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ABSTRACT

The demand for a ride to work without 
running into the inefficiencies of  traffic in a 
bustling, metropolitan area beckons for a 
system to tackle on-the ground traffic 
congestion, thus fueling the need for Urban 
Air Mobility (UAM). The instant 
gratification culture, notably its effect on 
Generation Z, has given way to the nature of 
impulsive decision making. The 2020 
COVID-19 crisis, with its use of tap-to-
gratify technology, highlights passengers 
preferring late booking. This last-minute 
airport reorganization crisis spearheaded our 
research goal to create a more user-
personalized assessment of cancellation 
rates. Our research highlights that there will 
be a market in the 2030s for UAM, short-
distance air transportation, and the world 
must prepare for the challenges that come 
with this new market. Through a two-part 
model, we obtained two randomized sets of 
profiles of user-specific and ridership 
attributes and their relationship with 
cancellations. Recommendations for future 
research include factoring this personalized 
aspect into cancellation projections to 
provide reasoned user discounts as well as a 
remedy for the scheduling chaos that stems 
from the airport organizational crisis.  

1. INTRODUCTION
Technology bridges the gap between an
individual’s desire and its fulfillment. This
idea introduces the human psychological
phenomenon of instant gratification: the
desire for a reduction of time between
wanting something and getting it. With
everything becoming a click away, instant
gratification has become a reality; born with

these technological advancements at hand, 
instant gratification has become an 
expectation for Generation Z. Mohd Salleh’s 
research paper Overview of “Generation Z” 
Behavioural Characteristics and its Effect 
Towards Hostel Facility, she asserts that this 
quality affects their overall behavior. 
Furthermore, researcher Białaszek states that 
this quality is directly correlated with their 
impulsiveness in his work Impulsive people 
have a compulsion for immediate 
gratification—certain or uncertain. 

In response to an increase in traffic, 
notably in urban settings, the UAM industry 
works to decrease traffic on land by air-
transportation. With their technological 
advancements, many UAM models propose 
to have a touch-to-gratify system, thus slowly 
layering in the idea of instant gratification. 
By 2025, Generation Z will dominate the 
workforce and will be primary consumers of 
UAM. By understanding the mental 
framework of this generation, we will be able 
to better prepare for the uncertainties that will 
be presented in the future. With this 
cumulative shift in mentality comes a 
problem. In the early stages of the 2020 
COVID-19 Global Pandemic, uncertainty 
caused issues for airline planning. The 
International Air Transport Association 
highlights a 15 percent increase in passengers 
preferring late booking. 

For the purpose of the project, two 
aspects of the user needed to be taken into 
consideration: their ridership profiles, and 
personal characteristics. We filtered through 
studies discussing individual risk assessment 
by utilizing summary statistics from the 
“Demography of Risk Aversion” by Martin 
Halek and Joseph G. Eisenhauer and “Can 
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Risk Aversion Explain Schooling 
Attainments? Evidence from Italy” by 
Christian Belzil and Marco Leonardi. In 
obtaining data for a rider’s cancellation 
behavior, we utilized booking cancellation 
data for taxi rides in Bangalore.  

This report consists of the following 
sections: 2) Approach, 2.1) Data Extraction, 
2.2) Classification Model, 2.3) Individual 
Risk Assessment  3) Results, 3.1) Training 
Model Results, 3.2) Making Predictions 4) 
Discussion, 5) Conclusion.  
 
2. APPROACH  

2.1 DATA EXTRACTION  
In examining the Bangalore taxi ridership 
data, we obtained multiple parameters: the 
time and date of travel, the time and date of 
booking, the mode of booking 
(desktop/mobile), and two sets of latitude and 
longitude from which the user’s ride started 
and ended. We decided to not use “trip 
packages” or “type of travel” parameters 
because trips were split between three 
categories resembling the methods of travel 
(long distance, point-to-point, and hourly 
rental).  

Figure 1: Taxi Ride Type Table 
 

Due to the fact that UAM travel is 
targeted at urban populations, most UAM 
travels are meant to be short-term. Keeping 
this notion in mind, we extracted data points 

from the set solely filtering the cases in which 
a user travels from point-to-point.  

 In extracting data for the personal 
characteristics to evaluate individual risk 
assessment, we collected data which 
displayed the correlation between gender, 
employment status, education level, and 
income in terms of probabilities.  

