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ABSTRACT
We present a uniform control approach for transitioning vertical take-off and landing aircraft. The approach combines
several well-understood linear techniques, including robust servomechanism linear quadratic regulation, control al-
location, and gain scheduling, to provide a practical control framework that can be used to unify the control design
process in all flight regimes. The choice of command variables provides a pilot/operator with a uniform set of intuitive
control inputs through all phases of flight while also being easily integrated into autonomous trajectory tracking op-
erations. The control method is applied to the NASA LA-8 aircraft, a tandem tiltwing distributed electric propulsion
research vehicle designed at NASA Langley Research Center. The trim envelope of the aircraft is explored and the
aircraft control authority analyzed throughout the transition corridor. The uniform control approach is then used to
develop reference command tracking controllers for both the longitudinal and lateral-directional dynamics. An exam-
ple trajectory is simulated to demonstrate how the controller effectively transitions the aircraft from hover to forward
flight and vice versa while tracking a desired trajectory.

INTRODUCTION

Urban Air Mobility (UAM) operations are based on vertical
take-off and landing (VTOL) aircraft, some of which, tran-
sition from a rotor or thrust- borne-flight to a more efficient
wing- or lift-borne flight. Transitioning UAM vehicles tend
to fall into one of the three general classes of VTOL con-
figurations: tiltwing, where the wing and propulsion rotate
as a unit from a vertical to horizontal position; a tiltrotor,
where the wing is fixed and the propulsion units rotate be-
tween a vertical and horizontal position; or lift+cruise, where
both the wings and propulsion units are fixed and there are
separate propulsors that provide lift in hover and thrust in for-
ward flight. Common across all these platforms is the use of
propulsion units and aerodynamic surfaces as control actua-
tors. Their combination in different flight regimes provides
redundancy in control force and moment generation; however
their individual effectiveness and energy requirements vary as
the flight envelope is traversed.

Transitioning VTOL aircraft must operate in three general
flight modes: hover, forward flight, and transition. Hover and
forward flight are well understood flight regimes but opera-
tionally present two very distinct modes of flight. Transition,
a less well understood regime, must seamlessly stitch the two
flight modes together, taking into account the changing aero-
dynamics of the aircraft as well as the dynamic nature of con-
trol force and moment production from available actuators.

The combination of the transitioning aerodynamics and con-
trol actuation make VTOL aircraft, in general, very complex.
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Compounding these complexities is the plethora of configu-
rations being proposed for the UAM market, each with their
own unique aerodynamic properties and available control ef-
fectors. From the outset, it is easy to see that an automatic
control system is needed to improve vehicle flyability and pro-
vide foundational capabilities to build on as we transition to
autonomous operations.

Traditional fly-by-wire systems made use of robust linear
methods to develop control and stabilization algorithms for
conventional aircraft (Refs. 1–4). Because of the broad range
of flight conditions at which a VTOL aircraft are expected
to operate, various different approaches have been proposed
and implemented. In (Refs. 5, 6), a velocity control con-
cept is proposed that makes use of a cascaded loop archi-
tecture. Redundant controls are abstracted through the use
of virtual control effectors and feed forward commands are
provided by a predefined trim envelope. The F-35 control
law (Refs. 7,8) uses an on board model of the aircraft aerody-
namic and propulsion characteristics and a control allocation
methodology (cascaded generalized inverse algorithm) to pro-
vide rate control of the aircraft in all phases of flight. A non-
linear dynamic inversion approach is taken in (Refs. 9–11)
where the changing relative degree of the control inputs are
handled by introducing the pitch and roll angle as virtual con-
trols. Additionally, the heading frame velocities are used to
provide a common set of control commands throughout the
flight envelope.

This paper presents a Robust Uniform Control Architec-
ture for VTOL aircraft. The main contribution being a
configuration-independent framework which unifies the con-
trol design across all flight regimes and thus provides a uni-
form set of control commands throughout the entire flight en-
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velope.

The control architecture builds upon the foundational princi-
ples of Robust Servomechanism Linear Quadratic Regulator
(RSLQR) control theory, but formulates the problem using
general accelerations as the commanded input. The desired
control accelerations are mapped to the set of physical and
virtual control inputs by way of a weighted pseudo-inverse.
The formulation enables a consistent control strategy over the
entire operating envelope of a VTOL aircraft.

The effectiveness of the Robust Uniform Controller is demon-
strated in simulation using a model of NASA Langley’s LA-
8 tandem tiltwing research aircraft (Ref. 12). A Trajectory
tracking maneuver, that transitions the aircraft from hover to
forward flight and back to hover, is demonstrated.

AIRCRAFT DESCRIPTION AND
AERODYNAMIC MODEL

The Langley Aerodrome No. 8 (LA-8) is a distributed electric
propulsion, VTOL aircraft designed and built at the NASA
Langley Research Center (Ref. 12). The aircraft, shown in
figure 1, is a tandem tiltwing with four propellers mounted
along the leading edge of each wing. The wings rotate, from
the zero degree fixed-wing position, a full 90 degrees such
that the wing and propeller thrust axis is vertical. The wing
tilting mechanisms operate independently of one another such
that the wings may be at different tilt angles simultaneously.
Each wing has a set of flaps located on the inner portion of
the wing and a set of elevons on the outer portion. These are
shown in figure 2. An inverted V-tail at the rear of the aircraft
includes a set of ruddervator surfaces. Each surface may be
operated independently. The propellers of the LA-8 are speed
controlled and are also commanded independently. The di-
rection of rotation of the propellers alternates as indicated in
figure 2.

Figure 1. LA-8 aircraft undergoing wind tunnel testing

The aerodynamic model of the LA-8 was developed over mul-
tiple wind tunnel experimental runs. The initial wind tunnel
test used a one-factor-at-a-time approach to explore the tran-
sition corridor by trimming the aircraft at different wing tilt

angles (Ref. 13), effectively mapping out an expected flight
envelope. The subsequent test runs used Design of Experi-
ments (DOE) methods to build a high-fidelity 23-factor model
that captures the many interactive effects of this complex
aircraft (Ref. 14). Additional isolated propeller testing was
performed to determine the propeller performance through a
broad range of incidence angles and capture the deviations in
thrust and torque generation, as well as the off axis forces and
moments generated when subject to flow at a high incidence
angle (Ref. 15).

