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S1. Phases of the Global Gridded Crop Model Intercomparison (GGCMI) 

The AgMIP Global Gridded Crop Model Intercomparison (GGCMI) is a core element of the 

AgMIP Gridded Crop Modeling Initiative (Ag-GRID) that aims to improve and apply crop models 

across large spatial domains using high-performance computational resources. GGCMI 

community efforts have organized around multiple research phases: 

• GGCMI Fast Track [Conducted in coordination with the Inter-Sectoral Impacts Model 

Intercomparison Project (ISIMIP; Warszawski et al., 2014)] – Employed 7 global gridded 

crop models (GGCMs) to project global yield and production changes for maize, wheat, rice, 

and soybean driven by 5 earth system models (ESMs) from the Fifth Coupled Model 

Intercomparison (CMIP5; Taylor et al., 2012) and 4 greenhouse gas emissions scenarios 

(Rosenzweig et al., 2014).   

• GGCMI Phase 1 [Further evaluated in this study; summarized here with further detail in the 

methods below (Section 2)] – Explored 1981-2010 historical period performance using 11 

CFDs and 14 GGCMs simulating maize, wheat, rice, and soybean under harmonized 

conditions to isolate model differences (Elliott et al., 2015; Müller et al., 2019). Also used as 

the basis for the development of a set of GGCM historical period benchmarks to evaluate 

model performance and document model improvement (Folberth et al., 2019; Müller et al., 

2017).    

• GGCMI Phase 2 – Sensitivity studies assessing the response of 13 GGCMs (maize, spring 

wheat, winter wheat, rice, and soybean) to climatological changes in carbon dioxide (CO2), 

temperature, and precipitation under different levels of nitrogen fertilizer and adaptation 

(Franke et al., 2020, 2019; Minoli et al., 2019).   

• GGCMI Phase 3 [Anticipated 2020; in coordination with ISIMIP] – Multi-model simulations 

using updated GGCM versions to project climate impacts on yield and production using 

outputs from the Sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016).  

These simulations are driven by scenarios based upon the W5E5 CFD (Lange, 2019).   

Results from GGCMI phases build upon one another, and this study’s focus on the role of climatic 

forcing dataset selection in capturing agricultural response to climatic variation will therefore also 

assist in interpretation of other GGCMI phases as well as the efficient design of future assessments.   

 

S2. GGCM configurations 

This study utilizes output from GGCMI Phase 1 experiments, which we summarize here while 

referring readers to the full protocols described by Elliott et al., (2015). The 14 GGCMs presented 

in Table S1 simulated the 1981-2010 harvest years using the 11 CFDs described in the previous 

section. Maize, wheat, rice, and soybean simulations were conducted on a global, 0.5° x 0.5° grid 

(~55 km wide grid cells at the equator) using one of three configurations: 

• Harmonized (H) – GGCMs use consistent fertilizer levels, irrigation guidelines, and planting 

dates with cultivars configured to have the same average maturity date (usually achieved by 

setting thermal unit requirements so that each phenological stage would complete given 

expected growing degree days). See Elliott et al., (2015) for further information.  

• Harmonized with no nitrogen limitation (N) – Same as Harmonized configuration but all 

nitrogen response is turned off (to be consistent with models that do not resolve nitrogen 

stress).  

• Default (D) – GGCMs use ‘best guess’ configuration for all settings used prior to introduction 

of harmonized settings.   
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Heterogeneity in cultivars, soils, and farm management (including growing season dates) below 

the 0.5° x 0.5° grid scale may affect comparisons with real-world crop perceptions of agro-climatic 

anomalies.  

 

Benchmarks for the performance of GGCMs were established by Müller et al., (2017), who 

documented structural differences in the models and found significant skill in reproducing 

national-level production anomalies across many GGCMs when driven by the AgMERRA CFD, 

although particular models and regions were less skillful. Time series comparisons between CFDs 

and GGCMI outputs are not detrended to account for major climatic response (in Section 3) as 

GGCMI configurations do not change from year to year. Additional crop species simulated by a 

smaller subset of GGCMs within GGCMI Phase 1 are not analyzed here (Elliott et al., 2015).  

