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Bilal M.M. Bomani 
National Aeronautics and Space Administration 
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Cleveland, Ohio 44135 

Executive Summary 
A cube satellite (CubeSat) is an evolving and emerging 

technology that gives a novice or advanced researcher relatively 
affordable access to space research experiments and 
applications. The initial CubeSat standard was created in 1999 
by California Polytechnic State University, San Luis Obispo 
and Stanford University’s Space Systems Development Lab to 
facilitate direct access to space for university students. This 
initial CubeSat standard has now been adopted by hundreds of 
organizations worldwide and includes not only universities, 
educational institutions, but private firms and government 
organizations. Dozens of CubeSats have been launched since 
2003 and have come from more than 29 states in the United 
States. The CubeSat standard facilitates frequent and affordable 
access to space with launch opportunities available on most 
launch vehicles. 

CubeSats are a class of research spacecraft called 
nanosatellites and are built to standard CubeSat Units or U 
dimensions of 10 by 10 by 10 cm and are formally classified as 
1U, 2U, 3U, or 6U in size. Most CubeSats are deployed from a 
Poly-Picosatellite Orbital Deployer called a P-POD. 
Partnerships among NASA, U.S. industry, and educational 
institutions are being formed to build upon existing successful 
CubeSat initiatives with a goal to expand and include launching 
50 small satellites from 50 states within the next several years. 

An extensive and detailed literature review that includes over 
830 citations has been conducted to provide a comprehensive 
resource on both NASA and non-NASA CubeSat experiments 
and applications that can serve as a guide for background 
information on CubeSats as well as a valuable resource of lessons 
learned from CubeSats that have been launched in the past. 

CubeSats are currently being launched from all over the world 
on different launch vehicle platforms. Some organizations 
providing launch opportunities are California Polytechnic State 
University (http://www.cubesat.org/contactus), ISISPACE Group 
(https://www.isispace.nl/), Nanoracks (http://nanoracks.com/), 
Spaceflight Industries, Inc. (http://spaceflight.com/), TriSept 
Corporation (https://trisept.com/), and Tyvak Nano-Satellite 
Systems, Inc. (https://www.tyvak.com/). 

CubeSat Background and History 

A cube satellite (CubeSat) is a nanosatellite and is any 
satellite that has a total mass of between 1 to 10 kg. In general, 
the term “nanosatellite” also covers all CubeSats, PocketQubes, 
TubeSats, SunCubes, ThinSats, and nonstandard picosatellites. 

The original CubeSat Project concept in 1999 was a 
collaborative research effort between Dr. Jordi Puig-Suari at 
California Polytechnic State University (Cal Poly), San Luis 
Obispo, and Professor Bob Twiggs at Stanford University. 
Their goal was to develop a new class of picosatellites, also 
referred to as the “CubeSat standard” (Ref. 1). The CubeSat 
standard is defined in the CubeSat Design Specification (CDS), 
rev. 13 (Ref. 2). The CDS is an initial resource that covers the 
general, mechanical, electrical, operational, as well as testing 
requirements in order to launch a CubeSat. However, one 
cannot launch just a solitary CubeSat but must also consider the 
deployment system. Typically, if a CubeSat is launched in the 
United States, a Poly-Picosatellite Orbital Deployer (P-POD) is 
the CubeSat deployment system. Figure 1 shows what a 
standard P-POD and cross section should look like. 

A typical P-POD is capable of carrying three standard 
CubeSats and serves as the interface between the CubeSat and 
the launch vehicle. The P-POD is essentially a rectangular box 
with a door and a spring mechanism that is utilized to deploy 
the CubeSat. Once the release mechanism of the P-POD is 
actuated by a deployment signal from the launch vehicle, a set 
of torsion springs at the door hinge force the door open and the 
CubeSats are deployed by the main spring gliding on its rails 
and the P-POD rails. The P-POD is made up of anodized 
aluminum. CubeSats must be compatible with the P-POD to 
ensure the safety and success of any mission. The P-POD is also 
backwards compatible since any CubeSat within the CDS 
rev. 9 or later will not have compatibility issues. Any person 
seeking to deploy a CubeSat should design to the most recent 
CDS to take full advantage of the P-PODs features (Ref. 2). The 
P-POD plays a vital role as it serves as the unique interface
between the launch vehicle and the CubeSat.

There are 11 general requirements in order to conform to a 
typical CubeSat specification. In addition, there are 17 CubeSat 

http://www.cubesat.org/contactus
https://www.isispace.nl/
http://nanoracks.com/
http://spaceflight.com/
https://trisept.com/
https://www.tyvak.com/
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Figure 1.—Poly-Picosatellite Orbital Deployer (P-POD). 

(a) P-POD. (b) Cross section (from Ref. 2). 

 
mechanical requirements, nine electrical requirements, seven 
operational requirements, and five testing requirements that 
need to be met in order to gain approval to deploy a CubeSat. 
All requirements are listed in CDS rev. 13 (Ref. 2). 

There are currently six different approved sizes for CubeSats 
in the United States including 1U, 1.5U, 2U, 3U, and 6U, and 
all have unique requirements. A 1U CubeSat is limited to a 100- 
by 100- by 113.50-mm volume and must typically weigh less 
than 1,000 g. A 1.5U CubeSat is limited to a 100- by 100- by  
170.2-mm volume and must typically weigh less than 1,500 g. 
A 2U CubeSat is limited to a 100- by 100- by 227.0-mm volume 
and limited to 2,000 g. A 3U CubeSat is limited to a 100- by 
100- by 340.5-mm volume and limited to 3,000 g. A 6U 
CubeSat is limited to a 100- by 226.3- by 386.0-mm volume 

and limited to 6,000 g. Each CubeSat has a minimum 
requirement for springs and deployment switches that must be 
adhered to (Refs. 2 and 3). 

In the United States, there have been dozens of documented 
CubeSat missions dating back to 2003 with the Eurokot Launch. 
Table I contains a sampling of launch dates and CubeSats 
launched. A complete list of the actual CubeSat launches can be 
searched on the official CubeSat website (Ref. 4). 

According to an international nanosatellites database  
(Ref. 4), there have been 1,186 nanosatellites launched of which 
1,088 have been CubeSats. There have been two interplanetary 
CubeSat launches, 87 nanosatellites have been destroyed on 
launch, there are 64 countries with nanosatellites and there are 
over 3,000 nanosatellites predicted to be launched worldwide 
in the next 6 yr (Ref. 5).  

One of the most valuable resources for CubeSats is the 
CubeSat developer’s conference. A complete list of all CubeSat 
workshops dating back to 2004 can be found in one location 
(Ref. 6). This is one of the most comprehensive presentation 
databases on CubeSats for anyone interested in launching a 
CubeSat.  

In presenting the background and history of CubeSats, one 
may find the most overlooked barrier to the novice person 
interested in launching a CubeSat is price or just how much it 
costs to launch a CubeSat. It is estimated that a CubeSat launch 
can cost as little as $10,000 to as much as $500,000 depending 
on what type of CubeSat you are interested in launching. There 
are companies that will sell you a CubeSat kit that you can 
utilize to build your own CubeSat, but you will still need a way 
to launch it into space. There are several organizations that offer 
an experimenter the ability to propose a CubeSat experiment 
and they will provide all of the funding needed. One such 
organization is NASA and their CubeSat Launch Initiative 
(CSLI) (Ref. 7).  

NASA CSLI provides access to space for small satellites, 
CubeSats, developed by the NASA centers and programs, 
educational institutions, and nonprofit organizations giving 
CubeSat developers access to a low-cost pathway to conduct 
research in the areas of science, exploration, technology 
development, education, or operations. 

Through the Educational Launch of Nanosatellites (ELaNa) 
missions, International Space Station (ISS) deployment 
opportunities, or rideshare launches to space via existing launch 
services of government, payloads are provided, as well as 
dedicated CubeSat launches from the newly selected contracts 
for the CubeSats selected through CSLI. To participate in the 
CSLI program, CubeSat investigations should be in alignment 
with the NASA Strategic Plan. 
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TABLE I.—CUBESAT MISSIONS 
Launch  

date 
CubeSat launched  Launch date CubeSat launched 

6/20/2003 Eurokot  10/28/2011 Delta II NPP 

10/27/2005 Kosmos 3M Student Space Exploration and 
Technology Initiative (SSETI) Express Launch 

 2/13/2012 Vega Maiden 

2/22/2006 M–V–8 ASTRO–F  9/13/2012 Atlas V OUTSat (Operationally Unique 
Technologies Satellite) 

7/26/2006 Dnepr EgyptSat  4/18/2014 Falcon 9 CRS–3 (Commercial Resupply 
Services—3) 

12/16/2006 Minotaur I TacSat–2  6/19/2014 Dnepr UniSat–6 

4/17/2007 Dnepr launch completed  1/31/2015 Delta II SMAP (Soil Moisture Active Passive) 

5/19/2009 Minotaur I TacSat–3  5/20/2015 Atlas V ULTRASat (Ultra Lightweight 
Technology and Research Auxiliary Satellite) 

9/23/2009 PSLV–C14  10/8/2015 Atlas V GRACE (Government Rideshare 
Advanced Concepts Experiment) 

11/20/2010 Minotaur IV STP–S26  11/5/2015 ElaNa–7 (Educational Launch of Nanosatellites—
7) Super Strypi 

12/8/2010 Falcon 9 Dragon  11/13/2017 Delta II JPSS–1 (Joint Polar Satellite System—1)/ 
ELaNa–14 

4/4/2011 Taurus XL Glory  9/18/2018 Delta II ICESat–e (Ice, Cloud and land Elevation 
Satellite)/ELaNa–18 

 
 
The CSLI is an integrated cross agency collaborative effort 

led by NASA Human Exploration and Operations Mission 
Directorate to streamline and prioritize rideshare and 
deployment opportunities of CubeSats. CSLI opportunities are 
available to NASA centers, U.S. not-for-profit organizations, 
and accredited U.S. educational organizations. In the past, 
selected science investigation missions have studied Earth’s 
atmosphere, near-Earth objects, space weather, and biological 
sciences. Technology demonstration missions have included in-
space propulsion, space power, radiation testing, and solar sails. 

By providing a progression of educational opportunities 
including CSLI for students, teachers, and faculty, NASA 
assists the Nation in attracting and retaining students in the 
science, technology, engineering, and mathematics (STEM) 
disciplines. This strengthens the future workforce of NASA and 
the Nation. Further, the CSLI promotes and develops 
innovative technology partnerships among NASA, U.S. 
industry, and other sectors for the benefit of Agency programs 
and projects. NASA thus gains a mechanism to use CubeSats 
for low-cost technology development or pathfinders. 

Since its inception, 85 CubeSat missions have been flown on 
22 ELaNa Missions with 34 manifested for flight. ELaNa 
missions have included: BisonSat (first CubeSat built by a tribal 
college), TJ3Sat (first CubeSat built by a high school), and the 

St. Thomas More Satellite 1 or STMSat–1 (first CubeSat built 
by an elementary school). 

NASA has selected and prioritized 176 CubeSat missions from 
93 unique organizations representing 39 states and the District of 
Columbia. The 39 states include the following: Alabama, Alaska, 
Arizona, Arkansas, California, Colorado, Connecticut, Florida, 
Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, 
Kentucky, Louisiana, Maryland, Massachusetts, Michigan, 
Minnesota, Missouri, Montana, New Jersey, New Mexico, New 
York, North Dakota, Ohio, Oregon, Pennsylvania, Rhode Island, 
Tennessee, Texas, Utah, Vermont, Virginia, Washington, West 
Virginia, and Wisconsin (Ref. 7). References 8 and 9 list past 
NASA CubeSat launches dating back to 2011 as well as 
upcoming CubeSat missions.  

If one does not have access to NASA resources or is 
unsuccessful in obtaining a proposal for a CubeSat launch, then 
private funding can still be an option. There are several 
companies that provide CubeSat services, from initial concept 
to launch with variable pricing based on CubeSat configuration.  

It should be noted that the CubeSat standard has been highly 
successful. Since 2014, more than half of the satellites that were 
launched into orbit were CubeSats (Ref. 10) and today, there 
are more commercial CubeSat launches than academia due  
to the fact that when compared to conventional satellites, 
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CubeSats are inexpensive to develop and launch and can be 
networked together to form constellations.  

CubeSats are primarily utilized by academia for research, 
government entities and the military for science purposes,  
and commercial companies for applications such as 
telecommunications, video, and sensing applications. However, 
many CubeSat missions fail to launch. It is estimated that since 
2000, over 40 percent of CubeSat missions were categorized as 
launch fail, dead on arrival, or early loss (Ref. 10). As many 
CubeSat missions are transitioning away from academic 
towards commercial venture, reliability expectations are 
changing, and mission lifetimes are being extended from 
months to years with reliability being paramount for these 
durations.  

What follows is more specific CubeSat missions, launches, 
experiments, and technologies that have had a significant 
impact in the CubeSat community and can be used as a guide 
or lessons learned for anyone interested in launching a CubeSat 
in the future. We specifically concentrated on four major areas: 
(1) thermal management, a process that needs to be performed 
to ensure proper outgassing of all CubeSat components, (2) 
deployment mechanisms, which must be designed to meet the 
P-POD Cal Poly standard, (3) power generation, which is 
limited to 10 W and the available onboard power, and (4) 
communications, where CubeSat operators need to comply with 
their country’s radio license agreements and restrictions. In 
addition, we have included an extensive bibliography to serve 
as a reference list for hundreds of CubeSat research 
technologies, projects, experiments, and launches that are 
applicable to the field of CubeSat research and development.  

CubeSats and Thermal Management 
As part of the CubeSat testing and validation process, 

CubeSats need to pass a thermal vacuum bakeout process, 
which needs to be performed to ensure proper outgassing of all 
CubeSat components. The test specification for thermal 
vacuum bakeout is typically outlined by the launch provider 
(Ref. 1).  

In a vacuum environment, heat is transferred in by way of 
radiation and conduction. The internal environment of a fully 
enclosed small satellite is usually dominated by conductive heat 
transfer, while the overall energy balance and outside 
environment are driven purely via thermal radiation. The 
thermal radiation environment is manipulated by using 
materials that have certain specific radiative properties, 
commonly referred to as “solar absorptivity” (implying 
wavelengths in the range of approximately 0.3 to 3 µm) and 
infrared (IR) emissivity (approximately 3 to 50 µm). Solar 
absorptivity governs how much of the impinging solar flux a 
spacecraft absorbs, while IR emissivity determines how well a 

spacecraft emits its thermal energy to space, relative to a perfect 
blackbody emitter. These properties are almost entirely surface 
properties of a material and can be modified simply by adding 
specialized coatings, platings, polishings, or even adhesive 
tapes of specific materials (Ref. 11). 

Thermal insulation acts as a thermal radiation barrier from 
incoming solar flux and also to prevent excessive heat 
dissipation. Components used to ensure the temperature 
requirements are met in CubeSats include multilayer 
insulation (MLI) as well as heaters for the battery. MLI 
blankets are typically used as thermal insulation to maintain a 
temperature range for the electronics and batteries during 
orbit, or more recently, for biological payloads. In addition, 
metalized tapes are becoming increasingly common for small 
spacecraft applications. MLI is fairly delicate and drops 
drastically in performance if compressed, so it should be used 
with caution or avoided altogether on the exterior of small 
satellites that fit into a deployer such as a P-POD. Another 
passive method of thermal control is the application of matte 
paint, which can alter the solar absorbance and IR emittance 
of a surface material (Ref. 11). 

It is important to conduct experimental analysis and 
simulation of any spacecraft’s thermal output in order to 
optimize a CubeSat’s thermal management components and 
techniques. CubeSats with special thermal concerns, often 
associated with certain deployment mechanisms and payloads 
may have to be tested in a thermal vacuum chamber before a 
successful launch.  

Satellites in orbit are heated by radiative heat emitted from 
the Sun directly and reflected off Earth. Heat is also generated 
by the CubeSat’s components and must be cooled by radiating 
heat into space if the environment is cooler than the spacecraft. 
All radiative heat sources and sinks are rather constant and very 
predictable as long as the CubeSat’s orbit and eclipse time are 
known (Ref. 11).  

What follows is a review (Refs. 11 to 27) of CubeSat thermal 
management research conducted in the recent past. 

Anderson et al. (Ref. 12) investigated the need for advanced 
cooled electro-optical instrumentation in remote observations 
of the atmosphere as demonstrated by Sounding of the 
Atmosphere Using Broadband Emission Radiometry (SABER) 
on the Thermosphere Ionosphere Mesosphere Energetics 
Dynamics (TIMED) mission. The relatively new use of small 
satellites in remote Earth-observing missions, as well as the 
challenges, are epitomized by the upcoming National Oceanic 
and Atmospheric Administration (NOAA) Earth Observing 
Nanosatellite—Infrared (EON–IR) 12U CubeSat missions. 
These advanced CubeSat missions, which hope to accomplish 
scientific objectives on the same scale as larger more traditional 
satellites, require advanced miniaturized cryocoolers and active 
methods for thermal management and power control. The 
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Active CryoCubeSat (ACCS) project is a demonstration of such 
a technology. Utilizing ultrasonic additive manufacturing 
(UAM) techniques, a mechanically pumped fluid loop (MPFL) 
and miniature pumps and cryocoolers are used to create a 
closed-loop fluid-based heat interchange system. The ACCS 
project creates a two-stage thermal control system (TCS) 
targeting 6U CubeSat platforms. The first stage is composed of 
a miniature Ricor K508N cryocooler, while the second is 
formed by a UAM-fabricated heat exchanger MPFL system 
powered by a TCS Micropumps Limited, M510 micropump. 
The working fluid is exchanged between a built-in chassis heat 
exchanger and a deployable tracking radiator. This work details 
the theory design and testing of a relevant ground-based 
prototype and the analysis and modeling of the results as well 
as the development of a design tool to help in customized active 
thermal control designs for small satellites. Ultimately, the 
ACCS project hopes to enable a new generation of advanced 
CubeSat atmospheric observing missions. 

Athirah et al. (Ref. 13) discuss the stress and thermal analysis 
on the CubeSat structure to study the survivability of the 
CubeSat during the launching process or operating condition at 
the orbit. Various designs of mechanical structures were 
analyzed to determine the best design for different mission 
requirements. Analysis on the temperature of the batteries was 
conducted as it is one of the most critical components that must 
operate in the required temperature to avoid failure of the 
CubeSat. ANSYS 13.0 (Ansys, Inc.) was used to simulate both 
the structural and thermal analysis. Static structural analysis 
was used to study the impact of g-force on the CubeSat during 
the launching process, and Icepak (Ansys, Inc.) was used to 
study the internal temperature. The results were compiled in 
table form and comparisons were made among different designs 
to determine the advantages and disadvantages of each design. 
Results from simulation such as safety factor, weight, internal 
available space, and battery discharge rate were analyzed. They 
surmised that there is no best design in the CubeSat structure 
but only the most suitable design for the mission purposes and 
battery discharge rate will play an important role to determine 
the requirement of a heater in the CubeSat.  

