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Abstract— In this paper we introduce a software simulator
that has been used to develop an architecture for a low-cost
Lunar Autonomous Position, Navigation and Time (PNT) Sys-
tem, LAPS. LAPS is a conceptual architecture for providing
autonomous PNT services on and around the Moon using non-
dedicated low-cost orbital and ground assets. The simulation
tool has been developed to be flexible and is capable of modeling
and analyzing the many different capabilities and configurations
that the non-dedicated assets could support. The tool models
the creation of an ad hoc swarm, the localization of this swarm
and the subsequent provision of PNT services from this swarm.
We present results from several studies of select configurations
chosen to reflect existing and future real-world needs and capa-
bilities.

TABLE OF CONTENTS

1. INTRODUCTION. i ttuteerenronconssnsosssscascascnsss 1
2. BACKGROUND ..0viutensensenssssossosssscencascnnsns 2
3. THE LAPS SIMULATOR ..eiutiuiietieneecaecancnnans 2
4. ALGORITHMS ..ciuinrnenecncesessssncosossssacasnnes 3
5. TEST CASES t1viutininnrenrentsnsssssscsscescassnssns 5
6. RESULTS .iiiiiiiiinieetentensaassnsosssscascascnnans 6
7. CONCLUSIONS ¢ vtuteteesacncsassssncosossasacasnses 9
ACKNOWLEDGMENTS .0tivteeteacessoscsscescencessnsss 9
REFERENCES ..itiitieteetensensanssssssssscascascnsans 9
BIOGRAPHY ..viuiiniiineenrenceacencencancascascasanns 10

1. INTRODUCTION

Over the next few decades there is expected to be a sub-
stantial increase in Lunar missions supporting and inspired
by NASA’s return to the moon. A large fraction of these
missions will be low cost, utilizing ride-shares and CubeSat
form factors including Lunar Flashlight[1], Lunar IceCube[2]
and Luna H-Map|[3].

These low cost missions will need navigation capabilities but
will likely be unable to support the large power, mass and
weight that existing navigation technologies entail, such as
utilizing weak Global Navigation Satellite System (GNSS)
signals or using the Deep Space Network (DSN). One option
to provide a Lunar Position, Navigation and Time (PNT)
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service to these missions would be to create a dedicated
Lunar GNSS constellation, similar to Earth GNSS systems.
However, such a constellation would be expensive, with each
member of the constellation carrying dedicated hardware,
such as weak GNSS receivers and atomic clocks, necessary
to provide precise navigation signals. Further, dedicated
GNSS constellations are designed to provide a global 24/7
service that is under central control, and it is not clear that
there will be enough lunar users to support the resources
this would require. As an alternative, existing Lunar science
and exploration assets could be used to create a low-cost,
autonomous, ad-hoc and on demand mission-centric Lunar
PNT swarm capable of providing PNT services to these low-
cost lunar missions. This is the concept behind the Lunar
Autonomous PNT System, LAPS.

The future concept of operations for LAPS is illustrated in
Figure 1. In the first stage, a request is made by an end
user to provide PNT services to a specific area on the lunar
surface or orbit at a specific time. End users are assets
that require PNT services but cannot help to provide them
and may be ground based fixed or roving platforms, flyers
or orbital vehicles. In the second stage the existing lunar
assets that can usefully provide PNT services are selected
and scheduled from the pool of existing non-dedicated and
heterogeneous lunar science assets. Selection and scheduling
is based on existing asset availability and trajectories as
LAPS will neither control or maneuver the assets nor conflict
with existing asset missions. The selected swarm needs to
include at least one anchor node that may be ground or
orbital otherwise the swarm localization algorithms will not
converge. Anchor nodes have some ability to determine their
own location independent of the LAPS system. In the third
stage the selected assets localize themselves autonomously
using mutual two-way crosslinks. This localization happens
in a distributed manner whereby assets only localize with
respect to their in-range neighbors. The distributed approach
is a core feature of the LAPS architecture and fits with the
provision of services by non-dedicated assets on an ad-hoc
basis. In the fourth and final stage, the now localized swarm
assets can provide PNT services by means of a broadcast
signal to the requested areas or orbits.

