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ARTICLE INFO ABSTRACT

Article history: The “science-softCon UV/Vis* Photochemistry Database” (www.photochemistry.org) is a large and com-
Received 19 February 2020 prehensive collection of EUV-VUV-UV-Vis-NIR spectral data and other photochemical information assem-
ie‘“setddz‘; :i”l,lzgf)go bled from published peer-reviewed papers. The database contains photochemical data including absorp-
ceepte Aprt tion, fluorescence, photoelectron, and circular and linear dichroism spectra, as well as quantum yields
Available online 23 May 2020 A . . s R
and photolysis related data that are critically needed in many scientific disciplines.

’lfgy‘:"”r‘lj‘: st This manuscript gives an outline regarding the structure and content of the “science-softCon UV/Vis*
otochermistry Photochemistry Database”. The accurate and reliable molecular level information provided in this
Spectroscopy . . . . .
UV)Vis database is fundamental in nature and helps in proceeding further to understand photon, electron and ion
Database induced chemistry of molecules of interest not only in spectroscopy, astrochemistry, astrophysics, Earth
Radiative transfer and planetary sciences, environmental chemistry, plasma physics, combustion chemistry but also in ap-

plied fields such as medical diagnostics, pharmaceutical sciences, biochemistry, agriculture, and catalysis.
In order to illustrate this, we illustrate the use of the UV/Vis* Photochemistry Database in four different
fields of scientific endeavor.

© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Photochemical data and information such as absorption spec-
tra, fluorescence spectra, photoelectron spectra, circular and lin-
ear dichroism spectra, quantum yields etc. are important param-
eters needed in many scientific disciplines. Back in 1999 there
was deemed to be a need for publicly accessible on-line databases
containing such data and information in digital format (machine-
readable). A first “UV/Vis Spectra of Atmospheric Constituents” CD-
ROM [1] was published which contained at that time the largest
collection of UV/Vis spectral data available free-of-charge. Based on
this CD and the motivation to provide spectral data and informa-
tion in digital format to the scientific community via the World
Wide Web, the “UV/Vis Spectra Data Base” went on-line in August
2000 as a non-profit project. In the beginning, the on-line database
contained about 1200 spectra/datasheets for 120 substances and
the compiled data extended beyond atmospheric research to allow
for interdisciplinary application. Although other databases existed
at that time, they were mainly focused on infrared studies like HI-
TRAN [2,3] or GEISA [4,5] or were focused on providing UV cross
sections of gaseous molecules of atmospheric interest [6].

To enable platform independent usability, both the spectral data
as well as the datasheets (meta-data such as publication, authors,
source, wavelength range, temperature, pressure, phase etc.), are
available as plain ASCII text. To guarantee the high quality stan-
dard of the fast growing “UV/Vis* Spectra Data Base”, an interna-
tional "Scientific Advisory Group" (SAG) was established in 2004,
and the database was operated in accordance with the "Open Ac-
cess" definitions and regulations of the CSPR Assessment Panel on
Scientific Data and Information (International Council for Science,
2004, ICSU Report of the Committee on Scientific Planning and Re-
view Assessment Panel on Data and Information [7]). Since 2004,
in addition to publishing the on-line database every 2 years, a mir-
ror of the on-line database has been published on CD-ROM. The
latest edition in the “ science-softCon UV/Vis* Spectra Data Base”
series was published in 2019 [8]. The on-line database currently (as
of January 2020) contains about 14,000 spectra/datasheets as well
as 5200 graphical representations for about 3000 substances and
is subdivided into 28 substance groups (e.g. hydrocarbons, phar-
maceuticals, pesticides, polycyclic aromatic hydrocarbons, etc.). The
database is updated weekly. In addition to the inclusion of new
data, a main focus of the database is the preservation of data from
older publications.

As mentioned by the CSPR Assessment Panel on Scientific
Data and Information, database maintenance and management are
costly [7]. Collection of data, preparation of metadata, and provi-
sion of professional data management expertise and institutional
support for data dissemination and permanent archiving will add
to the overall expense of specific research projects and maintaining
the larger research infrastructure.

