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Abstract—We describe empirical methods for selecting a neural
network architecture to implement belief state inference on
generic commercial transport aircraft. We highlight a case study
on the planning, execution, and analysis of a set of experiments
to determine the configurations of a conditional variational
autoencoder (CVAE). Our main contribution is the application
of a structured method that can be used for machine learning
in many aerospace applications. This method optimizes the
structure and training parameters of a neural network for belief
state inference, using Design of Experiments (DOE) statistical
methodologies. The motivation for this specific DOE analysis
was to identify the appropriate hyperparameters for measuring
the CVAE reconstruction probability and latent space, such
that the measurements can be used to infer qualitative state
changes for the aircraft. We demonstrate that this process
yields information about a trained neural network’s utility for
this specific application, along with a quantifiable range of
certainty. We execute 84 experiments using loss-of-control flight
maneuver data from the NASA T-2 aircraft, demonstrating that
this empirical process allows us to construct cheap and simple
models with specific attributes amenable to belief state inference
in aerospace applications.

TABLE OF CONTENTS

1. INTRODUCTION .. ttutenrenronsosssssoscsscoscessnsss 1
2. BACKGROUND ..0viuteeeeneencencancencancancancnsans 2
3. METHODOLOGY +teuteeeentensancansescaacascascanans 2
4. EXPERIMENTS ¢.uviuteecencensansansssssacascascnsans 4
5. ANALYSIS tttueeneenssnssnssssssssssssssscsscsscnssns 6
6. CONCLUSIONS ¢ itteutenronsssssssssssssoscescnssnss 12
APPENDIX .iueieeutneessasncesessssssncesossssacacnnes 13
ACKNOWLEDGMENTS .eviuteeteaceaceacascascascnnans 13
REFERENCES .+ .ttiutnteeeeeacnccesencasasascncacnnes 18
BIOGRAPHY .1viiiiniinrnnrenseassossossscescescnsanss 20

1. INTRODUCTION

Numerous warning systems have been developed and stud-
ied to predict when a flight vehicle approaches a loss-of-
control (LOC) state. Current research focuses on developing
anomaly detection models that inform intelligent agents, such
that manned and unmanned aircraft alike may avoid abnormal
situations that may lead to LOC [1-5]. This research is the
natural progression of decades of identifying performance
indicators that characterize the precursors for a flight to suffer
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a LOC event through empirical studies [6—10].

These empirical precursor studies have primarily been used
to perform anomaly detection through either unsupervised or
supervised methods. In unsupervised applications, models
for anomaly detection are vetted against ground truth as
specified by a particular study to demonstrate a capacity to
identify when significant shifts in behavior are occurring.
In supervised applications, studies tend to label and classify
“normal” states, without an adequate representation of outlier
behavior. Both approaches focus on performing anomaly
detection by creating high-quality representations of inlier
behavior. However, for anomaly detection in physical appli-
cations that can have multiple failure states, it has been shown
that semi-supervised methods, informed by physics labelings,
can produce more conservative representations of these states
and permit a better understanding of system transition. For
example, an aircraft may experience sequences of failure state
transitions prior that may or may not reach a LOC state.
Recently, the conditional variational autoencoder (CVAE)
[11-13] has been demonstrated to be a viable probabilistic
inference model for interpreting these kinds of transitions and
detecting anomalies in physics [14—18].

Contribution

In this paper, we demonstrate the effectiveness of the CVAE
model in detecting the transition of the NASA Generic
Transport Model (GTM) aircraft to a LOC state. An in-
depth characterization of its capacity for this application
is highlighted in our previous work [19]. However, the
main contribution described by this paper is the empirical
process by which we develop a CVAE architecture that is
amenable to the process of detecting aircraft state changes,
with a particular focus on LOC. We model our analysis from
the Design of Experiments (DOE) methodologies found in
the NIST/SEMATECH e-Handbook of Statistical Methods, a
widely used handbook for statistical analysis [20]. While
our work provides insight into the use of CVAE in predicting
LOC, our contribution is for this paper to serve as a template
for designing the architecture of a CVAE (or other neural
network models) in similar aerospace applications.

We report an analysis of design optimization, based on DOE
methodology, to study the influence of architecture design
parameters and training performance of a CVAE with re-
current neural network (RNN) layers to an aerospace ap-
plication. While design optimizations to optimize neural
network accuracy and training have previously been explored,
our study focuses on the ability to use measurements of the



Figure 1. T-2 subscale jet transport aircraft (credit: NASA
Langley Research Center)

CVAE to indicate state transition for aircraft. We develop and
analyze a response surface model to show how we can obtain
information about the utility of a trained neural network for
a specific application, along with a quantifiable range of
certainty about those values. We determine to what extent,
if any, the selection of the type of recurrent neural network,
activation function, optimization function, and dropout value
have on the application. We assess not only the standard
performance measurements (i.e. loss value, accuracy) but
its actual applicability to detecting LOC and other state
changes. Aerospace engineers often use DOE methodology
for experimental design and analysis. This paper presents
methods for using the same techniques and tools to construct
cheap and simple models for architecting a neural network.

2. BACKGROUND
Loss-of-Control

The NASA Aviation Safety Program was established in re-
sponse to a national goal to reduce the fatal aircraft acci-
dent rate by 80% within 10 years [21, 22]. The program
involved all four NASA aeronautics centers and promoted
coordination with the other government agencies, including
the Federal Aviation Administration, industry, and academia.
The Boeing Company and NASA Langley Research Cen-
ter jointly developed loss-of-control (LOC) metrics for the
NASA T-2 test aircraft (Figure 1). The T-2 is a 5.5%
dynamically scaled version of a generic transport-type model
[8], with retractable tricycle landing gear and twin jet engines
mounted under the wings. These studies define LOC as any
motion of the vehicle that is:

outside of the normal operating flight envelopes

not predictably altered by pilot control inputs
characterized by nonlinear aerodynamic effects

probable to result in high angular rates and displacements
characterized by the inability to maintain heading, altitude,
and wings-level flight

Design of Experiments for Neural Networks

DOE describes a domain of study in which systematic
changes to the input variables of a system, or process under
observation, are monitored in the context of system outputs
[23]. These changes, the system, and outputs are studied for
any combination of the following four motivations:

o Comparative — Determining to what extent, if any, varia-
tion in one or more input variables impacts the system or its
outputs.

o Screening/Characterizing — Ranking the inputs of the
system from most effective in explaining the output variation

to least.