Using limited sources created certain 
holes in the initial data collection that later 
led to some calculated assumptions. For one, 
ridership and user-specific data came from 
two separate sources, which is why we 
cannot draw any relationship between the 
cancellation probabilities derived from 
ridership characteristics, or those from user 
characteristics; the probabilities resulting 
from each are independent of their models. 
Additionally, the use of summary statistics 
within risk assessment caused us to assume 
that the population is evenly distributed. 
These ramifications do not allow us to make 
any calls on which portion of a single 
demographic, gender for instance, appeared 
more frequent in the risk category than 
others. This brings relevance to needing a 
combined dataset, for one population, 
measuring these attributes so that gross 
assumptions like these need not to be made.  

2.2 CLASSIFICATION MODEL  
After data collection and analysis, we 
developed a classification model to 
understand the problem of ridership 
cancellations. The input layer to the model 
has a shape of 18 neurons and contains 
information about a rider’s characteristics in 
a numerical representation. This includes the 
pickup and dropoff locations (in latitude and 
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longitude), the pickup and booking times, 
and the mode of booking (mobile or online 
website). The output layer of the model has a 
shape of 2 neurons, containing the 
probabilities that the user will fall under 
either the cancellation or non-cancellation 
class. The likelihood that a user will cancel a 
UAM ride solely on the details of travel is 
based on the probability that he/she falls in 
the cancellation class. The hidden layers of 
the model, the training parameters, and the 
number of filtered data points to be used for 
training, validation, and testing were 
determined after several trial and error 
attempts.  

Our preliminary model consisted of 2 
hidden dense layers, both of which contained 
64 neurons. We filtered out 1000 data points 
from the dataset and by following a ratio of 
70:20:10, reserved 700 data points for 
training, 200 data points for validation, and 
100 data points for testing. We used the 
“sparse categorical cross entropy” loss 
function, the “Adam” optimizer with the 
default learning rate of 0.1, and the 
“accuracy” metric as training parameters. 
This model was trained for 100 epochs. The 
architecture of the first model as well as a 
condensed summary of the training process 
are featured in the figure below.  

 
 

Figure 2: Initial Model Architecture, For further discussion 
of model structure, functions, optimizers, overfitting and 
underfitting,  See Appendix 6.2 
 

Two problems we encountered when 
training the data were overfitting and 
underfitting. We utilized a multitude of 
different strategies in order to troubleshoot.  

The first strategy we employed was 
adding two dropout layers to the model, 
specifically after the first and second hidden 
dense layers. This technique removes certain 
neurons and the features that they learn from 
training. The second technique we used was 
adding an “early stopping” call-back that 
measures the validation loss of the model 
with a patience of 10. This specifies that the 
call-back should stop the training process 
once it realizes that the validation loss is not 
improving for 10 consecutive epochs. Both of 
these techniques prevent overfitting of the 
training data. The third technique that we 
used was enlarging the filtered dataset to 
contain 5,500 data points to increase 
precision. Following the ratio of 70:20:10 as 
used in the previous model, we used 3850 
data points for training, 1100 data points for 
validation, and 550 data points for testing. 
The fourth technique we used was 
normalizing all of the data points. The final 
two techniques we implemented were 
lowering the learning rate of the “Adam” 
optimizer to 0.001 and specifying the number 
of times the training data should be trained 
per epoch. Both of these techniques increase 
the training time, which prevents 
underfitting. The final model architecture and 
a summary of the strategies are depicted in 
the figure below.  
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Figure 3: Final Model Architecture, For further discussion of 
model structure, functions, optimizers, overfitting and 
underfitting,  See Appendix 6.2 
 

2.3 INDIVIDUAL RISK ASSESSMENT  

 
Figure 4: Individual Risk Assessment Model, For further 
discussion of software and model structure see Appendix 6.2 
 

The second part of the program is the 
individual risk assessment model, which was 
created to determine the probability of a 
specific individual cancelling their UAM 
bookings last-minute. 

Taking into consideration personal 
characteristics as shown in Figure 4 of 
gender, employment status, and education 
level, we pulled from data, making a list of 
probabilities of how risk-seeking the 
individual would be in terms of their various 
characteristics. For the purposes of the 
model, we made the calculated assumption 
that an individual’s risk-seeking odds have a 

direct relation with their probability of 
cancelling their bookings last-minute.  