By comparison, traditional Earth based GNSS systems do not
include the first two stages and have significant differences
in how stages three and four occur. The first two stages
are not required in existing GNSS systems as PNT services
are provided continuously from dedicated PNT assets, the
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Figure 1: Concept of Operations of LAPS

GNSS constellation. In GNSS systems the third stage, asset
localization, is done using ground-based radar precision orbit
determination and is managed centrally from Earth-based
operations centers. In comparison, LAPS uses decentralized
localization carried out onboard the assets. The user localiza-
tion algorithms used by GNSS in the final stage rely on the
well defined orbits and homogeneity of the GNSS constella-
tions. In comparison, LAPS user localization must account
for the irregular orbits and heterogeneity of the swarm.

The existing LAPS Simulator models the third and fourth
stages, and that is the focus of this paper. Eventually all three
stages following a user request will be modeled.

The two most prevalent use cases for distributed swarm space
systems are data collection and providing services. LAPS
is part of the larger Distributed Spacecraft Autonomy (DSA)
project[4], which includes demonstrations of both applica-
tions. A flight demonstration of distributed data collection
on board the Starlingl mission[5] is scheduled for 2021, and
the development of the LAPS Simulator will extend the flight
software approaches used in the Starlingl demonstration to
providing services. Further, the LAPS simulations will also
demonstrate the ability of the chosen approaches to scale
to large swarm sizes as part of the DSA Scalability Study
project phase. The inclusion of LAPS within the DSA project
means that the LAPS Simulator is more than just an academic
exercise: the algorithms will become the basis for fight
software that will be tested in a hardware-in-the-loop (HIL)
simulation in late 2021.

This paper focuses on the algorithms that have been imple-
mented in the LAPS Simulator so far and provides simulated
results of these algorithms in test cases representative of the
missions and environment that LAPS has been designed for.

2. BACKGROUND

The state of the art designs for lunar positioning technol-
ogy primarily utilize weak signal Global Positioning System
(GPS)[6] or high earth orbit (HEO) GPS[7]. Simulation
of these techniques has shown positioning errors of 100 m
(3 0)I[8], [9], [10] which will not meet many mission localiza-
tion requirements without additional user Inertial Navigation
System (INS) augmentation.

Current GPS infrastructure makes little use of automated
PNT algorithms. However, automated positioning techniques
for other multi-unit systems, such as robot swarms, have
received more attention and often rely on a distributed,
extended Kalman filter (DEKF) to coordinate all available
sensor measurements across the group[11], [12]. The DEKF

structure implies that each node runs its own local Kalman
filter that estimates its own position from its own sensor
measurements. Additionally, each local Kalman filter incor-
porates relative position information from neighboring nodes
when in range. At least one node in the network must have
access to an independent source of position knowledge to per-
mit observability and bounded uncertainty. DEKF techniques
for satellite groups with crosslink capabilities have also been
proposed[13].

Automated time synchronization among distributed nodes
has also received significant attention in the context of mobile
sensor networks. Various Kalman filter-based algorithms
have been developed for synchronization of local clocks
to a reference clock[14]. High accuracy, high-efficiency
implementations of such algorithms has been demonstrated
on underwater mobile sensor networks which also estimate
and exploit Doppler shift[15]. Hardware-centric solutions for
time-keeping in space that utilize high accuracy clocks are
also under parallel investigation[10], but this type of solution
is not pursued in LAPS.

Other NASA missions have begun to investigate the feasibil-
ity of a distributed solution to lunar PNT service and develop
necessary technologies. NASAs LunaNet architecture will fa-
cilitate data transfer among LunaNet users and could be used
to enable navigation message exchange[16]. NASAs Cislunar
Autonomous Positioning System Technology Operations and
Navigation Experiment (CAPSTONE) mission[17], sched-
uled to launch in 2021, intends to verify the dynamics of a
lunar near rectilinear halo orbit useful for long-term infras-
tructure such as PNT assets. It will also evaluate autonomous
navigation software through crosslink communication with
the Lunar Reconnaissance Orbiter (LRO)[18].