¢ Modeling — Developing a model relating the input vari-
ables to the system outputs.

o Optimization — Determining the ranges or set of values for
input variables that optimize system outputs.

While formal DOE processes are often executed and im-
proved by practitioners of the aerospace engineering domain
[24-26], the field of machine learning has experienced sig-
nificantly less practical use cases. As researchers in these
fields continue to cross over, understanding how to apply
DOE methodologies to determine machine learning model
architectures has become a growing problem. The perfor-
mance and results of machine learning models, particularly
neural networks, are often reported with little-to-no rationale
for the architectural design. DOE methodology presents
an opportunity to ensure that statistical hypothesis testing
methods are employed to assess the impacts of factors on
outcomes correctly.

The direct use of DOE models and methods for neural net-
work architecture design has been previously explored for
a variety of applications [27-33]. However, most studies
focus on the optimization of loss values, convergence speeds,
and robustness measures of the neural network. While using
these experimental outputs are appropriate for optimizing
the accuracy of a neural network performing regression and
classification in a specific domain, they do not necessarily ac-
count for the applicability of the neural network to a problem
within the domain. The dynamics between a regression or
classification inference and its utility in a certain application
are rarely addressed.

Significantly less work has been done in applying DOE
methods to the architectural design of autoencoders of any
kind [34,35]. Hyperparameter optimization tools for machine
learning software libraries like Keras and Tensorflow are
often used to modify architectural choices for their autoen-
coder implementations [36-38]. Efficient methods of grid
search, random search, and Bayesian optimization are the
most commonly explored hyperparameter tuning algorithms
behind such tools [39-43]. Like the previous DOE studies on
neural networks, these tools only account for accuracy unless
the application is incorporated into the loss function for
optimizing the neural network. Given the recent popularity of
these neural networks, our study serves as a guide for using
the autoencoder that can be followed or automated in other
environments.

3. METHODOLOGY

In this work, we apply DOE methodologies to optimize the
neural network architectural design parameters for the appli-
cation of detecting that an aircraft is transitioning between
emergency states, with a focus on LOC. The factors that
we choose are optimized to that application, not simply the
accuracy of the neural network in modeling the data that we
give it.

Computing Flight Envelopes for NASA T-2

As in the Wilborn study [8], we define the flight dynamics
characteristics that play an important role in the causes of
LOC, as shown in Table 1. In addition, we use subscripts
to define the following measurements:

o Qporm and Brorm - Normalized o and 3, respectively
o Oy - a (deg) for stall warning activation



Table 1. Key Flight Measurements for Determining LOC

angle of attack «a sideslip angle B
bank angle 1) pitch attitude 0
equivalent airspeed Ve normal load factor n
pitch control dc0r b | pitch rate q
roll control Oy O ;T‘; roll rate P

o Bimdzw - sideslip (deg) for non-crabbed approach in the
max demonstrated crosswind for takeoff and landing

« V. - equivalent airspeed, kts

e Ve - max flaps extended operating equivalent airspeed
(flaps down), kts

o V..o - max operating equivalent airspeed (flaps up), kts

o Vorm - normalized airspeed

o Vi - stall warning equivalent airspeed in 1-g flight, kts

The number of flight envelopes that are violated by the
aircraft correlate heavily with the vehicle being in an LOC
state [8]. The envelopes are:

Adverse Aerodynamics (AA)—The boundaries of this enve-
lope represent the maximum limits of « and (5 a line pilot
should expect to encounter in normal flight operations, in-
cluding all emergency procedures covered by checklist. The
AA flight envelope is defined by:

Onorm = 0at o = 0° (1
Qporm = L at a = gy 2)
Brorm = —lat f = —fBmdzw 3)
Brorm = +1at B = 4+Bmdzw “)

Unusual Attitude (UA)—This envelope relates information
about the flight path parameters that pilots rely on most
in recovering from upsets and in maintaining control for
continued safe flight and landing. The UA envelope is defined
by:

—45% < ¢ < +45° )]

—10° < 0 < +25° (©)

Structural Integrity (SI)— This envelope bounds the nor-
malized airspeed facilitates comparisons between different
airplanes and configurations. The SI envelope is defined by:

V:e_vsw

Viorm = V. (Flaps-Up Configuration)  (7)

‘/e - ‘/sw

v (Flaps-Down Configuration)  (8)
fe 7 Vsw

Vnorm =

Dynamic Pitch Control (DPC)—The limits of this envelope
reflect whether the trend in 6’ is consistent with pitch control
commands, or whether the control is opposing the aircraft
motion. It is computed as the sum of the current pitch angle
and its time derivative:

0 =60+6 )

Dynamic Roll Control (DRC)—The limits of this envelope
are analogous to those for the DPC envelope, i.e., reflecting
whether the trend in roll attitude is consistent with roll control
commands or whether the control is opposing the aircraft

motion. .
¢ =¢+0¢ (10)

Additional Flight Envelopes—In addition, we add 4 more
envelopes based on real-world LOC constraints that have
been added since the original study:

1. Weight:
47.16 < W < 58.16 lbs (11)

2. Altitude:
0 < alt < 2000 ft (12)

3. Flap Deflection:
—5° < flap deflection < 25° (13)

4. Center of Mass:
50 < X¢g < 60in (14)

Conditional Variational Autoencoders for Detecting LOC

Our CVAE methods for interpreting that the T-2 aircraft is
approaching a LOC were described and characterized in our
prior work [19]. Here, we report the DOE methods that
guided our design decisions for this CVAE architecture used
in that characterization. We train a CVAE by labeling the
measurements in Table 1 with a binary vector that describes
whether or not the vehicle is in each envelope (1 if the
vehicle is in an envelope, 0 otherwise). The CVAE learns the
behavior of flight dynamics for each envelope configuration
and uses that as a model to detect unusual behavior. During
flight, the CVAE attempts to reconstruct flight measurements
from encodings. If reconstructed measurements veer too far
away from the actual flight measurements, we know that
something anomalous is occurring. Our exploration of the
capacity of a CVAE to model complex relationships in data
from the NASA T-2 resulted in the model structure depicted
in Figure 2.

