Table 1. Summary of surface phases for burner rig exposure of bare and YSZ coated Ti<sub>2</sub>AlC MAX phase. Rietveld estimates of wt.% phase contents. Test temperature indicates maximum surface temperature of coating in hot zone. (sample from previous furnace tests included for comparison).

|                    |          |                  |       |                                |                  | wt.%    |                       |                                   |
|--------------------|----------|------------------|-------|--------------------------------|------------------|---------|-----------------------|-----------------------------------|
| <br>back, uncoated | location | test temperature | time  | Al <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub> | Ti₂AIC⁺ | TiAl <sub>3</sub> (?) | Fe <sub>2</sub> O <sub>3</sub> ++ |
| burner bar         | hot zone | 926°C            | 10 m  | 51                             | 10               | 38      |                       |                                   |
| burner bar         | top end  | 1300°C           | 500 h | 89                             | 1                | 9       | 1.5                   |                                   |
| burner bar         | hot zone | 1300°C           | 500 h | 97                             | 0.1              | 3       | 0                     |                                   |
| burner bar         | grip end | 1300°C           | 500 h | 79                             | 0.3              | 17      | 3.5                   | 1                                 |
|                    |          |                  |       |                                |                  |         |                       |                                   |

| <br>front, coated | location | test temperature | time   | t-YSZ | t'-YSZ | cubic monoclinic |     | Fe <sub>2</sub> O <sub>3</sub> ++ |
|-------------------|----------|------------------|--------|-------|--------|------------------|-----|-----------------------------------|
| furnace sample    | uniform  | 1100°-1300°C     | 2500 h |       |        | 62               | 21  |                                   |
| burner bar        | hot zone | 926°C            | 10 m   |       | 68     | 28               | 3   |                                   |
| burner bar        | top end  | 1200°C           | 500 h  | 34    |        | 62               |     |                                   |
| burner bar        | hot zone | 1200°C           | 500 h  | 31    |        | 64               |     |                                   |
| burner bar        | grip end | 1200°C           | 500 h  | 28    |        | 68               |     |                                   |
| burner bar        | top end  | 1300°C           | 500 h  | 12    |        | 86               | 0.5 |                                   |
| burner bar        | hot zone | 1300°C           | 500 h  | 11    |        | 86               | 0.5 |                                   |
| burner bar        | grip end | 1300°C           | 500 h  |       | 49     | 32               | 1.5 | 16                                |

+ includes other possible MAX stoichiometries ++ includes other possible Feoxides

Table 2. Estimates of  $YO_{1.5}$  mole % in YSZ phases according to published lattice parameter and c/a ratio calibrations.

|            |          |                  |        | t-    | YSZ         | t'-   | YSZ         | cubic |  |
|------------|----------|------------------|--------|-------|-------------|-------|-------------|-------|--|
| sample     | location | test temperature | time   | a-LP* | c/a ratio** | a-LP* | c/a ratio** | a-LP* |  |
| furnace    | uniform  | 1100°-1300°C     | 2500 h |       |             |       |             | 12    |  |
| burner bar | hot zone | 926°C            | 17 m   |       |             | 11.6  | 9.8         |       |  |
| burner bar | top end  | 1200°C           | 500 h  | 3.7   | 3.6         |       |             | 16.4  |  |
| burner bar | hot zone | 1200°C           | 500 h  | 3.1   | 3.7         |       |             | 14.7  |  |
| burner bar | grip end | 1200°C           | 500 h  | 4.8   | 4.6         |       |             | 16.1  |  |
| burner bar | top end  | 1300°C           | 500 h  | 3.2   | 3.6         |       |             | 15.1  |  |
| burner bar | hot zone | 1300°C           | 500 h  | 1.6   | 3.0         |       |             | 9.4   |  |
| burner bar | grip end | 1300°C           | 500 h  |       |             | 7.0   | 6.8         | 10.9  |  |

\* value based on empirical correlation between mol% YO1.5 and a lattice parameter.

\*\* value based on empirical correlation between mol% YO1.5 and c/a ratio.