Thanarasi (Ref. 14) investigates the thermal analysis of 
CubeSat in a hot and cold worst-case environment using finite 
element analysis. Since the thermal subsystem is not 
independent of other devices, it is important to know how all 
elements in the spacecraft can have an influence on the thermal 
environment, either by emitting or absorbing energy or both. 
Their finite element analysis methodology was used in order to 
determine the spacecraft’s operating temperature ranges. They 
used MSC Nastran and MSC Patran software (MSC Software 
Corporation) as their finite element analysis modeling tool. The 
design of their thermal system was based on passive methods 
and this approach is vital to avoid power consumption in cases 

where it would not be necessary. The goal is to design a thermal 
subsystem to operate the spacecraft throughout its mission 
phases without any failure.  

Butler-Craig (Ref. 15) investigates the thermal behavior of 
high power density 3U CubeSats that are capable of supporting 
high-impulse missions. This mission is a technology 
demonstration of a 100-W power management and distribution 
system aboard a small-volume CubeSat that can serve as 
evidence of CubeSats being able to provide high power to the 
subsystems necessary to support high-impulse missions. They 
explored the thermal behavior of a CubeSat subjected to 
substantial waste heat due to extra power generation. They also 
conducted a thermal vacuum test and concluded that, despite 
100 W of waste heat being deposited into the system, the 
thermal limits of the electrical components were not exceeded 
and remained at steady-state operable temperatures. The 
thermal vacuum test proved that the Advanced Electrical Bus 
(ALBus) CubeSat was able to provide enough power without 
overheating to the detriment of its electrical components. The 
study is intended to enhance the feasibility assessment of high 
power density CubeSats capable of high-impulse missions. 

Gorev et al. (Ref. 16) discuss the thermal deformation of a 
3U CubeSat in low Earth orbit (LEO) and the impact of uneven 
heating. Their calculations showed that the thermal deformation 
of a CubeSat structure in orbit caused a deviation between 
normals to opposite small satellite sides of about 0.03°. This 
deviation is commensurate with the required satellite pointing 
accuracy, approximately 0.1°, necessary for satellite laser 
communication. Their study shows that to solve similar 
problems in the CubeSat designing that require this or better 
CubeSat pointing accuracy, it is necessary to consider the 
expected satellite structure thermal deformation. 

Ibrahim and Yamaguchi (Ref. 17) conducted a study aimed 
at predicting the types of thermally induced dynamics that can 
occur on CubeSats that fly in LEO. They utilized four short-
edge deployable solar panels based on historic temperature 
profiles using thermal analysis software. The results were used 
in a numerical simulation to determine the structural response 
of the solar panels and the effect of pointing the direction of the 
satellite using inertia relief methods. They concluded that the 
thermal snap motion could occur during eclipse transition due 
to rapid temperature changes in the solar panel’s cross sections. 
Their work examines how temperature affects the solar panels 
pointed toward the Sun throughout the daylight period and 
pointed to the Earth while in the shadow to calculate and predict 
the potential temperature profile differences that can affect 
CubeSats. 

Nader (Ref. 18) researches the use of carbon nanotubes for 
thermal distribution and transfer bus systems for 1U CubeSats. 
He and his team reviewed the need to develop a heat dissipation 
and transfer system for components on the NEE–01 Pegasus 
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satellite in order to avoid freeing while the satellite was in the 
eclipse part of its orbit. Several materials and designs were 
tested in order to achieve the best thermal transfer rates as 
indicated by the specifications. Extensive testing from the 
manufacturing specifications of target components was 
conducted until they achieved the best results using multiwalled 
carbon nanotube sheets to manufacture a thermal transfer bus. 
This thermal transfer system will allow the spacecraft to route 
the internally generated heat, as well as any heat coming from 
outside their MLI to penetrate the external hull, to be efficiently 
sinked to their four battery arrays that are used as thermal 
dissipation masses. In order to ensure the survival of 
commercial-off-the-shelf (COTS) electronics longer than any 
other previous missions, they designed a miniature version of 
an MLI system. The requirements were to fend off up to 
60 percent of incoming heat, to protect the electronics against 
alpha and beta particles, to shield them from plasma discharges, 
and to attenuate most of X and gamma radiations. The result 
was the SEAM/NEMEA Space Environment Attenuation 
Manifold, a multistage MLI capable of blocking alpha, beta, X, 
and gamma radiations and to block up to 67 percent of incoming 
heat, while retaining internal heat over the eclipse phase, 
NEMEA can also attenuate and even neutralize electromagnetic 
pulse and plasma discharge events. 

Garzón and Villanueva (Ref. 19) presented a model for 
predicting the temperature of 3U CubeSat in a LEO, which 
supposes a single temperature common to all satellite 
components. The report includes a detailed analytical 
computation of the external heat fluxes for a particular orbit and 
spacecraft assumptions based on the features foreseen for 
satellite Libertad 2 under development at Universidad Sergio 
Arboleda. He and his team computed the heat fluxes and their 
associated temperature for all possible orbital orientations and 
combined these results with a description of the satellite orbital 
plane rotation (nodal regression) and the solar motion on the 
ecliptic. The goal is to determine the minima and maxima of the 
orbital temperature oscillation for a mission lifetime of a year. 
They found that for feasible model parameters, the temperature 
extremes are mostly within the operating temperature range of 
the most sensitive satellite component, 0 ≤ T ≤ 60 °C, which 
suggest mission viability. The report also discusses possible 
model improvements that would allow testing of satellite design 
upgrades. It surmises that the calculation of the external heat 
fluxes described can be carried over, relatively unchanged, to a 
more accurate model describing heat transfer between satellite 
parts with different temperatures. 

Darbali-Zamora, Cobo-Yepes, and Ortiz-Rivera (Ref. 20) 
present the effects that varying temperature conditions have on 
the efficiency of size constrained electronic power supply (EPS) 
subsystems designed for the power management of small 
satellites. In general, the power distribution of a CubeSat is 

composed of multiple direct current to direct current converters 
that provide maximum power point tracking (MPPT) and voltage 
regulation. The performance of these converters can be affected 
when operating at extreme temperature conditions. Typically, a 
CubeSat EPS can be subjected to temperatures of –40 up to 80 
°C. For this reason, thermal considerations during the design 
process of the EPS are vital. This article illustrates an EPS 
prototype designed, constructed, and tested to withstand low- and 
high-temperature conditions found in space. Efficiency results 
are also obtained under different thermal conditions.  

Thaheer (Ref. 21) measured electron density for the Malaysia 
Youth Satellite (MYSat) CubeSat with the primary objective of 
measuring the electron density in ionosphere E layer for 
validation of the electromagnetic model for natural disaster 
management developed by Universiti Sains Malaysia while at 
the same time developing university capabilities in building 
nanosatellites. This project was designed to inspire and prepare 
future space professionals by providing university students with 
practical experience in all parts of a real space project and to 
improve their motivation to work in the fields of space 
technology and science, this way helping to ensure the 
availability of a suitable and talented workforce in the future.  
In collaboration with the Malaysian Space Agency, university 
students produced an orbit simulation using Analytical  
Graphic, Inc.’s System Tool Kit (STK) software and the results 
of the mission design include orbital lifetime, ground track 
accessibility, and lighting times. Using those results, 
preliminary design of each subsystem, such as thermal, 
structure, power, communication, and attitude control, can be 
constructed.  

Rievers, Milke, and Salden (Ref. 22) designed a CubeSat in 
situ degradation detector for the TCS. In order to evaluate this 
system, material parameters specifying the conductive and 
radiative properties of the different TCS components have to be 
known including their respective variations within the mission 
lifetime. More specifically, the thermo-optical properties of the 
outer surfaces including critical TCS components such as 
radiators and thermal insulation are subject to degradation 
caused by interaction with the space environment. The 
evaluation of these material parameters by means of ground 
testing is a time-consuming and expensive endeavor. Long-
term in situ measurements on board the ISS or large satellites 
not only realize a better implementation of the influence of the 
space environment but also imply high costs. Motivated by this 
fact, a nanosatellite-scale degradation sensor concept that 
realizes low power consumption and data rates compatible with 
nanosatellite boundaries at ultra-high frequency (UHF) radio 
was developed. By means of a predefined measurement and 
messaging cycle, temperature curves were measured and 
evaluated on ground to extract the change of absorptivity and 
emissivity over mission lifetime.  
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Isaacs et al. (Ref. 23) developed FlexCool technology that 
optimizes flat heat pipes for optimal thermal management of 
CubeSats. For this application, they performed initial testing 
and modeling of a flat, conformable, lightweight, and efficient 
two-phase heat strap called FlexCool, currently being 
developed at Roccor1. Using acetone as the working fluid, the 
heat strap has an average effective thermal conductivity of 
2,149 W/m⋅K, which is approximately four times greater than 
the thermal conductivity of pure copper. In addition, the heat 
strap has a total thickness of only 0.86 mm and is able to 
withstand internal vapor pressures as high as 930 kPa, 
demonstrating the suitability of the heat strap for orbital 
environments where pressure differences can be large. A 
reduced-order, closed-form theoretical model was developed in 
order to predict the maximum heat load achieved by the heat 
strap for different design and operating parameters. The model 
is validated using experimental measurements and is used here 
in combination with a generic algorithm to optimize the design 
of the heat strap with respect to maximizing heat transport 
capability. 

Yamaoka et al. (Ref. 24) explain that while it is known that 
cosmic rays are accelerated and propagated to the Earth in 
association with solar flares, the particle acceleration 
mechanism is still unknown. Only neutrons can be a direct 
probe to clarify the ion acceleration mechanism in the Sun 
because they are not affected by the magnetic field, and thus 
directly travel to the Earth with original acceleration 
information. There have only been a few 10-s solar neutron 
events detected since their discovery in 1980 because the 
energy is attenuated by the Earth’s atmosphere and previous 
ground-based neutron detectors have insufficient sensitivity. 
One space-based detector on board the ISS and dedicated for 
solar neutron observation has detected more than 20 solar 
neutrons so far but suffers from secondary neutron background 
from the huge mass of the ISS itself. Small satellites with a tiny 
mass are expected to perform highly sensitive observation with 
much smaller neutron background. They discuss a CubeSat 
designed to detect neutrons whose energies are lower than 
100 MeV. The satellite should consist of a very compact and 
high-sensitive solar neutron spectrometer and supporting bus 
system. The detector utilizes novel photon-detector MPPC 
(Multi-Pixel Photon Counter), which realizes the smaller 
detector size. This device has not been used in the space 
environment and its on-orbit verification is another purpose of 
this mission. For the satellite system design, this mission 
requires a relatively large power budget because continuous 
observation during sunshine should be realized as much as 
possible. In addition, the detector should be kept at low 
temperature to reduce the thermal noise of the MPPC. The 
planned CubeSat design is to equip the custom-made radiator, 
which is made from the novel composite material that has a high 

thermal conductivity, and a novel power management system 
with the model-based battery status estimator. They describe 
the details of this satellite system design status to achieve the 
mission requirements.  

Al Qasim et al. (Ref. 25) developed the Nayif–1 CubeSat, 
which was the first CubeSat mission from the United Arab 
Emirates (UAE). The Nayif–1 mission goal was to make space 
technologies more accessible to universities in the UAE. Nayif–1 
is a 1U Amateur Radio communications satellite that was on 
board a Falcon 9 rocket in 2016. The four main goals of the 
mission were to characterize, validate, and study the accuracy of 
its thermal model with in situ temperature measurements in space; 
determine and study the evolution of the solar cells performance 
in space during the mission design life of 1 year; allow high-
school-level students to determine Nayif–1’s orbital velocity 
using the Doppler shift effect observed through the ground station; 
and allow secondary and tertiary students to emit short text 
messages using the Nayif–1 satellite.  

Janzer et al. (Ref. 26) investigated TCSs for high-power 
applications on CubeSats based on the increase in CubeSat 
missions with energy demanding payloads and the ongoing 
miniaturization of electric components. For upcoming 
commercial and scientific missions, it is important to overcome 
thermal challenges and provide the necessary thermal 
conditions for demanding payloads and subsystems in the dense 
packaging of the CubeSat form factor. CubeSats evolved from 
mostly educational tools to accepted platforms for business and 
science and thus thermal management for small spacecraft 
gained more and more significance over the last few years. In 
past research, the Technical University of Munich focused on 
thermal modeling of CubeSats and passive thermal control 
mechanisms. They have continued this research effort for high-
power applications for CubeSats where passive thermal control 
might not be sufficient. The inherent limits of the CubeSat form 
factor strongly limit the option for active thermal control. In 
order to evaluate the active thermal control mechanisms, they 
have summarized mathematical models of the physical 
principles and give an overview of preliminary calculations. A 
case study with a power-demanding electric propulsion system 
for CubeSats showed the feasibility of the evaluated 
mechanisms. They present the results of using various TCSs in 
a reference mission in ESATAN–TMS (ITP Aero), giving a 
first evaluation of the impact each thermal control method has 
on the designed mission and the electric propulsion system.  

Lastly, a LARES (Laser Relativity Satellite) system, which 
was the first payload of the new Vega European launcher 
successfully launched from Kourou spaceport on February 13, 
2012. The LARES system’s primary goal was to deploy the 
LARES. The LARES’s main goal is the measurement with high 
accuracy of the Lense-Thirring effect. Two secondary 
objectives were assigned to the mission: to provide a separation 
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platform for additional payloads and to support the launcher 
qualification. The LARES system successfully deployed Alma 
Mater Satellite—1 (ALMASat–1), an Italian microsatellite, and 
seven European Space Agency (ESA) picosatellite CubeSats, 
educational payloads. In order to support Vega qualification, 
the system included standalone telemetry avionics devoted to 
monitor the payload bay environmental conditions during the 
different flight phases and providing video recording of lift-off 
and launcher stages separation, and of payload ejections, by two 
cameras. They describe the TCS of the LARES system,  
and the last-minute recovery actions carried on the hardware,  
to cope with the updated environmental conditions, 
communicated a few months before the launch when the 
hardware was already stored and ready for integration on the 
launcher. In addition, the LARES thermal description is 
provided and a set of thermal models were built (Ref. 27). 

CubeSats and Deployment Mechanisms 
As part of the standardized CubeSat deployment system, a 

CubeSat design must meet the P-POD Cal Poly standard. As 
mentioned in the introduction, the P-POD is a rectangular box 
with a door and a spring mechanism. Once the release mechanism 
of the P-POD is actuated by a deployment signal sent from the 
launch vehicle, a set of torsion springs at the door hinge force the 
door open and the CubeSats are deployed by the main spring 
gliding on its rails and the P-POD’s rails. CubeSats slide along a 
series of rails during ejection into orbit. CubeSats must be 
compatible with the P-POD to ensure the safety and success of 
the mission by meeting the requirements (Refs. 1 to 3). 

The CubeSat deployment mechanism challenge becomes 
how to design a reliable and innovative deployment mechanism 
solution that can be implemented now and for future missions 
successfully. Most CubeSat deployment systems utilize some 
sort of mechanical spring to provide the ejection force upon 
deployment. Mechanisms such as tape springs are often used on 
satellites to deploy solar panels, antennas, telescopes, and solar 
sails. Their main advantage comes from the fact that their 
motion results from the elastic deformation of structural 
components. CubeSats have problems in designing antenna 
deployment systems due to the challenge of packaging the 
whole deployable structure in a small spacecraft.  

CubeSats have the potential to provide the means to explore 
space and to perform science in a more affordable way. In order 
to facilitate reliable data collection from sensitive instruments, 
deployable booms provide a means of separation from the 
spacecraft. Inflatable structures and antennas can be packaged 
efficiently occupying a small amount of space, and they  
can provide, once deployed, large dish dimension and 
correspondent gain. The more relaxed control requirements 
typically relevant to CubeSat missions open the door for 

innovative technologies that can replace large and expensive 
legacy attitude control and propulsion systems.   

One significant issue with the number of CubeSat missions 
that have occurred is the issue of orbital debris handling and 
mitigation. Since the beginning of the space era, a huge amount 
of debris has progressively been generated. Most of the objects 
launched into space are still orbiting the Earth and today these 
objects represent a threat both in space and on Earth. The 
presence of space debris incurs risk of collision and damage to 
operational satellites. A credible solution has emerged over 
recent years, namely, actively removing heavy debris objects 
by capturing them and then disposing of them by destructive 
reentry in the Earth’s atmosphere. This includes reducing the 
amount of debris, minimizing the risk of in-space collisions, 
and minimizing the hazards to persons and property on the 
ground from debris reentry. The safety and feasibility of future 
space missions strictly depends on the development of studies 
concentrating on active debris removal solutions. 

As the need for high-gain antennas for CubeSats begin to 
evolve, deployable reflector antennas have regained significant 
interest. A particular class of deployable reflectors known as 
umbrella reflectors have been considered for several CubeSat 
missions. Large deployable antennas (LDAs) are an upcoming 
technique used as spaceborne reflector antennas. Low stow 
volume and mass are the key advantages allowing big reflector 
diameters to be launched on conventional vehicles. A primary 
concern in reflector antenna building is surface accuracy, 
especially at high operating frequencies. Conventional LDAs 
use sophisticated high-cost mechanics to deploy a mesh 
structure with low surface error. Deployable structures are also 
used as a drag sail to deorbit satellites when their lifetime is 
exceeded.  

What follows is an extensive review (Refs. 28 to 109) of 
CubeSat deployment mechanics research ranging from LDAs, 
inflatable antennas, tethered CubeSat deployment, and more 
importantly, CubeSat missions dedicated to debris mitigation 
and the safety of CubeSat launches now and in the future.  

Abdelwahab, Nawari, and Abdalla (Ref. 28) discuss a Sun-
tracking solar cell array system concept to develop a maximum 
power point tracker for the UOKSat–3 CubeSat, a 2U CubeSat 
with deployable solar panels. This report details the 
effectiveness and importance of the tracking process, the 
impacts of the tracking mechanism on the attitude 
determination and control, and their interfacings to rotate the 
CubeSat. It also presents the MPPT’s performance and its 
results to study the change of the input energy. 

Rawashdeh et al. (Ref. 29) describe the design, modeling, and 
analysis of an attitude control system for a ram-facing picoclass 
satellite in LEO. A 3U (30 by 10 by 10 cm3) CubeSat is designed 
to maintain one 10 by 10-cm2 face aligned with the velocity 
vector throughout the orbit. The solution presented implements 
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deployable drag fins and resembles a shuttlecock design, which 
is shown to be capable of providing passive stabilization for 
orbits below 500 km. A simplified Direct Simulation Monte 
Carlo (DSMC) method is used to model the rarefied atmosphere 
and its interaction with the spacecraft body for a range of fin 
geometries. Stability characteristics and pointing errors are 
shown for altitudes ranging from 300 to 450 km with fin lengths 
from 2 to 30 cm at angles from 0° to 90°. 

Atas, Demiral, and Tekinalp (Ref. 30) analyze boom 
deployment vibration for a solar sail 3U CubeSat. The damping 
of the boom vibration using shape memory alloys is examined. 
They found that shape memory alloys do not reduce vibration 
below a certain level. Vibration damping via inherent friction 
in the deployment system is also considered. The analysis 
showed that the vibration may be completely damped due to the 
inherent friction in the deployment system. 