We construct the encoder portion of the CVAE using variants
of bidirectional recurrent neural network (RNN) layers and
use unidirectional layers to construct the decoder portion.
Intuitively, only the encoder side of the CVAE needs to be
bidirectional. The latent space distributions that represent
flight measurement encodings will capture information about
future timesteps, as well as past timesteps. The data are en-
coded in such a way that only the sequence of the distributions
matter. We describe the details of the encoder and decoder in
Section 4, in the context of our DOE analysis.

The reconstruction probability is calculated by the stochastic
latent variables that derive the parameters of the original input
variable distribution [14]. What is being reconstructed are
the parameters of the input distribution, not the input variable
itself. This allows us to compute the probability of the data
being generated from a given latent variable drawn from the
approximate posterior distribution.

In this study, we predicted LOC of a commercial transport by
assessing two measurements of the neural network illustrated
above: Reconstruction Probability and Gaussian Shift.

The reconstruction of commercial transport flight data from
the low-dimensional representation of the CVAE typically
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Figure 2. Schematic visualization of a conditional variational autoencoder that encodes observations from NASA T-2
flight data, based on the observation’s envelope status, into a probabilistic latent space representation. The CVAE
samples from this representation for decoding.

represents the true nature of the measurements, without any
uninteresting features and noise. At time ¢, the reconstruction
probability R(X;|X:) is computed by estimating the recon-

struction X; of input X; with respect to a binary encoding of
the flight envelope status c:

L
. 1
R(X:[Xy) = + > logPy(Xi|z, c) (15)
=1

for L latent vectors of the input data. The CVAE is trained to
minimize the following loss function:

Levae(Xe, 6, X430, ¢) = Din(Qu(21Xy, ¢)||Po(Xe 2, €))

+R(X;[X)
(16)

We establish a threshold o such that if R(X;|X;) < a, we
declare that the observation at that timestep is anomalous.
This indicates that LOC is occurring at that specific timestep.

To identify shifts in flight dynamics for a particular flight
envelope configuration, at each timestep ¢ and subsequent
timestep ¢ + 1, we analyze a shift from the Gaussian distribu-
tion P(z;) required to reconstruct an input X; to the Gaussian
distribution P(z;1) required to reconstruct an input Xy 1.

As our latent space has more than one dimension (more than
one Gaussian sampling distribution), we represent the latent
variables of our model as a multivariate distribution. We use
the multivariate KL-Divergence [44] to measure the shift in
latent space representation over subsequent timesteps. The
KL-Divergence between a multivariate Gaussian distribution
P with means p; € R™ and covariances ¥7 € R"x R™ and
multivariate Gaussian distribution Q with means ps € R”
and covariances 3 € R x R™ is given by:

1 ‘Z2| —1
Dkr, = zllog == —n+tr{3; X
KL 2[ g | { 2 1} (17)

Huz — ) 25 (2 — )]
For two arbitrary probability distributions, P and @, the KL-

Divergence describes how much information is lost if @ is an
approximation of P. This is not a symmetric measurement.

The Jensen-Shannon (JS) divergence is the symmetric version
of the KL Divergence, defined as:

Dys(piiQ) = DAL Dt @D 4,

where M = 1(P 4+ Q), M ~ N(un, Sar), where ppy =
%(,up +pg) and Xy = %(ZP +20).

To obtain a metric that can be analyzed over time, we simply

use \/Djs(P || Q) as the JS Distance.

Since there are no constraints on the p and ¥ distribution
parameters represented by the latent space, the encoder can
learn to generate very different means for different classes,
some of which cluster together. Furthermore, the variances of
the models are typically small. This allows the RNN decoder
to efficiently reconstruct the training data and signifies that
large shifts in the means of the latent space have some
correlation to an anomalous shift in behavior for a particular
flight envelope configuration or towards LOC. We track these
larger shifts by continuously measuring the gradient of the JS-
Distance. Formally, let 7, be an experimentally determined
threshold for the latent space. We propose a detector such

that if \/Djs(P || Q) > 7., an alert is raised indicating that
the vehicle is pushing envelope limits.

4. EXPERIMENTS

The DOE setup and analysis in this study followed formats
described in the NIST/SEMATECH e-Handbook of Statistical
Methods [20]. We modeled our analysis after Section 5.4
— Analysis of DOE data. This section attempts to con-
vey the fundamental idea behind empirical model-building,
which allowed us to construct cheap and simple models that
characterize the impact of different CVAE architectures. The
purpose of this design optimization was to determine the
effect of training hyperparameters and performance for a
conditional variational autoencoder on the inference of T-2
loss-of-control (LOC) and envelope change.

The AirSTAR program measured the data used for neural
network training and evaluation of these experiments during
flights of the T-2 [45]. During these flights, the aircraft
was piloted by a research pilot in a mobile control room
using synthetic vision displays. During each flight, the pilot



executed several slow stall maneuvers, where they slowly
provided a nose-up elevator command and injected multi-
axis excitation to the control surfaces. As this happened, the
aircraft climbed, increased in pitch angle, and decreased in
airspeed. After each stall, the aircraft nose dropped and the
aircraft rolled. The pilot then regained airspeed and leveled
the wings by applying normal stall recovery controls. Each
of these events happened at varied times throughout the flight
and constituted an LOC. We labeled each observation of the
data according to envelopes violated during the observation
and whether the aircraft was in an LOC state. We conducted
our DOE using 58 flight missions and captured recordings of
specific maneuvers.