See report narrative for discussion of t' vs. t phases.

**Table 3**. HP-BRT and Mach 0.3 BRT comparisons. (a) typical burner conditions and (b) relative scale volatility factors  $(J_{M0.3}/J_{HPBR})$  according to  $v^{1/2}p_{H20}^{n}/p_{tot}^{1/2}$ .

| a) |          | v (m/s) | р <sub>н20</sub> (atm) | p <sub>tot</sub> (atm) |
|----|----------|---------|------------------------|------------------------|
|    | Mach 0.3 | 100     | 0.1                    | 1                      |
|    | HP-BRT   | 25      | 0.6                    | 6                      |

| b) | scale            | species              | n   | (p <sub>H20</sub> /p <sub>H20</sub> ) <sup>n</sup> | $(p_{tot}/p_{tot})^{1/2}$ | (v/v) <sup>1/2</sup> | J <sub>Mach 0.3</sub> /J <sub>HPBR</sub> |
|----|------------------|----------------------|-----|----------------------------------------------------|---------------------------|----------------------|------------------------------------------|
|    | TiO <sub>2</sub> | TiO(OH) <sub>2</sub> | 1   | 0.167                                              | 0.408                     | 2                    | 0.816                                    |
|    | $Al_2O_3$        | AI(OH) <sub>3</sub>  | 3/2 | 0.068                                              | 0.408                     | 2                    | 0.333                                    |
|    | SiO <sub>2</sub> | Si(OH) <sub>4</sub>  | 2   | 0.028                                              | 0.408                     | 2                    | 0.136                                    |

Table 4. Oxidative Life Summary of YSZ TBC on MAX Phases Compared to Single Crystal Superalloys (SXSA). black (survived); red italic (failed)

(FCT SXSA - Smialek 2015; FCT GZ/YSZ - University West, Mahade, 2019; FCT Kanthal (K) - Smialek, 2016, 2018; FCT Juelich (J) -, Gonzalez-Julian, 2018; BRT Juelich (J) - Gonzalez-Julian 2019); BRT Kanthal (K) – this study

| test | TBC    | substrate             | <b>1100°</b> | 1150° | 1200° | 1250° | 1300° | 1400°     | °C |
|------|--------|-----------------------|--------------|-------|-------|-------|-------|-----------|----|
| FCT  | PVD    | SXSA                  | 831          | 352   | 158   | 75    | 37    |           | h  |
| FCT  | HVAF*  | Hast-X                | 580          |       |       |       |       |           |    |
| BRT  | HVAF*  | IN-738                |              |       |       |       |       | 42        |    |
| FCT  | APS    | Cr <sub>2</sub> AIC-K | 500          | 500   | 100   |       |       |           |    |
| FCT  | PS-PVD | Cr <sub>2</sub> AIC-K | 500          | 500   | 100   |       |       |           |    |
| FCT  | APS    | Cr <sub>2</sub> AIC-J | 500          |       | 500   |       | 268   |           |    |
| BRT  | HV-APS | Cr <sub>2</sub> AIC-J |              |       |       |       |       | <b>62</b> |    |
| FCT  | APS    | Ti <sub>2</sub> AIC-K | 500          | 500   | 500   | 500   | 500   |           |    |
| FCT  | PS-PVD | Ti <sub>2</sub> AIC-K | 500          | 500   | 500   | 500   | 500   |           |    |
| BRT  | PS-PVD | Ti₂AIC-K              |              |       | 500   |       | 500   |           |    |

\* 2-layer Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/YSZ

K-Kanthal

J – Juelich

black - survived

red -failed



**Figure 1**. Photographs of burner rig and YSZ coated  $Ti_2AIC$  MAX phase sample in operation. a) upper angled view showing flame, sample and mounting base; b) short exposure indicating temperature gradients along sample length.