Figure 2. Control surface and rotor diagram of the LA-8

The resulting six-degree-of-freedom model provides the aero-
propulsive forces and moments over a range of flight con-
ditions from hover to forward flight centered around a body
level flight condition. Of note, the model contains asymme-
tries discovered while testing, among them, is a difference in
thrust production of the clockwise and counterclockwise pro-
pellers, attributed to the different manufacturing processes by
which they were obtained. Since the wind tunnel model is
also the flight vehicle, there was no attempt to symmetrize
the model; the asymmetries, are therefore present in this pre-
sentation. Additionally, while testing at higher dynamic pres-
sures (5 PSF) the elevon servos burned out causing the model
to reflect diminished control authority of these actuators in
forward flight. Due to extenuating circumstance (COVID-19
pandemic), additional wind tunnel testing could not be per-
formed to rectify the elevon measurements. Therefore, the ar-
tificial control reduction remains in the model and provide an
effective example of how the control architecture allows the
designer to easily distribute control actuation to other avail-
able effectors.

REFERENCE FRAMES

Three reference frames are used throughout this study: the in-
ertial North-East-Down (NED) frame, the aircraft body frame,
and the heading frame. The aircraft body frame is defined
with the origin at the nominal center of mass with the x-axis
pointing out the nose, y-axis out the right wing, and z-axis
completes the right hand rule. The rotation from body frame
to the inertial frame is parameterized by the Euler angles,
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η = [φ , θ , ψ]T , (roll, pitch, and yaw respectively). The ro-
tation matrix R ∈ SO(3) is defined as

R = [Rx(φ)Ry(θ)Rz(ψ)]T (1)

where Rx(·), Ry(·), and Rz(·) are the intermediate single-axis
rotation matrices, explicitly defined as

Rx(x) =

 1 0 0
0 cosx sinx
0 −sinx cosx

 (2)

Ry(x) =

 cosx 0 −sinx
0 1 0

sinx 0 cosx

 (3)

Rz(x) =

 cosx sinx 0
−sinx cosx 0

0 0 1

 . (4)

The heading frame is defined as the inertial frame rotated
about the z-axis by the heading angle ψ , with the origin co-
incident with the aircraft center of mass. The rotation from
body frame to the heading frame is defined as the abbreviated
rotation R̄ = [Rx(φ)Ry(θ)]

T . A vector expressed in the body
frame is mapped to the heading frame through the transforma-
tion v̄= R̄vb, where the subscript b denotes a vector expressed
in the body frame, whereas the over-bar indicates the heading
frame.

GUIDANCE COMMANDS

Flight maneuvers of a transitioning VTOL aircraft are ex-
pected to encompass those of rotor-craft in addition to conven-
tional flight. This includes stationary hover, and pure lateral
and vertical maneuvers. For this reason, typical aircraft guid-
ance commands, such as airspeed, flight path angle, and head-
ing angle, are inadequate to capture the full operating range,
particularly in hover where the flight path angle is undefined
at zero total velocity.

Additionally, UAM aircraft are expected to operate in highly
congested airspace. To ensure vehicle separation, both spatial
and temporal adherence to a scheduled trajectory is necessary.
Therefore, inertially referenced speeds, such as ground speed,
are used to describe a desired trajectory (Ref. 16).

The use of heading frame coordinates to describe the de-
sired trajectory provides a set of guidance commands that
can be used to describe the full range of maneuvers of a
VTOL aircraft. The desired heading frame velocity vector
v̄d = [ūd , v̄d , w̄d ]

T , is comprised of two horizontal compo-
nents, ūd and v̄d , and the vertical component w̄d . The forward
and vertical components, ūd and w̄d , are analogous to the total
velocity and flight path angle, but do not suffer from the same
ill conditioning when the velocity goes to zero. Additionally,
as the forward velocity increases the vertical velocity com-
mand may remain constant when performing, for instance, a
transition with a constant climb rate. In contrast, commands
constructed of total speed and flight path angle would neces-
sitate both commands changing in concert, which may further

complicate the feedback control design and degrade the per-
formance of the system.

A purely lateral maneuver, such as sideways flight in hover, is
commanded using the lateral component of the velocity in the
heading frame, v̄d . Turning flight and stationary yaw maneu-
vers are incorporated into the guidance commands by includ-
ing the desired turn rate ψ̇d such that the complete guidance
command is comprised of the desired heading frame velocity
and turn rate, r(t) = [v̄T

d (t), ψ̇d(t)]T .

The formulation of the guidance commands in the heading
frame provides seamless integration into existing trajectory
generation tools, in which smooth, four-dimensional trajecto-
ries may be decomposed into the four guidance components.
Additionally, the heading frame commands provide an intu-
itive set of uniform control inputs for a pilot or operator to
direct the aircraft in all phases of flight.

AIRCRAFT DYNAMICS

The angular kinematics of the vehicle are expressed as the
time derivatives of the Euler angles

η̇ = Sω, (5)

where ω is the angular rate of the aircraft expressed in the
body frame with components (p, q, r) and S is the non-
orthogonal transformation from the body angular rates to the
time derivatives of the Euler angles

S =

 1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ

 . (6)

Because we seek to track heading frame velocities, v̄ =
[ū, v̄, w̄]T , it makes sense to formulate the translational dy-
namics in the heading frame as

˙̄v =−ψ̇ ê3× v̄+g+
1
m

F̄(v̄,ω, R̄,u), (7)

where F̄(·) is the aero-propulsive forces acting on the aircraft
expressed in the heading frame, g = [0, 0, ag]

T is the gravita-
tional acceleration vector, u is the vector of available control
effectors, and ê3 is the unit vector in the body z-direction. Ex-
panding (7) gives ˙̄u

˙̄v
˙̄w

=

 ψ̇ v̄+ 1
m X̄(v̄,ω, R̄,u)

−ψ̇ ū+ 1
mȲ (v̄,ω, R̄,u)

ag +
1
m Z̄(v̄,ω, R̄,u)

 . (8)