To create a single probability that 
most appropriately encapsulated an 
individual’s true odds of cancelling a UAM 
booking, we created a business rule in which 
the highest risk-seeking probability of the 
user’s characteristic-individual probability 
list would be the resulting last-minute 
cancellation probability. 

 From a technical standpoint, a list of 
probabilities was assigned to each attribute of 
the personal profile. Mathematical analysis 
enabled the extraction of the maximum 
percentage value as the underlying risk 
assessing probability for this single user.  

Thus, the program outputted the 
probability of a user cancelling their UAM 
booking last-minute. 

3. RESULTS  

3.1 TRAINING MODEL RESULTS 

We received an exceptional response to our 
strategies in the classification model. Our 
training accuracy reached 79.48% while our 
validation accuracy reached 78.48% in the 
87th epoch. Not only did our accuracy 
increase, but the training and validation 
accuracies turned out to be relatively similar. 
This means that there is no overfitting or 
underfitting of the training data.  

When we used our trained model to 
make predictions on our testing dataset, we 
found that we were able to reach 80.36% 
accuracy, which further shows that there is no 
overfitting. 
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Due to the ramifications of time 
constraints and limited amount of publicly 
available information, we were unable to 
obtain better training and validation 
accuracies. However, additional approaches 
that can be taken to improve accuracy on this 
model include tweaking some of the 
hyperparameters, deepening the model, and 
increasing the number of data points. 

3.2 MAKING PREDICTIONS 

After the creation of both models, we made 
our own predictions by creating our own 
users. We generated 20 random user profiles 
which had ridership characteristics such as 
when the user booked a taxi, where they were 
going, etc. as well as user-specific 
characteristics such as gender, education, etc. 
Using the classification model, we generated 
the cancellation probability for the user based 
on their ridership characteristics, and using 
the individual risk assessment, we generate 
the cancellation probability for the user based 
on the user-specific characteristics. We later 
calculated the differences between these 
percentages and stored them in a separate 
table. In the next few paragraphs, we will go 
over one specific user profile.  

For a user who created the booking on 
June 5th at 1:32 AM and left on June 5th at 
1:47 AM from an approximated latitude of 
12.99 and an approximated longitude of 77.6 
to an approximated latitude of 12.98 and an 
approximated longitude of 77.67, the odds of 
them cancelling their ride based on the 
classification model was 99.66%. This is 
depicted in Figure 5 below.  

Figure 5: Inputs and Outputs for Ridership Single Profile, 
Full 20 Profile Dataset featured in the Appendix 6.2 

 

For this same user example, when 
calculating percentages based on their user-
specific characteristics, which is shown 
below in Figure 6. 

 
Figure 6: Inputs and Outputs for single User Profile,  
Full 20 Profile Dataset featured in the Appendix 6.2 
 

The cancellation rates returned from each 
model didn’t match, which verified that 
cancellation rates solely based on rider 
specific data differed from cancellation rates 
that took user specific data. In order to check 
the validity of the different rates we received, 
we calculated the difference between both 
rates, which was about 63.66% as shown in 
Figure 7. 
 

 
Figure 7: Individual Risk & Model Percent Difference, 
Full 20 Profile Dataset featured in Appendix 6.2  

4. DISCUSSION 

The percent difference of the two models is 
relatively high, which validates that when 
determining cancellations for UAM, both 
ridership and user profiles need to be 
considered in order to get an accurate 
assessment of the user cancellation 
probability. Both qualities of a user are 
crucial factors in determining cancellation 
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probability, so cancellations based on 
ridership and user profiles must be equally 
researched. With that, NASA can utilize our 
concept in order to come up with an accurate 
cancellation percentage of a specific user.  