Vilán et al. (Ref. 31) reported the results for the antenna 
deployment mechanism on the CubeSat (Refs. 1 and 4) 
Xatcobeo picosatellite that was launched in 2012. The main 
feature of the device is its extremely lightweight, achieved by 
using polymeric materials and additive manufacturing. 
Analysis was not only made of detailed characteristics but also 
of the advantages of using this combination, its validity after 
almost 2 years of perfect operation in orbit on Xatcobeo, and its 
latest operational success on HumSat–D. The results show that 
it deployed as expected in orbit and that it continues to operate 
correctly on both missions, not only in terms of the deployment 
mechanism but also the materials used. The analysis focuses on 
the mechanism’s operational reliability and long useful 
lifetime.  

Martinotti (Ref. 32) presented a mechanical design of a 
deployable solar panel system for Sun-pointing 1U, 2U, and 3U 
CubeSats. The basic idea is to enlarge the solar panels total 
surface with 12 multiple-deployable panels. The deployable 
system uses four solar panels connected to the Sun-pointing 
face (+Z) of the satellite and four couples of panels connected 
to the opposite one (–Z). Solar panels unfold simultaneously 
using torsion springs designed according to the size of the 
CubeSat. After opening, the four panels of +Z face rotate 45° 
around the vertical axis in order to avoid the shading of the 
lower panels connected to the –Z face. There is a specific 
mechanical subsystem for this rotation that uses a torsion 
spring, which allows installation of a sun sensor for the attitude. 
Final configuration with deployed panels modifies inertia 
properties of the satellite significantly increasing the inertia 
moment along the Z axis allowing a possible spin stabilized 
attitude around this axis. Final results show that it is possible to 
have a maximum available surface area that varies between 895 
and 2,700 cm2 for 1U and 3U CubeSats, respectively, and in 
terms of power, a value between 30 and 100 W (depending on 
the efficiency of the solar cells). 

Babuscia et al. (Ref. 33) investigate the possibility of 
developing deployable, noninflatable antennas compatible with 
CubeSat dimensions and constraints. Their research provides 
potential answers on the possible dimensions for an inflatable 
antenna for small satellites, on the gain and resolution that can 
be achieved, and on the deployment and inflation mechanism 
compatible with CubeSat.  

Greenbaum et al. (Ref. 34) have developed an optical moon 
baffle for stray light attenuation for use on ExoplanetSat, a 3U 
CubeSat being developed jointly by the Massachusetts Institute 
of Technology (MIT) and Draper Laboratory that aims to detect 
transiting exoplanets via precision photometry. They discuss 
the optical and mechanical design of the baffle, as well as the 
optical performance as demonstrated through the test of a 
prototype. The baffle collapses to fit into a small volume around 
ExoplanetSat’s lens and deploys on orbit to a full length of  
12 cm. The baffle is capable of attenuating moonlight by a 
factor of 105 at a lunar exclusion angle of 30°. 

Zhang and Zhou (Ref. 35) utilized an electromagnet to 
develop a fast-response door release mechanism for the 
CubeSat Star of Aoxiang, by resetting a spring at the time of 
power off and unlocked by electromagnetic force at the time of 
power on. The measurement values agreed well with their 
simulation results and showed that the unlocking time was  
41.2 ms and the current was 2.2 A and the energy consumption 
was only 2.5 J at the typical voltage of 28 V. On the condition 
of mechanical and thermal vacuum ground environment and 
down-deflection of ±5 V, the electromagnet door release 
mechanism could lock and unlock reliably. The proposed door 
release mechanism was successfully applied to unlocking and 
launching the Star of Aoxiang on orbit.  

Benedetti et al. (Ref. 36) conducted a study to access  
a CubeSat’s ability to complement an interplanetary scientific 
mission. More specifically, they investigated the AIDA 
(Asteroid Impact and Deflection Assessment) mission, an  
ESA and NASA joint effort to demonstrate the kinetic impact 
technique to change the motion of an asteroid in space.  
Their study shows that CubeSats can be successfully integrated 
as multiplatform systems to provide useful support to 
interplanetary missions. They provide a useful framework for 
the design and development of interplanetary CubeSat 
missions. 

Santoni et al. (Refs. 37 and 38) investigate the limitations of 
available onboard power of CubeSats. These reports describe 
the design and realization of an enhanced deployable solar 
panel system for CubeSats that focused on system modularity. 
The system developed is the basis for a SADA (Solar Array 
Drive Assembly), in which a maneuvering capability is added 
to the deployed solar array in order to follow the apparent 
motion of the Sun. They compared different deployment 
concepts and architectures, leading to the final selection for 
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their modular design. The deployment system is based on a 
plastic fiber wire and thermal cutters, guaranteeing a suitable 
level of reliability. The maximum power delivered by the 
system is about 50.4 W, which increased CubeSat solar array 
performance at the time it was designed. 

Hong et al. (Ref. 39) conducted an early feasibility study 
using two deployer spacecraft, both moving on polar Earth 
orbits. They outline a proof-of-concept single-stage propulsion 
system that provides necessary propulsive input for the velocity 
change needed for the orbital inclination change of CubeSats. 
A series of illustrative simulations are given to demonstrate that 
sufficient and effective coverage of the Earth is achieved using 
the designed CubeSat constellation. 

Sauder and Thomson (Ref. 40) developed a Ka-band high-
gain antenna that could provide a 10,000-time increase in data 
communication rates over an X-band patch antenna and a 100-
time increase over state-of-the-art S-band parabolic antennas. 
Their Ka-band parabolic deployable antenna (KaPDA) design 
aims to solve conflicting mechanical requirements on surface 
accuracy, stowed space, and ability to deploy. They used 
folding ribs to fit in the stowage space, deep rib sections with 
precision hinges to maintain surface accuracy, and a 
combination of an innovative inflating bladder and springs to 
deploy the antenna. RF simulations show that after losses, 
KaPDA would have about a 42-dB gain, at 50-percent 
efficiency. KaPDA could potentially create opportunities for a 
host of new CubeSat missions by allowing high data rate 
communication that would enable using data-intensive 
instruments or venturing further into deep space, including 
interplanetary missions. 

Kuwahara et al. (Ref. 41) investigated small-satellite space 
debris that could affect current and future CubeSat activities. 
They concentrated on debris prevention and reduction methods. 
They also initiated a development activity of sail deployment 
mechanisms in order to deorbit the used microsatellite mainly 
by means of the residual atmospheric drags. The mechanism 
has a cylindrical form and utilizes unique deployable booms 
that can be folded down very compactly. Three different sizes 
were developed, and their functionalities were verified. The 
important characteristic of this mechanism is that the size of the 
sail can be modified very easily depending on the requirements 
of the spacecraft. Preparing different size sails, this kind of 
deorbit mechanism can become the standard prevention and 
reduction measures of space debris.  

Crisp, Smith, and Hollingsworth (Ref. 42) investigated the 
development of distributed systems or constellations of small 
satellites. Two strategies were discussed in this report, which 
have the potential to significantly increase the viability of 
small-satellite constellations in Earth orbit. Deployment using 
natural Earth perturbations to indirectly achieve plane 
separations is analyzed using a developed method and 

compared to deployment utilizing the Earth-Moon Lagrange 
point L1 as a staging area prior to return to LEO. The analysis 
of three example missions indicates that these two strategies can 
facilitate the successful establishment of small-satellite 
constellations in Earth orbit, while also reducing propulsive 
requirements, system complexity, and/or cost. The study also 
found that the method of nodal precession is sensitive to the 
effects of orbital decay due to drag and can result in long 
deployment times, and the use of Lunar L1 is more suitable for 
constellation configurations where several satellites are present 
in each orbital plane. 

Budianu et al. (Ref. 43) investigated intersatellite links for 
ensuring the success of CubeSat swarm missions. Nevertheless, 
it has hardly been considered until now. Depending on the type 
of application, required data rates can go up to tens of megabits 
per second, while power consumption and physical size are 
limited by the platform. The proposed communication scheme 
will combine power-efficient modulation and channel coding 
with multiple access and spread spectrum techniques, enabling 
the deployment of multiple satellites. They designed an antenna 
system such that links can be established and maintained 
independent of the satellites’ orientation. An electrically 
steerable radiation pattern is achieved by placing antennas on 
each face of the cube. Conformal beamforming provides the 
system with 5 dBi gain for any desired direction of 
transmission, eliminating the need for attitude control. In 
addition, using planar antennas reduced the complexity of the 
mechanical part as they require no deployment. 

Lim et al. (Ref. 44) discuss the challenges of the student-built 
VELOX–I nanosatellite as well as an alternative solution. The 
VELOX–I development process was improved through the past 
picosatellite development and operation experience. These 
challenges include the in-house design deployment mechanism, 
optical extension tube, multilayer insulator, and impact of 3U 
CubeSat structure on the communication system. Each design 
is required to meet several requirements such as operating 
temperature, overall thickness, and satellite mass. The success 
of VELOX–I ground contact and primary payload mission has 
proven the flight heritage of their presented design solutions. 

Manohar and Rahmat-Samii (Ref. 45) utilized umbrella 
reflectors as an option for CubeSat missions. The umbrella 
reflector’s surface consists of a discrete number of parabolic 
ribs that are connected through surfaces called gores. The gores 
cause the surface to deviate from that of an ideal paraboloid 
causing phase deviations in the aperture, ultimately leading to 
reduced gain. The choice of the number of ribs is a critical 
design consideration for CubeSat antenna designs as it provides 
the balance between mechanical complexity and RF loss. They 
analyzed umbrella reflectors with the intent of developing a 
relationship between the gain loss, parameters of the umbrella 
reflector (number of gores, aperture, diameter, and rib focal 
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length), and frequency. Combining the root-mean-square error 
from the best-fit approach and Ruze’s equation, it was shown 
that the gain loss scales are (√D/Ng)4 for a given Fr/D and 
frequency. The effects of amplitude taper were also 
incorporated into analysis. The validity of the closed-form 
expressions was shown through comparisons with physical 
optics’ simulations. 

Dolan et al. (Ref. 46) discuss a student-led sounding rocket 
experiment, StrathSat–R, which was supposed to be used to test 
novel inflatable structures in space conditions. The experiment 
aimed to test novel inflatable space technology in milligravity 
and micropressure conditions. It consisted of three distinct 
sections, the ejection housing on the rocket and two ejectable 
modules that are based on a CubeSat architecture measuring 10 
by 11 by 13 cm. Shortly before reaching apogee, the two 
satellites were going to be ejected from the rocket and deploy 
their individual inflating structure during free flight. However, 
on May 9, 2012, the StrathSat–R experiment was launched 
onboard the sounding rocket REXUS 13 (Rocket Experiments 
for University Students 13) but failed to be ejected due to a 
procedure error. 

Pirat et al. (Ref. 47) study two in-orbit demonstration (IOD) 
missions using CubeSat technologies. These IODs aim at 
alleviating the technical risk inherent to new technologies 
required for active debris removal (ADR) of large space 
objects, by using small and low-cost CubeSat systems. This 
report demonstrates how mission design and Guidance, 
Navigation, and Control (GNC) can serve the verification of 
navigation sensors performances as well as the validation of 
uncooperative debris capture using a net. Each mission is 
composed of a chaser and a target. The former being an 8U 
CubeSat and the latter a 4U, launched together in a 12U 
deployer. Both satellites are three-axis attitude controlled. The 
chaser has, in addition, three degrees of freedom (DOFs) 
translation capability using 1-mN cold-gas thrusters. Both 
CubeSats utilized Global Navigation Satellite System receivers 
to assist in the determination of range and relative velocity. This 
system provides a reference validation for the rotational 
vibration sensors. The relative position and velocity to be 
controlled are fully observable. Based on the mission design, 
various close inspection configurations were demonstrated. 
Both missions are analyzed using a six-DOFs simulator. 
Current issues and limitations of the CubeSat GNC are 
discussed, as well as conclusions regarding the feasibility of 
such missions. 

Chahat et al. (Ref. 48) describe a deployable Ka-band antenna 
folding in a 1.5U (10 by 10 by 15 cm) stowage volume suitable 
for 6U- (10 by 20 by 30 cm) class CubeSats. This antenna is 
designed for telecommunication and is compatible with the 
NASA Deep Space Network (DSN) at Ka-band frequencies 
(uplink: 34.2 to 34.7 GHz and downlink: 31.8 to 32.3 GHz). 

Detailed simulations show that 42.0-dBi gain and 57-percent 
aperture efficiency is achievable at 32 GHz.  

Kuwahara et al. (Ref. 49) describe a CubeSat debris 
prevention and reduction activity in order to provide safe space 
development and exploration activities in the near future. They 
launched the SpriteSat (Rising–1) in 2009 as well as the 
RAIKO CubeSat in 2013. Their activities include the 
development activity of sail deployment mechanisms in order 
to deorbit the used microsatellite mainly by means of the 
residual atmospheric drags. The mechanism itself has a cylinder 
form and utilizes unique deployable booms that can be folded 
down very compactly. The stored thin film inside the 
mechanism is pulled out of the case by the deployment force 
produced by the booms. Three different sizes of models have 
been developed, and their functionalities are verified. The 
important characteristic of this mechanism is that the size of the 
sail can be modified very easily depending on the requirements 
of the spacecraft. Preparing different size sails, this kind of 
deorbit mechanism can become the standard prevention and 
reduction measures of space debris. This report describes the 
development and qualification results of these mechanisms. 

Levchenko et al. (Ref. 50) conducted a review on the rapid 
evolution of miniaturized, automatic, robotized, function-
centered devices in space technology as reported in the 
international workshop Micropropulsion and CubeSats 
(MPCS–2017). They outlined the critical challenges that are 
faced by all CubeSat users. This focused review aims to 
highlight the most promising developments reported at MPCS–
2017 by leading world-reputed experts in miniaturized space 
propulsion systems. Recent advances in several major types of 
small thrusters including Hall thrusters, ion engines, helicon, 
and vacuum arc devices are presented, and trends and 
perspectives are outlined. 

Balinov (Ref. 51) discusses a project titled “FlyMate”, which 
is the Lyon femtosatellite orbital deployer research project 
whose aim was to develop a reliable low-cost deployment 
mechanism for three or more CubeSat units. They investigated 
an orbital deployer that will have the possibility of sequential 
ejection of the satellites and ejection speed adjustment 
depending on the mission. 

Park et al. (Ref. 52) investigated a constellation deployment 
method using plasma drag. The orbit decay rate of the satellites 
in a constellation is controlled using plasma drag in order to 
achieve a desired phase angle and phase angle rate. A simplified 
one-dimensional (1D) problem is formulated for an elementary 
analysis of the constellation deployment time. Numerical 
simulations are further performed for analytical analysis 
assessment and sensitivity analysis. Analytical analysis and 
numerical simulation results both agreed that the constellation 
deployment time is proportional to the inverse square root of 
magnetic moment, the square root of desired phase angle, and 
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the square root of satellite mass. CubeSats ranging from 1U to 
3U (1- to 3-kg nanosatellites) were examined in order to 
investigate the feasibility of plasma drag constellation on 
nanosatellite systems. The feasibility analysis results show that 
plasma drag constellation is feasible on CubeSats, which opens 
up the possibility of implementing plasma drag techniques for 
CubeSat constellation missions. 

Fernandez et al. (Ref. 53) investigated research underway at 
NASA that is focused on the development of lightweight 
deployable thin-shell composite booms for small-spacecraft 
applications. Small CubeSat-class solar sails are a particular 
applications interest for this technology. Recently, 7-m 
composite booms were fabricated and integrated into a new  
85-m2-class square-solar-sail system suitable for use on 6U 
CubeSat spacecraft. Efforts to scale the boom fabrication 
processes to 14-m booms for a 12U, 360-m2-class deep space 
solar sail are also underway. This report provides an overview 
of new solar sail structures and materials technologies being 
developed for these classes of small-satellite deep space 
missions. Key research and development efforts for 6U-  
and 12U-class composites-based solar sail systems are 
presented, including deployable composite boom development 
activities, boom deployment mechanisms design, solar sail 
membrane materials and testing, and ground deployment 
testing systems. 

Lund (Ref. 54) discusses a technology readiness level 
experiment to ascertain the feasibility of deploying a conical, 
helical, wideband radar antenna from a CubeSat on board a 
REXUS sounding rocket flight. The experiment aimed to deploy 
the 80-cm antenna from a 1U CubeSat, strain rigidize the structure, 
measure the radiofrequency emissions, then eject the antenna and 
inflation system. The antenna was designed as a composite of 
aluminum and polyimide film with a polyurethane bladder to be 
strain rigidized in order to ensure structural stability of the 
inflatable. The outer layer of the antenna composite was polyimide 
film, while the inner was alternating helical strips of polyimide and 
aluminum. When fully pressurized, the aluminum is plastically 
deformed, while the polyimide remains in its elastic region. Upon 
depressurization, the two materials will return to different 
equilibrium lengths, resulting in a pre-tensed, rigid, structure. The 
experiment flew on the REXUS sounding rocket and reached an 
apogee of approximately 80 km. Analysis has shown that all 
systems performed successfully. Video analysis showed complete 
deployment and ejection, while RF measurements indicate an 
estimated 75-percent antenna efficiency.  

Dewalque, Rochus, and Brüls (Ref. 55) discuss the 
importance of structural damping in the dynamic analysis of 
compliant deployable structures. This report discusses the need 
for high-fidelity mechanical models in order to get a detailed 
understanding of the deployment process, improve the design, 
and predict the actual behavior in the space zero-g environment. 

These simulations could be successfully achieved because of 
the presence of numerical damping in the transient solver. They 
show that the dynamic simulation of a tape spring can be made 
less sensitive to numerical parameters when the structural 
dissipation is taken into account. 

Harkness et al. (Ref. 56) describe a prototype CubeSat 
module to deploy a gossamer aerobrake, using strain stored in 
tape springs at end of life. They proposed a hub geometry to 
reduce bending shock at end of deployment while 
simultaneously permitting radial, as opposed to tangential, 
deployment. The revolutions per minute of the hub is measured 
under various deployment conditions to verify the system, 
while high-speed photography is used to characterize the 
behavior of the tape spring during unspooling and contrast it to 
the behavior of a traditional tangential deployment system. 
They also developed a unique folding pattern of the membrane, 
which takes advantage of the symmetrical deployment offered 
by the petal hub, and the unfolding mechanism is verified by 
numerical and experimental analysis.  

Svitek et al. (Ref. 57) discuss the LightSail–1 (launched in 
2015), which is the beginning of a program proposed by The 
Planetary Society to launch three separate spacecraft over 
several years. The objectives of LightSail–1 include the ability 
to manage orbit energy as well as control the spacecraft under 
the power of the solar sail. LightSail–1 demonstrated key 
technologies including sail deployment, sail material 
management during flight, and gossamer structure dynamics. 
The LightSail–1 is a 3U CubeSat, two-thirds of which will 
contain the sail material, deployment mechanism, and payload, 
with the avionics taking up the rest of the volume. It deploys a 
32-m2 sail made up of four quadrants in a cruciform 
arrangement requiring a set of four 4-m booms. The spacecraft 
is actively controlled with magnetic torquers and a momentum 
wheel. Orbit raising will require two rapid 90° slew maneuvers 
every orbit that are accomplished with the momentum wheel. 
LightSail–1 was designed to provide the building blocks for the 
design of LightSail–2 (launched in 2019) and LightSail–3.  