The rotational dynamics are given by

Jω̇ =−ω× Jω + τ(v̄,ω, R̄,u) (9)

where J is the inertia matrix, and τ is the aero-propulsive mo-
ments expressed in the body frame. Expanding (9) gives the
following set of equations for the rotational dynamics: ṗ

q̇
ṙ

= J−1

 Jyrq− Jxzqp− Jzqr
Jx p2− Jzr2

Jxqp+ Jxzqr− Jy pq

+
 L(v̄,ω, R̄,u)

M(v̄,ω, R̄,u)
N(v̄,ω, R̄,u)

 . (10)
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EQUILIBRIUM MANIFOLD EXPLORATION

The equilibrium manifold is the set of states at which the air-
craft is in a constant operating (trim) condition. The trajec-
tories described by the equilibrium manifold are the set of
constant radius helical trajectories which includes level flight
and steady level turns. For transitioning aircraft, exploring the
equilibrium manifold provides valuable insight into how the
aircraft might fly including: how the effectiveness of the of
the control surfaces varies throughout the envelope, how the
lifting force is distributed between the lifting rotors and the
wing, and at what speeds the aircraft is fully transitioned to
wing-borne flight. The trim points, at select conditions in the
flight envelope, provide the basis for control design, as well
as feed forward actuation and pitch and roll commands as a
function of the aircraft’s desired speed, climb rate and turn
rate.

The aircraft is said to be in equilibrium (or trimmed) when
the translational and rotational dynamics as well as the deriva-
tives of the pitch and roll angles are equal to zero ( ˙̄v = ω̇ =
[0, 0, 0]T and φ̇ = θ̇ = 0). When considering non-turning
steady flight (ψ̇ = p = q = r = 0), the trim condition con-
straints simplify to the following set of equations.

X̄(v̄,ω, R̄,u) = 0 (11)
Ȳ (v̄,ω, R̄,u) = 0 (12)
Z̄(v̄,ω, R̄,u) = −mag (13)
L(v̄,ω, R̄,u) = 0 (14)

M(v̄,ω, R̄,u) = 0 (15)
N(v̄,ω, R̄,u) = 0 (16)

For symmetric aircraft models, and control inputs mirrored
about the XZ plane, the constraints may be further reduced to
the three longitudinal equations. Since the LA-8 model is not
symmetric, all six constraints must be met.

Equilibrium conditions are found by specifying the desired
forward and vertical speed, ū0 and w̄0, then solving for the
free variable values that satisfy the nonlinear constraints. In
this case, the free variables are the pitch angle, roll angle, and
control inputs u. The input vector u, is comprised of the pro-
peller speeds ωp = [ωp1 , . . . ,ωp8 ]

T , the tilt angle of each wing
δi = [δi1 , δi2 ]

T , the elevon deflections δe = [δe1 , . . . ,δe4 ]
T , the

flap defections δ f = [δ f1 , . . . ,δ f4 ]
T , and the ruddervator de-

flections δr = [δr1 , δr2 ]
T , such that

u =
[

ωT
p δ T

i δ T
e δ T

f δ T
r
]T

. (17)

Due to the complexity of the nonlinear equations, solving for
the free variables directly requires use of a nonlinear solver.
On simpler systems, the Newton-Raphson method can be em-
ployed to great effect, but due to the multitude of redundant
control effectors of the LA-8, and UAM aircraft in general, the
trimming problem is setup as an optimization problem with
nonlinear equality constraints

min
φ∈Φ,θ∈Θ,u∈U

J(φ ,θ ,u)

subject to X̄(ū0, w̄0,φ ,θ ,u) = 0
Ȳ (ū0, w̄0,φ ,θ ,u) = 0
Z̄(ū0, w̄0,φ ,θ ,u) =−mag
L(ū0, w̄0,φ ,θ ,u) = 0
M(ū0, w̄0,φ ,θ ,u) = 0
N(ū0, w̄0,φ ,θ ,u) = 0

, (18)

where the cost function J(φ ,θ ,u) may be used to produce
a trim condition that, for instance, minimizes the energy us-
age or maximizes the control authority at that particular flight
condition. The optimization problem can be solved with a
commercial-off-the-shelf nonlinear programming solver, but
it should be noted that the solutions are not unique and depend
on where the algorithm is initialized. In this study, the non-
turning level flight equilibrium points are presented, but the
method can be extended to turning flight with the additional
complexity of adding the body angular rates as free variables.

The LA-8 aircraft can be flown in many different ways, so
some decisions were made up front for this study. We con-
sider level flight at speeds within in the range of 0-60 ft/s to
stay within the bounds of the aerodynamic model. To sim-
plify the optimization problem, the body pitch angle was held
at 0◦, and the elevons and ruddervators — reserved for control
actuation — were set to their neutral positions, δe = δr = 0◦.
The free variables used to trim the aircraft were the roll angle,
wing tilt angles, the propeller speeds, and the flaps on both
sets of wings. The control effectors were allowed to move in-
dependently of one another, i.e., no effectors were ganged to-
gether. The cost function used to produce the trim conditions
presented in figures 3-5 used a combination of quadratic cost
on the usage of the propeller and flaps as well as quadratic cost
on the difference between wing tilt angles, propeller speeds,
and flap deflections on each wing.

J = w1ω
T
p ωp +w2δ

T
f δ f +w3(δi2 −δi1)

2

+w4(δ f2 −δ f1)
2 +w5(δ f4 −δ f3)

2 (19)

+w6

7

∑
i=1

(ωpi+1 −ωpi)
2.

The development of the cost function was the result of an iter-
ative process, of which many combinations of weighting func-
tions and weights were considered. The resulting trim curves
were evaluated for relative smoothness and available control
authority of the chosen free-variables. The level-flight trim
curve presented in figures 3, 4, and 5, show the wing tilt an-
gles, propeller speeds, and flap angles at each trim point for
a range of air speeds between 0 and 60 ft/s. The trim curve
represents one of many possible solutions.