“Full and open access” to data implies equitable, non-
discriminatory access to all data that are of value for science. It
does not necessarily equate ‘free of cost’ at the point of delivery.

There are several economic models for providing scientists with
access to data for research and education [7]. The “UV/Vist Pho-
tochemistry Database” allows free and open access to all meta-
data, and cost-recovery pricing for data (or data licenses) in or-
der to support the full data infrastructure. Different charged sub-
scriptions giving full-access to the data are available: for example
a yearly campus-wide license provides full access to all data and
information for less than 1 USD per day (for universities, govern-
mental organizations, non-profit organizations) and a “One-time

https://reader.elsevier.com/reader/sd/pii/S00224073203014857?t...0D09351B19CCA3786BB7D987D63E9F51A1C3994D12694E702518E3565766E

database through the provision of new or missing data and infor-
mation can get personal free-of-charge access to all data and infor-
mation. More information is available at www.photochemistry.org.

2. Database structure and content

The database contains spectral information (gas, liquid and solid
phase) from extreme ultraviolet to near infrared spectral region
(EUV-VUV-UV-Vis-NIR) and related data (e.g. information concern-
ing publications on quantum yield studies or photolysis studies)
from published peer-reviewed papers. Besides absorption spectra,
which comprise most of the available data, fluorescence spectra,
photoelectron spectra, circular and linear dichroism spectra, quan-
tum yields etc. are available. The database is structured into 28 cat-
egories which outlines only a rough classification.

The data sheets provide meta-data (substance name, formula
and CAS number, data source, full reference, including title, au-
thors, journal and DOI when available, spectral range and res-
olution, temperature, pressure, phase, etc.), as well as data in
various forms obtained and presented in the literature. This in-
cludes, for example, absorption data measured over a specific
wavelength/energy range in tabulated form. In many applications
(e.g. quantum yield studies or photolysis studies), the absorption
cross section (o) or the molar extinction coefficient (¢) at a spe-
cific wavelength (A) is determined, and these single wavelength
data are also included in the database. For many substances tem-
perature dependent data are available.

Most of the available data are from published peer-reviewed
papers (>98%), data presented at scientific meetings and confer-
ences are also available (<1%), as well as data from PhD theses,
reports and unpublished material (<1%). As an example of the
database structure and contents, absorption data of carbonyl flu-
oride (COF,) from three different sources are presented in Fig. 1.
The data sets are as provided by the authors or listed in the rel-
evant publications. To enable a platform independent usability, all
data are provided as plain ASCII text.

During more recent years, almost 3000 graphical represen-
tations, mostly from older publications have been digitized and
added to the database. In addition, we have converted more than
100 datasets from “floppy discs” and hence prevented these data
from being lost as technology has evolved.

Since 2019 the database has been extended to include circular
and linear dichroism spectral data (Fig. 2). The absorbance curves
were recorded with the electric vector of the sample beam parallel
and perpendicular to the stretching direction of the polyethylene
polymer.

In addition to the data relevant to the different species, the fol-
lowing data and information (including software) are available to
all interested scientists:

AutoChem

AutoChem is an automatic computer code generator and doc-
umentor for chemically reactive systems written and updated by
David Lary of NASA Goddard Space Flight Center since 1993. It
was designed primarily for modeling atmospheric chemistry, and
in particular, for chemical data assimilation (see [13] and refer-
ences herein).

Daily Solar Irradiances

The solar irradiance data was kindly provided by Judith Lean
of the Naval Research Laboratory (NRL). Daily files are available
from 1975 to 2004. The solar spectra in 203 bands from 0.121 -
0.859 um are given.