Bui et al. (Ref. 58) highlight the design approach, challenges, 
and solutions during the development of VELOX–I 
nanosatellite. VELOX–I was developed by Nanyang 
Technological University (NTU) for technology demonstration 
of an in-house-built camera, GPS, and intersatellite 
communication payloads. The mission requires an innovative 
design to miniaturize the subsystems and extend the capability 
of the standard 3U CubeSat. They discuss an attitude control 
subsystem, the deployable optics, and the piggyback 
picosatellite VELOX–PIII and its deployment mechanism. This 
satellite was launched into LEO in June of 2014. The design of 
structure, deployment mechanism, and thermal control of 
VELOX–I has been validated by analyzing the satellite’s 
housekeeping data. 
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Worrakul et al. (Ref. 59) present a conceptual design and 
development of a 1U CubeSat named “KNACKSAT” (KmutNb 
(King Mongkut’s University of Technology North Bangkok) 
Academic Challenge of Knowledge SATellite). The main 
functions of the satellite include transmitting housekeeping data 
through a continuous wave, sending uplink commands and 
downlink data through radiofrequencies, and taking images by 
using a complementary metal-oxide semiconductor camera. 
KNACKSAT consists of seven subsystems: (1) electrical 
power, (2) camera (or payload), (3) structure, (4) command  
and data handling, (5) attitude determination and control,  
(6) communication, and (7) deployment control. Results of a 
functional integration test of the subsystems through TableSat 
are also presented. 

Araromi et al. (Ref. 60) discuss the CleanSpace One (CSO) 
microsatellite to mitigate debris in space, which is an ever-
increasing problem for spacecraft in Earth orbit. Its mission is 
to perform active debris removal of a decommissioned 
nanosatellite (the CubeSat SwissCube). An important aspect of 
this project is the development of the gripper system that will 
entrap the capture target. They present the development of 
rollable dielectric elastomer minimum energy structures 
(DEMES) as the main component of CSO’s deployable gripper. 
DEMES consist of a prestretched dielectric elastomer actuator 
membrane bonded to a flexible frame. The actuator finds 
equilibrium in bending when the prestretch is released and the 
bending angle can be changed by the application of a voltage 
bias. The inherent flexibility and lightweight nature of the 
DEMES enable the gripper to be stored in a rolled-up state prior 
to deployment. Proof-of-concept actuators of three different 
geometries using a robust and repeatable fabrication 
methodology were fabricated. The resulting actuators were 
mechanically resilient to external deformation, and display 
conformability to objects of varying shapes and sizes. Actuator 
mass is less than 0.65 g and all the actuators presented survived 
the rolling-up and subsequent deployment process. They 
demonstrated a maximum change of bending angle of more 
than 60° and a maximum gripping (reaction) force of 2.2 mN 
for a single actuator. 

Wilke, Schraml, and Heberling (Ref. 61) discuss LDA and 
their surface accuracy, especially at high operating frequencies. 
The concept described in this report is to use the drag sail 
deployment technique and use the expanded membrane surface 
as a reflector antenna. The effects of the surface errors, which 
are inevitably introduced by the mechanics, are studied to help 
determine a break-even point between antenna performance 
loss and cost reduction compared to a conventional LDA. 
Possible applications are small satellites like CubeSats, which 
could enhance their communication link budget by deploying a 
medium performance but low-cost LDA. 

Arute et al. (Ref. 62) detail Project POPACS (Polar Orbiting 
Passive Atmospheric Calibration Spheres), which uses a 3U 
Canisterized Satellite Dispenser (3U CSD) and launched three 
10-cm-diameter spheres of different masses (1, 1.5, and 2 kg). 
These spheres were to be tracked to measure changes in the 
density of the upper auroral atmosphere in response to solar 
stimuli. Also, because the 3U CSD is designed for use with 
CubeSats, a suspension and deployment mechanism was 
designed to ensure the spheres do not come in contact with each 
other or the CSD. They presented the designs selected to 
mitigate the concerns and enable the mission to proceed as 
desired: a sphere assembly with threaded halves for mating, and 
the spring-loaded “banana peel” suspension and deployment 
mechanism. 

Arita et al. (Ref. 63) proposed a new available deployable 
structure called Deployable Cube, which is a bistable structure 
applying buckling actively. They developed a prototype of the 
Deployable Cube for a CubeSat. They investigated the 
structural properties by performing Eigen mode analysis after 
deployment of the prototype model was performed, and the 
stiffness was indicated. Dynamic buckling analysis using the 
original method proposed was also carried out for the initial 
stage of the deployment and it is indicated that the estimation 
of buckling mode is valid. 

Lei et al. (Ref. 64) discuss a prototype deployable space 
telescope based on tape springs. Their deployable telescope is 
composed of a primary mirror assembly, a secondary mirror 
assembly, six foldable tape springs to support the secondary 
mirror assembly, a deployable baffle, aft optic components, and 
a set of lock-released devices based on shape memory alloys. 
The deployment errors of the secondary mirror of a space 
telescope are measured with a three-coordinate measuring 
machine to examine the alignment accuracy between the 
primary mirror and the deployed secondary mirror. Modal 
identification is completed for the telescope in the deployment 
state to investigate its dynamic behavior with impact hammer 
testing. The results of their experimental modal identification 
agree with their finite element analysis. 

Christodoulou et al. (Ref. 65) discuss deployable 
multifunctional reconfigurable antennas that offer more DOFs 
to future CubeSat applications than existing antenna 
technology. The ability of these new antennas to modify their 
geometry and behavior in order to adapt to changes in 
environmental conditions or mission requirements offers more 
possibilities for space communications requirements. The idea 
is to dynamically change the functionality of the antenna 
without increasing the real estate required on a satellite 
platform. The same antennas can also be used not only for 
communication and remote sensing purposes but also for RF 
harvesting. 
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Bellini et al. (Ref. 66) discuss cleaning up space debris with 
a debris “cleaner kit” based on polyeretanic foam. They define 
multiple properties of polyeretanic foam in different 
compositions, defining two different systems that can be 
integrated into a small cleaner kit for debris removal. The first 
system consists of a drag sail composed of a specific foam 
formulation that can guarantee a compact storage volume and a 
passive deploying system without complex mechanisms or 
booms that could be origins of failures. The second system 
consists of a device that allows generating the foam and using 
it like glue between the cleaner kit and the debris. Through 
several thermal, vacuum, and adhesion tests, it was possible to 
define a specific chemical formulation that permits the correct 
reaction time and the suitable mechanical properties to create a 
rigid link with the cleaner satellite. Once the link has been 
accomplished, it is possible to act on the debris controlling the 
deorbiting maneuver with a propulsion system or by exploiting 
the drag sail. The kit has been designed in order to leave the 
maximum flexibility depending on the kind of mission. 

Santoni, Piergentili, and Ravaglia (Ref. 67) describe a 
collision probability analysis for a nanosatellite cluster 
deployment, performed by a series of Monte Carlo simulations 
and comparing the results obtained with different release 
mechanisms, procedures, and orbital dynamics modeling 
assumptions. The model used for the analysis is based on the 
Encke equations for relative motion, considering the main 
perturbations acting on the satellites, such as Earth gravitational 
field higher harmonics, Moon and Sun third-body 
perturbations, solar radiation pressure, and atmospheric drag. 
The risk of collisions is assessed performing Monte Carlo 
simulations based on the numerical integration of the equations 
of motion. The final results provide the collision probability 
assessment and the influence that the release device 
configurations have on this risk. 

Wu et al. (Ref. 68) present a study on the implementation of 
a flexible deployable heat shield that passively deploys and 
stiffens due to centrifugal forces generated from a self-
regulated autorotation. They demonstrate that the heat shield is 
similar to a proportional-integral-controlled second-order 
nonlinear system. The heat shield design offers a capability to 
actively adjust the deployment using conventional attitude 
control devices. This operation is explored by simulating the 
reentry of a CubeSat-sized vehicle equipped with an off-the-
shelf reaction wheel controlled by a switching phase shift 
controller and gain-scheduled controllers. The effects of the 
control parameters are investigated and successful oscillation 
suppression as well as an open-loop downrange maneuver of 
over 300 km is predicted for reentry from LEO. 

Li et al. (Ref. 69) investigate potential strategies to stabilize 
a nanosatellite platform with a space camera and integrated 
mechanical parts. The deployed mirror system used a diamond 

turned mirror for the initial prototype as an off-axis paraboloid. 
The mechanisms for mirror systems may use methods like 
miniature geared motors, stiction motors, and shape memory 
alloy hinges. A closed-loop control of the mirror position was 
used to iterate to a fully aligned system. Following an initial 
baseline to establish current state of art based on both in-orbit 
performance and off-the-shelf subsystems available to the 
market within the constraints of a 3U nanosatellite system, a 
number of feed-forward or feedback control loops and sensor 
systems are studied to determine a simple process for 
compensating for the motion. 

Yamagiwa et al. (Ref. 70) attempted to verify two basic 
technologies required for space elevators using microsatellites: 
the tether (cable) deployment technology and the climber 
operation along the tether in space. Tether deployment is 
performed by a CubeSat called STARS–C (Space Tethered 
Autonomous Robotic Satellite—Cube), which was released 
from the Japanese experimental module Kibo on ISS early in 
2017. STARS–C consists of a mother satellite (MS) and 
daughter satellite (DS) connected by a 100-m tether. Its mission 
is focused on the tether deployment for studying the tether 
dynamics during the deployment with the goal of improving the 
smoothness of such deployment in future tether missions 
including space elevator. The MS and DS have common 
subsystems, including power, communication, and command 
and data handling systems. They also have a tether unit with 
spool and reel mechanisms as a mission system. In addition, 
they have been designing the next-step microsatellite called 
STARS–E (Space Tethered Autonomous Robotic Satellite—
Elevator), which is a 500-mm size satellite intended to verify 
the climber operation in space. It consists of a MS and DS 
jointed by a 2-km tether and a climber that moves along the 
tether. STARS–C was launched in December of 2016. 

Omar, Guglielmo, and Bevilacqua (Ref. 71) have developed 
a drag deorbit device (D3) for CubeSats consisting of 
retractable tape-spring booms that provide a drag area of 0.5 m2 
and can deorbit a 12U, 15-kg CubeSat from a 700-km circular 
orbit in 25 yr. By modulating the D3 drag area, orbital 
maneuvering can be performed, and the host satellite can be 
made to deorbit in a desired location. They detail the design of 
a 2U CubeSat and mission that will be launched to validate the 
D3 and the orbital maneuvering, targeted reentry, collision 
avoidance, and attitude stabilization algorithms developed by 
the Advanced Autonomous Multiple Spacecraft (ADAMUS) 
laboratory. The targeted reentry and orbital maneuvering 
algorithms have been tested extensively through Monte Carlo 
simulations and collision avoidance algorithms are currently in 
development. The CubeSat will consist of a standard 1U 
structure containing a power system, battery, GPS, UHF radio, 
and D3 control board with the D3 subsystem mounted to the 
back to achieve a 2U form factor. Radar tracking data along 
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with GPS telemetry will be utilized to characterize the 
performance of the system and algorithms, update reentry 
aerothermodynamic models, and gauge the effectiveness of 
atmospheric density estimation techniques. 

Sinn et al. (Ref. 72) proposed to design and build an initial 
prototype of an all-inflatable satellite with disaggregated 
electronics for deployment onboard a Balloon Experiments for 
University Students (BEXUS) balloon as proof of concept. The 
idea is to use inflatable cell structures as support for all the 
subsystems composing a typical nanosatellite. Each subsystem 
and component were mounted on a different cell. Cells are both 
individually inflated and controlled. The aim was to design and 
build an inflatable satellite, demonstrating the deployment, 
communication among components, and local control enabling 
structure shape adaption via soft robotic actuators and 
micropumps. The experiment deployed two inflatable 
structures made of 5 by 2 cells that are packed in a 10- by 10- 
by 10-cm CubeSat reaching a size of 70 by 18 by 14 cm once 
deployed. Flexible circuitry was used to mount all the electronic 
subsystems on the surface of the folded inflatable. The 
experiment was flown onboard the BEXUS 16 stratospheric 
balloon to an altitude of 29 km for 2 to 5 h from the Swedish 
ESRANGE Space Center in October of 2013. 

Santoni et al. (Ref. 73) discuss a steerable deployed solar array 
system for 1- to 5-kg weight nanospacecraft designed to enhance 
the achievable performance of CubeSats. The system proposed is 
a modular one and suitable in principle for the 1U, 2U, and 3U 
standard CubeSat bus. The size of each solar panel is the size of 
a lateral CubeSat surface. A single DOF maneuvering capability 
is added to the deployed solar array in order to follow the 
apparent motion of the Sun as close as possible. The system 
design tradeoff is discussed, comparing different deployment and 
motion control concepts and architectures, based on single- or 
double-motor implementations. The system validation is based 
on numerical simulations and prototype testing, showing the 
possible enhancements offered by the system in typical mission 
scenarios. 

Asundi, Bhagatji, and Taylor (Ref. 74) present a 
multifunction drag enhancement and measurement system 
(mDEMS) to rapidly deorbit containerized Pico/Nano/Micro-
Satellites (PNMSats) in order to mitigate space debris. Their 
goal is to rapidly deorbit PNMSats at the end of their mission 
life and validate and refine drag-temperature models. A 
computer-aided mechanical design is presented, which 
demonstrates the integration of a telescopic boom for isolating 
the onboard magnetometer from electromagnetic interference, 
a drag gossamer mounted with drag sensors on a flexible 
printed circuit board (PCB), a container for storing batteries, 
and a dipole UHF/VHF (very high frequency) antenna. The 
mDEMS is a two-stage deployment system for PNMSats in 
altitudes of up to 600 km.  

Underwood et al. (Refs. 75 and 76) describe the InflateSail 
(QB50–UK06) CubeSat, designed and built at the Surrey Space 
Centre (SSC). This 3.2-kg 3U CubeSat was equipped with a  
1-m long inflatable mast and a 10-m2 deployable drag sail. 
InflateSail’s primary mission was to demonstrate the 
effectiveness of using a drag sail in LEO to dramatically 
increase the rate at which satellites lose altitude and reenter the 
Earth’s atmosphere and it was 1 of 31 satellites that were 
launched simultaneously on the Polar Satellite Launch Vehicle 
(PSLV) C–38 from Sriharikota, India, in June of 2017 into a 
505-km, 97.44° Sun-synchronous orbit. This report describes 
the results of the InflateSail mission, including the observed 
effects of atmospheric density and solar activity on its trajectory 
and body dynamics. It also describes the application of the 
technology from the RemoveDEBRIS project and its potential 
as a commercial deorbiting add-on package for future space 
missions.  

Paiano et al. (Ref. 77) discuss developing launch services, 
GAUSS Srl, which is a launch platform to deploy in-orbit DSs. 
Two missions have already been successfully performed 
allowing the deployment in orbit of the first four PocketQubes 
ever and eight CubeSats. Recently, the main platform structure 
has been updated in order to include more deploying 
mechanisms and to offer services to different shaped satellites 
such as CubeSats, TubeSats, and PocketQubes to optimize the 
satellite distribution mass. The analysis was not limited to the 
satellite bus alone but included the nanosatellites boarded inside 
the deployment mechanisms as well. They developed a finite 
element model that considered a sandwich panel structure made 
of two different materials: sandwich aluminum-aluminum and 
carbon fiber-aluminum. The model used for analysis and 
simulations was based on a finite element method software and 
the dynamic loads adopted as input for the simulations are those 
established by the launch provider. This report gives an 
overview of platform design and structural modeling, showing 
the results achieved through the finite element method analysis 
and how they have guided the design in terms of dimensions 
and material selection. Particular attention is given to the 
analysis of normal frequencies and modal shapes related both 
to the main platform and to the deployment mechanisms 
boarded inside the carrier.  

Yamagiwa et al. (Ref. 78) discuss verifying two basic 
technologies of a space elevator by using microsatellites to 
obtain data for a future tether deployment technology and 
combine this with climber operation designs. STARS–C is a 
CubeSat for the verification of tether deployment in space and 
was released in December of 2016 and is currently in operation. 
STARS–E is a 500-mm size satellite to verify the climber 
operation in space. STARS–E is planned to deploy a 1,000-m 
tether and is required to cope with the strict requirement for a 
debris safety standard to perform its mission. The plan is to 



NASA/TP-20210000201 16 

utilize STARS–E and STARS–C CubeSat missions to 
accelerate space elevator research and development in the 
future.  

Forshaw et al. (Ref. 79) provide an overview of the ADR 
activities at the SSC, focusing on four in-orbit missions. The 
European Commission (EC) Seventh Framework Programme 
(FP7) RemoveDEBRIS mission was launched in 2018 and 
aimed to demonstrate key technologies for ADR by performing 
in-orbit demonstrations representative of an ADR mission (net 
and harpoon capture and vision-based navigation), drawing on 
the expertise of Airbus DS (U.K., Denmark, and France) and 
Surrey Satellite Technology Limited (SSTL). The EC FP7 
DeOrbitSail project launched in 2015 involved the in-orbit test 
of a deployable system for satellite afterlife disposal, consisting 
of an SSC aluminized Kapton® (DuPontTM) sail of 4 by 4 m 
deployed by a motor and four German Aerospace Center (DLR) 
carbon-fiber-reinforced plastic (CFRP) booms. They also 
discuss the DEPLOYTECH and QB50 InflateSail CubeSat 
missions whose payloads consisted of a 10-m2 drag-deorbiting 
sail, and a 1-m long inflatable rigidizable mast used as a 
technology demonstrator satellite for the QB50 mission. 

Santoni et al. (Ref. 80) discuss an orientable deployed solar 
array system for a 1- to 5-kg nanospacecraft. The goal is to 
enhance the achievable performance of these typically power-
limited systems. They proposed a modular system that is 
suitable, in principle, for the 1U, 2U, and 3U standard CubeSat 
bus. The size of each solar panel is the size of a lateral CubeSat 
surface. A single DOF maneuvering capability is given to the 
deployed solar array in order to follow the apparent motion of 
the Sun as close as possible, given the mission requirements on 
the spacecraft attitude. The system design tradeoff is discussed, 
leading to the selection of an architecture based on two 
independently steerable solar array wings. 

Pankow and White (Ref. 81) discuss a deployable carbon 
fiber boom that was designed and tested to show feasibility at 
the CubeSat scale. Prototype booms with a lenticular cross 
section were developed in conjunction with a computational 
model. Mechanical testing indicated the ability to reliably 
flatten the booms in a bistable configuration so that they can be 
stored on a reel. 

Costantine et al. (Ref. 82) propose two UHF antenna 
concepts to be deployed on a CubeSat platform. Both antennas 
display logarithmic periodicity in their structure. The first 
antenna proposed is the conical logarithmic spiral antenna, 
while the second is the logarithmic periodic crossed dipole 
antenna array. The design of these antennas, as well as their 
deployment mechanisms, were presented.  