The wing tilt angles presented in figure 3 show the wing an-
gles decreasing from a trimmed hover condition of approx-
imately 84◦ and 83◦ for the forward and rear wing, respec-
tively, down to 11◦ and 10◦ at a forward flight speed of 60
ft/s. The wing offset from vertical in hover is expected and is
attributed to the need to balance the rear directional lift force
generated by the wing in the slipstream of the propeller.
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Figure 3. Trim wing tilt angles
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Figure 4. Trim propeller speeds
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Figure 5. Trim flap deflections

The propeller and flap curves shown in figures 4 and 5 show
the need to balance significant asymmetries in the aircraft
model. These manifest themselves as both yaw and roll mo-
ments in hover where it can be noted that significant differ-
ences in flap and propeller speeds are needed when compar-
ing actuation on the left and right side of the aircraft. Flaps
1 and 3 are used to balance out a positive yaw moment while
the propellers are used to balance out a negative roll moment.

As the speed is increased, and the wing tilt angle decreased,
the asymmetries become less severe between 30 and 45 ft/s (≈
50◦ and≈ 25◦ wing tilt angles), as noted by the decrease in the
difference between the left and right control effectors. As the
speed is increase beyond 45 ft/s, significant flap differential is
needed to balance the roll moment.

The set of trim points form the basis of the transition con-
troller. The dynamics are linearized about a subset of these
points, and linear control techniques are employed (described
in more detail in the next section) to produce a robust
reference-tracking controller. The control gains are scheduled
based on the flight speed, and the trim solutions used as feed-
forward control inputs as the aircraft transitions between flight
regimes.

AIRCRAFT CONTROL AUTHORITY

As with many different classes of VTOL aircraft, the LA-8
transitions from thrust-borne flight to lift-borne flight, and in
doing so changes how it affects control. Understanding the
changing effectiveness of the control actuators, and how much
control authority is available as the aircraft traverses the flight
envelope is important, since the LA-8 is predominantly open-
loop unstable throughout the flight envelope.

To understand how control authority changes, or is transferred
between effectors, we look at the linearization of the dynam-
ics at each trim point. From the input Jacobian matrix, insight
as to how the effectiveness changes as the aircraft transitions
between regimes may be obtained. Additionally, approxima-
tions of the total control authority of an individual effector
may be produced.

This type of study, following wind tunnel testing and mod-
eling of the aircraft dynamics, can provide early feedback as
to how the vehicle is expected to perform and whether or not
it can meet the design requirements of the proposed vehicle
mission.

The effectiveness and the control authority of the effectors are
presented in two plots for each moment direction, i.e., roll,
pitch, and yaw. The control effectiveness is presented as a nor-
malized value between -1 and 1, and was obtained by divid-
ing the derivative value in the Jacobian by the absolute value
of the maximum derivative value (for that actuator) over all
trim points. The control authority of an actuator is approx-
imated by taking the value of the derivative and multiplying
it by a nominal change in either direction, taking into account
the limits of the actuator by truncating the deflection at the ab-
solute effector limit. The estimated nominal change for each
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Table 1. Nominal control deflection
∆ωp ∆δi ∆δe ∆δ f ∆δr

200 RPM 2◦ 10◦ 5◦ 10◦

actuator, including propellers, wing-tilt, and surface deflec-
tions is listed in Table 1.

Looking first at the pitch moment generation, the actuator
effectiveness and control authority can be seen in figures 6
and 7. The top two plots in figure 6 show that the two banks of
propellers on the two wings provide opposing pitch moments
throughout the transition. In addition, although the effective-
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Figure 6. Pitch rate control effectiveness

ness of the propellers is reduced when transitioning to forward
flight, the propellers remain a viable means for providing pitch
control, due to the vertical offset of the wings relative to the
center of mass. The deflecting surfaces (elevons, flaps, and
ruddervators), shown in the bottom three plots, do not become
effective at generating a pitch moment until there is sufficient
dynamic pressure and the wing tilt angle is reduced below
45◦. The reduction in the effectiveness of the elevons at high
speeds is due to the elevon servo malfunction during wind tun-
nel testing that was mentioned earlier. The control authority
plots in figure 7 reiterate the consistent pitch moment author-
ity of the propeller but show that the deflecting surfaces may
provide much more control authority at higher flight speeds.
Indeed, if the general quadratic trend that is present in the
flaps and ruddervators was reflected in the elevons, it can be
expected that the elevons would provide two to three times
the pitch moment provided by the propellers in forward flight,
possibly at a much lower energy cost. The asymmetric nature
of the control authority of flaps 2 and 4 is due to the physical
limits of the flap deflections.

Although, in this study, the wing tilt actuator is not used in

Figure 7. Pitch rate control authority

active feedback control, it is worth noting how the individual
tilt of each wing may be used to produce a pitch moment.
Figure 8 shows that in hover and lower transition speeds, tilt
actuation is not as effective a means with which to produce
a pitch moment compared to the propellers, but as the speed
is increased and the wing-tilt angles drop below 30◦ it can be
used to great effect.

Figure 8. Wing tilt pitch control effectiveness and author-
ity

Moving on to the lateral direction, the roll moment effec-
tiveness and control authority plots are presented in figures
9 and 10 respectively. The effectiveness and control authority
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plots show that as the aircraft transitions from hover to for-
ward flight, roll authority is transferred from the propellers to
the deflecting surfaces. In both cases, left-right differential ac-
tuation may be used to produce a roll moment, and adequate
blending of the propellers and surfaces can provide consistent
roll authority throughout the transition. The ruddervator sur-
faces provide little in terms of roll moment production.
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Figure 9. Roll rate control effectiveness

Figure 10. Roll rate control authority

The yaw moment production is particularly interesting, be-
cause the propeller yaw moment sign flips during the transi-
tion, as seen in figure 11. This phenomenon is due to the
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Figure 11. Yaw rate control effectiveness

Figure 12. Yaw rate control authority

blown-wing effect in hover, where the local increase in dy-
namic pressure at the wing due to the propeller slip stream
produces a lifting force acting primarily in the direction to-
ward the rear of the aircraft. Figure 12 shows that the outside
propellers produce a slightly larger yaw moment in hover. As
the wing tilt angle decreases, the yaw moment sign of the pro-
pellers switches as the thrust force of the propeller becomes
the primary contributor to the yaw moment production.