Acquiring data that takes parameters 
such as age, gender, financial status, and 
weather into consideration will allow the 
model to make more specific projections for 
individualized locations. Obtaining location 
specific data will allow the developers to 
inform UAM companies about how to best 
serve the needs of their users, personalizing 
cancellation probabilities to individuals and 
taking into consideration the conditions in 
which they are booking their rides. Specific 
to our risk assessment, our results show that 
a user of financial well-being does not factor 
their worries of money into their decisions, 
often making reckless decisions. By 
acknowledging the future pressure from rapid 
transportation from UAM that will create 
chaos, perhaps corporations can shift their 
research to this area, generating augmented 
datasets that combine the factors we tested on 
in our project. Implementing a policy in 
which users are charged higher rates for 
cancellation will help prevent the problem of 
individuals cancelling at the last minute. 
Discounted rates can be applied to low-
cancellation probability users. This way, the 
uncertainty of flight schedules can be 
somewhat regulated. 
 For future research, we recommend 
NASA to refine this model using more 
complete datasets from sources such as Uber 
and taxis. In addition, we were unable to take 
changes from COVID-19 into consideration 
due to limited publicly available data. We 
recommend NASA to observe current 

cancellation patterns and UAM launch delays 
due to COVID-19 to calculate a more refined 
model of future environments. 

Finally, consumer cancellation data 
can be extended beyond UAM. Companies 
like Doordash, Uber Eats, Amazon, and 
Airlines can use predictive modeling to 
predict cancellation percentages of their data 
so that they can better accommodate for 
changes. I wish i was dea 

5. CONCLUSION 

Our findings exist to aid in the process of 
predicting the behavior of air-service 
bookings in metropolitan areas.  
 Using studies like this one, future 
UAM companies can better prepare for the 
coming metropolitan population. Companies 
can foresee cancellations based on user 
ridership and personal characteristics and 
accommodate for these changes accordingly. 
With this information, they can alter their 
logistics ahead of time to minimize network 
disruption. 

Instant gratification and its effects on 
the Urban Air Mobility environment must be 
accounted for by creating a more 
personalized assessment of the cancellation 
behavior of individual users. This way, the 
future UAM industry will be able to tackle 
the fundamental issue of scheduling chaos. 
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6. APPENDICES 

6.1 GRAPHS 

 
Graph 1: Software, Training and Validation Loss (Epochs vs. Loss) 
 

The “Training and Validation Loss” graph, on the other hand, shows the loss curves for the 
training and validation data as the number of epochs increase. With more training, the loss of both 
the training and validation data decreases, which means that the model is able to better learn and 
identify relationships from the data.  

 
 

 
Graph 2: Software, Training and Validation Accuracy (Epochs vs. Accuracy) 
 

As shown in the legend above for the “Training and Validation Accuracy” graph, the green 
curve corresponds to the training accuracy and the blue curve corresponds to the validation 
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accuracy. They are both rising to approximately 80%, and the curves become relatively similar as 
the number of epochs increase. This shows that there is no overfitting of the data as the training 
and validation accuracies are relatively similar, and that there is no underfitting of the data either 
because both accuracies are relatively high.  

 
Graph 3: Results, Cancellation Based on Pickup Time (Time vs. Cancellation Probability) 
 
 As shown in the distribution of cancellation percentages for the time of day in which 
pickups occurred, the cancellations appear staggered, with a common trend of less cancellations 
from the morning till midday.  

6.2 SOFTWARE 
The following contains the detailed contents of the software portion of our research. All software 
was done in the Google Collaboratory coding environment in the Python programming language
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Figure 8: Training Details and Initial Model Structure, Contains layers, neurons, optimizers, metrics, and functions used 
 
                            

 
Figure 9: Additional/Modified Training Details and Model Structure, With improvement techniques, functions, and layers  
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Figure 10: Software, Build Ridership Classification Model Method 

Figure 11: Software, Initializing Ridership Classification Model Method 

 
 
Figure 12: Model Dense Layers & Parameters This figure contains each layer type,  neuron counts, and parameter count 
summaries and represents the structure of the developed model using machine learning tools and google colaboratory. 
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Figure 13: Software, Train and Evaluate Model Class  

 

Figure 14: Epochs 1-3 and 85-87, Depiction of the training process of the classification model 
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Figure 15: Loading and Saving of the trained model  

 

Figure 16: Individual Risk Assessment Method 
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Figure 17: Main Running Code, Software Steps 
 
 
 
 

 
Figure 18 Results, Full 20 Profile Risk Assessment Output This figure illustrates the user-specific cancellation predictions that 
the model made for each of the 20 corresponding user profiles profiles.  
 



S. ADESARA, H. JAGGI, A. LEE, K. LUNDBLAD, S. RAJKUMAR: PREDICTIVE MODELLING  

 
 

14 

 
Figure 19: Results, Full 20 Profile Ridership Classification Output This figure illustrates the rider cancellation predictions 
that the model made for each of the 20 randomly generated ridership profiles.  