MAS (Millimeterwave Atmospheric Sounder), provided by G.K.
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COF2 (UV Spectrum)
(A. Noelle, PhD Thesis, University Frankfurt, Germany, 1996)
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Fig. 1. UV absorption spectrum of COF, obtained by Noelle [9] (blue curve), Noelle et al. [10] (red curve), and Molina and Molina [11] (green squares).
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Fig. 2. Linear dichroism absorbance spectrum of dibenzo-p-dioxin [12]. The absorbance curves were recorded with the electric vector of the sample beam parallel (blue line)
and perpendicular (orange) to the stretching direction of the polyethylene polymer.

database for the study of changes in the middle atmosphere. MAS diation emitted by the atmosphere in the altitude range between
is a remote sensing instrument for passive sounding of the Earth’s 10 km and 100 km has been measured at 61, 62, 63, 183, 184 and

https://reader.elsevier.com/reader/sd/pii/S00224073203014857?t...0D09351B19CCA3786BB7D987D63E9F51A1C3994D12694E702518E3565766E Page 3 of 10



UV/Vis+ photochemistry database: Structure, content and applications | Elsevier Enhanced Reader

4 A. Noelle, A.C. Vandaele and J. Martin-Torres et al./Journal of Quantitative Spectroscopy & Radiative Transfer 253 (2020) 107056

SUMER was a UV telescope and spectrometer designed for high-
resolution observations of the Solar atmosphere in the extreme ul-
traviolet wavelength range from 50 to 160 nm. The instrument was
part of the payload on-board the ESA/NASA spacecraft SOHO.

3. Database applications

The interdisciplinary usability of the “UV/Vist Photochemistry
Database” is shown on the basis of four different applications.

3.1. Modeling direct phototransformation of aquatic organic
contaminants under environmentally relevant conditions

An increasing number of synthetic organic compounds (SOCs)
are being used and discharged to the aquatic environment. Under
the influence of natural sunlight, some of these SOCs are likely
to transform through photolysis to more toxic products or to be
photo-persistent. To meet the large data demand for risk assess-
ment of SOCs, a cheminformatics-based direct photolysis reaction
library is being developed as part of the United States Environmen-
tal Protection Agency’s Chemical Transformation Simulator (CTS)
project to predict the direct photolytic transformation products
formed from organic contaminants in waters [48]. Both the litera-
ture and data service of UV/vist+ Photochemistry Database are use-
ful in developing and applying such a predictive tool.

Central to the direct photolysis predictive tool is a large compi-
lation of relevant literature about the direct photo-transformation
pathways of SOCs. The science-softCon UV/Vis* Photochemistry
Database’s literature service has served as a convenient and reli-
able literature source. Up to Janurary 2020, 109 of the 390 com-
pounds compiled by CTS’s direct photolysis reaction library are
logged in the UV/Vist Photochemistry Database. Compared with
the larger Reaxys database, which also has UV-Vis spectrum and
photolysis information, the UV/Vis* Photochemistry Database is of
no or low cost, focused on photochemistry, easier to locate rele-
vant information, and, most importantly, has digitalized spectra for
analysis.

When applying the direct photolysis predictive tool, users will
be able to predict transformation products. However, direct pho-
tolysis rate information is also important to know whether a con-
taminant is degraded and whether its products can be formed at
an environmentally relevant rate. The UV-vis spectrum and quan-
tum yield logged in the science-softCon UV/Vist Photochemistry
Database can be used for such a rate estimation according to the
following equation [17,18]:

k~ 2.303/IA8A(pde ~ 2.303¢p Xl &, AA (1)

Where k is the first-order rate constant for the direct photolysis
of the contaminant in pure water, I, is the solar irradiance at a
certain wavelength A, & is the molar extinction coefficient of the
contaminant at wavelength A, and ¢ , is the quantum yield of the
photodegradation process at wavelength A. AA is often 1 nm if we
use I, and &, at every relevant wavelength. The first “~” in the
equation assumes that the solution is optically thin (absorbance
<0.02) and ignores the effect of reflection on pathlength, and the
second “~" assumes that ¢ is the same across the corresponding
wavelengths and uses finite AA for integration.