In hover, the elevons provide the majority of the control au-
thority by directing the slipstream of the propeller and chang-
ing the lift production of the wing. As the aircraft transitions,
the outside propellers and the ruddervator surfaces provide the
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best means of yaw moment production, while the elevons and
flaps produce a yaw moment due to the increase/decrease in
drag. Use of aerodynamic torque by differentially actuating
the clockwise and counter-clockwise propellers, like that of a
quad rotor, does not appear to be an effective method of pro-
ducing yaw as the torque is overpowered by the aerodynamic
effects of the blown wing.
As demonstrated by the preceding analysis, the transition of
a tiltwing VTOL aircraft is a complex maneuver, in which
the changing aerodynamics are compounded by the changing
control effectiveness and authority of the control effectors.
The saving grace, for the LA-8, lies in the multitude of ac-
tuators, where redundancy and overlap provide sufficient con-
trol authority throughout the transition. The question remains,
how to design a controller that takes into account the dynamic
nature of the aircraft and optimizes its usage of the available
control effectors at every stage of the transition, while provid-
ing safe and reliable trajectory tracking performance.
The next section describes a uniform control architecture that
provides a straightforward approach to design a trajectory-
tracking controller for transitioning VTOL aircraft.

UNIFORM CONTROL FRAMEWORK
The control structure provides a unified approach to control
design throughout the entire flight envelope. This approach
brings together several design strategies that are described
below to build a method that is applicable across all flight
regimes (Ref. 17).

Robust Servo-mechanism Linear Quadratic Regulator

The robust servo-mechanism linear quadratic (RSLQR) struc-
ture (Ref. 18) builds on the well-known linear quadratic opti-
mal control theory. When applied to the linearized dynamics
of the aircraft at an equilibrium point, the linear quadratic reg-
ulator (LQR) forces the system to the origin, forming a type
0 system. When used to track a desired state of the system
or reject a constant disturbance, the closed loop response will
have a constant steady-state offset, and therefore integral er-
ror control action is needed. RSLQR makes use of the internal
model principal (Ref. 19), augmenting the state space repre-
sentation by embedding a model of the class of signals (e.g.,
step, sinusoidal) to be tracked, then applying optimal control
theory. The resulting control structure has two parts: a servo
tracking controller for command following and state feedback
for stabilization. Together, they provide accurate command
tracking and predictable robust performance. In practice, if
a constant reference command is sufficient for obtaining the
desired performance, then the system type is raised to one,
providing zero steady-state error command tracking. This ap-
proach has been successfully deployed in many aerospace sys-
tems, both autonomous and piloted, and is quickly reviewed
here for completeness.
Consider the linear time-invariant system

ẋ = Ax+Bu,
y = Cx+Du, (20)

where x ∈ Rn is the system state, u ∈ Rm is the input, and
y ∈ Rp is a set of outputs. We wish the output, y(t), to track
a constant reference signal with zero steady-state error. The
error signal is defined by the difference between the reference
and the output signal, e = r−y. To drive the steady state error
to zero, we raise the system type by adding integral action to
the error signal, xi =−

∫
e, and augment the system with this

new state:[
ẋi
ẋ

]
=

[
0 C
0 A

][
xi
x

]
+

[
D
B

]
u+
[
−I

0

]
r. (21)

Taking the derivative of (21) and noting that ṙ = 0, we arrive
at the servo design model

ż = Ãz+ B̃v, (22)

where the design model state vector z ∈Rn+p is comprised of
the tracking error e and the time derivative of x, and the input
v ∈ Rm is the time derivative of u, resulting in the state and
input vectors z = [ẋi, ẋ]T and v = u̇. The servo design system
matrices are defined as

Ã =

[
0 C
0 A

]
, B̃ =

[
D
B

]
, (23)

The tracking controller is obtained by applying the LQR algo-
rithm to (22) using the quadratic cost

J =
∫

∞

0
zT Qz+ vT Rvdt, (24)

where Q = QT > 0, R = RT ≥ 0, (Ã, B̃) is stabilizable, and
(Ã,Q

1
2 ) is detectable. The optimal control is v = −Kz where

K = R−1B̃T P, and P is the unique positive definite solution to
the algebraic Riccati equation

ÃT P+PÃ−PB̃R−1B̃T P = 0, (25)

The resulting controller drives the tracking error and the state
derivatives to zero but allows the system state to settle in at
nonzero values. The design model control, v = −Kz, is then
integrated to obtain the control input

u =−
[

Ki Kx
][ xi

x

]
. (26)

where the feedback gain has both integral and proportional
components.

The cost function’s parameters Q and R are chosen in order
to elicit the desired response. A good rule of thumb is to
start with weights on just the integrator states. The resultant
closed-loop system is shown in Figure 13.

Virtual Controls and Relative Degree

The relative degree of an output to an input is the number of
times that output must be differentiated with respect to time
such that the derivative is affected directly by that input. For

8



Figure 13. RSLQR control block diagram
example, the vertical velocity of an aircraft in hover has a rel-
ative degree of one to the thrust of the rotors, since the thrust
of the rotors directly affects the vertical acceleration. On the
other hand, in cruise, the relative degree of the vertical veloc-
ity to the elevator is two. The elevator input causes a pitch
moment which in turn changes the angle of attack increasing
the lift production and thus the vertical acceleration.

Virtual controls are introduced to handle the changing rela-
tive degree of the aircraft in flight (Ref. 20). The use of vir-
tual controls is analogous to successive loop closure where the
feedback loop is closed first on the faster dynamics and time-
scale separation of inner and outer loops ensures good overall
performance of the system. Here, the use of virtual controls is
demonstrated within the RSLQR frame-work using a simpli-
fied system representative of a pitch-for-speed type dynamics.

Consider the linear system

ẋ1 = ax3,
ẋ2 = bu,
ẋ3 = x2.