 

S3. Additional GGCM information 

The GGCMI ensemble includes models that share similar attributes even as each produces unique 

results. Rosenzweig et al., (2014a) noted a divergence in future climate change responses between 

models depending on whether they included nitrogen stress, although those differences were 

attributed to an interaction with the long-term rise in CO2 concentrations that is not as prominent 

within the 1981-2010 period. Five GGCMs are built from the field-scale EPIC model, although 

Folberth et al. (2019) has documented differences in model performance and responsiveness owing 

to slightly different model versions, dynamic soil parameterizations, hydrology, cultivar 

distributions, and field management. LPJmL and LPJ-GUESS are built from the same biophysical 

process core but differ substantially in other process representations, while pAPSIM and pDSSAT 

utilize a common computational framework that aims to harmonize configuration settings and 

inputs to the greatest extent possible (Elliott et al., 2014).  

 
Table S1: Overview of Global Gridded Models (GGCMs). Further details provided in Elliott et al., (2015) and Müller 

et al., (2019). Table reflects data accessed April 25, 2019. 
Model name Modeling Center  Notes and key reference 

CGMS-WOFOST Wageningen University, 

the Netherlands 

Based on WOFOST site-based process model (de Wit et al., 2019; van 

Diepen et al., 1989; van Ittersum et al., 2003) 

CLM-Crop NCAR, USA Dynamic vegetation model based on coupled carbon-nitrogen version of 

CLM (Drewniak et al., 2013) 

EPIC-BOKU Boku, Austria Based on EPIC site-based process model (Izaurralde et al., 2006; Williams, 

1995). Core EPIC model v0810 

EPIC-IIASA IIASA, Austria Based on EPIC site-based process model, as above. Core EPIC model v0810 

EPIC-TAMU Texas A&M University, 

USA 

Based on EPIC site-based process model, as above. Core EPIC model v1102 

GEPIC IIASA, Austria Based on EPIC site-based process model as above (additional detail in Liu 

et al., 2007).  Core EPIC model v0810 

LPJ-GUESS KIT, Germany; Lund 

Univeristy, Sweden 

Crop-enabled version of LPJ-GUESS dynamic vegetation model, loosely 

drawing on crop parameterizations in LPJmL (Lindeskog et al., 2013; Olin 

et al., 2015) 

LPJmL PIK, Germany Dynamic vegetation model (Bondeau et al., 2007; Müller and Robertson, 

2014; Schaphoff et al., 2018) 

pAPSIM University of Chicago, 

USA 

Based on APSIM site-based process model (Elliott et al., 2014; Holzworth 

et al., 2014; Keating et al., 2003) 

pDSSAT University of Chicago, 

USA 

Based on DSSAT v4.5 site-based process model (Elliott et al., 2014; Jones 

et al., 2003) 

PEGASUS Tyndall Centre, University 

of East Anglia, UK 

Process-based vegetation model (Deryng et al., 2014, 2011) 

ORCHIDEE-CROP IPSL, France Includes model processes based on STICS site-based process model (Wu et 

al., 2016) 



5 

 

PEPIC Eawag, Switzerland Based on EPIC site-based process model (Liu et al., 2016a, 2016b; Williams 

et al., 1984) 

PRYSBI2 NAIES, Japan Empirical/process-based hybrid model (Okada et al., 2015; Sakurai et al., 

2014) 

 

S4. Production datasets and processing 

GGCMs simulate crop yields (t/ha) that must be converted to production (total kg) using harvested 

area masks in order to compare against observational production datasets.  We calculate national-

level production from the 0.5° x 0.5° grid using harvested crop areas from the Spatial Production 

Allocation Model v2.0 (SPAM), which approximates the year 2005 and does not change from year 

to year (You et al., 2014). We aggregate rainfed and irrigated production values separately using 

the corresponding GGCMI simulations and SPAM areas, then use the sum of rainfed and irrigated 

production for national or global totals (following Ruane et al., 2018b).  Porwollik et al., (2017) 

showed that choice of harvested area dataset used to weight different GGCMI grid cells in 

production calculations matters for many GGCM/crop/country combinations.  Resolving these 

differences is beyond the purview of this study, but it is likely that improved area and growing 

season data would improve our analyses.  Due to inconsistencies between individual crop models’ 

reported harvest years and FAO reporting methods, we shift the time series by one year in either 

direction and use correlations for the shifted time series if the correlation improves by at least 0.2 

(a similar approach was followed by Müller et al. 2017). Iizumi et al. (2017a) alternatively used a 

2-year running average to address this inconsistent harvest year reporting problem.   