3. THE LAPS SIMULATOR

The LAPS simulator currently models the final two stages of
the LAPS architecture as illustrated in Figure 1. These stages
are the localization of the swarm assets that will provide PNT
services, and the localization of end users. The simulator
also produces quality of service metrics for the PNT services
that the localized swarm provides. The simulator has been
designed to be modular, allowing various localization tech-
niques and algorithms to be developed and tested without sig-
nificant changes to the framework. The simulation currently
supports distributed EKFs with pluggable dynamics models
for asset localization and weighted least squares for user
localization. The LAPS simulator also supports the use of a
centralized EKF (CEKF) for swarm localization. CEKFs are
not part of the LAPS concept and are used by the simulator to
provide a theoretical performance ceiling to compare DEKF



methods against. PNT quality of service modeling adopts
standard metrics from the GNSS community, including com-
puting dilution of precision[19] (DOP). Crucially, all asset
capabilities, including swarm clock accuracy, independent
location self-knowledge (e.g. from DSN or weak-GNSS)
and pseudorange timing measurement precision can be set
independently for each asset, reflecting the key concept of
utilizing non-dedicated assets. The simulator is predomi-
nantly implemented in MATLAB'. GMAT?, an open source
astrodynamics software program is used to propagate swarm
assets and generate ephemeris. Ephemeris is exchanged
between GMAT and MATLAB in the the CCSDS-OEM|[20]
format, allowing for alternative propagators to be used.

To date, the LAPS simulator has been used to develop and
refine algorithms. However, as the DSA project moves
toward the scalability study phase the simulator modules will
be used as prototype for flight software modules (specifically,
cFS® Apps) that will be used in the hardware-in-the-loop
simulators scheduled for FY22.

The modular and pluggable architecture of the LAPS simula-
tor means that it would be straightforward to use the simulator
for modeling autonomous distributed PNT systems in non-
Lunar environments. Indeed, only the dynamics model, a
pluggable function, would need to modified to achieve this.

4. ALGORITHMS

In this section the algorithms that have been developed for
use in LAPS for swarm asset localization and end-user local-
ization are discussed.

Asset Localization

Inline with the distributed nature of the LAPS swarm, state
estimation of swarm assets is primarily performed using
a distributed extended Kalman filter (DEKF) implemented
locally on each individual swarm asset. That is, the collective
state information of the full swarm is distributed over all
assets with each asset estimating its own state using an on
board extended Kalman filter and inter-satellite link (ISL)
measurements made with mutually visible assets. A cen-
tralized EKF is also implemented and is used to provide a
baseline to compare distributed algorithms against.

Anchor nodes— Anchor nodes are swarm assets with an in-
dependent onboard position capability, such as weak-GNSS,
DSN ranging or physical anchoring to the lunar surface.
Anchor nodes are required because the absolute inertial states
of the swarm assets are not observable using only inter-
satellite link (ISL) pseudorange measurements in a Kalman
filter when no asset state is perfectly known. Indeed, the
swarm asset state estimate error is unbounded, and the solu-
tion will diverge with time. For this reason, the swarm needs
to incorporate anchor nodes. Theoretically, the state estimate
error and covariance are bounded when only one anchor node
exists but the estimate error can become large if insufficient
anchor nodes are included.

Measurements— The developed DEKF uses swarm asset
to swarm asset pseudorange measurements made via inter-
satellite links (ISL) and swarm asset to ground node pseu-
dorange measurements to estimate the states of each swarm
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asset. Within the simulator at each measurement epoch, the
true range is computed between each asset and all other assets
that have a line-of-sight with the selected asset. Similarly, the
exact range between each swarm asset and all visible ground
assets is made assuming a configurable elevation cut-off angle
to ground nodes, nominally 10 °. The cut-off angle accounts
for local terrain that may occlude the line of sight between
ground nodes and swarm assets. Additive White Gaussian
Noise (AWGN) is added to each true range to simulate the
pseudorange measurement. Equation (1) is used to compute
the simulated measured pseudorange measurements where w
is a random sample from zero mean Gaussian distribution.

P = Pirue + W (1)

The AWGN used is expected to bound the error of the
pseudorange measurements but does not necessarily have
the same error profile. The use of AWGN does enable
development of Kalman filter algorithms which assumes that
the measurement error is AWGN and provides a baseline
performance the DEKF.