(27)

Expanding into state space gives ẋ1
ẋ2
ẋ3

=

 0 0 a
0 0 0
0 1 0

 x1
x2
x3

+
 0

b
0

u. (28)

Suppose that we would like to use the RSLQR algorithm to
track the first two states such that the tracking variables are
defined as

y =
[

1 0 0
0 1 0

] x1
x2
x3

 . (29)

Using system matrices defined in (28) and (29) and putting
them into the servo design model (22), we see that the result-
ing system is not stabilizable. This is remedied by including
the kinematic state x3 as a virtual control, ν = x3, and defining
a new state vector x̄ = [x1, x2]

T . The resulting design model is
then[

ẋ1
ẋ2

]
=

[
0 0
0 0

][
x1
x2

]
+

[
0 a
b 0

][
u
ν

]
,

y =

[
1 0
0 1

][
x1
x2

]
.

(30)

Applying the RSLQR formulation of Eq. (21) results in the
feedback law [

u
ν

]
=−K

[
xi
x̄

]
, (31)

where the control gain matrix has the form

K =

[
Ku

i Ku
x

Kν
i Kν

x

]
. (32)

The virtual control is used as a reference for x3 feedback, and
the difference is added to the x2 reference signal. The de-
sign relies on proper time separation of the x1 and x2 closed-
loop dynamics to ensure good performance, which can be ac-
complished by weighting the cost matrices Q and R appropri-
ately. The resulting closed loop system is depicted in figure
14, which shows the general structure of the RSLQR with vir-
tual control feedback. The controller dynamics are defined
as

−ẋi = r−Kν Kν
i xi− [Kν Kν

x +KνCν +C]x,
u = −Ku

i xi−Ku
x x, (33)

where, for this particular example, Kν = [0, 1]T and Cν =
[0, 0, 1]. For proper dimensions, zeros are appended to the
right side of the Kx matrices such that Kν

x ∈ R1×3 and Ku
x ∈

R1×3.

Figure 14. RLSQR with virtual controls

Performance Design and Control Allocation

VTOL aircraft that transition from thrust-borne flight to the
more efficient wing-borne flight must traverse a large flight
envelope where the effectiveness of a control input may vary
greatly, and there are inevitably regions of cross-over where
there are multiple effectors capable of producing similar ac-
celerations. To simplify the design process it is helpful to
break up the design into two parts: the performance, and the
actuation. The performance being the desired response to a
command input in any part of the flight envelope, and the actu-
ation pertaining to how the control effort is distributed among
the available effectors. This may be accomplished by apply-
ing theory presented in (Ref. 21), which is briefly described
here for the linear quadratic case.

Consider the linear system

ẋ = Ax+Buu, (34)

with A ∈ Rn×n, Bu ∈ Rn×m, x(t) ∈ Rn is the state, and u(t) ∈
Rm is the control input. Assume Bu does not have full column
rank, implying that it can be factorized as

Bu = Bµ B, (35)

where Bµ ∈ Rn×k and B ∈ Rk×m both have rank k for some
k < m. This gives way to an alternative description

ẋ = Ax+Bµ µ,
µ = Bu, (36)

9



where µ(t) ∈ Rk may be interpreted as the total control effort
of the effectors, most naturally thought of in our application
as the total accelerations. Since k < m, B and Bu have a non-
trivial null space in which u may be perturbed without produc-
ing an acceleration µ . Simply put, there are multiple ways to
actuate the control input u that produce the same commanded
total acceleration µ , and therefore there are built-in redundan-
cies in the control actuation.

When designing optimal feedback control, we explore two ap-
proaches. The first poses the optimal control policy in terms
of the input u, and the second, poses the optimal control pol-
icy in terms of µ , where the solution is then mapped onto u
by solving a quadratic optimization problem. We describe the
two methods below.

Method 1. Consider the linear system description (34). De-
termine u(t) by solving

min
u(t)

∫
∞

0
[xT Qx+uT Ruu]dt, (37)

where Q ≥ 0, and Ru = RT
u > 0. This is the standard linear

quadratic regulator (LQR) problem. If the pair (A,Bu) is stabi-
lizable and the pair (A,Q

1
2 ) is detectable, the optimal control

is u =−R−1
u BT

u Px, where P is the unique positive definite so-
lution to the algebraic Riccati equation

AT P+PA−PBuR−1BT
u P = 0. (38)

Method 2. Consider the linear system description (36). De-
termine µ(t) by solving

min
v(t)

∫
∞

0
[xT Qx+µ

T Rµ µ]dt, (39)

where Q ≥ 0, and Rµ = RT
µ > 0. Again, solving the LQR

problem with (A,Bµ ) stabilizable and (A,Q
1
2 ) detectable, the

solution to (39) is µ = −R−1
µ BT

µ Px. Then u(t) is determined
by solving

min
u(t)

uTWu,

subject to µ = Bu,
(40)

where W =W T > 0. The solution to this quadratic problem is
the weighted generalized inverse u =W−1BT (BW−1BT )−1µ .

The main result of (Ref. 21) states that, assuming the matrices
Ru and Rµ are related such that BR−1

u BT = R−1
µ , then u∗ and

µ∗ are the optimal controls associated with design 1 and 2,
respectively, and µ∗ = Bu∗ and the corresponding trajectories
are the same. Further, if for a given Rµ and W the matrix Ru
is chosen as Ru = W +BT [Rµ − (BW−1BT )−1]B, the control
laws for both design methods will be the same.

Thus, by splitting up the control design process, as in method
two, the control engineer designs the aircraft response to a
command, before determining how that response would be
physically implemented via the available effectors. Using
general acceleration as inputs alleviates scaling issues that

arise when using different types of effectors and helps target
specific dynamics that need to be more responsive than others.
Once the desired performance is achieved, the second step al-
lows control allocation solutions to be evaluated and tuned
using the weighting matrix W . Because the response is the
same, provided no effectors are saturated, an apples-to-apples
comparison can be made on a per W basis.