 

S5. GGCMI historical production and top producing countries 

Figure S.1 shows major production regions in the world according to GGCMI rainfed simulations 

and FAO statistics.  Areas with the highest yields do not always correspond to the highest planted 

areas, however; due to the availability of irrigation, the overall amount of arable land, and 

competition from other potential land uses.  A discussion of mean production biases across 

GGCMI Phase 1 is beyond the purview of this study and was the subject of in-depth analysis by 

Müller et al. (2017).  Global production is highly dependent on relatively few major production 

regions for each crop, although communities with low yields or production can still be highly 

dependent on reliable harvests in order to maintain food security and agricultural sector revenues 

crucial to economic vibrancy.  Model evaluation focuses on the top 20 national producers for each 

crop commodity according to the 2013-2017 period.   
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Figure S.1: GGCMI Ensemble-all yield (1981-2010) and top 20 FAO national producers (2013-2017) for (a,b) 

maize; (c,d) wheat; (e,f) rice; and (g,h) soybean.  Areas with fewer than 10 ha harvested area for the given rainfed 

crop are omitted from maps in order to highlight major agricultural regions (You et al., 2014).  
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Figure S.2 provides an example of GGCM/CFD ensembles evaluated in this study.  These include 

an example of a single GGCM/CFD combination (EPIC-TAMU using the AgMERRA CFD), 

additional models included in AgMERRA+ (7 GGCMs total), additional models in AgMERRA-all 

(14 GGCMs total), and additional models in the Ensemble-All “Super Ensemble” (all 91 

GGCM/CFD combinations), as well as the ensemble mean of each ensemble.  Similar to results in 

other countries and crop species, these results show the improvement of correlations in crop model 

ensembles (Figures 4c, 6a), with large improvement in the creation of a multi-GGCM ensemble 

compared to the larger range of individual models even as the creation of larger ensembles has a 

diminishing benefit.   

 

 

Figure S.2: Example of ensemble construction for Romanian maize production anomalies (compared to mean of 

1981-2010), including detrended FAO observations and various GGCM/CFD simulation ensemble sets evaluated in 

this study.     

 

S6. Relative bias of climatic forcing datasets  

Figure 1 shows the CFD-all ensemble mean rainfed maize season (left column) and relative 

deviations for the two most commonly simulated CFDs (AgMERRA and WFDEIgpcc) for mean 

temperature, precipitation, and solar radiation, as well as extreme heat, rainy day, and heavy 

rainfall day metrics.  Figures S.3-S.5 show corresponding bias maps (relative to CFD-all) for the 

other CFDs analyzed within this study.  We include the W5E5 climatic forcing dataset in Figure 

S.5 as this CFD is the basis of GGCMI Phase 3 simulations.   
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Figure S.3: Extension of Figure 1 for additional climatic forcing datasets (CFDs).  Rainfed maize growing season 

deviation (1981-2010) compared to CFD-all mean for (left) AgCFSR, (center) CFSR, and (right) ERAI. From top to 

bottom, rows are deviations in growing season mean temperature (℃), mean precipitation (%), mean solar radiation 

(MJ m-2 day-1), mean number of days where Tmax > 35 °C, mean number of days where P > 0 mm/day, mean number 

of days where P > 20 mm/day.   
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Figure S.4: Extension of Figure 1 for additional climatic forcing datasets (CFDs).  Rainfed maize growing season 

deviation (1981-2010) compared to CFD-all mean for (left) GRASP, (center) GSWP3, and (right) PGFv2. From top 

to bottom, rows are deviations in growing season mean temperature (℃), mean precipitation (%), mean solar radiation 