Response Variables and Factors

The following are the response variables for our set of exper-
iments:

o y1: Average KL loss [11] over full flights

e y2: Average reconstruction loss over full flights

o y3: Average KL loss over specific maneuvers

« y4: Average reconstruction loss over specific maneuvers

e y5: Area of intersection for reconstruction probabilities of
LOC and normal flight observations

e yg: Area of intersection for Gaussian shift of state change
and normal flight observations

« y7: Balanced accuracy for reconstruction probability-based
anomaly detection

« ys: Difference in the average reconstruction probability
between normal and LOC observations (# violated envelopes
> 3)

e yg: Difference in the average value of the gradient of
Jenson-Shannon distance when entering/exiting an envelope
and no envelope change

The following are discrete factors for our sequence of exper-
iments:

o x1: Layer Type — Gated Recurrent Unit (GRU) [46], Long
Short-Term Memory (LSTM) [47]

e To: Activation Function — Exponential Linear Unit (ELU)
[48], Linear [49], ReLU [50], Scaled Exponential Linear
Units (SELU) [51], Softplus [52], Softsign [53], tanh [54]

o x3: Optimization Function — Adam [55], Stochastic Gra-
dient Descent (SGD) [56], Adadelta [57]

e x4: Dropout — (0,0.1)

We include the training results of the neural network as ad-
ditional factors in our experiments. Each neural network was
trained on observations from 46 T-2 aircraft flight missions
and validated on 12 flight missions. On average, missions
were 17 minutes in length, and data was resampled to 1s
intervals. The following training results serve as continuous
factors in our DOE:

o x5: Number of epochs used to train the CVAE
o xg: Final CVAE training loss measure
e x7: Final CVAE validation loss measure

We did not use the number of layers or nodes as factors, as
the effect is simply a more accurate fit to training data and
capturing distinct input features. Our goal was to explore how
the actual equations used for inference modify the network’s
utility in envelope state inference and LOC detection.

We specified these factors and responses as such in Design-
Expert. We then performed 84 experiments, using the ob-
servations from the T-2, which yielded all combinations of

our discrete factors. In future studies, due to the random
initialization of CVAE weights and variance in training per-
formance, multiple experiments should occur for each con-
figuration of factors to account for randomization effects.

Measurement

Each CVAE was trained with a conditioning vector computed
based on the flight envelope status during an observation.
The encoder portion of the network was comprised of the
following layers, from input to output:

« A single feed-forward layer with tanh activation

« 1 bidirectional RNN layers (type x;) with x5 output activa-
tion

« 7 bidirectional RNN layers (type x;, dropout x4) of de-
creasing size (from input to latent space) with o output
activation

The tanh activation at the beginning of the encoder outputs
values between -1.0 and 1.0. Extreme values typically satu-
rate to -1.0 and 1.0, which is reasonable for our application.
Whether an extreme shift or a moderate shift in the input
values occurs, most neurons at the beginning layer should
fire to their maximum potential. The architecture of the
encoder follows with a single recurrent neural network layer
that captures all information and several recurrent neural
network layers with dropout, which prevents co-adaptation
of features across subsequent layers [58]. We set the number
of dimensions of the latent space to 11, which is half of the
number of input variables (22). Using at least half the input
size for the latent space has empirically shown significant
performance benefits across VAE studies [59]. The decoder
is comprised of the following layers, from input to output:

« A single feed-forward layer with z» activation

e 7 unidirectional RNN layers (type x;, dropout z4) of
increasing size (from latent space to output) with x5 output
activation

o 1 unidirectional RNN layers (type z;) with x5 output
activation

« A single feed-forward layer with tanh activation

« A single feed-forward layer with linear activation

The decoder effectively mirrors the encoder, starting with
a single feed-forward layer to capture and learn the full
encoding representation before it is sent to layers that may
have dropout.

We used the Keras deep learning framework [60] to imple-
ment each experimental CVAE. The Keras Functional API
allowed us to combine layers very easily. We trained the
T-2 flight data on CVAE architectures, each with architec-
tures specified by the factors of the 84 combinations. We
compare and contrast models with varying hyperparameters
and architectures to develop a response surface for the ability
of the CVAE model to detect loss-of-control and describe
belief state change. We trained and vetted each CVAE in
parallel on the NASA Langley Research Center K-cluster,
which used one NVIDIA Tesla K40 GPU per experiment.
Each network was trained for a maximum of 10,000 epochs,
with early stopping if the validation loss of the network was
non-decreasing for 1,000 epochs. Most networks converged
at about 2,200 epochs. The average neural network training
phase was approximately 5 hours, with all of the networks
completing after approximately 21 hours. After this, experi-
mental outcomes were measured and captured for analysis.

The first four outcomes measured are direct, standard mea-



surements of the performance and robustness of the CVAE
on modeling our data. For each network, y; and y; were
measured by encoding observations of all full flight missions
and specific maneuvers, respectively. We computed the KL-
Divergence between the encoded input data and the stan-
dard Gaussian and averaged this measure across all obser-
vations. This helped us understand if movement in the latent
space impacts the outcomes of our application. y, and y,
were measured by calculating the Monte Carlo estimate of
By, (z|2)[logpe(z|z) for all full flight missions and specific
maneuvers, respectively.