Table 1 shows an example back-of-the-envelope estimation of
the direct photolysis rate at water surface of a strongly-absorbing
pesticide, trifluralin, a moderately-absorbing explosive compound,
RDX (1,3,5-trinitroperhydro-1,3,5-triazine), and a weakly-absorbing
pesticide, metolachlor using the information obtained from the
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the detailed spectra is plotted in Fig. 3.a for trifluralin. All three
compounds were predicted to photodegrade to products: three 1st-
generation products for trifluralin as shown in Fig. 3.b, one for
RDX, and three for metolachlor. However, the estimated half-lives
suggest that metolachlor is less photolabile compared to trifluralin.
Therefore, products of metolachlor are less likely to be photochem-
ically formed in the environment compared to that of trifluralin,
providing the ratios of product formation over parent degradation
are similar and the photo- lability of 1st-generation products are
similar. As illustrated in this example, the science-softCon UV/Vis+
Photochemistry Database provides a literature-based method of es-
timating direct photolysis rates, adding another piece of informa-
tion in identifying photolabile contaminants and their product for-
mation. A larger amount of more accurate data, especially in near-
UV to visible range and in aquatic phase, would lower the current
large uncertainty between rate estimation and experimental data
(Table 1 for metolachlor) and eventually allow automation of such
calculations.

3.2. Application of UV VUV absorption spectra for air quality,
photochemistry and climate on Earth

The UV-VIS spectral region is of fundamental importance for
understanding air quality, the photochemistry of the troposphere
and stratosphere, and cloud coverage, and their implications for
climate change. In particular, by using the unique absorption sig-
natures of gas species (see Fig. 4), abundances of a range of air
pollutants like ozone (Os3), nitrogen dioxide (NO,), formaldehyde
(HCHO), and glyoxal (CHOCHO) (see Fig. 5) can be inferred from
satellite UV-Vis spectroscopy measurements, as well as, for exam-
ple, species involved in the destruction of polar ozone (BrO, I0 and
0clo).

Satellites’ observations can be used together with climate mod-
els to understand the relationship between the atmospheric com-
position and climate. The combination of UV/Vis radiation allows
the retrieval of atmospheric parameters that are key in the re-
search of climate, air quality and polar chemistry:

- Relevant chemical species in the troposphere;

- Spectral optical density of aerosols in a full spectral range;
- Cloud cover;

- Cloud height.

The continuous improvement of data provided by the “science-
softCon UV/Vis*™ Photochemistry Database” is fundamental in
achieving the required accuracy of the ever more demanding spec-
tral measurements of the atmosphere.

3.3. Application of UV and VUV absorption spectra for breath gas
analysis

The study of Secondary Organic Aerosols (SOAs) which are the
reactive products of gas-phase photo-oxidation of both naturally-
occurring and man-made volatile organic compounds (VOCs) can
be studied in the UV-VUV spectral region. Volatile organic com-
pounds are also released by animal and human organisms with
normal metabolic activity or due to pathological disorders because
of diseases, infections and/or internal injuries. Breath gas analysis,
which works on the principles of understanding changed level of
concentrations of VOCs in exhaled breath from human beings or
animals, can indicate the onset or progression of a disease [31]. For
example in human beings, the presence of acetone in the breath
can be observed in the case of untreated or poorly treated dia-
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Table 1

Estimates of direct photolysis rates in mid-latitude mid-summer sunlight. Note: 2calculated using a reference spectrum of June 21 daily irradiance at 40 °N [18] and UV-vis

spectra from the literature. "The selected ¢ for half-life calculation is underlined. “experiment conducted in spring at 45 °N, intensity approximately similar as the used
reference solar spectrum [29].

compound  2.303%1,€, AA (s7!')®  matrix for UV-vis spectrum ¢ half-life
calculated if ¢=1  calculated using natural sunlight
selected ¢ experiment®
trifluralin 8.1 x 1079 Methanol [21] 1.4 x 10-3 at 310-410 nm 9s 1.7h 2h
[22], 6 x 10-! at 254 nm [23]
RDX 2.7 x 107% Acetonitrile [24] 0.16 at 313 nm [25] 7h 1.8d
7.2 x 10-% Acetonitrile [26] 1.1d 7d
4.6 x 1079 Water [25] 4h 1.1d
1.6 x 1006 Water [27] 9.6 x 103 at solar range [28], 5d 15y 9d
metolachlor 3 x 10~ at 313 nm [28]
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Fig. 3. Degradation rate estimation (a) and product prediction (b) for direct photolysis of trifluralin.
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Fig. 5. Tropospheric NO; retrieved from SCIAMACHY measurements in the 425-450 nm spectral region. Pollution on urban scales is readily measured globally [30].