In the LAPS system, it is assumed that the measured pseu-
dorange is derived from a two-way ISL communication by
averaging the measured travel times in each direction, which
reduces the impact of relative clock bias between the two
swarm assets to only relativistic terms which are of the order
of tens of nanoseconds. This two-way synchronization is
modeled within the LAPS simulator and the AWGN noise,
w, 1s sized to account for this small residual bias. Jitter is not
explicitly considered and is assumed below other measure-
ment noise.

Pseudorange measurements between a swarm asset and an
anchor node are modeled as having half the covariance as that
used for the inter-swarm ISL measurements. This is done
under the assumption that the anchor nodes have a known
position and no clock error.

Filter State—Let the state being estimated by swarm asset ¢
be defined as in Equation (2),
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where *r and *v are the 7 th swarm asset’s position and inertial
velocity respectively. This contrasts with a centralized ex-
tended Kalman filter which estimates the states of all assets at
once on a central processor. The DEKF used is implemented
in a framework that simulates each asset performing estima-
tion steps individually. At any given measurement epoch,
each asset’s latest state estimate is propagated to the current
measurement time one at a time as though they perform this
action individually. The local measurements for each asset at
that epoch are used to update each asset one at a time in a
similar fashion. Measurement collection and localized state
estimation is performed as a Time Division Multiple Access
System (TDMA) comprised of two frames: measurement and
estimate. During the measurement frame each asset makes
pseudorange measurements with all other visible assets and
receives the current state estimate and state covariance of
each visible asset. During the estimate frame, each asset
estimates its own state using the information collected from
the ISL made during the measurement frame and this process
is cycled over the simulated time.

Filter Propagation—Each swarm asset propagates its own
state using a 2-body propagator defined in a Lunar-centered



inertial frame. This simple propagation model assumes that
the Moon is a point mass and that the swarm asset only ex-
periences lunar gravity force, ignoring all other perturbations.
The single asset state vector dynamics for the 2-body problem
is shown in Equation (3).

ip= || = ; 3
o= [ oier] ®

Where *+ is the 2-body acceleration experienced by the i th
orbital asset and p is the Moon’s gravitational parameter. At
this point the ¢ notation will be dropped and it is assumed
that each state vector and state covariance is that of a single
asset. With ()™ and ()~ denoting post-measurement update
and pre-measurement update respectively, and ( ), denoting
the k th iteration of the filter, the estimate propagation step is
iterated by Equation (4)

tht1
G = [ b )
tr

with xzr as the initial condition. Within the simulation, inte-
gration is performed by MATLAB’s odel 13() function which
employs a variable-step, variable-order Adams-Bashforth-
Moulton solver of orders one to thirteen and is effective in
numerically integrating non-stiff differential equations.

The Jacobian matrix that describes 2-body dynamics, denoted
A, is defined as the derivative of the state dynamics with
respect to the state and has an analytical solution as described
in Equation (5).
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The Jacobian matrix is used to compute the state transition
matrix, ®,. Let the state transition matrix be linearized
about some nominal trajectory and be defined such that some
deviation from that nominal trajectory at epoch k can be
propagated to time k + 1 by dzi1 = Ppdxy to a first order.
In the case of LAPS, the nominal trajectory is the estimated
trajectory over the propagation time and therefore ®j can be
used to propagate the state covariance between measurement
epochs. Because ®; propagates state deviations from k to
k + 1, it is computed by propagating the six-by-six identity
matrix from time k to k£ + 1 using the differential equation,
Equation (6), which is derived in Ref. [21] and has solution
given in Equation (7), where At is the time between k and
k+1.

b, = AD,, (6)
O, = exp (AAL) @)

The state transition matrix is then used to propagate the state
estimate covariance using Equation (8),

P =%P. 0 +Q (8)

where () is the analytical solution for the discrete time
process noise covariance matrix for a Newtonian system. A
rigorous derivation of the ) can be found in Ref. [21] and is
not derived in detail here but is reproduced in Equations (9)
to (12). It is important to note that this expression for )
assumes zero-order hold over the integration period and that
the unmodeled accelerations take the form of AWGN. The

zero-order hold assumption is valid for propagation times un-
der about 1/100 th of the characteristic period for the system
which in the test cases studies in this paper is the orbital
period.
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In Equations (9) to (12), At is the propagation time and o¢
is the standard deviation describing the process noise of the
unmodeled accelerations. This is a State Noise Compensation
(SNC) model which implies that the process noise is modeled
as is zero-mean, uncorrelated, Gaussian noise.