To measure y5, we denote the density estimates of recon-
struction probability over all full flight missions as ¢, for
reconstruction probabilities of normal observations and §)y
for reconstruction probabilities of LOC observations. Also,
let men,, represent the lowest reconstruction probability ob-
served for normal observations and let max ), represent the
largest reconstruction probability observed for a LOC obser-
vation. We measured ys5 using the estimate of the area under
the curve of these two densities:

. / 16, (£) — 6 (1) dt (19)

Mming,

In the same way, we denote J. as the Gaussian shift (Jensen-
Shannon Distance) in the latent space from previous timestep
t—1 to the current timestep ¢ for observations in which a state
change occurred at time ¢ and d,,. for observations in which
no state change occurred. And maz,, is the largest Gaussian
shift observed when no state change has occurred at time ¢
and min,. is the smallest Gaussian shift observed when a
state change has occurred. We measured yg using an estimate
of the area under the curve:

Yo = / |0ne(t) — dsc(t)|dt (20)

MiNse

The measurement g7 describes how well the neural network
can predict that the aircraft is in a LOC state. We set the
anomaly threshold «.. by identifying the percentile P; of
reconstruction probabilities that yielded the closest overes-
timate of the actuzAll number of LOC observations. If, at
timestep ¢, R(X¢|X;) < «,, we infer that the aircraft is
under LOC. Using this to determine true positives (1T'P), true
negatives (I'N), false positives (F'P), and false negatives
(F'P), we calculate y7 as:

TP 4 TN
yr = TP+FN TN+TP (21)

2

Finally, we examined the differences in average values for
LOC inference and (envelope) state change reconstructions.
For yg, we computed the difference between the average
reconstruction probability for operational control observa-
tions (ones in which the vehicle is not in an LOC state) and
the average reconstruction probability for LOC observations.
For y9, we examined the average gradient of the Jenson-
Shannon distance for observation sequences that do not result
in envelope changes and calculated the difference from the
average gradient of those that do.

Results

A summary description of our results, described as the aver-
age responses for each experiment factor, is shown in Table
4 of the Appendix. After our experiments, we followed the
steps defined in NIST/SEMATECH e-Handbook of Statistical

Table 2. Summary of Adjusted R? scores for a full
model of each response.

Outcome | Model | Adjusted R?
Y1 Quadratic 0.9868
Y2 Quadratic 0.9251
Y3 Quadratic 0.9854
Ya Quadratic 0.9262
Ys Linear 0.657
log(ye + 1) Linear 0.846
log(yr + 1) Linear 0.2853
m Quadratic 1.0
In (y9 +0.001) | Linear 0.8252

Methods Section 5.4.7.3 [20] for response surface modeling
for each of our responses y;,¢ = 1...9. The following is a
summary description of the steps of this analysis process:

1. Fit the full model to response ;.

2. Use stepwise regression, forward selection, or backward
elimination to identify important variables.

3. When selecting variables for inclusion in the model, apply
the hierarchy principle. Keep all the main effects of signifi-
cant higher-order terms or interactions, even if the main effect
p-value is larger.

4. Generate diagnostic residual plots for the model selected.
5. Examine the fitted model plot, interaction plots, and
ANOVA statistics to determine if the model fit is satisfactory.
6. Use contour plots of the response surface to explore the
effect of changing factor levels on the response.

7. Repeat all the above steps for another response variable.
8. After satisfactory models have been fit to both responses,
you can overlay the surface contours for both responses.

9. Find optimal factor settings.

For each response, y;, the equation for the full quadratic
model is:

7 7
Yi 25()+Zﬁj$j+ Z ﬂjkxj$k+2ﬂjj$?+€ (22)

j=1 1<j<k<7 j=1

where [y is a constant (intercept), (1 is a linear effect
parameter, 35 is a quadratic effect parameter, and e is error.

Table 2 shows the adjusted R? value when we fit a full model
(all main effects and interaction terms) to each response. By
default, we attempted full quadratic models as the first step
for each outcome. However, some of these full quadratic
models resulted in negative predicted R? values. In such
cases, we applied a transform to each outcome (based on
analysis of the average main effect values in Table 4) and then
fit a full model.

5. ANALYSIS

We leverage the analysis tools in Design Expert, as well
as Python libraries (NumPy [61], SciPy [62], Statsmodels
[63], seaborn [64]) to analyze and visualize our DOE results.
The following is a summary of our analysis for each of the
aforementioned experimental responses.



Response y1: Average KL Loss over all Missions

We start by fitting a full quadratic model for Average KL
Divergence of the latent space sampling distribution from the
standard Gaussian, using ordinary least squares. The R? and
adjusted R? were fairly high for the y; full quadratic model.
We then perform stepwise regression for the Average KL
Loss, with a focus on minimizing the Akaike information
criterion (AIC) [65]. By using AIC as stopping criteria for
stepwise regression, our analysis penalizes the model for the
number of coefficients. After 14 steps, this resulted in the
following model with an AIC of 131.78:

y1~af + a3 +ag

+I‘1£C3 + T1T4 + T1xe + 17 + ToX7 + Ir3xs
+T3T7 + T4x5 + TaTe + T5T7 + TeX7

+x1 + 22+ 23+ x5+ 26 + 27

(23)

For visual clarity of the relationship between factors and re-
sponses, we remove the coefficients from this and subsequent
equations, with the implication of a constant added to the
model as a final term. Stepwise regression tells us which of
the main factors and interactions are needed to reliably infer

Residuals vs. Run

a quadratic relationship for the Average KL Loss. Next, we
follow the principle followed by most statisticians of keeping
all main effects that are part of significant higher-order terms
and interactions, known as the effect hierarchy principle [66].
We do not include an interaction term in a model unless both
main effects are included?. The dropout, z4, does not appear
as a main effect in Equation 23. Therefore, we use an estimate
from a previous regression step that contains z4 as a main
effect, granting us a final reduced model for Average KL Loss
as:

y1 ~ @i + a3 +af + g

+212T3 + T1T4 + 2126 + T1T7 + T2T7 + T35
+T3x7 + 45 + 42X + TsT7 + TeT7

+21 + T2+ 23+ T4+ T5 + T + 27

The AIC for this model was only (10~!2) larger than the

model described in Equation 23, so the model maintained the
same goodness of fit and simplicity.

(24)

Plots from our analysis of residuals are visualized in Figure 3.
This visual representation of the normal plot of the residuals,

2Note that this process is done automatically by Design-Expert.

Normal Plot of Residuals
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Figure 4. Two Interaction Plots for average KL loss
response over all mission flight data(y, ).

a comparison of the residuals to the actual experimental runs,
a plot of the residuals versus each main effect, and a Cook’s
distance regression [67], indicates that we can have confi-
dence in the underlying assumptions of the model described
by Equation 24. The adjusted R? for the model generated
from stepwise regression is 0.918, slightly lower than the
full quadratic model, but not significantly lower. And the
Predicted R? of 0.8069 is in agreement with the Adjusted R?
of 0.9180.

Figure 4 shows two of the interaction plots, Layer-
Optimization(zix3) and Layer-Dropout(zix4), for this
model of average KL-Divergence Loss (y1). And the contour
plots in Figure 5 show how the training performance for
each CVAE impact the average KL-Divergence from the
standard Gaussian over full flights. Both plots confirm the
need for these interaction term in the model (otherwise, the
lines would be parallel). This analysis, combined with the
performance data in Table 4, allow us to make the following
claims:

« Latent space learning is stable: Figure 5 shows that as the
final training loss improves, so does the final validation loss.
o The relationship between number of training epochs and
the final validation loss is parabolic. If too many epochs are
used for training, the network will be overfit.

« GRUs with an 0.0 dropout tend to have larger average KL
losses. Because of the defined loss function for the CVAE,
this will result in longer training times for neural networks
with this architecture.

Response ys: Average Reconstruction Loss over all Missions

The stepwise regression to identify the most influential fac-

tors for the average reconstruction loss over all missions (y2)

resulted in the following model after 18 steps with an AIC of
576.95:

yo ~ @5 + x5 + o}

+X1T4 + T1T7 + T2T5 + T3T5

+T3T7 + a5 + 47 + T5T7

+x1 + 2o + 23+ 24+ 25 + 27

(25)

All main factors except x¢ (final training loss) are necessary
to appropriately fit our model. It is already excluded from any
interaction terms in this model. This model already adheres
to the effect hierarchy principle. The adjusted R? for this
model is 0.7464, much lower than that of the full quadratic
model. The predicted R? is actually negative (—0.3736),
which implies that it is unreliable (the mean would be a better
estimate of y2). The residuals plots, one of which is shown
in Figure 6, indicate that there is a significant outlier in this
model. The following are the discrete factors from this outlier
experiment:

Layer — GRU
Activation — Softplus
Optimization — SGD
Dropout — 0

Further inspection of the Predicted vs. Actual chart in Figure
7 shows that the largest outliers are from experiments in
which the softplus activation function were used for the
RNN and the SGD optimization function was used. The
epochs, as well as the final training and validation losses for
experiments with these properties were fairly normal. The
activation function (x2) has a quadratic relationship with the
Y2 outcome, whereas the optimization’s (x3) relationship is
linear with interaction effects. The interaction effect for xox3
was removed late during stepwise regression. When added
back into Equation 25, the adjusted R? is 0.9252 with high
adequate precision.

Response ys: Average KL Loss over Specific Maneuvers

The stepwise regression model, computed for y3 (KL Loss
for specific maneuvers), is not similar to that of y; (KL Loss
for full flight missions). The model is described as follows,
with no changes due to the effect hierarchy principle:

ys ~ o + o] + a3 +
+I’1:L‘3 —+ 14 —+ T1Te —+ Tr1Ty7 —+ I3Ts
+I3T7 + T4X5 + TaTg + T5T7 + Ty

+r1 + 23+ x4+ 25+ 26+ 7

The adjusted R? for the y3 model, 0.8856, is slightly less
than that of y;. There were no major outliers shown by
our analysis of residuals. We investigated ys further by
performing an adjusted means squared assessment [68] on a
model with higher-order interaction terms. The results of this
assessment revealed the top 5 interaction effects of y3, shown
in Table 3. These 5 effects are the outliers on the higher-
end of the quantile-quantile plot for y3, shown in Figure 8.
The activation function factor, x2, is not a part of the model
derived by stepwise regression. However, the most significant
positive effect shown by the quantile-quantile plot includes
xo. Generally, strong interaction between the amount to
which the network is trained (z5—x7) and the discrete factors
(x1—mx4) significantly impacts the latent space encodings of
the CVAE when observing individual maneuvers.

(26)
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Table 3. Top Interaction Effects of average KL loss with respect to specific flight maneuvers (y3)

Interaction Effect

Adjusted Mean Squares |

2. Epochs, FinalTrainingLoss, Final ValLoss

1. Activation, Epochs, FinalTrainingLoss, FinalValLoss

3. Activation, Optimization, Epochs, FinalTrainingLoss, Final ValLoss
4. Layer, Activation, Epochs, FinalTrainingLoss, FinalValLoss
5. Optimization, Epochs, FinalTrainingloss, FinalValLoss

8.011232E7
5.005503E7
2.944778E7
1.673118E7
1.654618E7

Normal Plot of Residuals

Normal % Probability

AverageReconLoss

Color points by value of
AverageReconLoss:

0.504369 69.7595

-4.00 2,00 000 200 400 600 800 1000

Externally Studentized Residuals

Figure 6. The residuals plots for the average
reconstruction loss of all mission observations (y2) model
are largely normal, with one outlier.

Response y,: Average Reconstruction Loss for Specific Ma-
neuvers

The final direct measurement of our CVAE to replicate the
T-2 data is y4. The following model, resulting from stepwise
regression, required no correction due to the effect hierarchy

Y2 Predicted vs. Actual

(GRU,Softplus,SGD,0.1;

]
(GRU,Softplus,SGD,0)|

(LSTM, Softplus,SGD,0.0)

Predicted

(GRU,tanh,56D,0) (LSTM,Softplus,5GD,0.1)
|}

Actual

Figure 7. Predicted model for average reconstruction
loss of all mission observations (y-) from Equation 25.

principal:

ya ~ @]+ 25 + 2] + a5 + a7
+21T4 + T127 + 2225 + T3Ts
+T3T7 + T4T5 + T4T7 + T5T7
+r1+ 22+ 23+ 24+ x5 + 27

The AIC (578.245) was only slightly higher than that of the
model for y2. Like y2, z¢ (the final CVAE training loss) is

27)
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Figure 8. Quantile-Quantile plot for average KL loss
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interaction effects highlighted.

also excluded as a factor from our final model. Layer (z;)
and Dropout (x4) have additional quadratic effects that were
not seen for yo. The same data point that was an outlier in the
residual plot for yo was also an outlier for y4, causing all of
the same effects. That includes the y, stepwise regression
model yielding a much lower adjusted R? (0.7422) and a
negative predicted R? (—0.397) compare to its full quadratic
model. Likewise, adding the (zx3) interaction term back in
had the same effect, increasing the adjusted R? to 0.924 with
high adequate precision.

Response ys: LOC/Operational Control Area of Intersection

The response variable ys describes the extent to which our
CVAE models can be used to distinguish between LOC
and operational control observations. The less overlap that
the reconstruction probabilities for LOC observations have
with operational control observations on our test data, the
more reliable the CVAE should be for other missions. The
default full model that produced the highest adjusted R? (with
positive predicted R?) for this outcome was linear. However,
stepwise regression from a quadratic model produced a model
with a lower AICc [69] and higher adjusted R:

2
Ys ~ T + T3T5 + T3Te + Tals + TaTe

(28)
+x3 + x4+ 25 + X6

This resulted in a higher adjusted R? than the original model
(0.7777).  Our residuals (shown in Figure 9) indicate a
significant error for the y5; model in predicting the area of
intersection. Further analysis indicated that the model was
thrown off by experiments that used a combination of GRU
layers and softsign/softplus activation functions. However,
adding the zixo interaction effect to the model did not
improve its performance. Higher-order interactions would
likely be necessary to improve the model even further.

Recall that y5 should be low for the overall application of
detecting LOC. The box plots in Figure 10 visualize the
effects of our factors on the y; measurement. It appears
that CVAEs with LSTM layers have a narrower distribution.
Those implemented with softsign and softplus activation
functions actually have lower ys; measurements than other

10
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Figure 9. Normal vs Residuals plot for y5; Outlier
experiments from this model used GRU layers with
softsign and softplus activation functions.

activations, while those with SELU activation functions are
higher.

Response yg: Envelope Change/No Change Area of Intersec-
tion

The full quadratic model for yg has significantly lower R?
compared to the other outcomes. After a log transform, we
applied stepwise regression from a full quadratic model to
select the following model:

log(ys + 1) ~ z§ + 7
+x123 + 175 + T1T6 + T127 (29)
+xg + Ty4T5 + X426 + 526 + T5T7 + X7

+x1 + T2 + 23 + 24+ T5 + 6 + X7
This new model is a much better fit:

o R?:0.9692
o Adjusted R?: 0.9498
o Predicted R?: 0.8233

By investigating the plots for the interaction terms, the Layer
of the CVAE (z) influences the outcome to a large extent.
Figure 11 shows the layers plotted with respect to ys. LSTM
CVAE data points appear to be more widely distributed.
But the intersection of latent space representations when the
vehicle experiences a state change and when no state change
occurs is generally smaller than that of GRUs. However, the
variance of yg for LSTMs are an order of magnitude larger
than that of GRU, which makes GRUs more reliable in this
context.

Response y7: Balanced Accuracy for LOC Detection

Next, we model the balanced accuracy in determining LOC.

The full linear model has a very poor adjusted R?. The
following reduced quadratic model was produced through
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stepwise regression:

Y7 ~ TaTs + T5x7 + Tex7 + T4 + T5 + 26 + 27 (30)
The Adjusted R? was 0.4217 and was one of the few that
we found with a positive Predicted R?. This model indi-
cates that the dropout (Figure 12) and loss values of CVAE
training (Figures 13,18,19) had the most significant effects
on balanced accuracy. A dropout of 0.1 appears to be more
reliable in having a balanced accuracy above 0.7. Most CVAE
experiments require between 2000 and 3000 training epochs
(with these specific datasets) to achieve a balanced accuracy
above (.7. More experiments need to be done to build a more
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Figure 12. Scatter plot showing the balanced accuracy
(y7) of predicting LOC/Operational Control compared
to the dropout of intermediate layers.

robust model.

Response ys: Difference in Average Reconstruction Proba-
bility (Normal-LOC) observations

The full quadratic model of the average reconstruction proba-
bility during the LOC has an extremely high R? and adjusted
R2. Stepwise regression results in the following model, with
AICc of 210.13 and adjusted R? of 1.0:

1

S — 31
ys + 0.001 D

~ ToX3 + T3T7 + T + T3 + Ty
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Figure 13. Contour plot of balanced accuracy (y7) of
predicting LOC/Operational Control: Training Loss vs
Validation Loss

The model is thrown off by two points, as shown in the resid-
uals plot of Figure 14. These two experiments that are on the
extremes of the residuals both were experiments in which the
neural network hidden layers were constructed using softplus
activation functions. The 3D surface plot in Figure 15 shows
that CVAEs with softsign and softplus activation yield lower
than average difference between LOC observations for Adam
and SGD optimization, while those trained with Adadelta
optimization yield the largest responses.

Response yg: Difference in Average Jenson-Shannon distance
(Enter/Exiting Envelope - Operating in Envelope)

Finally, for yg, stepwise regression found the following re-
duced quadratic relationship with an adjusted R? of 0.8961:

In (yo + 0.001) ~ x2 + 2
+T123 + 126 + T3T6 + TaTe + T6T7
+T3xe + T3x7 + X1 + T3+ Tg + T + X7

(32)

Again, our analysis of residuals plot (Figure 16) showed that
experiments with softsign and softplus activation at extreme
ends of the distribution. We examined the interactions high-
lighted in this model and discovered the dramatic differences
in yg9 for different RNN layer types (z;) and optimization
algorithms (z3). These are highlighted in the box plots in
Figure 17.

