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Introduction: Asteroid (3200) Phaethon is the par-
ent of Geminid meteor shower [1,2]. It is an active
asteroid, recurrently ejecting dust during the perihelion
passage at 0.14 au [3-5]. Phaethon is the flyby target of
DESTINY* (Demonstration and Experiment of Space
Technology for INterplanetary voYage with Phaethon
fLyby and dUst Science) mission [6]. Detailed under-
standing of the target asteroid is crucial for the mission
planning and science payload design. Here, we present
the current status of DESTINY™ and review the updat-
ed results of extensive astronomical observations of
Phaethon during the close encounter in December,
2017 [7] and observation campaigns for stellar occulta-
tion by Phaethon in 2019 [8].

Current status of DESTINY*: DESTINY™* is a
joint mission of technology demonstration and sciece
observation, which was selected for JAXA/ISAS
small-class space program in 2017 [8]. The spacecraft
will be launched in 2024 with the enhanced solid-fuel
Epsilon rocket into a highly elliptical orbit (270x30000
km) and gradually raise its orbit by electric propulsion
for 2 years. After multilple lunar swing-by and subse-
quent interplanetary cruising, the spacecraft will fly by
Phaethon with a distance of 500450 km at its closest
approach and a relative speed of ~35 km/s in January
2028. The flyby point is around the descending node of
Phaethon with a geocentric distance of 0.33 au and a
heliocentric distance of 0.91 au. After Phaethon flyby,
the spacecraft may head to another target asteroid for
an extended mission, such as asteroid 2005 UD, which
is a possible breakup body of Phaethon [9].

The science observation includes high-speed flyby
imaging of Phaethon, and direct measurement of phys-
ical and chemical properties of dust particles in the
interplanetary space, dust trail and nearby Phaethon.

The flyby imaging is performed with a panchromatic
telescopic camera (TCAP) with a tracking mirror and a
VIS-NIR multiband camera (MCAP) with four bands
(425, 550, 700, 850 nm) [10]. In-situ dust analyses
with a dust analyser (DDA) which is a combination of
impact-ionization dust detector and time-of-flight mass
spectrometer enables to analyze mass, arrival direction
speed and element composition for dust particle [11].
Updated understanding of Phaethon: Updated
results of astronomical observation are reviewed below.
Rotation period: 3.6 hours is verified with refined op-
tical light curves [12,13]. The both studies consistently
report 3.603957+0.000001 (hr) [12,13].
Pole orientation: Pole orientation is determined with
shape models generated from light curves which were
observed with variable phase angles. