d) Software Bus

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 144

Table Services - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 145

Table Services (TBL) - Overview

• What is a table?

– Tables are logical groups of parameters that are managed as a named entity

• Parameters typically change the behavior of a FSW algorithm

– Examples include controller gains, conversion factors, and filter algorithm
parameters

• Tables service provides ground commands to load a table from a file
and dump a table to a file

– Table loads are synchronized with applications

• Tables are binary files

– Ground support tools are required to create and display table contents

• The cFE can be built without table support

– Note the cFE services don’t use tables

cFS Training- Page 146

Table Services – Managing Tables

• Active Table - Image accessed by app while it executes

• Inactive Table - Image manipulated by ops (could be stored commands)

• Load Validate Activate

– Loads can be partial or complete

– For partial loads current active contents copied to inactive buffer prior to updates from file

– Apps can supply a “validate function” that is executed when commanded

• Dump

– Command specifies whether to dump the active or inactive buffer to a file

• Table operations are synchronous with the application that owns the table to
ensure table data integrity

• Non-Blocking table updates allow tables to be used in Interrupt Service
Routines

File

Inactive
Buffer

Active
Buffer

Table Maintenance
Function

(Typically run on HK cycle)

Table
Service

Poll
Load

Run Loop ProcessingGet Pointer

Dump

cFS Training- Page 147

Table Services - Load Table

CFDP

Ground

Transfer
File to Flight

Time

Validate
Table

Activate
Table

Load
Table

File

Table Load Cmd

Inactive Table
Buffer

xfer File Cmd
Validate

Table Cmd

Validate
Contents1

1. Apps typically validate & activate tables during their “housekeeping” execution cycle

2. In addition to instructing cFE to copy the contents, apps may have app-specific processing

Activate
Table1,2App

cFS
Active Table

Buffer

Activate
Table Cmd

TBL Service

cFS Training- Page 148

Table Services - Dump Table

CFDP

Ground

Transfer
File to Flight

Time

Dump
Table

File

Table Dump Cmd

Active or
Inactive Table

Buffer

xfer File Cmd

App

cFS

TBL Service

cFS Training- Page 149

Table Services –Table Buffer Types

• Single Buffer

– The active buffer is the only buffer dedicated to the application’s table

– Table service shares inactive buffers to service multiple app’s with single buffer
tables

• CFE_TBL_MAX_SIMULTANEOUS_LOADS defines the number of concurrent table load
sessions

– Most efficient use of memory and adequate for most situations

– Since
#define CFE_TBL_OPT_DEFAULT (CFE_TBL_OPT_SNGL_BUFFER | CFE_TBL_OPT_LOAD_DUMP)

• Double Buffer

– Dedicated inactive image for each double buffered table

– Useful for fast table image swaps (.e.g. high rate app and/or very large table) and
delayed activation of table’s content (e.g. ephemeris)

– E.g. Stored Command’s Absolute Time Command table

• Shared single buffer pool must be sized to accommodate the largest
single buffer image

cFS Training- Page 150

Table Services –Table Attributes

• Validation Function

– Applications register validation functions during initialization

– Table activates for tables with validation functions will be rejected if the validation
has not been performed

– Mission critical data table values are usually verified

• Critical Tables

– Table data is stored in a Critical Data Store (CDS)

– Contents updated for each table active command

• User Defined Address

– Application provides the memory address for the active table buffer

– Typically used in combination with a dump-only table

• Dump-Only

– Contents can’t be changed via the load/validate/activate sequence

– The dump is controlled by the application that owns the table so it can
synchronize the dump and avoid dumps that contain partial updates

cFS Training- Page 151

Table Services – Reset Behavior

• Table registry is cleared for power-on and processor resets

– Applications must register tables for any type of reset

– Applications must initialize their table data for any type of reset

• Critical Table Exception

– If a table is registered as critical then during a processor reset table service will
locate and load the preserved table data from a critical data store

cFS Training- Page 152

Table Services – Retrieving Onboard State

• Housekeeping Telemetry
– Table registry statistics (number of tables and pending loads)
– Last table validation results (CRC, validation status, total validations)
– Last updated table
– Last file loaded
– Last file dumped
– Last table loaded

• Telemeter Application Registry
– Telemeter the Table Registry contents for the command-specified table

• Dump Table Registry
– Write the pertinent table registry information to the command-specified file

cFS Training- Page 153

Table Services
System Integration and App Development (1 of 2)

• Commands are typically used to initiate an action; not tables

– For example, change a control mode

• Sometimes convenience commands are provided to change table
elements

– For example, scheduler app provides an enable/disable scheduler table entry

• Typically tables do not contain dynamic data computed by the FSW

– The cFE doesn’t preclude this and it has been used as a convenient method to collect
data, save to a file, and transfer it to the ground

– These are defined as dump-only tables

– Static tables can be checksummed

• Tables can be shared between applications but this is rare

– Tables are not intended to be an inter-application communication mechanism

cFS Training- Page 154

Table Services
System Integration and App Development (2 of 2)

• Load/dump files are binary files with the following sections:

{
uint32 Reserved; /**< Future Use: NumTblSegments in File? */
uint32 Offset; /**< Byte Offset at which load should commence */
uint32 NumBytes; /**< Number of bytes to load into table */
char TableName[CFE_TBL_MAX_FULL_NAME_LEN]; /**< Fully qualified name of table */

} CFE_TBL_File_Hdr_t;

cFE File Header

Table Header

Table Data

• Table header defined in cfe_tbl_internal.h

cFS Training- Page 155

Table Services –
Configuration Parameters

Parameter Purpose

CFE_PLATFORM_TBL_BUF_MEMORY_BYTES Size of Table Services Table Memory Pool

CFE_PLATFORM_TBL_MAX_DBL_TABLE_SIZE Maximum Size Allowed for a Double Buffered Table

CFE_PLATFORM_TBL_MAX_SNGL_TABLE_SIZE Maximum Size Allowed for a Single Buffered Table

CFE_PLATFORM_TBL_MAX_NUM_TABLES Maximum Number of Tables Allowed to be Registered

CFE_PLATFORM_TBL_MAX_CRITICAL_TABLES Maximum Number of Critical Tables that can be Registered

CFE_PLATFORM_TBL_MAX_NUM_HANDLES Maximum Number of Table Handles

CFE_PLATFORM_TBL_MAX_SIMULTANEOUS_LOADS Maximum Number of Simultaneous Loads to Support

CFE_PLATFORM_TBL_MAX_NUM_VALIDATIONS Maximum Number of Simultaneous Table Validations

CFE_PLATFORM_TBL_DEFAULT_REG_DUMP_FILE Default Filename for a Table Registry Dump

CFE_PLATFORM_TBL_VALID_SCID_COUNT Number of Spacecraft ID's specified for validation

CFE_PLATFORM_TBL_U32FROM4CHARS Macro to construct 32 bit value from 4 chars

CFE_PLATFORM_TBL_VALID_SCID_[1-2] Spacecraft ID values used for table load validation

CFE_PLATFORM_TBL_VALID_PRID_COUNT Number of Processor ID's specified for validation

CFE_PLATFORM_TBL_VALID_PRID_[1-4] Processor ID values used for table load validation

cFS Training- Page 156

Table Services APIs

Application Functions Purpose

CFE_TBL_Register Registers a new table

CFE_TBL_Unregister Unregister a table and release its resources

CFE_TBL_Load Initialize or update the contents of a table from memory or a file

CFE_TBL_Share Get a handle to a table that was created by another application

CFE_TBL_GetAddress Get the address of a table (locks the table)

CFE_TBL_GetAddresses Get the address of a collection of tables (locks the tables)

CFE_TBL_ReleaseAddress
Release a table address (unlocks the table). Must be done periodically by the cFE Application
that owns the table in order to allow updates to the tables

CFE_TBL_ReleaseAddresses Release an array of table address (unlocks the tables)

CFE_TBL_GetStatus Returns the status on the specified table regarding validation or update requests

CFE_TBL_Validate
Performs the registered validation function for the specified table and reports the
success/failure to the operator via Table Services Housekeeping Telemetry and Event
Messages.

CFE_TBL_Update Update table contents with new data if an update is pending

CFE_TBL_Manage
Performs routine actions to manage the specified table. This includes performing any
necessary table updates or table validations

CFE_TBL_GetInfo Provides information about the specified table including size, last time updated etc.

CFE_TBL_DumpToBuffer Copy Dump Only table to buffer for later dump to file by table services

CFE_TBL_Modified Notify TBL Services that the contents of the table has been modified by the application

CFE_TBL_NotifyByMessage
Instruct TBL Services to notify calling application whenever the specified table requires
management.

cFS Training- Page 157

Table Services Commands

Command Functions Purpose

CFE_TBL_HousekeepingCmd Process Housekeeping Request Message

CFE_TBL_NoopCmd Process NO-Op Command Message

CFE_TBL_ResetCountersCmd Process Reset Counters Command Message

CFE_TBL_LoadCmd Process Load Table File to Buffer Command Message

CFE_TBL_DumpCmd Process Dump Table to File Command Message

CFE_TBL_ValidateCmd Process Validate Table Command Message

CFE_TBL_ActivateCmd Process Activate Table Command Message

CFE_TBL_DumpRegistryCmd Process Dump Table Registry to file Command Message

CFE_TBL_SendRegistryCmd Process Telemeter Table Registry Entry Command Message

CFE_TBL_DeleteCDSCmd Process Delete Critical Table's CDS Command Message

CFE_TBL_AbortLoadCmd Process Abort Load Command Message

cFS Training- Page 158

Exercise 6 - Command cFE Table Service

1. Ensure that cFE is running

2. Open a new terminal

3. Start the ground system executable (as in Exercise 2)

4. Enable Telemetry (as in Exercise 2)

5. Send a TBL No-Op command

• Click the “TBL No-Op“ button beside “Table Services”

6. Send a "Load Table" command

• Click the “Display Page” button beside “Table Services”

• In the "Table Services" window, click the "Send" button beside “CFE_TBL_LOAD_CC"

• Enter "/cf/sample_app_tbl.tbl" in the "Input" field next to "LoadFilename"

• Click "Send"

7. Dump the table registry

• In the "Table Services " window, click the "Send" button beside “CFE_TBL_DUMP_REGISTRY_CC"

• Enter "/cf/tbl_reg.bin" in the "Input" field next to "DumpFilename"

• Click "Send"

**Nothing appears in the cFE window unless debug messages have been enabled, but the file "tbl_reg.bin" now
exists in the build/exe/cpu1/cf directory. View with "hexdump -C cf/tbl_reg.bin"**

cFS Training- Page 159

Exercise 6 - Recap

cFS Training- Page 160

Exercise 6 - Recap

TBL No-Op
Command

Tbl Dump
Command

Tbl Load
Command

Note: The “OS_FileOpen_Impl
message is not an error. It just
indicates that the command is
creating a new file, not opening an
existing one.

cFS Training- Page 161

3 Tables in
System

162

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 3: Application
Development

cFS Training- Page 163

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Time Services

c) Event Services

d) Software Bus

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

cFS Training- Page 164

Applications - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 165

cFS Applications

• Can run anywhere the cFS framework has been deployed

• Provide “higher level” functions than the cFE itself

‒ Command and data handling

‒ Guidance, navigation, and control

‒ Onboard data processing

• GSFC has released 12 applications that provide common command and
data handling functionality such as

‒ Stored command management and execution

‒ Onboard data storage file management

• Missions use a combination of custom and reused applications

cFS Training- Page 166

cFS Libraries

• What is a library?

– A collection of utilities available for use by apps

– No main task execution in the library

– Exist at the application layer of the cFS

• Specified in the cfe_es_startup.scr script and loaded at cFE startup

• Libraries can’t use application services that require registration

– e.g. Event Services

• Checksum can’t do library code space

167

National Aeronautics and Space Administration

Application Build
Context

cFS Training- Page 168

cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files

_defs

cmake
configuration

files

cFS Training- Page 169

App Directory Structure

App XX

docs
• VDD
• Users Guide
• Requirements

fsw Test-and-
ground

• Build Test
Scenarios

• Build Test results

for_build

src

tables

mission_inc

platform_inc

unit_test

• classic makefiles
• Doxy Files

• Header files
• Source files

• Config parameters
• Message IDs

Default table
definitions

Unit test source and
data

• Config parameters
• Performance IDs

cFS Training- Page 170

cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files

_defs

cmake
configuration

files

cFS Training- Page 171

_def Directory Structure

• Targets.cmake
‒ Identifies the target architectures and configurations
‒ Identifies the apps to be built
‒ Identifies files that will be copied from *_def to platform specific

directories

• Copied file examples
‒ cpu1_cfe_es_startup.scr
‒ cpu1_msgids.h
‒ cpu1_osconfig.h

172

National Aeronautics and Space Administration

Application Runtime
Context

cFS Training- Page 173

Application Runtime Context

User
App

Scheduler

Command
Ingest

Telemetry
Output

Commands,
Telemetry Requests

Ground
Commands

Telemetry

Mission AppCFS App Ground System

Ground System

Ground
Commands

Telemetry

cFS Training- Page 174

Application Runtime Context

• SCH, CI, and TO provide a runtime context that can be tailored for a
particular environment

• Scheduler (SCH) App
– Sends software bus messages at pre-defined time intervals

– Apps often use scheduled messages as wakeup signals

• Command Ingest (CI) App
– Receives commands from an external source, typically the ground system, and

sends them on the software bus

• Telemetry Output (TO) App
– Receives telemetry packets from the software bus and sends them to an external

source, typically the ground system

cFS Training- Page 175

Mission Application Example

Inter-app Message Router (Software Bus)

EVS

SCSCSC

SCHSCHSCH

HKHKHK

ESTIME

FMFMFM

Cmd &
Tlm

S-Comm

SB
Command

Ingest
Telemetry

Output

SBC
1553

DSDSDS

Spacecraft
Data

Recorder

TBL

CFCS MMMMMM MDMDMD
Space
Wire

1553 Bus
Controller

S/C
Data

HSHSHS

EDAC
Memory
Scrub

DIO

Time
Registers

Instr.
Data

Recorder
Manager

Power &
Support

MAC, BME,
& PSE

LC

GPS

Cmd &
Tlm

Time
Manager

Mission C&DH AppcFE ServiceCFS App Hardware

176

National Aeronautics and Space Administration

Existing Applications

cFS Training- Page 177

GSFC Open Source Apps

Application Function

CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety
Ensures critical tasks check-in, services watchdog, detects CPU hogging, calculates CPU
utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory

Software Bus Network Passes Software Bus messages over various “plug-in” network protocols

Scheduler Schedules onboard activities (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative)

Stored Command Absolute Allows concurrent processing of up to 5 (configurable) absolute time sequences

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

cFS Training- Page 178

Fault Detection and Correction Apps

• Limit Checker (LC) – Monitors telemetry and responds to limit
violations

• Health & Safety (HS) – Ensures critical tasks check-in, services
watchdog, detects CPU hogging, calculates CPU utilization

• Checksum (CS) – Performs data integrity checking of memory, tables
and files

• Stored Commands (SC) – Onboard commands sequencer (absolute
and relative); used in combination with LC

cFS Training- Page 179

Operational Scenarios
Health & Safety

HS

1) HS monitors
applications

2) HS monitors event
messages

3) HS Table specified
actions are taken in
response to application
and event monitoring:

a) Reset applications
or the processor

b) Send Event
message

c) Initiate Stored
Command (SC)
recovery sequence

1

SC

cFE
Executive
Services

All
AppsStart ATS/RTS Cmd

Reset calls

Enable/Disable Monitor
Cmd

2

Start RTS Events

Application Info

Recovery
Cmds

TO

Health & Safety
Reporting Events

Not pictured: HS manages watchdog, reports CPU utilization & detects hogging, and outputs aliveness heartbeat to UART.

3a

3b

3c

Mission Specific Application

cFS Training- Page 180

Operational Scenarios
Fault Detection

1) LC monitors table
specified telemetry and
data (watchpoints)

2) LC evaluates
actionpoints and takes
action upon detected
failure condition:

a) Initiate Stored
Command (SC)
recovery sequence

b) Send failure event
messages

SC

LC

All
AppsStart ATS/RTS Cmd

Enable/Disable
Action/Watchpoint Cmds

2a

TO
Limit Fail
Events

Telemetry/Data
PacketsStart RTS

Recovery
Cmds

- Mission Specific Application

1

2b

cFS Training- Page 181

File & Data Management Apps

• File Manager (FM) – Provides onboard file system operations

• Data Storage (DS) – Records housekeeping, engineering and science
data onboard for downlink

• CFDP (CF) – Transfers/receives file data to/from the ground

• Housekeeping (HK) – Collects and re-packages telemetry from other
applications

cFS Training- Page 182

- CFDP Hot Directory

Copy, Move, etc.

File System Info

Delete File

File Info

Pwr DSB, Init SDR
Cmds

SDR

Operational Scenarios
File Management

FM

CFDP

File Management Cmds

Uplink/Downlink File/Directory Cmds

1) Stored commands sent to
initialize file system(s) and
create partitions

2) Applications create Science, HK,
and/or Engineering files

3) SC (typically via ATS) sends
CFDP downlink directory
commands

4) Ground commands sent to
uplink and downlink files

5) Ground commands sent to
manage the files and directories
in the file system(s).

5

SDR
App

1

Recorder Management
Cmds

5
Science, HK, Eng. Files

File Info

Any
App

SC

Downlink Directory Cmds

FM

3

2

- Mission Specific Application

- Optional Step

cFS Training- Page 183

1) Uplink table – table is written to File System

2) Optionally CRC the table file (via FM file info
command)

3) Disable background checksuming of the
table

4) Send Table commands:

− Load – reads table file and copies
contents into active buffer

− Validate – authenticates table data in
the active buffer

− Activate – writes/commits table data to
RAM

Application handshakes with Table Services
to read updated table data

5) Enable background checksumming of the
table

Operational Scenarios
Uplink System Tables

FM

cFE
Table
App

CS

File Systems

CFDP

Write File

File Info Cmd

Uplink File CmdDisable CS of
specific File Cmd

Read File

Processor RAM

Read File

Write Data

Enable CS of
specific File Cmd

Read Data

Table Load/Verify/Commit
Cmds

1

2

3 4

Read Data

5

- Optional Step

Any
App

Handshake

cFS Training- Page 184

cFE
Table
App

File Systems

CFDP

Read File

Downlink File Cmd

Processor RAM

Write File

Read Data

Table Dump Cmd

1) Send Table dump
command – table file is
written to File System

2) Downlink file – table is
written to ground File
System.

21

Operational Scenarios
Dump System Tables

cFS Training- Page 185

System Operations Applications

• Scheduler (SCH) – Schedules onboard activities; many other
applications depend on Scheduler

• Command Ingest (CI) – Receives ground commands, validates them,
and distributes them throughout the system; this app is often custom

• Telemetry Output (TO) – Downlinks telemetry; this app is often custom

• Stored Commands (SC) – Executes onboard command sequences
(absolute and relative)

cFS Training- Page 186

Application
Commands

Operational Scenarios
Uplink

Comm
App

CIComm
Cards

Command
Database

Operator
Commands

Code
Blocks

RF
Uplink

Code Blocks

1

2 3

4

1) Commands sent from
ground system are received
by communication
hardware

2) Communication hardware
processes commands
received and sends code
blocks to receiving
application.

3) Communication application
strips off any hardware
protocol wrappers,
packages Code Blocks for
transfer over software bus ,
and forwards Code Blocks
to CI application

4) CI assembles command
packets, performs
command authentication,
and sends commands to
subscribed applications

Mission Specific Application

Any
App

cFS Training- Page 187

Operational Scenarios
Telemetry Packet Downlink

1) Telemetry is collected from
the various applications in
the system and routed to
TO application

2) TO collects, filters, and
builds real-time VCDUs for
downlink. The VCDU’s are
packaged and routed over
the software bus

3) Communication application
strips off software bus
headers, packages VCDUs
in hardware protocol
wrappers and outputs
VCDUs across hardware
link.

4) Telemetry is received by
the ground system from
communication hardware

Application
Telemetry

Comm
App

TOComm
Cards

Telemetry
Database

VCDUs

RF
downlink

VCDUs

3 2

1

Mission Specific Application

4

Any
App

cFS Training- Page 188

Exercise 7 - Build applications

Part 1- Integrate the Scheduler application

1. Clone the Scheduler application

cd cFS/apps

git clone https://github.com/nasa/SCH.git sch

cd sch

git checkout rc-2.2.2

git pull

2. Replace "sch_lab" with "sch" in the cFS/sample_defs/targets.cmake file (line 106)

3. Update the cFE startup script (sample_defs/cpu1_cfe_es_startup.scr) by replacing sch_lab entry with:

CFE_APP, /cf/sch.so, SCH_AppMain, SCH, 80, 16384, 0x0, 0;

**NOTE: Steps 2 and 3 (adding an app to the targets.cmake file and the startup script) can be repeated to add any app
to the cFS build**

**NOTE: The sample_defs/cpu1_cfe_es_startup.scr file gets copied to the build directory and renamed to
"cfe_es_startup.scr" during the "make install" part of the build process**

cFS Training- Page 189

Exercise 7 - Build applications

Part 1- Integrate the Scheduler application (Continued)

4. Update SCH table paths. In the apps/sch/fsw/platform_inc/sch_platform_cfg.h

file, change the following #defines to the values shown below.