(MJ m-2 day-1), mean number of days where Tmax > 35 °C, mean number of days where P > 0 mm/day, mean number 

of days where P > 20 mm/day.   
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Figure S.5: Extension of Figure 1 for additional climatic forcing datasets (CFDs).  Rainfed maize growing season 

deviation (1981-2010) compared to CFD-all mean for Princeton (left), WFDEIcru (center) and W5E5 (right). From 

top to bottom, rows are deviations in growing season mean temperature (℃), mean precipitation (%), mean solar 

radiation (MJ m-2 day-1), mean number of days where Tmax > 35 °C, mean number of days where P > 0 mm/day, 
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mean number of days where P > 20 mm/day.  Checkerboard pattern in Princeton # days above P > 0 mm/day appears 

to be a result of re-gridding to GGCMI 0.5˚ x 0.5˚ resolution. 

 

S7. Standardized Anomalies 

Figure S.6 shows two examples of the standardized anomaly calculation using rainfed soybean 

precipitation for sites in Nigeria and the United States.  The standardized anomaly compares 

uncertainty across the CFDs to uncertainty of the true signal (assumed here to be the CFD ensemble 

mean) across the years.  The former is illustrated by showing each CFD’s precipitation (gray lines), 

the CFD ensemble standard deviation each year (red whiskers), and the overall standard deviation 

of CFD annual anomalies across all years (red triangle in blue box on right).  The latter is illustrated 

by presenting the ensemble average CFD anomaly time series (black line) and its overall standard 

deviation across all years (black triangles in blue box on right).  As indicated in the main text, 

standardized precipitation anomalies are the ratio of (i) the standard deviation of yearly CFD 

anomalies (compared to the CFD ensemble mean) to (ii) the standard deviation of the CFD 

ensemble mean time series itself, represented as (i) the red triangle divided by (ii) the black triangle 

within the blue box on the right side of each Figure S.6 panel.  Taraba, Nigeria, has a high 

standardized precipitation anomaly due to large variation among CFDs and a small interannual 

variation in the CFD ensemble average (typical of many tropical climates with sparse observational 

networks).  Adams County, Illinois, USA, has a small standardized precipitation anomaly as the 

difference between CFDs is small compared to the large interannual variability in the CFD 

ensemble (typical of many mid-latitude continental climates with dense and high-quality 

observational networks).  

 

 
Figure S.6: Examples of standardized anomaly calculation for rainfed soybean precipitation in grid cell 

corresponding to a) Taraba, Nigeria, which has a high standardized anomaly, and (b) Adams County, Illinois, USA, 

which has a low standardized anomaly.  These examples correspond to values presented in Figure S.7d below.  

Using the graphical representation here, the standardized anomaly is calculated as the ratio of the red triangle to the 

black triangle within the blue box.   
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To complete the analysis of standardized anomalies shown for rainfed maize and rainfed rice in 

Figure 2, Figure S.7 provides standardized anomalies for rainfed wheat and rainfed soybean.  Most 

major wheat areas have low CFD uncertainty compared with the major growing areas of maize, 

soybean, and rice.  High standardized anomalies for wheat yield in portions of Northeastern Europe 

indicate substantial crop model uncertainties. 

 

 

 
Figure S.7: Standardized anomalies (unitless) for 1981-2010 rainfed wheat growing season (left) and rainfed 

soybean growing season (right) mean (a,b) temperature and (c,d) precipitation (across all climatic forcing datasets) 

as well as for (d,e) yield (across all GGCMI x CFD combinations). Standardized anomalies are the ratio of (i) the 

standard deviation of yearly ensemble member anomalies (compared to the ensemble mean) to (ii) the standard 

deviation of the ensemble mean time series itself.    
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S8. Key sources of uncertainty 

Uncertainty in the global gridded crop models, FAO data, and analysis methods likely obscures 

additional information that could be pulled from the GGCMI historical period intercomparison: 

• Model and observational coarseness – A lack of agricultural observations restricts GGCM 

configurations to more regional cropping system which may differ in their responsiveness to 

climate. Likewise, regional production observations are not publicly released in many 

countries, which forced a reliance on national FAO data that aggregates across heterogeneous 

farming systems and unique regional environments (thus muddling the climate signal; Ray et 

al., 2015). GGCMs are capable of much finer resolution simulation where information is 

available, and perform well in places like the United States where county-level data are 

provided (Figure 5; Elliott et al., 2018). 