Zaki et al. (Ref. 83) present an approach to design a feasible 
and reliable monopole antenna deployment mechanism for 
BIRDS–2 CubeSat applications. They discuss detailed results 
of the mechanical and electrical interfaces of the two monopole 

antennas deployment mechanism with the satellite body and the 
nichrome wire burning release mechanism analysis. The test 
results of the mechanism were analyzed particularly on the 
deployment time and the nichrome wire temperature 
differences. 

Grzesik et al. (Ref. 84) discuss the Optical Coatings Ultra 
Lightweight Robust Spacecraft Structures (OCULUS) project 
whose goal is to develop a high-quality metallization process 
for surface modification of high-precision CFRP structures. 
This report introduces a detailed overview of the demonstrator 
design with special focus on the mechanism that deploys and 
aligns the primary and secondary mirror. A design tradeoff is 
summarized, and the dependencies of the mechanical 
positioning mechanism is discussed. They detail the design of 
the deployment and alignment mechanism with respect to the 
other satellite subsystems as well as the overall volume, mass, 
and energy budget. The positioning accuracy and resulting 
optical performance of the space telescope for Earth 
observation are estimated. They also describe a conceptual 
design to demonstrate the functionality of the deployment 
mechanism independently of the alignment mechanism in 
microgravity tests. 

Baig (Ref. 85) describes the design and successful 
implementation of an integrated solar panel deployment 
mechanism using torsion springs and microlevers. The design 
is in accordance with CDS and also assures minimal extra mass 
and the best utilization of a three-unit CubeSat’s area. This 
design is equally applicable to a single and double-unit 
CubeSat. 

McGuire et al. (Ref. 86) present a deployment system design 
that creates a plane of solar panels to collect energy. The goal 
is to allow more panels to be in direct normal sunlight at any 
given point in conjunction with the onboard attitude 
determination and control system, facilitating increased power 
generation. The deployable system comprises a PCB holding 
the solar cells, which are attached to an aluminum hinge. The 
efficiency of this approach for power generation is compared to 
other perspective approaches. 

Blandino et al. (Ref. 87) present the development of a general 
automated process using multibody dynamics software 
(RecurDyn; FunctionBay, Inc.) to efficiently take a detailed 
hinge assembly model and simulate its range of motion while 
retrieving stiffness information for all DOFs. A vertical 
software application is presented that characterizes and 
simplifies the hinge model and allows the simplified model to 
be integrated easily into a solar array system model. The 
described techniques and vertical application can potentially be 
applied to a wide range of deployable space structures. 

Jeon and Murphey (Ref. 88) discuss a meter-class deployable 
boom featuring a single burn wire release mechanism and 
motorless deployment actuation by the stored strain energy of 
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bistable tape springs. At the end of deployment, the tape springs 
lock out to remove the deployment DOF from the structure 
while providing structural stiffness, derived from the two 
inwardly facing and offset bistable tape springs, spanning from 
end to end. The presented device has stowed dimensions 
measuring 5.0 by 3.8 by 3.8 cm, well within the packaging 
requirements of a 1U CubeSat. The mechanical design and 
deployment properties are investigated and presented. 

Chahat et al. (Refs. 89, 90, and 91) present a mesh deployable 
Ka-band antenna design that folds in a 1.5U (10 by 10 by  
15 cm) stowage volume suitable for 6U-class (10 by 20 by  
30 cm) CubeSats. Detailed simulations and measurements show 
that 42.6-dBi gain and 52-0 aperture efficiency are achievable 
at 35.75 GHz. The mechanical deployment mechanism and 
associated challenges are described and both solid and mesh 
prototype antennas were developed, and measurement results 
show agreement with simulations. 

Pignatelli (Ref. 92) investigates the use of finite element 
models for rail-type CubeSat deployers. Models for a 3U 
deployer were developed and compared to experimental results 
to determine how accurately dynamic loads can be predicted in 
rail-type deployers with isolation. Analysis methods are refined 
with the intent of applying to a 6U deployer when test data is 
available. The results indicate that this system can be accurately 
modeled to provide predictable environments to CubeSat 
payloads.  

Babuscia et al. (Ref. 93) discusses an inflatable antenna for 
CubeSats and investigates the design and radiation model for 
the antenna. The report provides details of the antenna’s 
fabrication and related issues as well as the mechanism to fold 
and deploy the antenna in space. It also proposes how to 
improve the fabrication process and the design of a 3U CubeSat 
mission.  

Lehmensiek, Van Zyl, and Visser (Ref. 94) present the 
design, the deployment mechanism, and the measurement of a 
high-frequency (HF) antenna on a 1U CubeSat. A HF radio 
beacon on this CubeSat was used as a space-based signal source 
to contribute to the monitoring of the density and movement of 
the polar and high-latitude ionosphere making use of the 
interferometer antenna arrays at the South African Antarctic 
station, SANAE–IV. 

Carandente and Savino (Ref. 95) discuss new concepts of 
deorbit and reentry modules for standard CubeSats. The 
concepts are mainly based on deployable, umbrella-like 
structures, useful to perform deorbit and reentry operations 
taking advantage from a substantial reduction of the ballistic 
coefficient.  

Zander et al. (Ref. 96) discuss the risk for spacecraft in LEO 
utilizing a drag augmentation device that increases the drag-
efficient surface of a satellite. They analyze this type of device 
that was flown on the DeorbitSail CubeSat. The goal was to 

demonstrate the in-orbit deployment of a 4- by 4-m drag sail, 
suitable for small- and medium-size satellites, as an end-of-life 
deorbiting device. They focus on one of the main structures, the 
deployable thin-shell CFRP booms that are susceptible to 
buckling. They provide information on the applicable loading 
on the booms derived by the space application, the used test 
stand, and equipment as well as the testing itself.  

Fulton et al. (Ref. 97) discuss a high-strain composite, 
bistable-tape-spring-actuated, meter-class deployable boom 
developed and flight qualified at the Air Force Research 
Laboratory. This boom demonstrates new free-deployment 
technology enabled by high-strain composite materials and a 
minimal shroud design. A customized six-DOFs gravity offload 
system with bus and payload mass simulators was developed to 
enable full system dynamics testing. The boom passed all flight 
qualification testing, and results of the testing program are 
included. 

Berthoud and Phillips (Ref. 98) present a study whose aim 
was to design a deployment system to deliver 50 or more 
CubeSats together. The study commenced with a review of the 
deployment mechanisms currently available, such as the P-
POD, Tokyo Picosatellite Orbital Deployer (T-POD), 
eXperimental Push Out Deployer (XPOD), Innovative 
Solutions In Space Payload Orbital Dispenser (ISIPOD), CSD 
and Japan Aerospace Exploration Agency (JAXA)-Picosatellite 
Orbital Deployer (J-POD) systems, as well as auxiliary launch 
adapters. The aim was to be compatible with as wide a range of 
launchers as possible. Three design options were prepared to 
meet the design requirements: the “Cube,” the “Tower,” and the 
“H.” Requirements and state of the art for the door opening and 
the delivery mechanism were also subject to a tradeoff. The 
design selected was that of the “H” deployment system. The 
“H” has a versatile structure with detachable auxiliary panels. 
It offers a capacity of 72 CubeSats in its standard configuration 
or 12 lots of 6U units in its alternate configuration. It is 
compatible with Vega, Soyuz, Rockot, and PSLV.  

Pawlina and Yu (Ref. 99) discuss the problem of optimizing 
the energy tradeoff between the benefit of pointing a CubeSat’s 
deployable solar panels at the Sun and the control effort 
required to do so. Their model assumed an unspecified three-
axis attitude control actuator set that acts abstractly on the 
satellite bus rigid body, producing torques about the body’s 
principal axes. Given that the orientation of the satellite face 
with respect to the Sun depends on orbit parameters, an orbit 
was chosen that allowed all dynamic aspects of the problem to 
be observed in simulation. The simulation returned suboptimal 
values of proportional derivative gains and showed that the 
solution is not the trivial edge case in which the solar panels are 
not articulated. 

Sauder et al. (Ref. 100) discuss developing a large 1-m 
antenna operating at 35.75 GHz for radar applications. They 
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chose a reflectarray design since it is compatible with the 
CubeSat form factor. Several iterations of the design were built 
and tested with a recent RF test of a fully deployed assembly 
demonstrating a gain of 48.0 dBi. Deployment repeatability 
tests at ambient conditions indicated initial success. The goal is 
to have the antenna flight ready by 2020. 

Yasin and Santer (Ref. 101) investigate the use of ultrathin 
high-strain composite flexures that are suitable for 
incorporation in a simple z-folded deployable solar panel 
concept. To enable the design to be implemented, composite 
flexures fabricated from TR50S–K51 laminae are characterized 
in a sequence of tests, at both short- and long-duration 
timescales. They discuss how the use of high-strain composite 
tape springs instead of conventional torsion springs enables 
postdeployment reconfiguration of the solar panels via a 
buckling mechanism. 

West et al. (Ref. 102) discuss a deployable carbon fiber boom 
that was designed and tested to show feasibility at CubeSat 
scale. Prototype booms with a lenticular cross section were 
developed in conjunction with a computational model. 
Mechanical testing has shown the ability to reliably flatten the 
booms in a bistable configuration so that they can be stored on 
a reel.  

Babuscia et al. (Ref. 103) present a first attempt to develop 
an inflatable antenna for CubeSat applications. They provide 
input on the possible dimensions for an inflatable antenna for 
small satellites, the gain and resolution that can be achieved, 
and on the deployment and inflation mechanism compatible 
with CubeSat requirements. They also present a design of an 
antenna that can potentially achieve the required CubeSat 
performance metrics and constraints. 

Park et al. (Ref. 104) present a spring-loaded pogo pin 
concept as a holding and release mechanism of solar panels for 
CubeSat applications. This spring-loaded pogo pin will serve as 
an electrical interface, a separation spring, and a status switch. 
The advantages are that such a mechanism includes an 
increased loading capability, negligible induced shock level, 
synchronous release of multiple panels, and handling simplicity 
during integration. A demonstration model of the mechanism 
was fabricated and functionally tested under various test 
conditions such as different input voltages, different numbers 
of tightened nylon wires, and different temperatures (ranging 
from –40 to 70 °C). 

Khalifi and Fitz-Coy (Ref. 105) discuss the SwampSat II, 
which is a 3U CubeSat designed to collect and characterize very 
low frequency waves (VLF) in LEO in the 2- to 32-kHz 
frequency range. They present design analyses and simulations 
for several states from postlaunch tumbling through to 
deployment and operations to identify and select appropriate  
 

components for the attitude determination and control system 
components. Simulations based on a range of initial angular 
velocities representative of typical tipoff rates experienced by 
3U spacecraft were performed to validate the feasibility of the 
mission’s concept of operations. 

Zhu (Ref. 106) proposed a mission design for a CubeSat 
flying with an electrodynamic tether (EDT) to achieve a set of 
engineering and scientific objectives. The basic mission 
involved two CubeSats connected by 100-m-long aluminum 
EDT. The engineering objectives of this mission were to 
perform a pioneering mission to demonstrate deployment and 
stabilization of an EDT with an end mass, current collection 
using bare EDT, field-effect electron emission, and spacecraft 
deorbiting by EDT technology. The details of nanosatellite 
designs for both the chief and deputy nanosatellites are 
explained. 

Bewick, Colombo, and McInnes (Ref. 107) define a mission 
concept and system design for a 3U CubeSat technology 
demonstration. They proposed to transfer CubeSats from the 
release orbit into a LEO. The strategy proposed exploits the 
effects of atmospheric drag and solar radiation pressure to 
passively decrease the apogee altitude and increase the perigee 
altitude, respectively. This is achieved by deploying a 
lightweight balloon that increases the area-to-mass ratio of the 
spacecraft. Once orbit is reached, the spacecraft can be powered 
up again and the balloon is ejected to avoid rapid deorbiting. It 
is shown that the abandoned balloon is removed from orbit 
within weeks. 

Costantine et al. (Ref. 108) present the design process and the 
deployment mechanism of a quadrifilar helix antenna and a 
conical log spiral antenna. They proposed to operate the two 
antennas in the UHF band. The deployment mechanisms for 
both antennas include helical pantograph and origami patterns 
such as Z-folding configurations. Both antennas are fabricated 
and tested for both deployment and radiation performance. A 
comparison is executed between both designs, and their 
potential deployment possibilities from CubeSats are also 
investigated. 

Zhang and Zhou (Ref. 109) discuss the reliable deployment for 
the CubeSat Star of Aoxiang. A structure scheme of the 
kinematics system was proposed. It uses a disengaging spring to 
impulse the CubeSat for opening the cabin door and uses a spring 
pin to lock the door. They also conducted ground deploying tests 
for a prototype of the deploying mechanism. The experimental 
results show that the actual deployment process is similar to the 
numerical simulation. The downlink data indicate that initial 
deploying velocity is 1.08 m/s and three-axis angular velocity is 
less than 2 deg/s, meeting the requirements of initial deploying 
velocity and posture for CubeSats. 
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CubeSats and Power Generation 
One of the main CubeSat bus limitations is the available 

onboard power. The maximum power obtained using body-
mounted solar panels and advanced triple-junction solar cells 
on a triple-unit CubeSat is typically less than 10 W. Satellites 
and space application devices demand high efficiency with size, 
volume, mass, and losses reduced simultaneously due to low 
power generation in space orbit and the relation between mass 
and the overall space mission cost. The need to save energy is 
mandatory in all systems due to low power generation and 
reduced size. 

Affordable and convenient access to electrical power is 
essential for all spacecraft and is a critical design driver for the 
next generation of CubeSats. The development of higher power 
generation system solutions that comply with P-POD stored 
energy restrictions during launch will increase the range of 
CubeSat missions. Since the power and energy demands of 
current CubeSats have increased dramatically, the need for 
larger deployable solar arrays, lower power electronics, 
efficient energy storage systems, and energy transfer and 
harvesting systems is in high demand. In terms of energy 
storage, more advanced battery chemistries with higher energy 
densities and higher power capabilities over a wider operating 
temperature range are also a fundamental need. What follows is 
an extensive review (Refs. 110 to 162) of CubeSat power 
generation research ranging from enhanced solar array 
configurations to optimizing experimental and modeling 
systems to new and innovative miniaturized power solutions. 
The selection of an appropriate energy storage system is driven 
by mission requirements related to power, energy, and lifetime 
(Ref. 112). 

A CubeSat has only a limited surface area on which solar 
panels can be installed to generate power. The incidence angle 
of sunlight on the solar panels also varies according to the 
revolution and rotation of the satellite. These are important 
parameters for determining the amount of power that a CubeSat 
can generate (Ref. 136). For any CubeSat, the power system 
unit is designed to deliver the required energy so the 
nanosatellite can achieve its desired mission. Thus, the input 
energy for the solar panels and the output energy from the solar 
cells must be increased (Ref. 133).  

The market of small satellites for educational, institutional, 
and commercial purposes is in rapid growth. In order to allow 
different mission scenarios, small-satellite platforms down to 
CubeSat units need versatile, low-cost, compact, and reliable 
power systems. This presents a design opportunity to develop 
various objective functions related to energy management and 
methods for optimizing these functions over a satellite design. 
Currently, the main component used to generate electric power 
is the solar panel. However, due to area restriction and low solar 

panel efficiency, other technologies are being studied to 
improve the overall power generation capacity in CubeSats.  

Frohling (Ref. 110) discusses reducing the size of space-
based power controllers through switching at higher speeds to 
address the need for miniaturized cooling solutions applicable 
to CubeSats. 

Johnson et al. (Ref. 111) describe a Lightweight Integrated 
Solar Array (LISA) that was designed, prototyped, and tested at 
NASA Marshall Space Flight Center. The LISA provides an 
affordable, lightweight, scalable, and easily manufactured 
approach for power generation in space. It potentially has wide-
ranging applications from serving small satellites to providing 
abundant power to large spacecraft in geosynchronous Earth 
orbit and beyond.   

Chin et al. (Ref. 112) provide a general review of 
performance capabilities of state-of-the-art lithium-ion battery 
technologies as well as other advanced energy storage systems 
for small-satellite applications.  

Rakow, Hedin, and Anthony (Ref. 113) introduced a new 
solar array technology known as the Composite Lightweight 
Array using Shape-memory Polymer (CLASP). The CLASP 
wing includes elastic memory composite hinge lines spanning 
its full width to enable tight packaging of a stowed CLASP 
wing and a controlled, damped deployment. They present a  
Z-folded, CLASP wing design currently in development and 
sized to generate 200 W+ power for a 6U CubeSat. They also 
present structural and thermal analysis of the wing performed 
with a high-fidelity finite element model. The CLASP wing is 
shown to have (>250 W/kg) specific power and low stowed 
volume (>300 kW/m3) while maintaining high deployed 
stiffness and strength.  

Ali et al. (Ref. 114) discuss power management tiles (PMTs) 
as they relate to CubeSat missions. They developed a single 
module for the CubeSat satellites, called CubePMT. The goal 
of their work was to implement these subsystems in a single 
module focusing on the main issues and adding some additional 
features. They performed a full set of tests and simulations and 
the results were in close agreement. 

Dinelli et al. (Ref. 115) present an electric propulsion system 
called the microcathode arc thruster, which is a quad-channel 
microthruster subsystem used during the Ballistically 
Reinforced Communication Satellite (BRICSat–P) mission 
launched in 2015. They demonstrated that an electric 
propulsion system is capable of supporting CubeSat missions. 
They presented the design tradeoffs, model and simulation 
results of the flight hardware, and its expected performance on 
orbit.  

SPIE (Ref. 116) published a collection of research papers on 
power generation applicable to CubeSats including the 
optimization of material and device parameters of CdTe 
photovoltaic for solar cell applications, a charging system using 
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solar panels and a highly resonant wireless power transfer 
model for small unmanned aerial system applications, low-
temperature processing of dielectric perovskites for energy 
storage, a piezoelectric-based hybrid reserve power source for 
munitions, and a CubeSat deployable solar panel system. 

Uwarowa and Jaworski (Ref. 117) investigated the possible 
use of thermoelectric generators onboard small satellites 
without the use of radioisotopes. They proposed an integrated 
system that allows the harvesting of energy from a small 
thermoelectric generator onboard a 3U CubeSat as an example.  

McTernan et al. (Ref. 118) discuss the feasibility of using an 
EDT to be used by satellites to harvest energy from orbital 
potential by using the Lorentz force interactions with the 
geomagnetic field. They surmise that small EDT systems the 
size of CubeSats have the potential to produce more energy than 
mounted solar panels alone and provide a unique solution to the 
satellites’ energy and propulsion needs throughout the size and 
mass spectrum of current and future technology. 

Scharlemann et al. (Ref. 119) summarize the theoretical and 
experimental efforts to develop a miniaturized micropulsed 
plasma thruster (µPPT) and an advanced field emission electric 
propulsion (FEEP) for attitude and orbit control. They present 
a system consisting of four miniaturized µPPTs, installed on a 
single PCB. The system has a total power requirement of three 
and its shape is such that it fits within a standardized CubeSat.  