LONGITUDINAL CONTROL DESIGN

The uniform control approach described above is applied here
to the longitudinal dynamics at a non-turning trim condition.
For non-turning flight (ψ̇ = 0), the longitudinal dynamics sim-
plify to 

˙̄u
˙̄w
q̇
θ̇

=


1
m X̄(xlon,u)

ag +
1
m Z̄(xlon,u)

1
Jy

M(xlon,u)
q

 , (41)

where the state vector is given by xlon = [ū, w̄, q, θ ]T , and the
input u is the set of effectors listed in eq. (17). Given the trim
condition (x0,u0) the Jacobian matrices are computed such
that

Alon =


1
m X̄ū

1
m X̄w̄

1
m X̄q

1
m X̄θ

1
m Z̄ū

1
m Z̄w̄

1
m Z̄q

1
m Z̄θ

1
Jy

Mū
1
Jy

Mw̄
1
Jy

Mq
1
Jy

Mθ

0 0 1 0

 , (42)

Blon =


1
m X̄ωr

1
m X̄δs

1
m Z̄ωr

1
m Z̄δs

1
Jy

Mωr
1
Jy

Mδs

0 0

 , (43)

where the subscript denotes the variable that the derivative of
the force (X̄ , Z̄), or moments (M) is taken with respect to.

As stated previously, the horizontal and vertical velocities
(ū,w̄) are the variables to be tracked and the pitch rate, q, is
to be regulated, which leaves the pitch angle, θ , to be treated
as a virtual control input.

The performance design model therefore has states x̄lon =
[ū, w̄, q]T , and the linear design system is

˙̄xlon = Ālonx̄lon +µlon,
ylon = x̄lon,

(44)

where Ālon is the upper left 3× 3 submatrix of Alon cor-
responding to the performance states, and µlon is the gen-
eral longitudinal control accelerations such that µlon =
[āx, āz, αq]

T . Applying the RSLQR structure to the system
(44), the control design matrices are

Ãlon =

[
0 I
0 Ālon

]
, B̃lon =

[
0
I

]
. (45)

The components of the Q and R matrices are selected to obtain
the desired tracking performance. The desired control accel-
erations are then

µlon =−
[

Klon
i Klon

x
][ xilon

x̄lon

]
. (46)
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The control inputs are determined using the weighted pseudo-
inverse [

u
θdes

]
=W−1B̄T

lon(B̄lonW−1B̄T
lon)
−1

µlon, (47)

where W = W T is a positive definite weighting matrix, and
B̄lon is the input Jacobian augmented with the pitch angle
derivatives

B̄lon =

 1
m X̄ωr

1
m X̄δs

1
m X̄θ

1
m Z̄ωr

1
m Z̄δs

1
m Z̄θ

1
Jy

Mωr
1
Jy

Mδs
1
m Mθ

 . (48)

The control inputs are executed while the desired pitch angle
is fed back, differenced with the measured pitch angle, and
used to build the pitch rate reference signal.

Denoting the pseudo inverse matrix Mlon =
W−1B̄T

lon(B̄lonW−1B̄T
lon)
−1, it can be decomposed into

the submatrices corresponding to the input and pitch angle,

Mlon =

[
Mlon

u
Mθ

]
. (49)

Combining the feedback gains, virtual control, and control al-
location, the longitudinal control law is given by the following
linear system, (the lon subscript is dropped in the interest of
space),

−ẋi = −Kθ Mθ Kixi− (Kθ Mθ Kx +KθCθ +C)x
+Fr,

u = −Mu(Kixi +Kxx),
(50)

where r(t) = [ūd , w̄d ]
T , is the horizontal and vertical veloc-

ity commands; F maps the command inputs to the integrated

states, and is given by F =

[
1 0 0
0 1 0

]T

; Cθ pulls the pitch

angle from the state vector, and is defined as Cθ = [0, 0, 0, 1];
and C selects the tracking states from the state vector, and is
defined as

C =

 1 0 0 0
0 1 0 0
0 0 1 0

 .
The corresponding block diagram of the controller is shown
in figure 15.

Figure 15. Longitudinal control block diagram

LATERAL CONTROL DESIGN

The lateral dynamics in non-turning flight simplify to the fol-
lowing set of equations

˙̄v
ṗ
ṙ
φ̇

=


1
mȲ (x,u)

1
J2

xz−JxJz
(JxzN(x,u)− JzL(xlat ,u))

−1
J2

xz−JxJz
(JxN(x,u)− JxzL(x,u))

p+qsinφ tanθ + r cosφ tanθ

 , (51)

where the lateral state vector is given by xlat = [v̄, p, r, φ ]T ,
and the input u is the set of inputs defined in eq (17). Given
the trim condition (x0,u0) the state space matrices can be com-
puted and are listed in the appendix.

Of the lateral dynamics, we wish to track the lateral velocity v̄
as well as the body roll and yaw rates, p and r. The roll angle,
φ , is used as virtual control input.

The uniform control design process is then repeated, with
the lateral performance model state vector defined as x̄lat =
[v̄, p, r]T and the general control accelerations as µlat =
[āy, αp, αr]

T .

Applying the RSLQR algorithm, the lateral integral and state
feedback gains, Klat

i and Klat
x , are computed after selecting the

appropriate Q and R matrices.

It follows that the control inputs are determined by applying
the weighted pseudo-inverse using the roll angle augmented
matrix, B̄lat , defined in the appendix.

The lateral pseudo-inverse matrix is Mlat =
W−1B̄T

lat(B̄latW−1B̄T
lat)
−1, and can be decomposed into

submatrices corresponding to the input and roll angle

Mlat =

[
Mlat

u
Mφ

]
.

The lateral-directional reference commands include the de-
sired lateral velocity in the heading frame, v̄d(t) and the turn
rate ψ̇d(t), such that the lateral-directional reference is

rlat(t) = [v̄d(t), ψ̇d(t)]T . (52)

The turn rate command is fed forward, via G in figure 16,
to directly command a roll acceleration proportional to the
trimmed forward velocity ū0, and also used to construct the
body r reference command. In figure 16 the F and G matrices
are defined as

F =

 1 0
0 0
0 1

 , G =

 0 0
0 ū0
0 0


The lateral controller is described mathematically by the fol-
lowing dynamic system in which the lat subscript is omitted
in the interest of space.

−ẋi = −Kφ Mφ Kixi− (Kφ Mφ Kx +KφCφ +C)x
+(F +Kφ Mφ G)r,

u = −Mu(Kixi +Kxx−Gr).
(53)
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Figure 16. Lateral control block diagram

TRANSITION TRAJECTORY TRACKING

The control architecture is demonstrated by simulating a flight
in which the aircraft tracks a desired trajectory. The trajectory,
pictured in figure 17, starts in a stationary hover state, begins
a vertical ascent, which is followed by a constant radius as-
cending transition. The aircraft is accelerated to a forward
flight speed of 55 ft/s then levels out for a short period at the
cruise velocity. The cruise portion of the trajectory is followed
by a constant radius helical descent and decelerate to hover.