• Model harmonization – GGCMI configurations were harmonized for fertilizer applications 

and growing periods, but additional model differences such as information on soil type likely 

interact with CFD characteristics and confound a clean climate intercomparison (this effect is 

reduced through the use of GGCM ensembles, CFD+, CFD-all, Ensemble+, and Ensemble-

all).   

• Detrending FAO production – Detrending FAO data against a 5-year moving average 

produced interannual anomalies relative to a snapshot of farm conditions in recognition of 

shifts in farm technologies and socioeconomic conditions. In some occasions this causes 

spurious results as the narrow window may be skewed by a particularly large anomaly which 

biases the 5-year mean. For example, years surrounding a major drought (and low production 

year) will be compared to a lower overall 5-yr mean production baseline that can make 

average years appear as ‘good’ years. We assume that this effect is small in comparison to the 

overall interannual variance captured by this detrending technique even as it is possible that 

some countries and years are more substantially affected.  Here we utilize the same moving-

window detrending approach for all countries to ensure consistency; however, development 

of regionally-specific detrending methods may be useful for future studies given that countries 

can feature strong and diverse patterns in the shape of long-term trends.  The utility of this 

detrending approach is also evident in the high Figure 6 correlations in countries where FAO 

statistics had large background trends that were removed in the detrending (e.g., maize in 

Mexico, rice in Philippines, soybean in Paraguay).  

• Correlation – The use of correlation as a metric for capturing climate variation provides only 

a partial perspective on agroclimatic limitation, with an implicit assumption that both positive 

and negative anomalies have a mirrored response on yields. Stakeholders may seek the hit 

rate statistic to anticipate the worst years, as some climate characteristics are important under 

particular conditions (e.g., Glotter et al. (2016) found that the number of precipitation days 

helps predict maize yields only when total precipitation totals were low).  

 

S9. Opportunities for production simulation improvement and further applications 

Improvement in the observed yield variability signal captured by crop models comes from four 

primary areas for improvement.  

• Model processes – The inclusion of additional physical, chemical and biophysical processes 

that allow crop models to respond to mean climate and climate extremes. Priority development 

for climate-responsive GGCMs include improved representation of water logging, flood 

inundation (Li et al., 2019), frost and cold season damages, temperature extreme interactions 

with key crop development stages, and climate-driven outbreaks of pests and diseases, and 
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overall farm management practices (e.g., Jones et al., 2017; Wang et al., 2017) as well as 

improved representation of phenological and allocation responses that determine yield 

variations (Zhu et al., 2019). 

• Model parameters – The calibration of parameterizations that capture important responses 

and processes that are not directly simulated by the GGCMs (e.g., Kimball et al., 2019). 

• Configuration data – Model settings designed to represent the local system, including 

growing season calendars (e.g., planting and harvesting), soil characteristics (e.g., texture), 

cultivar genetic traits (e.g., phenological growing degree-day requirements, radiation use 

efficiency), field management (e.g., tillage, planting density, planting dates), multi-cropping, 

and field amendments (e.g., fertilizer application, pesticides, irrigation) (e.g., (Jägermeyr and 

Frieler, 2018).  This is particularly important for developing countries with heterogeneous 

small-holder farming areas. 

• Driving data – Time series information about the field environment including the climatic 

forcing dataset (this study) as well as initial soil water, carbon and nitrogen pools (Basso et 

al., 2018).  Better representation of heavy precipitation extremes (beyond 20 mm/day) will 

likely require higher resolution models, as the spatial averaging within these CFDs’ 0.5 x 0.5 

grid cells reduces high tail events.   

• Food security – GGCMI analyses also facilitate analysis beyond the top 20 national producers, 

which includes many countries with low production despite a high reliance on agricultural 

systems for local food security and socioeconomic wellbeing. 
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