 
Figure 20: Results, Percent Difference between Ridership Classification and Risk Assessment Percentages This figure 
shows the differences between the percentages generated by the classification model and the individual risk assessment for each 
of the 20 profiles. 
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Figure 21: Test Dataset Prediction Results: This figure represents the cancellation percentages outputted by the model for the 
first 20 rows of the test dataset, and their corresponding labels or “ground-truth,” which measures how valid the predictions of the 
model are. For example, in the first row of this table, the cancellation label is equal to 0, which tells us that the user cancelled 
their ride. When we look at the model prediction for the user, we see that the cancellation prediction was 0.55%, which shows 
that the model predicted that the user will most likely not cancel. This demonstrates that the model was accurate in this 
prediction. There are some rows that do not have accurate predictions and that is because only 80% accuracy was achieved for 
the test dataset.  
 

6.3 TECHNICAL TERMS 

Dropout layers - Layers that are used to “drop out” or remove certain neurons and the features 
that they learn from training, which prevents the model from overfitting, or memorizing all of the 
features of the train dataset. 

“Early Stopping” call-back - A call-back that is used to stop training early if the model is not 
improving its ability to make generalized predictions. This prevents overfitting as it stops the 
training process once it realizes that the model is only memorizing the training data. This call-back 
takes a measuring metric and a patience factor as parameters. The measuring metric specifies what 
the call-back should measure and the patience factor specifies the number of consecutive epochs 
for which to check if the measuring metric is improving. In our model, we specified that the model 
should measure the validation loss with a patience of 10. This specifies that the call-back should 
stop the training process once it realizes that the validation loss is not improving for 10 consecutive 
epochs. 
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Epoch - One scan through all the batches of the training dataset using weights for each neuron to 
calculate the output. In the case of classification, the output represents the probability distribution 
that a set of inputs falls into each of the specified classes.   

Learning Rate - A hyperparameter used in the optimizer algorithm that specifies the speed at 
which the model learns the dataset. Specifically, the learning rate specifies the step size that the 
model takes towards reaching the optimal weights for the neurons. A smaller learning rate means 
a smaller step size and a larger learning rate means a larger step size. It usually takes some trial 
and error to determine the best learning rate for a model. In our model, we used a learning rate of 
0.001.  

Loss Function - A function that is used after each epoch to evaluate how inaccurate the predictions 
of the model are in comparison to the actual output. The loss function used in our classification 
model is the “sparse categorical cross entropy” loss function.   

Metric - A parameter that is used to measure the training, validation, and testing accuracies of the 
model. The most commonly used metric in classification is the “accuracy” metric, however it 
should only be applied to models when the dataset being used has a relatively even distribution of 
data points for each class. Since our filtered dataset contained an even distribution of data points 
for the cancellation and non-cancellation classes, we were able to use this metric in our model.  

Normalization - A technique used to scale the values in the data set between the ranges of 0-1 to 
reach a more robust relationship between points during the training process. We used 
standardization to achieve normalization of our filtered dataset.  

Optimizer - An algorithm that is used once the loss is evaluated to reassign weights to the neurons 
to improve the accuracy rates. The optimizer takes a learning rate as a hyperparameter, and if not 
specified, uses the default of 0.1. In our model, we used the “Adam” optimizer with a learning rate 
of 0.001. 

Overfitting - A condition where the model is just memorizing the training data with each epoch 
and is not able to generalize well on new data, limiting its use in making real-world predictions. 
This can be detected if the validation accuracy is low in comparison to the training accuracy.  

Testing Accuracy - The accuracy that the model achieves on the testing dataset after the training 
process which reflects how well the model is able to make real-world predictions. 

Training Accuracy - The accuracy that the model achieves on the data used for training the model 
at the end of each epoch. If the training accuracy is really low, that is a sign of underfitting.  

Underfitting - A condition where the model is not able to sufficiently learn from the training data. 
This can be detected if the training and validation accuracies are really low.  

Validation Accuracy - The accuracy that the model achieves on the validation data, which is data 
that is a part of the training dataset that the model does not train on, at the end of each epoch. This 
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accuracy depicts how well the model is able to generalize. If the validation accuracy is low in 
comparison to the training accuracy that is a sign of overfitting.  
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