## Figure 2a



Figure 2. Mach 0.3 1300°C BRT of YSZ TBC on  $Ti_2AlC$ . a) Specific weight gain and degree of bending for 500 h Mach 0.3 1300°C BRT. Deflection rate is slightly moderated with time as sample subtended area decreases. b) Cubic oxidation kinetics (without spalling) is suggested by plotting transient corrected weight vs  $t^{1/3}$ .

Figure 2b.



Figure 2. a) Specific weight gain and degree of bending for 500 h Mach 0.3 1300°C BRT. Deflection rate is slightly moderated with time as sample subtended area decreases. b) Cubic oxidation kinetics (without spalling) is suggested by plotting transient corrected weight vs  $t^{1/3}$ .

Figure 3



Figure 3. Comparison of YSZ-MAX sample BRT oxidation data with other 1300°C exposures. (HPBR at 6 atm. and 20-25 m/s, TGA dry air, and ambient air furnace tests. Sintered 'Hexoloy' SiC curve (a) Opila, et al., 1316°C, (a,b) pyrometer sighted on leading edge; (c) sighted on face).

Figure 4



**Figure 4.** Visual appearance of the YSZ-MAX sample before and after 1300°/500 h BRT. YSZ coating shows rust discoloration due to Fe transfer from Kanthal A1 FeCrAl mounting sheet. (Coating ground off in mounting area to avoid abrasion losses).

Figure 5





Figure 5. YSZ/Ti<sub>2</sub>AlC sample deflection due to creep from face-on, Mach 0.3 BRT flame impingement. (2.3 mm delta over 6.8 cm sample length. Lower ~1.5 cm gripped).



Figure 6. SEM/BSE of YSZ coating surface after 1300°C/500 h BRT, hot zone. a) craze crack pattern; b,c) columnar PS-PVD deposition; d) pristine individual 1-3  $\mu$ m YSZ grains on column surface.

## Figure 7.



**Figure 7.** SEM/BSE images of the coating cross-section after 500 h BRT at 1300°C . (Ni plated) YSZ/TGO/Ti<sub>2</sub>AlC matrix: a, c, at the hot zone; b, d, at the grip end. Clean interfacial structures; 22.2/20.7  $\mu$ m and 12.4  $\mu$ m alumina scale thickness, respectively.



**Figure 8.** SEM/BSE images of the uncoated backside cross-section after 500 h BRT. (Ni Plated) TGO/Ti<sub>2</sub>AlC matrix: a, c, at the hot zone; b, d, at the grip end. Clean interfacial structures with moisture attack of external scale;  $12.8/13.8 \mu m$  and  $9.0 \mu m$  alumina scale thickness, respectively.



**Figure 9**. SEM/BSE images of uncoated  $Ti_2AlC$  backside surface at the hot zone after BRT. a) textured open scale structure; b) higher magnification showing individual laminar ~1 x 5 µm platelets (P); corresponding EDS spectra showing: c) high Al, O peaks for granular particles (G); and d) small Mg, Ca, Ti peaks corresponding to platelets (P).



**Figure 10**. SEM/BSE images of uncoated  $Ti_2AIC$  backside surface at the lower grip end after BRT. a) finely peppered nodules dispersed on textured dense scale structure; b) higher magnification showing individual equiaxed ~1 µm grains (G) and bright nodules (N); corresponding EDS spectra showing c) high Al, O intensity for granular particles (G); and d) additional Ca, Ti peaks corresponding to bright nodules (N).

Figure 11



Figure 11. XRD scans for uncoated (back) and YSZ coated (front) sides for the  $Ti_2AlC$  burner sample tested at 926°C for 10 m (S1) or at 1300°C for 500 h (S2). Top end, hot zone, and grip end positions. Primary peaks for (A)  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, (R)TiO<sub>2</sub> rutile, (M) Ti<sub>2</sub>AlC MAX phase, (Y) cubic/tetragonal YSZ, and (F) Fe<sub>2</sub>O<sub>3</sub> hematite.



Figure 12. Pole figure from YSZ columns showing primarily  $(111)_{cubic}$  fiber texture (926°C/10 m exposure). B-G-Y-R color scale corresponds to 200-450 relative intensity range.