#define SCH_SCHEDULE_FILENAME "/cf/sch_def_schtbl.tbl"

#define SCH_MESSAGE_FILENAME "/cf/sch_def_msgtbl.tbl"

5. Build the cFS

make clean

make prep

make

make install

6. Run the cFE

cd build/exe/cpu1

./core-cpu1

cFS Training- Page 190

Exercise 7 - Build applications

Part 1- Integrate the Scheduler application (Continued)

At this point you should see an error message that the SCH table could not be loaded.

1980-012-14:03:20.25327 CFE_TBL:Load-App(8) Fail to load Tbl 'SCH.SCHED_DEF'
from '/cf/sch_def_schtbl.tbl' (Stat=0xFFFFFFFF)

EVS Port1 42/1/CFE_TBL 93: SCH Failed to Load 'SCH.SCHED_DEF' from
'/cf/sch_def_schtbl.tbl', Status=0xFFFFFFFF

**NOTE: The table name in the event message ("SCH.SCHED_DEF") includes the cFE name specified in the
cfe_es_startup.scr file. The table name is specified in the table's source file. Mismatches between the table name in the
source file and the app name in the startup script is a common source of errors.**

cFS Training- Page 191

Exercise 7 - Build applications

cFS Training- Page 192

Exercise 7 - Build applications

Part 1- Integrate the Scheduler application (Continued)

7. Fix the SCH CMakeLists.txt file by adding the following lines to the end of the file apps/sch/CMakeLists.txt

include_directories(fsw/src)

aux_source_directory(fsw/tables APP_TABLE_FILES)

add_cfe_tables(sch ${APP_TABLE_FILES})

NOTE: The "add_cfe_tables" call must always come after the "add_cfe_app" call in the CMakeLists.txt file

8. Build the cFS

make clean

make prep

make

make install

9. Run the cFE

cd build/exe/cpu1

./core-cpu1

cFS Training- Page 193

Exercise 7, Part 1 - Recap

cFS Training- Page 194

Exercise 7 - Build applications

Part 2- Configure SCH to command the sample_app

1. Navigate to the apps/sch/fsw/tables directory

2. Open sch_def_msgtbl.c

3. Add an include statement for sample_app_msgids.h

#include “sample_app_msgids.h”

4. Replace the line for Command Id #6 with the following

{ { CFE_MAKE_BIG16(SAMPLE_APP_CMD_MID), CFE_MAKE_BIG16(0xC000),
CFE_MAKE_BIG16(0x0001), 0x0000 } },

**The above line describes a no-operation command to sample_app. The first 3 fields are the CCSDS header. The
fourth field is the command code (0 is the standard command code for a no-op command).**

5. Save and close sch_def_msgtbl.c

6. Open sch_def_schtbl.c

7. Replace the first entry under Slot #1 with the following

{ SCH_ENABLED, SCH_ACTIVITY_SEND_MSG, 3, 0, 6, SCH_GROUP_NONE},

The above line indicates that Command Id #6 (defined in step 4) should be sent every 3 seconds.

cFS Training- Page 195

Exercise 7 - Build applications

Part 2- Configure SCH to command the sample_app (continued)

8. Add the following line to the scheduler CMakeLists.txt file before the "add_cfe_app" function call.

include_directories(${sample_app_MISSION_DIR}/fsw/platform_inc)

The above line will allow the sch app to successfully find the sample_app_msgids.h file added in Step 3.

9. Rebuild the cFS.

make clean

make prep

make

make install

10. Run the cFE

cd build/exe/cpu1

./core-cpu1

**NOTE: The process just completed is the same process that can be used to add housekeeping requests and wakeup
messages to the scheduler application**

cFS Training- Page 196

Exercise 7 Recap

Sample
No-op

messages

197

National Aeronautics and Space Administration

Application Design

cFS Training- Page 198

Application Design Resources

• cFE/docs/cFE Application Developers Guide.doc
– Provides a good description of how to use cFE services/features

– Provides one example of an application template

• sample_app
– Provides an operational example of a basic application

– https://github.com/nasa/sample_app/

• Application frameworks
– Organizations have created frameworks in C and C++ but they are not publically

available

• “Hello World” app generation tools
– Multiple tools exist, but none have been sanctioned as demonstrating best

practices

• Application design patterns
– There are patterns but they have not been formally captured