Filter Measurement Update— The increased measurement
covariance matrix method is used in performing the mea-
surement update in the implemented DEKF. This method is
useful in keeping each asset responsible for only estimating
its own state but also incorporating all the uncertainty that
goes into the predicted measurement. This measurement
update step used in the DEKF implementation is leveraged
from Ref. [13].

The nonlinear measurement function used to predict the
pseudorange is defined in Equation (13) where asset i is
predicting the range between itself and asset j to update its
own state. Recall that during the measurement frame, each
asset relays its current state estimate and estimate covariance
with surrounding swam assets that are in view.

ijﬁ:h(injr) = \/(ir—jr)T(ir—jr) (13)

In Equation (13), *r and 7 are the estimated position coor-
dinates of the ¢ th and jth swarm assets respectively. The
measurement sensitivity matrix, H, used to map deviations
in the state to deviations in measurement is defined such that
6p = Héx to a first order. The measurement sensitivity
matrix for a measurement made between the ¢th and jth
swarm assets being used to update the ¢ th swarm asset’s state
is stated in Equation (14)
? J 7 _J

:5h(7’, ’I") :(r T) (14)

Six iip

Note that the measurement sensitivity matrix for the jth
swarm asset is the negated measurement sensitivity matrix of
the 7 th swarm asset, as described in Equation (15)

TH=-'H (15)
As 'H is defined as the derivative of h with respect the i th

swarm asset’s state, there is assumed to be no uncertainty
mapped into the predicted measurement from the position of



the j th swarm asset. In reality, this is not the case because
the jth swarm asset’s position is not perfectly known and
is also being estimated. To accommodate this uncertainty
without having the ¢ th swarm asset estimate the state of the
7 th swarm asset as well as its own, which would decrease the
scalability of the DEKF by increasing the computational load
of each swarm asset, the measurement covariance is inflated
by the state estimate covariance matrix of the j th asset. The
augmented measurement covariance matrix used by the i th
asset is stated in Equation (16)

‘Rem = R, +7H P H” (16)

where R, is the measurement covariance matrix and ° R,
is the augmented measurement covariance used by the i th
swarm asset to update its own state. The augmented measure-
ment covariance matrix accounts for the uncertainties in the
measurement caused by pseudorange error such as clock bias
and latency as well as the uncertainty in the measurement that
comes from the fact that the position of the other asset is not
perfectly known. Equation (16) implies that the ¢ th swarm
asset requires knowledge of the j th swarm asset’s covariance
estimate. It is assumed that this information is exchanged
during the two-way pseudorange measurement, along with
the asset’s states.

User Localization

The user localization algorithms used in LAPS are heav-
ily influenced by those used in existing terrestrial GNSS
systems[19] and are based on the least-squares approach.
However, whereas in GNSS systems all GNSS assets pro-
viding service are assumed to have the same self-knowledge,
in LAPS each swarm asset will have varying degrees of
certainty of self-knowledge as expressed in the extended
Kalman filter’s covariance matrix. LAPS incorporates this
heterogeneity by including a weighting matrix in the least-
squares computation that is derived from the geometry and
swarm asset covariance matrix. As such, in addition to the
state estimates it is assumed that the navigation message also
includes each asset’s state covariance matrix at each epoch.

Measurements—At each epoch, pseudorange measurements
are made from the user’s true position to each visible PNT
asset. Simulated error in this measurement manifests as a
bias, tj, (in meters), added to the true ranges between the user
and each asset, determined by the user receiver clock error
Tk (in seconds), multiplied by the speed of light, cy, as in
Equation (17).

tr = (7 +N)co 17

The range bias t; is composed from the slow moving and
estimated user clock bias 73 (typically on the order of 10
milliseconds) and a smaller magnitude noise component, NV
(typically on the order of 10 nanoseconds). The simulated
pseudorange measurement is then given by Equation (18),

ﬁk = Puue T Lk (18)

where p¥ is the simulated user pseudorange measurement,
and pye 1S the true range between the user and a swarm asset.