include complications such as sample pre-concentration, imper-
fect existing profile recognition, time-consuming, nearly impossi-
ble real-time measurements, limited characteristic VOC identifi-
cation and detectable components, and definite differentiation of
isomeric and isobaric molecules [34]. These limitations are com-
pounded by complications as VOCs in breath gas samples are gov-
erned by a combination of their concentration in blood, the reten-
tion time of the compounds in the lung and airway tissue (inhala-
tion - exhalation cycle), and last but not least, the VOC blood/air
partition coefficient [31]. To overcome these limitations for using
breath gas analysis as a diagnostic tool, a new concept of using
GC-MS technology in conjunction with ultraviolet absorption spec-
troscopy is being evaluated by developing laboratory equipment
[35-37]. In particular the use of the vacuum ultraviolet (VUV) re-
gion improves the detection of such compounds, because absorp-
tion cross sections in this spectral range are usually larger by or-
ders of magnitude than in the UV or in the IR. This is illustrated in
Fig. 6, where the VUV-UV cross-section of benzene is shown. The
higher sensitivity in the VUV range allows fast and sensitive spec-
troscopic detection. Moreover it is also possible to derive structural
and isomer-related information from the VUV spectra. Especially
small oxygenated substances like short chain fatty acids, small n-
alkanols (C2-C4), esters, aldehydes and ketones, which are abun-
dantly present in breath gas, show good VUV sensitivity with rich
structural information [38]. Isoprene has been reported as a candi-
date for monitoring cholesterol metabolism and has been success-
fully measured in breath [39].

The existing ultraviolet absorption spectra and accurate spec-
troscopic information of molecules available from “science-softCon
UV/Vis* Photochemistry Database” play a major role in identifying
their presence and finger printing them in a specific isomeric or
isobaric phase as a good starting point. Understanding the pres-
ence of different molecules and their concentrations in exhalation
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spectroscopy as an analytical tool for medical diagnostics. Spectro-
scopic investigations of biologically important molecules cataloged
in the present database and their spectral responses in mixtures
with atmospheric gasses provide important inputs in understand-
ing their role in physiological processes. These inputs in turn gen-
erate important data required for understanding the presence of
disease, disease management and usefulness of new drugs under
trial for a specific disease.

3.4. Remote sensing and modeling of Mars and Venus atmospheres

Today more and more complex instruments are used for re-
mote sensing of the atmosphere of the Earth and other planets
of our Solar System or even further, with the development of
missions and instrumentation, not only to search for exoplanets,
but now to deliver spectroscopic survey of their atmospheres. In
particular, instruments probing the UV-visible spectral range have
been used to characterize the atmospheric composition of a wide
variety of planets. For example, the SPICAM (SPectroscopie pour
I'Investigation des Caractéristiques Atmosphériques de Mars) in-
strument on board the ESA’s mission Mars Express, is a remote
sensing spectrometer observing Mars in the ultraviolet and the
near infrared [41]. The UV range covers the absorption due to
CO, and O3 (118-320 nm). The instrument probes the Martian at-
mosphere in nadir geometry (looking down to the surface of the
planet) or through stellar and solar occultation. In solar occulta-
tion (i.e. looking at the Sun through the atmosphere), the signal
received by the instrument is given by:

I(0) = Isun(A)e™ 05 (2)

where I, represents the light intensity of the source, here the
Sun, placed at the starting point of the raypath situated at the dis-
tance s, from the observer, and 7 is the optical depth along the
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Page 6 of 10



UV/Vis+ photochemistry database: Structure, content and applications | Elsevier Enhanced Reader

A. Noelle, A.C. Vandaele and ]. Martin-Torres et al./Journal of Quantitative Spectroscopy & Radiative Transfer 253 (2020) 107056 7

-15

Absorption cross section (cm?#molecule)

160 180 200

220 240 260

\Wavelength (nm)