– When creating a new app look for an existing app that has similar operational
context

cFS Training- Page 199

Application Design Practices

• Allocate resources during initialization to help keep run loop
deterministic

• Use a lower priority child task for long operations like a memory dump
– Create child tasks during initialization

• Register with EVS immediately after registering app so local event log
can be used instead of system log

• NOOP command sends an informational event message with app’s
version number

• Use SCH app to periodically send a “send housekeeping” message
– Housekeeping data includes command counters and general app status

– 3 to 5 seconds is a common interval

– Attitude Determination and Control apps don’t typically use this pattern

cFS Training- Page 200

Generic App Design

• There are several variants in
terms of control/data flow.
For example

– Pend with time out

– Multiple input pipes

• Exiting an application should
not occur during normal
operations

– Stopping/starting an app has
been used for in-orbit
maintenance

Start
- Initialize App
- Register for
cFE services

Gnd
Cmd?

Pend on
SB Msg

Yes

No

Process
Command

Yes

NoHK Tlm
Request?

Send HK
Tlm Packet

App Specific
Processing

ES
Exit?Exit

Call ES Exit to
free resources

No

Yes

cFS Training- Page 201

I/O Application Design Pattern

• General control/data conceptual flow

– Each communication bus has a specific protocol

• Architectural role

– Read device data and publish on software bus

– Receive software bus messages and send to the device

Device
Hardware

Data

Buffer
or Queue

Recv
Child
Task

Semaphore

Interrupt
Service
Routine

Ctrl,
Data

Parent
App

Interrupt

Send
Child
Task

Device
Hardware

Ctrl,
Data

Interrupt

TelemetryCommands

Device
Data

Device
Commands

cFS Training- Page 202

Exercise 8 - Add a command to sample_app

Part 1 – Add new command code event message
1. Navigate to the sample_app source directory

cd apps/sample_app/fsw/src

2. Open the sample_app_msg.h file and add a new command code

#define SAMPLE_APP_HELLO_WORLD_CC 3

3. Open the sample_app_events.h file and add a new event message and update the number of events.

#define SAMPLE_HELLO_WORLD_INF_EID 8

#define SAMPLE_EVENT_COUNTS 8

4. Open the sample_app.c file and add the new event message to the event filter set up in SAMPLE_AppInit

SAMPLE_AppData.EventFilters[7].EventID = SAMPLE_HELLO_WORLD_INF_EID;

SAMPLE_AppData.EventFilters[7].Mask = 0x0000;

cFS Training- Page 203

Exercise 8 - Add a command to sample_app

Part 2 – Add code to handle new command
5. In sample_app.c, add a case for the new command code in SAMPLE_ProcessGroundCommand

case SAMPLE_APP_HELLO_WORLD_CC:

if (SAMPLE_VerifyCmdLength(Msg, sizeof(SAMPLE_Noop_t))) {

SAMPLE_HelloCmd((SAMPLE_Noop_t *)Msg);

}

break;

6. In sample_app.c, add a new function called SAMPLE_HelloCmd

void SAMPLE_HelloCmd(const SAMPLE_Noop_t * Msg) {

SAMPLE_AppData.CmdCounter++;

CFE_EVS_SendEvent(SAMPLE_HELLO_WORLD_INF_EID,

CFE_EVS_EventType_INFORMATION,

"Hello, World. This is sample_app!");

return;

}

7. Add a function prototype for the new function in sample_app.h

void SAMPLE_HelloCmd(const SAMPLE_Noop_t * Msg);

cFS Training- Page 204

Exercise 8 - Add a command to sample_app

Part 3 – Add ground command to GroundSystem.py
1. Navigate to the /cmdGui directory from the top level cFS directory

cd tools/cFS-GroundSystem/Subsystems/cmdGui

2. Open the CHeaderParser-hdr-paths.txt and uncomment only the ‘sample_app_msg.h’ line

#../../../../apps/to_lab/fsw/src/to_lab_msg.h

#../../../../apps/ci_lab/fsw/src/ci_lab_msg.h

../../../../apps/sample_app/fsw/src/sample_app_msg.h

#../../../../cfe/fsw/cfe-core/src/inc/cfe_es_msg.h

#../../../../cfe/fsw/cfe-core/src/inc/cfe_time_msg.h

3. Run the CHeaderParser.py script

python3 CHeaderParser.py

- When prompted, select a name for the command file to be saved as:

Example: APPS_SAMPLE_APP_CMD

- Respond ‘no’ when asked if any of the commands require parameters.

cFS Training- Page 205

Exercise 8 - Add a command to sample_app

Part 3 – Add ground command to GroundSystem.py (continued)
4. Edit the command-pages.txt file to update the name of the SAMPLE_APP cmd file with the name chosen on step 3.