Weighting Matrix—The weight assigned to an asset in the
least squares regression is determined by the projection of
the asset’s state covariance matrix, P, on to the unit vector
from the asset to the user’s estimated position, x, as show in
Eq. (19).

1
2T P

19)

w; =

where x is the asset-to-user unit vector, and P is the asset’s
position state covariance matrix. The weights for each asset
are then used to form the weight matrix W as shown in
Eq. (20).

w1 0 0
0 wy ... 0

w=1. S : (20)
0 0 ... w,

Herein lies an important distinction from common GNSS
methodology, where it is assumed that the information pro-
vided to the user regarding the state of the PNT asset is highly
accurate, meaning GNSS least squares weighting models are
typically built on knowledge of the error present in the user’s
measurements caused by atmospheric effects, signal noise,
etc. For LAPS, it is assumed that the user will have access to
the swarm assets’ state covariances, which can be employed
to improve the localization performance by decreasing an
asset’s contribution to the solution if its state is known less
precisely. The reliance on covariance information means that
the navigation message broadcast by swarm assets to users
also needs to include this information, in addition to the
usual swarm asset position information. The weight matrix is
applied in the least squares regression as shown in Eq. (21).

Sar = (ATWA) " ATWép, @)

where dxj, is the change in the estimated user state vector,
A is the system design matrix, and Jdps is the vector of
measurement residuals. Note that as the unit vector z is
dependent on the user’s estimated location and the weight
matrix is dependent on z, the weight matrix estimates must
be updated in each iteration of the least squares problem and
converge along with the user’s position estimate.

5. TEST CASES

To test the performance of the algorithms and simulator,
results from two canonical test cases are presented in this
paper. Test cases One and Two use frozen constellations that
provide low-latitude[22] and polar[23] coverage respectively,
and are detailed in Table 1. Frozen orbits were chosen to be
representative of future low cost missions with limited fuel
budgets. Test Case One, the large low-latitude constellation,
is designed to represent a swarm that could provide global
coverage if all assets were available and can provide upper
bounds to service availability. In contrast, Test Case Two, the
polar coverage constellation, represents a smaller swarm that
is still able to provide continuous PNT service to the lunar
south pole. Such a constellation could support missions such
as VIPER[24]. The two test case constellations are illustrated
in Figure 2.

Table 1: Test Cases

[ Metric | Test Case One | Test Case Two |
Coverage Area Low Latitudes South Pole
No. of Planes 3 3
No. of Assets 21 9
Inclination (deg) 39.71 56.2
Eccentricity 0.001 0.6
Semi-Major-Axis (km) 7298.6 6541.4




(a) Test Case One: Low Latitude

(b) Test Case Two: South Polar

Figure 2: Illustration Test Case Swarm Orbits

6. RESULTS

Results from running the asset localization and user localiza-
tion algorithms for the two test cases are described in this
section.

Asset Localization

This first results section describes the performance of the
distributed extended Kalman filter and provides a comparison
to the CEKF that demonstrates the benefits and draw backs of
utilizing a DEKF.

DEKF Results: Test Case One—The DEKF implemented
in this section uses the 2-body propagation and increased
measurement covariance update steps described in Section 4.
The variance of the inter-satellite pseudoranges was assumed
to be 10m? and pseudoranges were measured every 100s.
Twenty-two evenly distributed ground nodes were used as
anchor nodes.

Figure 3 displays the position estimate error for the seventh
asset in the third plane in that asset’s orbit frame. The z-
axis is in the orbit radial direction, the y-axis is in the along-
track direction, and the z-axis is in the orbit normal direction.
These results are representative of each asset.
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Figure 3: Position error and covariance estimates for one
swarm asset (Test Case One)

Insight can be drawn from plotting errors in the swarm asset’s
local orbital frame. The radial direction, the x-axis, has the
lowest error of the three directions because it is dominantly
updated by measurements made between the swarm asset

and lunar ground nodes which have reduced error compared
to ISL measurements. The along-track direction, the y-
axis, has a more random, and slightly lower error than that
of the z-axis because the along track direction position is
consistently being updated by the assets ahead and behind
it in the same plane. The orbital normal direction, the z-
axis, is updated dominantly by swarm assets in other planes
and even then these measurements are not as directly in the
orbital normal direction than as the other measurements are
in their respective directions because the planes all have an
inclination of 40 °.
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Figure 4: Measurement residuals (innovation) for one swarm
asset (Test Case One)