Fig. 6. Absorption cross-section of benzene [40]: in the VUV region the cross-section values are between 2 and 3 orders of magnitude larger than in the UV range.
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Fig. 7. Example of SPICAM transmittance spectra obtained during one solar occulta-
tion observation. The color indicates to altitude probed from low altitudes (blue) to
high altitudes (red). Black lines are fitted spectra using (Eq. (2)) [Figure from [42]].

where o, is the absorption cross-section and n is the density of
the species. The integration is done along the line of sight, i.e.
through the atmosphere, considering the temperature (T) depen-
dence of the cross section, as temperature varies substantially from
the lower layers to the upper layers. This spectroscopic investiga-
tion is based on the use of absorption cross-sections measured in
the lab and inventoried in databases such as the Spectra Database
described in this work. In the case of SPICAM, we considered the
temperature dependence of the CO, and O3 absorption cross sec-
tions [42]. Fig. 7 illustrates a typical analysis of a set of spectra ob-
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However, the accurate knowledge of cross-sections is not only
required for the direct analysis of the observations, but is also cru-
cial for the modeling of such atmospheres, through 1D photochem-
ical to 3D Global Circulation models. The continuity equation
on o
FTi P—nL 2 (4)
governs the chemical composition within an atmosphere, where z
is the altitude, n is the number density of the species, P and L are
its production and loss rates, and ® is its upward transport flux.
The production and loss rates are provided from all chemical and
photochemical reactions that produce or consume the species. In
particular, the photodissociation rate (J) is given by:

1@ =3 [0 T@)our. T@)IF (.2 (5)

where o4 is the absorption cross-section, ¢ is the quantum yield

of the photodissociation process and F is the actinic flux at the alti-
tude z where temperature T prevails. But absorption, and therefore
the effect of the cross-section, is also hidden within F(A,z) which
corresponds to the radiation flux reaching the altitude z and is
given by

F(h.2) = Fy(A)e " ¢-2/k (6)

if no scattering is considered within the atmosphere. F, is the radi-
ation flux at the top of the atmosphere, p=cos(6) with 6 the solar
zenith angle and 7(A,z) is the optical depth which includes the ab-
sorption by all gasses, Rayleigh scattering and aerosols extinction
from the top of the atmosphere down to the altitude z.

Available cross-sections are usually derived from ambient tem-
perature measurements, some are provided at low temperatures
corresponding to atmospheric conditions encountered on Earth.
However, data at temperatures and pressures found on other bod-
ies, in particular at high temperatures and low pressures, are very
scarce and often restricted to small spectral ranges. This lack of
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istry of atmospheres of Mars and Venus, controlling the transmis-
sivity of the atmosphere and therefore the photolysis rates of the
other species. The impact of the temperature dependence of CO,
cross-section has been analyzed in several recent papers [44-46],
showing the importance of considering the temperature depen-
dence on a wide range of temperature as recently imported into
the database [46,47]. Indeed, the absorption of the UV flux in-
creases substantially together with temperature since CO, absorp-
tion cross sections are larger at higher temperatures. Using room
temperature reference data to model CO,-rich atmospheres, the
absorption of the UV flux and therefore the photochemical rates
are underestimated.

4. Outlook

The “science-softCon UV/Vis* Photochemistry Database” is con-
tinually evolving and growing. As of January 2020, it includes
about 14,000 spectra/datasheets as well as 5200 graphical repre-
sentations for about 3000 substances and is subdivided into 28
substance groups (e.g. hydrocarbons, pharmaceuticals, pesticides,
polycyclic aromatic hydrocarbons etc.) This is a tremendous effort
and requires a lot of manpower, not to mention technical infras-
tructure. We hope that the database proves useful to the scientific
community and will facilitate their day-to-day work.

Since the support by the scientific community is crucial for
such a photochemistry database, we would like to encourage all
colleagues to assist us in maintaining the database and join our
initiative “Photochemical Data and Information Sharing Platform -
Share Photochemical Data & Information, Find Answers”.

This initiative should develop the photochemical database to-
wards a photochemical data sharing platform. The advantage of
such a photochemical data sharing platform is that the more scien-
tists provide their data for inclusion into the database the better is
the chance for all users to find specific photochemical data within
the database. In addition, the platform becomes increasingly bene-
ficial for use across multiple disciplines.
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