6. CONCLUSIONS

We used a DOE approach to characterize the effects of ar-
chitectural choices, parameters, and training performance on
applying conditional variational autoencoder models for in-
ferring belief states in the flight environment. The condition-
ing vector for the CVAE is a vector of 1s and Os, indicating
whether the vehicle is operating inside (1) or outside (0) of a
particular envelope. We monitored changes in reconstruction
probability to detect loss-of-control observations and changes
in the probability distributions encoded in the latent space to
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Figure 15. Surface plot of yg: x2x3 Interaction

detect shifts in or out of a flight envelope. We performed
a DOE analysis to serve as a template for conducting this
approach when applying learning models to sensors that mea-
sure the dynamics of a flight vehicle. This analysis showed
how we could vet different neural network architectures and
their utility (responses) for a specific application, along with
a quantifiable range of certainty about that utility. For details
about this specific application, detecting of loss-of-control
and envelope limits using CVAEs, please see our previous
work [19].

This methodology proved successful in helping to analyze
key factors in constructing the neural network. We will
take more factors, such as layer depth and width, weight
initialization, learning rates, data augmentation (such as
adding Gaussian noise), and batch sizes into account in future
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studies. While we could not determine the most effective
combination of factors (with high balanced accuracy) to
perform LOC detection, our empirical data indicates that the
training performance (length of epochs, training loss, and
validation loss) has significant impacts on this application,
as expected. Training for the CVAE is necessary only for
2000-3000 epochs to achieve sufficient balanced accuracy
in detecting that the aircraft is in a LOC state. Based on
our analysis, the following are recommendations for using
a CVAE for distinguishing LOC from operational control
observations:

Activation Function: elu, relu, selu, tanh

Optimization Function: Adadelta

Layer Type: LSTM (GRU is not significantly worse)
Dropout: 0.1 performed better for this application, but not
significantly

However, the following are recommendations for using a
CVAE to determine that the vehicle is approaching the
boundaries of an envelope (and quantifying probability of
approach):

o Activation Function: elu, selu
o Optimization Function: Adadelta

o Layer Type: GRU

« Dropout: 0.1 performed better for this application, but not
significantly

In the choice between GRUs and LSTMs, GRUs have been
more suitable for our experiments. Dropout does a good job
of capturing features without co-adaptation. Future studies
should conduct more experiments than were conducted in
this paper to account for randomization in the initialization
of neural network weights during training. In future LOC
studies, we plan to use the recommended configurations for
the CVAE to train multiple neural networks, with signifi-
cantly smaller input spaces, based on statistical relationships
that we identify among input data. The dataset that we
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used here provide 140 inputs, and we selected 22 specific
percepts based on subject-matter expertise. We hope to use
an algorithmic process to produce fast LOC and envelope
change detectors by reasoning about the results of a set of
smaller CVAE models.

APPENDIX

Figure 18 summarizes the training performance of all CVAEs
from our experimental studies. Table 4 shows a chart of
average responses for each main effect of the experiments in
this study. Figure 20 shows a histogram for all experimental
outcomes in this study.
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Table 4. Average outcomes for the main effects of 84 experiments.

AverageKlLoss AverageReconloss ManeuverKLLoss ManeuverReconloss LOCReconintersection SCNCIntersection BalancedAccuracy ReconProbDiff JSDiff

Layer
gru 2.057126 3.755259 2159451 4407554 6646.594659 769482.188413 0.712023 0.202079 0.115365
Istm 0.925567 2.630835 0.968229 3.196932 4656.622465 389900.829617 0.713771 0.302537 0.054143
AverageKLLoss AverageReconloss ManeuverKLLoss ManeuverReconloss LOCReconintersection SCNCintersection BalancedAccuracy ReconProbDiff JSDiff
Activation
elu 1.943108 0.906901 2.064702 1490071 6269.562809 9.648408e+05 0.731546 0.320900 0.091513
linear 1.754307 0.935008 1.754860 1.526798 5647.370276 8.806088e+05 0.719720 0.329961 0.086577
relu 0.211624 1.034071 0.237273 1.565826 4260.717151 2.003483e+03 0.730877 0330454  0.031503
selu 2552423 0780521 2.635373 1444083 7838.254286 1.260535e+06 0722171 0331534 0.135704
softplus 1.314638 16370323 1.444055 17.011838 3563482221 4.269162¢+05 0.681875 0213505 0.082940
softsign 1.253442 1.264298 1.317819 1894943 5518.256986 1.043452e+05 0.690402 0271768 0.085164
tanh 1.409874 1.050095 1.492792 1673141 6463.616205 4.185916e+05 0.713627 0.308033 0.079876

AverageKLLoss AverageReconLoss ManeuverKLLoss ManeuverReconloss LOCReconintersection SCNCintersection BalancedAccuracy ReconProbDiff JSDiff
Optimization

adadelta 1.785809 0.988274 1.857127 1.585921 65042346115 821040.663078 0.711858 0306989 0.088327

adam 2.592785 0.912426 2.737745 1.603903 7397.1703%0 914486.677797 0.702996 0.346108 0.156810
sgd 0.095447 7.678440 0.096646 8.216904 3515.309181 3547.186169 0.723836 0.253826 0.009125

AverageKLLoss AverageReconLoss ManeuverKLLoss ManeuverReconloss LOCReconintersection SCNCIntersection BalancedAccuracy ReconProbDiff JSDiff

Dropout
0.0 1.6050632 3.518387 1.662741 4153910 6103.692949 650885.76721 0.705411 0.290767 0.074274
0.1 1.377631 2.867707 1464939 3450575 5198.524175 508497.25082 0.720383 0.213848 0.095134
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