The measurement residual, or innovation, for the same asset
is shown in Figure 4 for every measurement made by that
asset. In Figure 4 the residuals and their 2 0 bounds are
shown superimposed over the seven-day period to illustrate
the performance of the filter with all measurements for a
single asset. The innovation is defined as the difference in
the predicted measurement computed after the propagation
step and before the measurement update step and the actual
measurement for that epoch. The mean innovation for this
asset is 7.20 x 1075 m and appears to approach zero as more
measurements are considered in the average. The inner co-
variance bounds correspond to measurements made between
this representative asset and the ground nodes. While the

outer 2 o bounds correspond to the measurements made via
ISL.

DEKF Results: Case Two—Figures 5 and 6 show the position
error and covariance estimates and the measurement residuals
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Figure 5: Position error and covariance estimates for one
swarm asset (Test Case Two)
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Figure 6: Measurement residuals (innovation) for one swarm
asset (Test Case Two)

for Test Case Two. The results for Test Case Two differ
in two key ways: the overall position errors and estimated
variances are higher; and there is a cyclical pattern to the both
estimated variances. The larger magnitude or filter errors,
covariance and residuals are expected given the much reduced
number of assets in the swarm. The cyclical patterns seen in
measurement residuals are coincident with the orbit anomaly
and reflective of the highly elliptic orbits used in Test Case
Two.

DEKF-CEKF Comparison—The CEKF algorithm is imple-
mented in the LAPS simulator to baseline the performance
of DEKF approaches. The CEKF estimates the states of
all assets simultaneously on a central processor using all
measurements at a given epoch while the DEKF has each
orbital asset estimate its own state using local measurements
based on available ISLs.

Figure 7 shows the position estimate accuracy performance
difference between the CEKF and the DEKF for a represen-
tative swarm asset. The left column in Figure 7 displays
the root-mean-square (RMS) position estimate error for the
CEKF and the left-hand column shows that of the DEKF.
The top row contains results simulated using the scenario
described previously in this section and the bottom row is the
same scenario modified to have eight lunar ground nodes and
only simulated over a day. The dashed lines are the mean
estimate error while the blue points are RMS error at each
epoch.

Table 2 summarizes the position errors for the cases with
eight and twenty anchor nodes. As can seen, the performance
of the DEKF is much more sensitive to the number of anchor
nodes than the CEKF is. It is also important to note the shape
of the error profiles. Despite the number of ground nodes, the

results for the CEKF have a more desirable shape because
they are consistently zero mean and randomly distributed.
The DEKEF has a similar form with 22 ground nodes but as
the number of ground nodes is decreased to 8, the shape of
the error becomes less random and therefore not as desirable.

Table 2: CEKF and DEKF Performance Dependence on
Number of Anchor Nodes

[ Number of Anchor Nodes | 22 [ 8]
CEKF Mean Error (m) 2.7 3.6
CEKF Max. Error (m) 12.3 | 14.1
DEKF Mean Error (m) 3.2 6.7
DEKF Max. Error (m) 132 | 253

In summary, CEKF performance can be closely matched
by the DEKF by increasing the number of anchor nodes
modeled. However, even with 22 anchor nodes, the CEKF
error is still lower than that of the DEKF. As the number
of anchor nodes decreases, the performance of the DEKF
degrades significantly while that of the CEKF only decreases
by a small margin. In addition to mean errors, the form of
the DEKF error becomes significantly less desirable as the
number of anchor nodes is decreased. Recall that the anchor
nodes are assumed to have no error in their positions for
this demonstration so the DEKF’s dependence on the anchor
nodes indicates that as a higher fidelity model is simulated,
introducing error in the ground node positions, the CEKF’s
performance margin over the DEKF will likely increase.
However, the performance of the DEKEF is still close to that
of the CEKF and is a viable option for replacing the CEKF.
More tuning to adjust for differing numbers of anchor nodes
should be performed before drawing more conclusions about
the DEKF’s performance.