Figure 17. Flight path and ground track of the trajectory

The transition controller is implemented by applying the uni-
form control architecture at 13 equilibrium points at 5 ft/s in-
crements between 0 and 60 ft/s. The points were taken from
the steady level flight trim map described in a previous sec-
tion.

The control effector weighting matrices were set such that the
primary control effectors are the propellers, elevons, and rud-
dervators, as well as the roll and pitch angle virtual controls. A
large weight was placed on the flaps in order to use them as lit-
tle as possible as control effectors. The weightings were tuned
to avoid effector saturation in all flight regimes, which neces-
sitated increasing the weight of the elevons at higher flight
speeds due to decrease in the elevon effectiveness represented
in the LA-8 aerodynamic model.

The desired forward flight speed was used to schedule the con-
troller gains as well as the feed forward propellers, flaps, and
wing tilt angle settings.

The heading frame velocity and turn rate commands are aug-
mented with the position error, expressed in the heading
frame, and heading angle error, to more accurately track the
inertially referenced trajectory. The complete reference signal

going into the longitudinal and lateral controller is

r(t) =
[

v̄d(t)+Kēē(t)
ψd +Kψ eψ(t)

]
, (54)

where ē(t) is the inertial position error expressed in the head-
ing frame, Kē is a tunable feedback gain, and eψ(t) is the head-
ing angle error with associated gain Kψ .

The results of the trajectory tracking simulation are presented
in figures 17–22, which show good tracking capabilities in all
flight regimes while performing the transition from hover to
forward flight and back to hover while climbing, turning and
descending. The position error in figure 18 shows a maxi-
mum path deviation of 14 ft over the course of the flight, with
the largest deviations occurring at the inflection points of the
commands.
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Figure 18. Position error

The heading frame velocity and turn rate commands are pre-
sented in figure 19, where it is shown that the scheduled con-
troller sufficiently tracks the command variables as it per-
forms the transition. The largest deviations occur at the in-
flection points of the commands, most notably, 110 seconds
into the simulation where the aircraft begins to descend and
decelerate, a known troublesome part of the transition, as any
change in wing tilt angle results in large changes in the lifting
force generated.

The control actuation throughout the flight is shown in fig-
ures 20–22. The speeds of the propellers, which provide lift
in hover and thrust in forward flight while also serving as roll,
pitch, and yaw effectors in all flight regimes, are shown in fig-
ure 20. In figure 21, the control surface actuation is shown,
including the wing tilt angles. The wing tilt and flap deflec-
tion plots show that they are primarily driven by the trim table
schedule, with only slight actuation of the flaps to assist in roll
torques in forward flight. This was by design, since the wing
tilt was omitted from the control effectors when designing the
controller and a large weighting was used to limit the usage of
the flaps.

As the aircraft transitions to forward flight, elevons and rud-
dervators are increasingly used as control effectors. The
elevons are used as both roll and pitch effectors, while the rud-
dervators are used for yaw moment generation. The roll and
pitch angles, shown in figure 22, are driven by the controller
as virtual controls. The plot shows the roll angle increasing
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Figure 19. Heading frame command tracking
as the aircraft speed is increased while maintaining the con-
stant radius turn. It then levels off in the cruise portion before
increasing in the opposite direction as the aircraft begins its
descending transition. The pitch angle is used to decrease the
wing angle of attack and point the thrust vector of the pro-
pellers forward while accelerating. In the descent, the aircraft
is pitched nose up to decelerate.
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Figure 20. LA-8 propellers speeds

This transition example demonstrates how the relatively sim-
ple, robust uniform control approach may be used to pilot a
complex aircraft with non-traditional aerodynamics and re-
dundant control effectors through a complex maneuver.

CONCLUSION
We have presented a uniform control architecture that sim-
plifies the control design process of complex vertical take-
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Figure 21. LA-8 control surface deflections
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Figure 22. Roll and pitch angles

off and landing aircraft that must transition from thrust-borne
flight to lift-borne flight, and, in doing so, must transition be-
tween different control effectors. The formulation of the dy-
namics in the heading frame allows for the use of uniform
commands to be used as reference inputs throughout all flight
regimes. The uniform framework augments the robust ser-
vomechanism linear quadratic control with virtual controls
and splits the control design process into the two distinct steps
of performance and control allocation. The effectiveness of
the control process was demonstrated on a tandem tiltwing
distributed electric propulsion VTOL aircraft. The trajectory-
tracking simulation results demonstrated that the controller,
designed using the robust uniform method, provided accu-
rate trajectory tracking performance while transitioning the
aircraft from hover to forward flight and vice versa.
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APPENDIX

Lateral Directional State Space Matrices

Alat =


1
mȲv̄

1
mȲp

1
mȲr

1
mȲφ

1
J̄ (JxzNv̄− JzLv̄)

1
J̄ (JxzNp− JzLp)

1
J̄ (JxzNr− JzLr)

1
J̄ (JxzNφ − JzLφ )

−1
J̄ (JxNv̄− JxzLv̄)

−1
J̄ (JxNp− JxzLp)

−1
J̄ (JxNr− JxzLr)

−1
J̄ (JxNφ − JxzLφ )

0 1 cosφ tanθ 0



Blat =


1
mȲωp

1
mȲδs

1
J̄ (JxzNωp − JzLωp)

1
J̄ (JxzNδs − JzLδs)

−1
J̄ (JxNωp − JxzLωp)

−1
J̄ (JxNδs − JxzLδs)

0 0


Lateral Directional Control Allocation Matrix

B̄lat =

 1
mȲωp

1
mȲδs

1
mȲφ

1
J̄ (JxzNωp − JzLωp)

1
J̄ (JxzNδs − JzLδs)

1
J̄ (JxzNφ − JzLφ )

−1
J̄ (JxNωp − JxzLωp)

−1
J̄ (JxNδs − JxzLδs)

−1
J̄ (JxNφ − JxzLφ )


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