Command Ingest, CI_LAB_CMD, 0x1884, LE, UdpCommands.py, 127.0.0.1, 1234

Telemetry Output, TO_LAB_CMD, 0x1880, LE, UdpCommands.py, 127.0.0.1, 1234

Sample App, APPS_SAMPLE_APP_CMD, 0x1882, LE, UdpCommands.py, 127.0.0.1, 1234

Spare, , 0x0000, LE, UdpCommands.py, 127.0.0.1, 1234

Spare, , 0x0000, LE, UdpCommands.py, 127.0.0.1, 1234

5. Navigate to /cFS-GroundSystem and launch GroundSystem.py

cd ../..

python3 GroundSystem.py

cFS Training- Page 206

Exercise 8 - Add a command to sample_app

Part 3 – Add ground command to GroundSystem.py (continued)

6. Launch Sample App Command Display Page and Send Command

cFS Training- Page 207

Exercise 8 Recap

Sample
App

Hello World
messages

208

National Aeronautics and Space Administration

ACRONYMS

cFS Training- Page 209

Acronyms

Acronym Definition Acronym Definition

API Application Programmer Interface CM Configuration Management

APID Application Process ID CMD Command

ATS Absolute Time Sequence COTS Commercial Off The Shelf

BC Bus Controller CRC Cyclic Redundancy Check

BSP Board Support Package CS Checksum

C&DH Command and Data Handling DS Data Storage

CCB Configuration Control Board EEPROM
Electrically Erasable Programmable
Read-Only Memory

CCSDS
Consultative Committee for Space
Data Systems

ES Executive Services

CDS Critical Data Store EVS Event Services

CESE
Center for Experimental Software
Engineering

FDC Failure Detection and Correction

CFDP CCSDS File Delivery Protocol FDIR Failure Detection, Isolation, and
Recovery

cFE Core Flight Executive FM File Management, Fault
Management

cFS Core Flight Software System

cFS Training- Page 210

Acronyms

Acronym Definition Acronym Definition

FSW Flight Software ITC Independent Test Capability

GNC Guidance Navigation and Control ITOS
Integration Test and Operations
System

GSFC Goddard Space Flight Center IV&V
Independent Verification and
Validation

GOTS Government Off The Shelf LC Limit Checker

GPM Global Precipitation Measurement Mbps Megabits-per seconds

GPS Global Positioning System MD Memory Dwell

Hi-Fi High-Fidelity Simulation MET Mission Elapsed Timer

HK Housekeeping MM Memory Manager

HS Health & Safety MS Memory Scrub

HW Hardware NACK Negative-acknowledgement

Hz Hertz NASA National Aeronautics Space Agency

ITAR
International Traffic in Arms
Regulations

NOOP No Operation

ISR Interrupt Service Routine OS Operating System

cFS Training- Page 211

Acronyms

Acronym Definition Acronym Definition

OSAL
Operating System Abstraction
Layer

SC Stored Command

PSP Platform Support Package SCH Scheduler

PROM Programmable Read-Only Memory S-COMM S-Band Communication Card

RAM Random-Access Memory SDR Spacecraft Data Recorder

RT Remote Terminal SpW Spacewire

R/T Real-time STCF Spacecraft Time Correlation Factor

RTEMS
Real-Time Executive for
Multiprocessor Systems (an RTOS)

SW Software, Spacewire

RTOS Real-Time Operating System TAI International Atomic Time

RTS Relative Time Sequence TBD To be determined

SARB
Software Architecture Review
Board

TBL Table Services

S/C Spacecraft TLM Telemetry

SB Software Bus TO Telemetry Output

SBC Single-Board Computer UART
Universal Asynchronous
Receiver/Transmitter

cFS Training- Page 212

Acronyms

Acronym Definition Acronym Definition

UDP User Datagram Protocol UTC Coordinated Universal Time

UT Unit Test VCDU Virtual Channel Data Unit

	TM 20205000691 REV 1.pdf
	ADP60BF.tmp
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

	Blank Page