Figure 8 compares the computation time to perform the
propagation and measurement update steps for the CEKF
and DEKF filters. To best reflect onboard computational
burdens, in the case of the CEKF, the mean time for a
single propagation step and a single measurement update
step is shown. For the DEKF, the mean propagation and
measurement update step time for a single asset to estimate
its own state is averaged over all assets, over all epochs.

As expected, as the number of assets increases in each plane,
the CEKF computation time required increases significantly
for both the measurement and propagation steps. However,
the time required by the DEKF remains nearly the same and
quickly becomes orders of magnitude smaller than the CEKF
computation time as the constellation grows. The DEKF not
only greatly increases the scalability of the LAPS system by
dispersing the computational load required to estimate the
states of the orbital assets throughout the constellation, it is
also operationally more practical than having all assets report
their inertial measurements to a single processor which then
updates those assets after performing estimation. The ob-
served results imply that the DEKF facilitates a significantly
more scalable system than the CEKF for only a minor loss in
estimate accuracy depending on the number of anchor nodes
modeled.

User Localization

In order to provide a broad view of the localization perfor-
mance of a given LAPS configuration, a grid of 200 user
positions was defined over the lunar surface as shown in
Figure 9. In these performance studies it is assumed that all
swarm assets are providing service all the time.
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Figure 8: Comparison of Computational Time between
DEKF and CEKEF for Propagation and Measurement Update
Steps

The LAPS simulation iterates through each of these sample
positions and estimates the user’s position at each time step.
Heat maps are produced which span the lunar surface and
color each location according to the median of the magnitude
of the position estimate error over the entire runtime. From
these heat maps, inefficiencies in the LAPS constellations
can be identified, and locations with poor localization per-
formance can be evaluated in-depth.

Case One—The results in this subsection are produced using
the circular low inclination swarm constellation. User clock
error was set to 1.5 milliseconds plus a noise component with
a standard deviation of 1 nanosecond. At each sampled loca-
tion, a visibility cutoff of 15 ° was imposed to mask any low-
elevation satellites that might be obstructed by terrain, or in
a real implementation might introduce significant multipath
error. The results from the localized swarm simulations as
presented in the previous subsection were used to provide
swarm asset covariances.

Figure 10 shows the heatmap of median position error esti-
mates for a twenty eight day simulation. This simulation time
period was selected to ensure full geometric diversity over a
full lunar day.

Figure 9: Simulated User Positions on Lunar Surface

As expected, the performance of the low latitude swarm
constellation degrades as the user’s latitude approaches the
polar regions and the asset visibility becomes limited, but this
configuration is still able to provide adequate performance
over most of the lunar surface. Some particular epochs can
be seen to exhibit particularly high position error, but these
spikes in error are typically not persistent and occur at epochs
where the dilution of precision (DOP) is high due to poor
geometry of visible assets.

In addition to overall heat maps, the LAPS simulation time
histories at individual locations can be generated, such as
shown in Figures 11 and 12.

Case Two—Figure 13 shows the 28-day heatmap showing
median position error for latitudes below 50 ° S (above this
latitude the polar swarm constellation is not able to provide
the minimum four satellite visibility for consistent service).
In this region, typical median position errors are between
10m and 15m. Figure 14 shows a time history for a user at
the Lunar south pole. The frequent time spent with only four
satellites in view shows that Case Two is close to a minimum
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Figure 11: Time History of Number of Assets in View For
Userat 20° N, 90° W

viable swarm size to provide consistent service at a pole.

7. CONCLUSIONS

In this paper a simulator that is being used to develop
the LAPS concept has been presented. Early results from
simulator test cases have already provided key insights into
how PNT performance is influenced by swarm configuration,
including swarm orbits and the number of anchor nodes uti-
lized. Performance with a small swarm constellation suitable
for south polar coverage has been studied, and with reason-
able assumptions about hardware capabilities, a localization
performance of around 10 m has been predicted.

Over the next several months the capabilities of the LAPS
simulator will be expanded to encompass all phases of the
LAPS concept of operations, including modeling the dis-
tributed resource scheduling stage and adding swarm net-
working models. Eventually, the LAPS simulator will pro-
vide the basis for a hardware in the loop demonstration of a
Lunar PNT swarm as part of the DSA Project.

In the future it is envisioned that the LAPS simulator will be
used to model PNT systems in other regions, such as Mars or
even in Earth orbit.
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