Pugia et al. (Ref. 120) discuss a Film Evaporation MEMS 
Tunable Array (FEMTA), which is a thruster that employs 
thermally controlled microcapillaries to generate micronewton 
thrust with liquid ultrapure water as propellant. They present a 
study to demonstrate controllable single-axis rotation of a 1U 
CubeSat prototype with FEMTA propulsion. Preliminary 
testing of FEMTA has yielded thrust-to-power ratios of  
230 µN/W at mass flow rates of 80 µg/s, making FEMTA a 
potential low-power, low-mass micropropulsion solution. 

Manente et al. (Ref. 121) discuss the development of a 
complete and compact propulsion system based on a Mini-
Helicon Plasma Thruster (mHPT) and with satellite standard 
data and power. The mHPT propulsion system fits in a 10- by 
10- by 10-cm volume, depending on the needed propellant tank 
volume. The system will allow it to perform orbital variations, 
station-keeping maneuvers, orbit maintenance, orbit transfers, 
and orbit raising and decommissioning. It can potentially enable 
new mission scenarios as well as new deep space small-
spacecraft missions. 

Tsay et al. (Ref. 122) discuss the development of an iodine-
fueled RF ion propulsion system that will fly on two 6U 
CubeSat missions as part of NASA Space Launch System 
(SLS) Exploration Mission—1 (EM–1) in 2019. The 70-W 
nominal propulsion system utilizes a 2.5-cm-grid-diameter RF 
ion thruster “BIT–3” and a micro-RF cathode “BRFC–1” as the 
neutralizer. Based on their performance validation results, a full 

iodine BIT–3 flight system is expected to produce 0.66- to  
1.24-mN thrust and 1,400- to 2,640-s Isp, at 56 to 80 W 
throttleable power processing unit (PPU) input power. When 
given sufficient power to operate, it can provide up to 2.9 km/s 
velocity change (∆V) for a 6U/14-kg CubeSat. 

Stelwagen et al. (Ref. 123) discuss the development of a high-
voltage stackable integrated circuit to provide a solution for the 
6-kV switch and enable implementation of a PPU architecture. 
During the breadboard model testing, they verified that the 
maximum output power of a PPU with a volume of a 1/4 
CubeSat cube is 20 W. At full load, the electrical efficiency of 
the overall PPU system is estimated to be about 80 percent. 
Their high-voltage switches have been verified to have a >6 kV 
breakdown voltage and properly conduct 1 mA of current 
without significant voltage drop across the drain source voltage. 
This technology may open the door for small CubeSats to fly 
new missions. 

Johnson (Ref. 124) examined multiple uses of the thruster for 
in-space and atmospheric propulsion, as well as the creation of 
a CubeSat and atmospheric airship as testbeds for the thruster. 
The PPT was tested as a solid-propellant feed source for the 
high-power helicon thruster. A PPT with sulfur propellant 
designed for CubeSat operation, as well as the subsystems 
necessary for autonomous operation, was built and tested in the 
laboratory.   

Kronhaus, Laterza, and Maor (Ref. 125) discuss a CubeSat-
class micropropulsion system called the inline-screw-feeding 
vacuum-arc thruster (ISF–VAT). The ISF–VAT is a solid-metal 
propellant electric propulsion device that generates thrust by 
forming an arc discharge between coaxially arranged anode and 
cathode electrodes. They utilize an active computer-controlled 
feeding mechanism. Using a Ti cathode, a thrust to power ratio 
of 2.3 µN/W was achieved and more than 106 pulses were 
demonstrated. The thruster prototype dimensions are 15 by 15 
by 65 mm and is ≈60 g in mass.  

McTernan et al. (Ref. 126) developed a software simulation 
model called TeMPEST that models various storage devices 
such as supercapacitors, lithium-ion batteries, or a generic 
storage device. Their energy storage module is also capable of 
examining other aspects of a spacecraft’s energy budget, such 
as the in-plane or out-of-plane contributions of the 
electrodynamic work done on the system. They placed an 
emphasis on scaling the storage devices to satisfy the 
requirements of the CubeSat platform.  

Lappas et al. (Ref. 127) presented a concept to generate 
electric power for small satellites using thermoelectric 
generators (TEGs). Using heat sourced from the space 
environment, conventional thermoelectric modules connected 
to a dual-loop fluid system, can produce power with specific 
densities exceeding 20 W/kg. Experimental test results of a 
breadboard TEG show the feasibility of the concept and the 
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benefits of using TEGs for long-duration, small-satellite 
missions. 

Spangelo et al. (Refs. 128 and 129) discuss a study to 
establish the optimal performance parameters for future 
microelectric propulsion technology that are applicable to a 
broad range of flight demonstration platforms (e.g., dedicated 
3U to 12U CubeSats to Evolved Expendable Launch Vehicle 
Secondary Payload Adapter- (ESPA-) class spacecraft) for a 
variety of applications, including LEO and Earth escape orbit 
transfers, travel to interplanetary destinations, hover and drag 
makeup missions, and performing reaction wheel-free attitude 
control. They developed an integrated systems-level model for 
propulsion, spacecraft (power, data, telecommunication, and 
thermal management), and orbit and attitude maneuvers to 
support solution space exploration.  

Singh, Shrivastav, and Bhattacharya (Ref. 130) discuss the 
development of a high-efficiency, compact, and flexible EPS 
for a CubeSat. The EPS is responsible for harnessing power 
from solar panels, battery charging, and multidomain voltage 
output regulation within the CubeSat. Their work builds upon 
the results and learnings obtained from an EPS, which uses 
silicon metal-oxide-semiconductor field-effect transistors. The 
hardware and software aspects of the development of such 
photovoltaic-battery-based power management systems were 
examined. A dual-loop control methodology with output 
current control is implemented to regulate the output current 
when charging the battery. Their aim was to increase efficiency 
and have all the functionalities of its silicon counterpart in 
smaller dimensions. 

Sanchez-Sanjuan, Gonzalez-Llorente, and Hurtado-Velasco 
(Ref. 131) describe the kinematic and dynamic equations to 
derive the CubeSat attitude. Mathematical models of solar cells 
and batteries are also derived to calculate the energy harvested 
and stored. They estimated incident average solar energy for the 
three scenarios indicated that the Sun pointing and free-
orientation scenarios harvest more energy than the nadir-
pointing one. This estimation is potentially useful in predicting 
the state of charge of the batteries in standby mode, allowing 
for determination of the time required for charging the batteries 
and, hence, the operating modes of the CubeSat.  

Gorev et al. (Ref. 132) described a computational program 
developed in MATLAB® and Simulink® (The MathWorks, 
Inc.) that performs calculation of electric power generated by 
photoconverters for various missions of nanosatellites in LEO. 
Electric power generated by nanosatellite’s solar panels was 
estimated for polar LEO of 450-km altitude for two versions of 
the satellite’s static orientation. The results show how 
orientation maneuver at the Earth’s surface point affects power 
generated by the satellite’s solar panels. 

Abdelwahab, Nawari, and Nawari (Ref. 133) aimed to study 
the concept of designing Sun-tracking solar panels and a 

maximum power point tracker for the UOKSAT–3 CubeSat, 
which is a 2U CubeSat with deployable solar panels. They 
detailed the effectiveness and importance of the tracking 
process, the impacts of the tracking mechanism on the attitude 
determination and control, and their interfacings to rotate the 
CubeSat. They also presented the MPPT’s performance and its 
results to study the change of the input energy. 

Wrobel et al. (Ref. 134) discuss efforts to develop the 
PowerCube™ (SolarWindow Technologies, Inc.), a system that 
integrates three novel technologies within a 1U form factor to 
provide enhanced power, propulsion, and pointing capabilities 
to enable CubeSats to accomplish high-performance missions. 
The PowerCubeTM system combines a high-power deployable 
solar array, a water-electrolysis-based thruster, and a “carpal 
joint” gimbal to provide high-power generation, large ∆V 
thrust, and precision pointing. The deployable, steerable solar 
array provides CubeSats with 80 W of peak power and 50 W of 
orbit-averaged power. They present a concept design, analysis, 
and initial test results of the PowerCube™ components. 

Salamanca, Ferro, and Paternina (Ref. 135) presented 
research results on multijunction solar cell technologies for 
space. They also present a compilation of the steps that have 
been followed until now in the design of a photovoltaic panel 
prototype according to the physical, electrical, and financial 
requirements in the picosatellite CubeSat Colombia 1, 
developed for the Universidad Distrital Francisco José de 
Caldas. 

Oh and Park (Ref. 136) proposed to develop a concentrating 
photovoltaic system for CubeSats that enhances the efficiency 
of power generation by effectively concentrating the solar 
energy on the solar panels by using a multiarray lens system 
under the worst condition for Sun incidence angle. They 
conducted a feasibility study by power measurement tests using 
a solar simulator and a commercial multiarray lens under 
various light source angles. 

Ali et al. (Ref. 137) describe a reconfigurable magnetorquer 
coil designed and implemented for the CubePMT module of a 
CubeSat. Their goal is to develop a CubeSat with a 
magnetorquer coil that has small dimensions, less weight and 
low heat generation inside PCB. It is integrated inside a PCB 
with four internal layers each with a magnetorquer coil that are 
treated as an individual coil and are attached through switches. 
Changing the arrangements of these switches, a user can use 
either a single coil or two, three, or four coils in series or in 
parallel. This reconfigurable design gives a freedom in 
generating any amount of dipole moment and control power 
dissipation and heat generation inside the CubePMT module.  

Charles et al. (Ref. 138) discuss the development of 
miniaturized power and propellant subsystems totaling a few 
hundred grams in weight for a few watts. The systems have 
been developed for Pocket Rocket for integration within a 1U 
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or 2U (1U = 10 by 10 by 10 cm) CubeSat. They envisioned that 
their miniaturized Pocket Rocket thruster could serve as a proof 
of concept at getting flight heritage and be a steppingstone 
towards the development of higher power systems since the RF 
power subsystem can be scaled up to a few kilowatts and drive 
the electrodeless neutralizer-free helicon plasma thruster. 

Bennet et al. (Ref. 139) present the development of the Mini-
Helicon Plasma Thruster with particular emphasis on the role 
of the geometric and magnetic nozzle. Testing of various 
configurations (plasma cavity size and shape) is carried out in 
the Wombat vacuum chamber equipped with a range of 
diagnostics (thrust balance and optical and electrostatic probes) 
and newly developed technologies. The results are used to 
develop computer simulations aiming at a better understanding 
of the physics and thrust generation in the nozzle.  

Balan et al. (Ref. 140) present the power budget simulations 
performed on the satellites RO01 and RO02 in the context of the 
QB50 CubeSat mission. Satellites RO01 and RO02 forming the 
RoBiSAT space mission are part of QB50, which is the most 
challenging and ambitious international small-satellites 
collaboration. In addition to the QB50 mission objectives, 
RoBiSAT’s goal is to test bidirectional intersatellite 
communication as a prerequisite for developing future formation 
flying missions. They investigate the concept of two identical 
satellites that are going to be built and operated in order to 
achieve these goals. A simulation was performed using the STK 
platform, and for a more realistic estimation, the satellite three-
dimensional (3D) model has been used considering a solar cells’ 
area, efficiency, and position. They concluded that a specific 
attitude requirement for the satellite has a major impact on the 
power generated. Starting from approximately 2-W average orbit 
power for a 2U CubeSat at the local time of the ascending node 
(LTAN) of 12 a.m., the average orbit power increases to  
5.5 W for an LTAN of 6 a.m. for the same satellite. The satellite’s 
operation phases have been computed in accord with the 
simulated results. 

Pisal et al. (Ref. 141) describe the design and salient features 
of an electrical power subsystem for a repeat satellite mission. 
The primary objective was to raise the orbit using solar sail with 
scientific data collection, particularly about radiation and 
charge particle density over its lifetime. This mission used a 
battery pack capable of supporting high-current surges owing 
to subsequent deployments in the initial phase of the satellite 
after ejection from launch vehicle and because it could 
withstand the eclipse phase with high-load demands, attitude 
control system actuators, and a radiation monitoring module. 
Block diagram research, design techniques, and testing results 
were also presented. 

Tsay et al. (Refs. 142 and 143) discuss developing a 
complete, engineering model 1U CubeSat propulsion system 
utilizing the nontoxic, “green” monopropellant AF–M315E. 

This technology demonstrator program, also known as 
Advanced Monopropellant Application for CubeSats (AMAC), 
results in a self-contained, 1.5-kg wet system that is expected to 
provide 0.1- to 0.5-N variable thrust and up to 565 N⋅s total 
impulse. This propulsive capability translates to a maximum of 
146 m/s ∆V for a 3U, 4-kg CubeSat. The system’s only input 
requirements are 20 W of power at the spacecraft bus voltage 
and an RS–422 port for communication. In addition to Busek’s 
0.5-N microthruster, the focal point of the AMAC technology 
resulted in a measured vacuum Isp of 220 s ± 5 percent at  
425-mN thrust, catalyst preheat energy consumption of 1.3 Wh, 
bellows tank pressure proofed to 750 psig, integrated 
postlaunch pressure system tank demonstration, microvalve 
leak rate of 1.5×10–3 sccm gaseous nitrogen and pressure tested 
to 750 psig, and minimum impulse bit of 50 mN⋅s for the 
combined thruster-microvalve unit.  

Conversano and Wirz (Ref. 144) discuss the feasibility of 
CubeSats utilizing the Miniature Xenon Ion (MiXI) thruster for 
lunar missions. Their investigation presents the first-order 
design process for developing a lunar mission CubeSat. The 
results from this process were then applied to a 3U CubeSat 
equipped with a MiXI thruster and specifically designed to 
reach the lunar surface from LEO. The 3-cm-diameter MiXI 
thruster utilized is capable of producing 0.1 to 1.553 mN of 
thrust with a specific impulse of over 3,000 s and is projected 
to be capable of generating over 7,000 m/s of ∆V for a CubeSat 
mission. A low-thrust trajectory model was utilized to calculate 
and plot Earth-Moon trajectories.  

Lee et al. (Ref. 145) present a power generation model and 
simulation system that was developed to evaluate various 
objective functions describing energy management for complex 
satellite designs. Their model uses a spacecraft-body-fixed 
spherical coordinate system to analyze the complex geometry 
of a satellite’s self-induced shadowing with computation 
provided by the Open Graphics Library. They optimized a 
CubeSat configured as a space-dart with four deployable 
panels. Simulation results are presented for a variety of orbit 
scenarios and could potentially be extended to a variety of 
complex satellite geometries and power generation systems.  

Cordova Alarcon et al. (Ref. 146) analyzed the mission 
lifetime extension capability for a CubeSat smaller than 3U in 
a circular lunar orbit at a 100-km altitude, assuming the 
utilization of a state-of-the-art low-thrust electric propulsion 
system such as pulsed plasma thrusters with an impulse bit 
(Ibit) and velocity change (∆V) below 60 µN∙s and 120 m/s, 
respectively. Their results show the feasibility of performing 
various orbit correction maneuvers for the enhancement of the 
mission lifetime of a CubeSat, expanding the performance 
capabilities of CubeSats to any mission in a lunar orbit by 
reducing the limitation of deploying them in unstable orbits. 
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Pajusalu et al. (Refs. 147 and 148) describe the final design 
and implementation of the electrical power system for 
ESTCube–1, a 1U CubeSat tasked with testing the electrostatic 
tether concept and associated technologies for the electric solar 
wind sail in polar LEO. The mission required an efficient and 
reliable power system to be designed that could efficiently 
handle highly variable power requirements and protect the 
satellite from damage caused by malfunctions in its individual 
subsystems, while using only COTS components. The electrical 
power system was finalized in January 2013 and launched into 
orbit in May of 2013.  

Bock and Tajmar (Refs. 149 and 150) discuss a miniaturized 
FEEP system called NanoFEEP. The thruster heads are 
compact and have a volume of less than 3 cm3 and a weight of 
less than 6 g each and one thruster is able to generate continuous 
thrust of up to 8 µN with short-term peaks of up to 22 µN. They 
presented their latest performance characteristics of the 
NanoFEEP thrusters and miniaturized electronics.   

Li et al. (Ref. 151) concentrated on the characteristics of the 
small size and energy shortage for standard CubeSat 
architectures such as the Aoxiang satellite for a centralized and 
modular electric power system for nanosatellites. They utilized 
COTS devices and discussed how to enhance antifault 
capabilities and operational autonomy. The validity of the 
designed system and engineering application value were 
verified through ground experiments and on-orbit data analysis 
of the Aoxiang-Sat.  

Dahbi et al. (Ref. 152) present the design and sizing of all 
components of EPS such as photovoltaic solar cell 
specifications based on a new strategy of calculation by 
scenario, secondary power sources specifications presented by 
the batteries, and power control distribution unit. They also 
discuss simulation results for the management of the power 
system of a nanosatellite. 

Ismail, Thaheer, and Yamin (Ref. 153) discuss a 1U CubeSat 
named MYSat. They compared the effect on power generation 
and the lifetime of MYSat on two conditions; first with attitude 
control where satellite pointing to nadir and the second is with 
uncontrolled attitude of the satellite. They assumed the satellite 
used a hexagonal solar cell with a theoretical efficiency of  
29 percent identical to an Ultra Triple Junction (UTJ) solar cell 
(Spectrolab, Inc.). The worst-case condition, where the Earth is 
positioned at apogee, was chosen for the comparative study and 
the lifetime of the satellite is also simulated and compared. 

Johnson, Carr, and Boyd (Ref. 154) discuss NASA 
developing a space power system using lightweight, flexible 
photovoltaic devices originally developed for use here on Earth 
to provide low-cost power for spacecraft. The Lightweight 
Integrated Solar Array and anTenna (LISA–T) is a launch-
stowed, orbit-deployed array on which thin-film photovoltaic 
and antenna elements are embedded. The LISA–T has the 

potential to mitigate each of these limitations, especially for 
small spacecraft. Inherently, small satellites are limited in 
surface area, volume, and mass allocation; driving competition 
between their need for power and robust communications with 
the requirements of the science or engineering payload they are 
developed to fly. The power that can be generated by the LISA–
T ranges from tens of watts to several hundred watts, at a much 
higher mass and stowage efficiency. In addition, UHF, S-band, 
and X-band antennas are being integrated into the array to move 
their space claim away from the spacecraft and open the door 
for more capable multielement antenna designs such as those 
needed for spherical coverage and electronically steered phase 
arrays.  

Slongo et al. (Ref. 155) discuss a mathematically modeled 
energy harvesting circuit and solar panel I-V curves for 
different temperature and irradiance levels. The scheduling 
algorithm is designed to keep solar panels working close to their 
maximum power point by triggering tasks in the appropriate 
form. The scheduling algorithm was tested in FloripaSat, which 
is a 1U CubeSat. Test results show that the scheduling 
algorithm improves the CubeSat energy harvesting capability 
by 4.48 percent in a three-orbit experiment and up to  
8.46 percent in a single orbit cycle in comparison with the 
CubeSat operating without the scheduling algorithm. 

Uludag et al. (Ref. 156) discuss a new architecture for the 
electrical subsystem of a PocketQube (50 by 50 by 50 mm) in 
order to reduce its volume and increase the usage of empty 
surfaces inside the satellite. The main objective of this work is 
turning the EPS into a more flexible, scalable, and volume-
efficient system by a physical relocation of its components and 
a lean approach. The EPS is scheduled to be functionally and 
environmentally tested in a flight representative satellite model 
with the aim to verify its simplification in integration, assess its 
true performance, as well as its reliability during launch 
vibration, which especially includes spring-loaded connectors.  

Lee, Kim, and Shin (Ref. 157) discuss an offline design and 
online management of satellite power systems. They analyzed 
and modeled unique characteristics of a power supply and 
demand of a satellite, which are dictated by the periodicity of 
power generation from solar panels and the nonlinear behavior 
of rechargeable battery cells. They concentrated on cubic-
shaped nanosatellites to demonstrate the effectiveness of their 
design and management of satellite power systems. 

Alves et al. (Ref. 158) discuss the NanoSatC–Br1 CubeSat 
with a cubic shape with 10 cm of edges and a mass of 
approximately 1 kg. The primary source of electrical power of 
the satellite is a solar generator compound by solar cells 
covering the six satellite faces. In order to obtain accurate 
analysis of generated and consumed power, a model of the 
satellite was developed, and simulations were performed using 
electronic simulation software. They also present the 
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NanoSatC–Br1’s electrical power subsystem and results of the 
electrical power model simulation, considering beginning-of-
life conditions of the satellite for different load conditions and 
operation periods.  

Ostrufka et al. (Ref. 159) present an experimental study of a 
TEG for electric energy generation through temperature 
gradients from solar panels in CubeSats. The generation 
capacity is analyzed for different positioning configurations of 
the TEG relative to each CubeSat surface. Using temperature 
variation profiles obtained by numerical analysis for a real 
CubeSat mission, they were able to determine the amount of 
power generated by a TEG module from the heat waste from 
solar panels. A comparison process between TEG and solar 
panel generation systems was also conducted. The proposed 
system can potentially generate up to 9.62 percent of the energy 
generated by the conventional solution, considering energy 
harvesting storing efficiency of 10 percent.  

Bergsrud and Straub (Ref. 160) discuss a space solar 
microwave power transfer system (SSMPTS) that may 
represent a paradigm shift to how space missions in Earth orbit 
are designed. An SSMPTS may allow a smaller receiving 
surface to be utilized on the receiving craft due to the higher 
density power transfer (compared to direct solar flux) from an 
SSMPTS supplier craft. The receiving system can be efficient 
since it requires less mass and volume. The SSMPTS approach 
can potentially increase mission lifetime as antenna systems do 
not degrade nearly as quickly as solar panels. They presented a 
prospective mission feasibility using an ESPA/SmallSat-class 
spacecraft and a 1U CubeSat as a guide. 

Piovesan et al. (Ref. 161) focused on the EPS, system 
responsible for generating, storing, conditioning, and supplying 
electrical power for the entire satellite. They presented a 
comparison between a conventional power converter design 
and an optimization design methodology for boost power 
converters in order to improve efficiency and to reduce volume 
and mass for 1U CubeSat EPS. Results have shown the method 
effectiveness and efficiency maximization was achieved 
respecting the 1U CubeSat constraints.  

Orr et al. (Ref. 162) discuss the development of a modular 
power system (MPS) to facilitate missions with power 
requirements spanning two orders of magnitude. The MPS 
implements a battery bus with series regulators performing 
charge management and solar array regulation. The system 
consists of four primary types of units: solar array and battery 
regulators that can be used for solar panel isolation or current 
sharing with efficiencies in excess of 95 percent; switched 
power nodes providing programmable switched power; smart 
battery modules integrating batteries and charge and discharge 
protection, monitoring, and thermal regulation; and a power 
system interface backplane that connects modules and 
distributes power and communication. They provide a high-

level overview of the MPS and how the system can be 
configured for missions ranging from CubeSats to kilowatt-
class small spacecraft.  

CubeSats and Communications 
The following is an extensive review (Refs. 163 to 223) of 

the current CubeSat communication research and applications. 
As part of the CubeSat operational requirements, CubeSat 
operators need to comply with their country’s radio license 
agreements and restrictions. In addition, no CubeSat can 
generate or transmit any signal from the time of integration into 
the P-POD through 45 min after on-orbit deployment from the 
P-POD. Communication between a remote-sensing 
nanosatellite and Earth significantly depends upon the 
efficiency of antenna systems. Body-mounted or deployable 
solar panels are the main source of a satellite’s operating power. 
In addition, nanosatellite space missions are vulnerable because 
of antenna and solar panel deployment complexity (Ref. 164).  

The essential mission requirement of a satellite is the ability 
to provide a link to transmit information to and from the ground 
station. For most CubeSat missions, data must be downlinked 
during short LEO ground station passes, which is a task 
currently performed using traditional radio systems (Ref. 203). 
In general, the communication system of the CubeSat is divided 
into two subsystems that are a telemetry and data subsystem and 
a beacon subsystem. The telemetry and data subsystem will 
ensure continuous communication with the ground station. The 
beacon subsystem is the main part of the communication system 
of the satellite that provides information about the satellite and 
its status in the form of continuous wave, which is encoded 
using Morse code. The beacon subsystem is used to locate the 
satellite and identify itself to other stations (Ref. 171). 

Communication links between a satellite and the ground 
station are subject to a lot of impairments and losses such as 
noise and atmospheric attenuations as well as Doppler shift 
effects. It is quite important to design a reliable link that caters 
for these impairments. The main challenge is to design a 
communication subsystem that provides enough transmission 
power to close the link while being power efficient and 
simultaneously delivering the required link characteristics in 
terms of effective bit rate and bit error rate (Ref. 207). 

An important consideration when planning CubeSat missions 
is the power budget required by the radio communication 
subsystem. This enables a CubeSat to exchange information 
with ground stations and/or other CubeSats in orbit. The power 
that a CubeSat can dedicate to the communication subsystem is 
limited by the hard constraints on the total power available due 
to its small size and lightweight, which limit the dimensions of 
the CubeSat power supply elements (Ref. 208). 
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Jackson, Straub, and Kerlin (Ref. 163) present and 
characterize an algorithm that uses chaos theory to encrypt data 
that can be applicable to CubeSat missions. They discuss a 
proof of concept of this algorithm and compare their results 
against Advanced Encryption Standard (AES) and Speck in 
terms of the speed of encryption. 

Alam et al. (Ref. 164) propose a solar panel-integrated 
modified planner inverted F antenna (PIFA) to mitigate 
communication limitations due to lower UHF nanosatellite 
antenna designs. The proposed antenna has achieved a –10-dB 
impedance bandwidth of 6.0 MHz (447.5 to 453.5 MHz) with a 
(80- by 90- by 0.5-mm) radiating element. The antenna also 
achieved a maximum realized gain of 0.6 dB and a total 
efficiency of 67.45 percent with the nanosatellite structure and 
a solar panel. 

Weinert et al. (Ref. 165) discuss a project sponsored by the 
Department of Homeland Security (DHS) Science and 
Technology Directorate to design and fabricate a low-power, 
low-weight, reliable communication solution to provide 
essential information. This airborne remote communication 
(ARC) system trades bandwidth for mobility and reliability. 
The ARC system is partly based on CubeSat technology and 
consists of the CubeSat communication technology, ground-
based hardware and software components, and a platform on 
which the communication technology is deployed. They 
describe the ARC system and a demonstration highlighting the 
capabilities of an essential information system. 

Babuscia et al. (Ref. 166) focused on telecommunication 
issues for interplanetary CubeSats. Interplanetary CubeSats 
tend to face harsher environments and longer path distances and 
have more navigation needs than the LEO CubeSats. They 
discuss the design of the telecommunication and ground 
support systems for two of the interplanetary CubeSat missions 
that will be launched on the NASA SLS EM–1: Lunar IceCube 
and LunaH-Map.  

Babuscia et al., (Ref. 167) present a low-complexity Code 
Division Multiple Access (CDMA) system for CubeSats for 
communications between the Lunar L1 and Earth station. They 
used a low-density parity check (LDPC) coded CDMA with 
binary phase shift keying (BPSK) modulation with rectangular 
and half-sine pulse shaping. Except for the pseudorandom 
number generator seed numbers, the communication structure 
of all CubeSats would be identical and operating at one single 
RF. They present analyzed and simulated data for their 
proposed CDMA system. 

Gunther et al. (Ref. 168) discusses establishing reliable high 
data rate space-to-Earth communication in the asymmetric 
setting of a secondary service in the 460- to 470-MHz frequency 
band. They present a frequency domain approach to detect and 
cancel narrowband interference. This approach was shown to 
be effective on real data collected for the Dynamic Ionosphere 

CubeSat Experiment mission and was developed with a view 
toward demonstrating a high-speed data downlink capability 
that may be adopted as a standard for future CubeSat missions.  

Paternina-Anaya, Salamanca-Céspedes, and Ávila-Angulo 
(Ref. 169) describe the hardware and software necessary to 
implement a picosatellite network and four Earth stations. The 
mission of the CubeSat, Colombia 1, consists of taking 
electrocardiogram signals at an Earth station and sending it via 
picosatellite to another.  

Yang et al. (Ref. 170) discuss a space optical communication 
and navigation system that provides high data rate 
communication, precise measurements of spacecraft ranging, 
range rate, and accurate spacecraft pointing. A complete 
breadboard system was built and includes both space and 
ground terminals. Along with a 622-Mbps data link, two-way 
ranging was conducted. Accuracies of 23-µm ranging and  
23-µm/s range rate were achieved in 1-s integrating time. The 
ranging and range rate accuracies were achieved through the 
relative phase measurement of transmit and receive clocks with 
Dual Mixer Timer Difference measurement apparatus. 

Humad, TagElsir, and Daffalla (Ref. 171) discuss 
ISRASAT1, which is a nanosatellite designed, built, and 
integrated at the Institute of Space Research and Aerospace 
(ISRA). The beacon subsystem is separated from telemetry and 
data transmitter and will operate in the VHF band at 128 MHz. 
For the telemetry and data subsystem, the data radio transceiver 
in UHF band at 868 MHz will be used. They presented the 
hardware and software design and implementation of the 
communication subsystem of the ISRASAT1 CubeSat. 

Vertat et al. (Ref. 172) discuss the development and 
evaluation of a simple method for received signal quality for 
CubeSats. This method was applied on several received signals 
from picosatellites and the results are discussed. They also 
discuss the practical side of picosatellite signal receiving and 
statistics of a picosatellite passing above a ground station. 

Tresvig and Lindem (Ref. 173) discuss the design of a 
communication system for a nanosatellite space weather 
mission and how the increased capabilities of integrated circuits 
have reduced the complexity and size of the satellite 
subsystems.  

Ceylan et al. (Ref. 174) discuss a low-cost S-band 
communication system design for nanosatellite structures. They 
designed a 2.4-GHz (S-band) communication system for LEO 
satellites (700 to 900 km). Their system includes system-on-
chip transmitter device, preamplifier, band pass filter, power 
amplifier, and microstrip antenna array. They realized output 
power of the system at 35 dBm for 2.4 kBd data rate. 

Arruego et al. (Ref. 175) discuss an Optical Wireless Links 
for intra-Spacecraft communications (OWLS) technology. 
OWLS has been recently applied to the On-Board Data 
Handling subsystem of OPTOS satellite, the first fully wireless 
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satellite. They address the communication challenges between 
a sensor and a meteorological station on the Martian surface, 
within the Mars MetNet Precursor Mission. 

D’Humières et al. (Ref. 176) present the advanced Concept 
for laser uplink/downlink CommuniCation with sPace Objects 
(C3PO) system, and the initial results of the development of its 
key technologies. They targeted the design of a communication 
system that uses a ground-based laser to illuminate a satellite 
and a modulating retro-reflector to return a beam of light 
modulated by data to the ground. The C3PO project aims to 
achieve data rates of 1 Gbps between LEO satellites and Earth 
with a communication payload mass of less than 1 kg.  

Aragõn et al. (Ref. 177) present a communication for OPTOS 
that incorporates a customized subsystem that is being 
thoroughly tested and will try to ensure the quality of the radio 
link. Their subsystem operates in the frequency of 402 MHz and 
consists of a transceiver and four monopoles onboard the 
satellite and a directional antenna together with diverse and 
reliable ground equipment. They also detail the telemetry, 
tracking, and command; ground station equipment; and 
antennas. 

Clements et al. (Ref. 178) discuss the nanosatellite optical 
downlink experiment (NODE), which implements a free-space 
optical communications capability on a CubeSat platform that 
can support LEO to ground downlink rates of 10 Mbps. A 
primary goal of NODE is to leverage commercially available 
technologies to provide a scalable and cost-effective alternative 
to RF-based communications. The NODE transmitter uses a 
200-mW, 1,550-nm master-oscillator power-amplifier design 
using power-efficient M-ary pulse position modulation. They 
capture trades and technology development needs and outline 
plans for integrated system ground testing. 

Hunyadi et al. (Ref. 179) present the MEROPE (Montana 
EaRth-Orbiting Pico-Explorer) communications subsystem that 
consists almost entirely of COTS components. MEROPE uses 
the AX.25 packet radio protocol at 1,200 Bd. Uplink is at a 
frequency of 145.835 MHz with 20 kHz of available bandwidth. 
Downlink is at 437.445 MHz with a 30-kHz bandwidth. The 
MEROPE antenna is a center-fed dipole tuned to the 2-m 
uplink, which is nearly harmonic with the 70-cm downlink. 

Carrasco-Casado et al. (Ref. 180) present the main points and 
conclusions from the Keck Institute for Space Studies (KISS) 
workshops. The KISS group consisted of a group of space 
scientists and laser communications (lasercom) engineers 
brought together to address the current challenges that CubeSat 
optical communication technology faces. After two 1-week 
workshops, the working group addressed three study cases: 
LEO, crosslinks, and deep space.  

Lim et al. (Ref. 181) describe an optical communications 
system payload development for a CubeSat-based satellite 
crosslink, operating at a 1-km range. They designed and 

assembled an engineering model that will serve as a prototype 
to conduct performance testing and to extract key payload 
requirements such as volume, weight, power, and pointing 
accuracy for signal acquisition and tracking and follow-on 
design stages beyond an engineering model. This prototype 
consists of two main optical subsystems: a receiver system to 
detect and track incoming signals and a transmitter system to 
broadcast towards a sister satellite. This design is referred to as 
the “bistatic design”, requiring an identical transmitter and 
receiver pair for two-way laser communication. 

Rajguru et al. (Ref. 182) discusses the reduction of generic 
RF communications system mass and size by replacing it with 
lasercom technology, which can fit into a 6U CubeSat 
constraint. Achieving this miniaturization can lower the cost of 
deep space missions, thereby making it more accessible to 
small-budget organizations such as university research labs. 

Babuscia et al. (Ref. 183) propose to develop a 
communications system for CubeSats in formation that operate 
in the vicinity of the Moon using a CDMA system. They 
investigated Doppler effects on CDMA communications 
systems such as the effects of Doppler shift and rate on the 
CDMA system performance as a result of the CubeSat 
constellation orbiting in a halo orbit around Earth-Moon 
Lagrange Point L1. They present a detailed analysis and 
simulation of the system in the presence of Doppler frequency 
and an unknown carrier phase.  

Tubbal, Raad, and Chin (Ref. 184) propose the use of a 
wideband S-band F-shaped patch antenna for CubeSat 
communications to broaden bandwidth. They utilized two arms 
with different lengths to generate a second resonant frequency. 
They studied the effect of the arm length and width on the return 
loss, resonant frequency, and impedance bandwidth on a 3U 
CubeSat. Their simulation results show that the antenna 
achieves a wideband of 1,121 MHz (1.606 to 2.727 GHz) with 
a return loss below –10 dB over the entire frequency band from 
1.606 to 2.727 GHz. The antenna has a high gain of 8.51 dB 
and a small return loss of –32.85 dB at 2.45 GHz. 

Palo (Ref. 185) provides an overview of current CubeSat 
communications systems capabilities in addition to details 
about an effort to develop a high-rate CubeSat communications 
system that is compatible with the NASA Near Earth Network 
(NEN). The system includes a 200 kbps S-band receiver and a 
12.5 Mbps X-band transmitter. 

Neumann et al. (Ref. 186) demonstrate the feasibility of 
establishing a Q.Com uplink with a 3U CubeSat using COTS 
that primarily have a space heritage. They discuss how  
to leverage the latest advancements in nanosatellite body 
pointing to show that a 4-kg CubeSat can generate a quantum-
secure key. The also performed a comprehensive link budget 
and simulation to calculate the secure key rates. They discuss 
design choices and tradeoffs to maximize the key rate  
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while minimizing the cost and development needed for global 
scale Q.Com. 

Babuscia et al. (Ref. 187) discuss the review and possibility 
of combining two solutions for the problem: the use of 
inflatable antenna reflectors and the arrays across multiple 
spacecraft. They presented an overview of cooperative 
communications techniques across small platforms and the 
main challenges of arraying antennas on different spacecraft are 
underlined. They combined the two solutions to provide a first-
order quantification of the advantages in terms of effective 
isotropic radiated power and data rate and range. 

Kim and Moon (Ref. 188) present a radiofrequency 
distribution unit (RFDU) conceptual design for Korea 
Pathfinder Lunar Orbiter (KPLO) communications relay. They 
discuss the KPLO RFDU and the RF path multiplexing 
conceptual design that results in the same band.  

Babuscia, Divsalar, and Cheung (Ref. 189) propose a 
communications system for CubeSats in formation to operate in 
the vicinity of the Lunar Lagrangian L1. They considered an 
improved low-complexity CDMA system for CubeSats for 
communications between the Lunar L1 and Earth station. They 
analyzed and simulated the proposed improved CDMA system 
for a concept constellation of CubeSats.   

Babuscia et al. (Ref. 190) propose cooperative 
communications approaches in which multiple CubeSats 
communicate cooperatively together to improve the link 
performance with respect to the case of a single satellite 
transmitting. Three approaches were proposed: a beam-forming 
approach, a coding approach, and a network approach. The 
approaches are applied to the specific case of the Solar 
Observing Low frequency Array for Radio Astronomy/ 
Separated Antennas Reconfigurable Array (SOLARA/SARA) 
concept: a proposed constellation of CubeSats at the Lunar 
Lagrangian point L1 that aim to perform radio astronomy at 
very low frequencies (30 kHz to 3 MHz). They describe the 
development of the approaches, the simulation, and a graphical 
user interface that can be applicable to multiple constellation 
configurations. 

Su, Lin, and Ha (Ref. 191) investigate the feasibility of 
deploying CubeSat constellations with intersatellite links for 
the delivery of global continuous communication. The 
proposed and verified CubeSat constellation designs are for 
various mission scenarios using a simulation toolkit commonly 
used by space engineers. 

Chaabane, Jaballah, and Rokbani (Ref. 192) present an 
antenna devoted to CubeSat communications systems based on 
a Flower Pollination Algorithm (FPA) for the antenna angular 
inset-feed and its depth as well as the antenna radius. Their FPA 
metaheuristic is used to optimize the performance of each 
circular patch in terms of return loss, gain, and impedance. They 
obtained a return loss near the Industrial, Scientific, and 

Medical (ISM) frequency of 2.45 GHz at –27.9663 dB and the 
simulated gain reached 9.06 dB. 

Schaire et al. (Ref. 193) discuss NASA scientists and 
engineers across many of the NASA Mission Directorates and 
Centers developing exciting CubeSat concepts and welcome 
potential partnerships for CubeSat endeavors. The NASA 
Space Communications and Navigation (SCaN) Program’s 
NEN and Space Network (SN) are customer-driven 
organizations that provide comprehensive communications 
services for space assets including data transport between a 
mission’s orbiting satellite and its mission operations center. 
This report presents how well the SCaN networks, SN and 
NEN, are currently positioned to support the emerging small-
satellite and CubeSat market as well as planned enhancements 
for future support. 

Oi et al. (Ref. 194) discuss quantum communication as a 
prime space technology application for CubeSats that can 
potentially offer near-term possibilities for long-distance 
quantum key distribution (QKD) and experimental tests of 
quantum entanglement. They outlined a recent proposal to 
perform orbit-to-ground transmission of entanglement and 
QKD using a CubeSat platform deployed from the ISS. The 
CubeSat Quantum Communications Mission (CQuCoM) 
would be a pathfinder for advanced nanosatellite payloads and 
operations and could potentially establish the basis for a 
constellation of LEO-trusted nodes for QKD service provision. 

Khac et al. (Ref. 195) proposed a circular polarization array 
antenna for CubeSat satellite applications in X-band ranging 
from 8.0 to 8.4 GHz. They introduced a sequential-phased 
rotation principle combined with an equal power divider for a 
4- by 4-array antenna as well as a dual-feed technique to 
generate circular polarization for a single antenna element that 
has the same magnitude and 90° phase deviation between two 
input ports. They achieved X-band bandwidth coverage ranging 
from 8.0 to 8.4 GHz completely while the axial ratio is less than 
3 dB and the total gain of 15.89 dBi was achieved at 8.2 GHz.  

Santangelo and Skentzos (Ref. 196) discuss flight testing and 
certifying the QuickSAT/Vehicle Management System (VMS), 
the prototype of the FRNCS–P high-speed flight computer and 
the LinkStar global communications radio on the Boeing 
RADSat. The RADSat is a 2U CubeSat that will be deployed 
from the ISS via the Nanoracks Program. They aimed to test 
and demonstrate full duplex communications between the 
satellite and ground via the Globalstar satellite network 
utilizing the LinkStar radio architecture. Globalstar is a 
constellation of 32 satellites in LEO providing global data and 
voice services for a range of uses including oil rigs, shipping 
containers, gas pipelines, and supporting remote 
communications. Their research focused on adapting the 
Globalstar GSP–1720 modem and creating the LinkStar radio 
architecture for use in space. Their models show LinkStar can 
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provide up to 60-percent continuous coverage, both data 
download and upload through a secure internet link. For the 
LinkStar–STX3, over 95-percent downlink coverage can be 
provided. In both radio systems, the data itself is further 
encrypted to ensure the information transmitted to and from a 
satellite is secure. 

Kingsbury et al. (Ref. 197) describe the design of a compact 
free-space optical communications module for use on a 
nanosatellite. They present results from a detailed trade study 
to select an optical fine-steering mechanism compatible with 
our stringent size, weight, and power (SWaP) constraints. Their 
overall goal is to develop a lasercom payload that fits within the 
SWaP constraints of a typical 3U CubeSat. They presented an 
analysis of the device’s transfer function characteristics and 
ways of predicting this behavior that are suitable for use in the 
control processor.  

Konte, Trafford, and Schmalzel (Ref. 198) discuss the 
development of an extensible electronic data sheet to extend the 
power of the transducer electronic data sheet concept that can 
be applicable to CubeSat communications protocols, which are 
based on IEEE 1451.4. Standards. 

Rana et al. (Ref. 199) discuss the mission of Space 
Concordia’s ground station establishing communication with 
its main 3U CubeSat, Aleksandr. Space Concordia has utilized 
Open MCT, a mission control software developed by NASA 
and based on a web framework that ground station operators 
can tailor to process and visualize mission-specific telemetry. 
They have created several libraries under open source licenses 
to facilitate the use of Open MCT by other ground stations.  

Khotso, Lehmensiek, and Van Zyl (Ref. 200) investigated the 
effect of the antenna pattern on the communication time between 
a ground station and a LEO satellite with passive attitude control. 
Two low-profile antennas that fit on a 3U CubeSat were 
considered, more specifically, a high-gain patch and a low-gain 
monopole-like patch antenna. The communications system 
investigated was for high-speed S-band communication.  

Zaman et al. (Ref. 201) describe the design tradeoff between 
the field of view (FOV) and collection efficiency in receiver 
designs using COTS optics and detectors. They also discuss the 
design tradeoffs in transmitter design for optimum 
performance. They surmised that in order to achieve maximum 
signal-to-noise ratio at long distance (≥100 km), the laser beam 
diameter needs to be 80 to 90 percent of the scanning mirror 
diameter. In addition, they show that the intrinsic FOV of high-
speed (≥600 MHz) Avalanche Photodiodes (APD) can be 
increased to ≥3° by incorporating optimized optics considering 
form factor of the CubeSat system. They presented a scalable 
detector array design method using COTS components to 
achieve a wide full FOV (≥12°) with a uniform collection 
efficiency around 30 to 60 percent. They demonstrated a 
multiwavelength full duplex communications system based on 

dichroic filters as the duplexer that shows significantly low 
crosstalk.  

Vourch and Drysdale (Ref. 202) presented a study of a simple 
communications scenario between two CubeSats using a V-band 
“Bull’s eye” antenna specifically designed for this purpose. The 
return loss of the antenna has a –10 dB bandwidth of 0.7 GHz 
and a gain of 15.4 dBi at 60 GHz. The communications scenario 
study shows that using 0.01 W VubiQ modules (Vubiq 
Networks, Inc.) and V-band Bull’s eye antennas, CubeSats can 
efficiently transmit data within a 500-MHz bandwidth and with 
a 10–6 bit error rate while being separated by up to 98 m, under 
ideal conditions, or 50 m under worst-case operating conditions 
(5° pointing misalignment in E- and H-plane of the antenna, and 
5° polarization misalignment). 

Nguyen et al. (Ref. 203) present the NODE design, capable 
of providing a typical 3U (30 by 10 by 10 cm) CubeSat with a 
comparatively high data rate downlink. The NODE optical 
communications module was designed to fit within a 5- by 10- 
by 10-cm volume, weigh less than 1 kg, and consume no more 
than 10 W of power during active communications periods. 
Their design incorporates a fine-steering mechanism and 
beacon-tracking system to achieve a 10-Mbps link rate. They 
describe the system-level requirements and designs for key 
components, including a transmitter, a beacon-tracking camera, 
and a fast-steering mirror. They also present simulation results 
of the uplink beacon tracking and fine steering of the downlink 
beam, including the effects of atmospheric fading and on-orbit 
environmental disturbances to demonstrate the feasibility of 
this approach.  

Chalermwisutkul et al. (Ref. 204) discuss the development of 
a 1U CubeSat (KNACKSAT) communication system utilizing 
Gaussian minimum shift keying- (GMSK-) modulated data 
from the satellite that is transmitted to the ground station via a 
UHF channel. The uplink of the frequency shift keying-  
(FSK-) modulated command from ground to the satellite is 
carried out via a VHF channel. Half wavelength dipoles for the 
transmit and receive antennas aboard the KNACKSAT CubeSat 
were chosen. The developed communication system has been 
successfully tested with data communication between the 
satellite and the ground station. 

Challa and McNair (Ref. 205) investigate how power, 
volume, and geometry constraints of a CubeSat cripple CubeSat 
communications and introduce CubeSat Torrent, a Torrent-like 
distributed communications system, for CubeSat clusters. 
CubeSat Torrent aims to increase the downlink and uplink 
speeds of large files by distributing pieces of the files to 
CubeSats in the cluster and downloading different pieces of the 
files simultaneously from different CubeSats. The proposed 
system proved, through simulation experiments, to 
substantially improve the download and upload times of large 
files by a factor of about the size of the cluster.  
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Akyildiz, Jornet, and Nie (Ref. 206) discuss a CubeSat design 
with reconfigurable multiband radios for communication in 
dynamic frequencies. Their multiband radio design is realized 
by two complementary approaches: an electronics-based and a 
photonics-based approach. Their multiband communication 
covers a wide range from radiofrequencies (2 to 30 GHz), 
millimeter wave (30 to 300 GHz), terahertz band (up to 
10 THz), and optical frequencies (with typical bands of 
850 nm/350 THz, 1,300 nm/230 THz, and 1,550 nm/193 THz). 
Key parameters in the satellite constellation design are 
investigated to explore the feasibility of deployment at different 
altitudes in the exosphere orbit (500 km and above).  

Latachi et al. (Ref. 207) present a link budget analysis for 
communication between a nanosatellite orbiting at LEO and a 
low-cost mission-control ground station. The analysis employs 
relevant deterministic, empirical, and statistical models as 
prediction tools, to make pertinent choices for both the flight 
nanosatellite compliant communications board and the ground 
station hardware and link protocols. 

Popescu (Ref. 208) presents a detailed power budget analysis 
that includes communications with ground stations as well as 
with other CubeSats. For ground station communications, they 
outline how the orbital parameters of the CubeSat trajectory 
determine the distance of the ground station link and present 
power budgets for both uplink and downlink that include 
achievable data rates and link margins. For intersatellite 
communications, they studied how the slant range determines 
power requirements and affects the achievable data rates and 
link margins.  

Neumann et al. (Ref. 209) present a feasibility study for a 
fully functional 3U-CubeSat-based quantum receiver. They 
provide a complete link loss analysis, count rate estimations, 
and preliminary design. They also discuss solutions to key 
problems such as satellite pointing errors and measurement and 
detection issues. Using current technology, they show that the 
CubeSat is feasible and can be used to violate a Bell-like 
inequality over a free-space distance of 500 km.  

Arvizu et al. (Ref. 210) present a prototype of an acquisition, 
tracking, and pointing (ATP) system intended to be used in an 
optical quantum communications link between a CubeSat and 
an optical Earth station. The ATP system is designed in such a 
way that alignment on the satellite with respect to the optical 
Earth station will be carried out based on the concept of an 
artificial star with the help of an astronomical 14-in. Cassegrain 
telescope. They also present characterization results of ATP 
performance under controlled conditions of optical turbulence 
in the laboratory and in shorthand medium-distance terrestrial 
links. 

Rodriguez-Osorio and Ramírez (Ref. 211) present a hands-
on education project the aim of which is the specification, 
design, building, and measurement of an antenna for 

communications between nanosatellites. The project lies within 
the framework of School of Telecommunications Engineering 
(ETSIT) Technical University of Madrid (UPM) innovative 
educational activities in the area of space technology, where 
students play a leading role in real engineering projects.  

Bulanov et al. (Ref. 212) evaluated intersatellite 
communications for a LEO CubeSat network using 
determination and estimation of quality of service (QoS) 
parameters and evaluation of the feasibility of a massive 
multiple input, multiple output (MIMO) system link. They 
investigated the QoS parameters for an intersatellite link and 
factors affecting it and a theoretical design with a constructive 
drawing of massive MIMO. The possibility and time duration 
of intersatellite communication were calculated for three 
different cases using real data and including massive MIMO. 
Based on simulation results, suggestions and possible technical 
and nontechnical solutions were highlighted together with 
future studies and simulations. 

Peng et al. (Ref. 213) presented a BPSK modulation scheme 
using dual gain-switched diode lasers that was developed and 
demonstrated within an end-to-end link testbed to achieve 
signal acquisition under extremely poor signal-to-noise 
conditions (–43.5 dB average signal-to-noise power ratio at a 1-
MHz symbol rate) to simulate direct-to-Earth links, while 
simultaneously targeting a limited SWaP footprint (1.5U 
envelope). They discussed additional system design and 
constraints for the compact laser transmitter. 

do Nascimento et al. (Ref. 214) conducted an experiment 
comparing different transceivers for both satellites and ground 
station in order to guarantee the fastest and cheapest data 
transmission for the mission. They also calculated the data 
volume that will be sent during the entire mission in order to 
determine which communication equipment will maximize this 
mission’s efficiency. 

Clark et al. (Ref. 215) describe the characteristics and control 
of a new CubeSat transceiver. The new transceiver provides an 
estimated 300-percent increase in data throughput for a typical 
45° maximum elevation angle LEO pass over the Aerocube–2 
transceiver. 

Popescu, Harris, and Popescu, (Ref. 216) examine 
operational constraints for CubeSats placed in LEOs and how 
they impact the design of their communications subsystem. 

Perea-Tamayo et al. (Ref. 217) proposed a LEO relay 
constellation formed by a ring of nanosatellites utilizing S-band 
for data relay and UHF, VHF, and S-band for user 
communication. The proposed constellation can be established 
at low cost and can significantly increase the available 
communication time of near-polar-orbit satellites, drastically 
increasing the available communications budget. A nine relay-
satellite-based relay belt can increase link availability for a 
satellite in near-polar orbit by up to 945 percent. 
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Muri and McNair (Ref. 218) present a survey detailing past 
and planned large intersatellite linking systems. They also 
chronicle CubeSat communications subsystems used 
historically and in the near future. In addition, they examine the 
history of internetworking protocols in space and open research 
issues with the goal of moving towards the next-generation 
intersatellite-linking constellation supported by CubeSat 
platform satellites. 

Kara et al. (Ref. 219) discuss a research group that 
concentrated on (1) short- and long-term technical challenges, (2) 
policy requirements, (3) radio communication bandwidth 
limitations, (4) data collection and transmission regulations, and 
(5) the standardization of the CubeSat communications system. 
The group suggests a CubeSat network system architecture 
including interswarm and intraswarm constellations, optical and 
laser communications, and delay-tolerant networks. The 
proposed CubeSat communications network also consists of 
interswarm constellation communications along with intraswarm 
constellations sustained through four different basic data links, a 
mother-daughter satellite framework, and net-neutrality 
throughout the network. The group’s overall goal is to help all 
users and operators in the CubeSat sector, including 
entrepreneurs, licensing bodies, and end users. Saving time for 
everyone while achieving maximum efficiency and utilization of 
the time. 

Polly et al. (Ref. 220) conducted a trade study to decide 
which optical configuration is best for a CubeSat laser 
communication payload, bistatic or monostatic. The bistatic 
configuration used two parallel lasers (one each for uplink and 
downlink). The monostatic configuration used two collinear 
lasers. Proof-of-concept short-range laser communication 
systems were built and tested to measure performance. 
Measures of effectiveness were weighted by a pairwise 
comparison and the monostatic and bistatic systems were 
compared in a house of qualities. The monostatic system design 
was deemed to be the better optical configuration.  

Corpino and Stesina (Ref. 221) detail a communication 
anomaly that occurred on the CubeSat mission E–st@r–II, 
which was launched in April of 2016. This report describes the 
investigation of a major anomaly that seriously affected mission 
operations, that is, low signal-to-noise ratio of downlink 
communication. No signal could be received at the main control 
station. Only ground stations with high-gain antennas and/or 
proper system setup could receive and decode E–st@r–II 
packets. Both space and ground segments were identified to be 
part of the problem. A potential defect was detected on the 
coaxial cable connection to the antenna, which might have 
caused the final mishap under investigation. The analysis also 
showed that an effective ground segment helps mitigate the 
impact of the anomaly and it may be worth investing more on 
this mission element.  

Muri, Challa, and McNair (Ref. 222) investigated CubeSat 
communications for a 2.45-GHz bandwidth rather than the 
typical MHz frequency. This higher frequency provides the 
bandwidth needed for increasing the data rate. A deployable 
hemispherical helical antenna prototype was built and 
transmission between two prototype antenna equipped 
transceivers at varying distances tested the helical performance. 
When comparing the prototype antenna’s maximum 
transmission distance to the other commercial antennas, the 
prototype outperformed all commercial antennas, except the 
patch antenna, which was due to the helical antenna’s narrow 
beam width. This can lead to communications advancements by 
implementing a more accurate alignment with the satellite’s 
directional antenna to downlink with a terrestrial ground station. 

Moll et al. (Ref. 223) describe the concept and hardware of 
three generations of Optical High Speed Infrared Link System 
(OSIRIS) laser communication terminals for LEO satellites. 
The first type applies laser beam pointing solely based on 
classical satellite control, the second uses an optical feedback 
to the satellite bus, and the third comprises a special course 
pointing assembly to control beam direction independent of 
satellite orientation. Two ground stations will be available for 
future testing, an advanced stationary ground station and a 
transportable ground station.  

Summary and Conclusions 
As mentioned in the Executive Summary, a CubeSat is an 

evolving and emerging technology that gives a novice or 
advanced researcher relatively affordable access to space 
research experiments and applications. The initial CubeSat 
standard was created in 1999 by California Polytechnic State 
University, San Luis Obispo and Stanford University’s Space 
Systems Development Laboratory to facilitate direct access to 
space for university students. This initial CubeSat standard has 
now been adopted by hundreds of organizations worldwide and 
includes not only universities and educational institutions, but 
private firms and government organizations. Dozens of 
CubeSats have been launched since 2003 and have come from 
more than 29 states in the United States. The CubeSat standard 
facilitates frequent and affordable access to space with launch 
opportunities available on most launch vehicles. 

CubeSats are a class of research spacecraft called 
nanosatellites and are built to standard CubeSat Units or U 
dimensions of 10 by 10 by 10 cm and are formally classified as 
1U, 2U, 3U, or 6U in size. Most CubeSats are deployed from a 
Poly-Picosatellite Orbital Deployer called a P-POD. 
Partnerships among NASA, U.S. industry, and educational 
institutions are being formed to build upon existing successful 
CubeSat initiatives with a goal to expand and include launching 
50 small satellites from 50 states within the next several years. 
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An extensive and detailed literature review that included over 
835 citations was conducted to provide a comprehensive 
resource on both NASA and non-NASA CubeSat experiments 
and applications that can serve as a guide for background 
information on CubeSats as well as a valuable resource of 
“lessons-learned” from CubeSats that have been launched in the 
past. 

While we choose to concentrate on four areas (thermal 
management, deployment mechanisms, power generation, and 
communications) that covered over 220 citations, there are 
many other areas that are essential to increasing the probability 
of success for a CubeSat launch. To that end, we have included 
over 600 additional citations in the bibliography to serve as a 
reference guide to anyone interested in CubeSat technology, 
from the middle-school student up to the engineering 
professional. The overall goal was to provide a CubeSat 

research hub proving past and present research into CubeSat 
planning, development, implementation, and experimentation 
as well as prelaunch, during launch, and postlaunch.  

Lastly, one of the big drivers to future CubeSat missions is 
maximizing the utilization of the limited power available while 
pushing the performance of its capabilities. Finding the capacity 
to increase the efficiency and computing ability of CubeSat 
processing elements while providing improved power 
performance will be a major focus of next-generation CubeSat 
missions. Current technologies are emerging that use deep 
learning and cognition to improve the performance. 
Neomorphic hardware delivers computing at orders of 
magnitude gains all while providing speed, intelligence, and 
better functionality. This can go a long way to having CubeSat 
missions that maximize power usage by utilizing brainlike 
intelligence when handling CubeSat operations.  
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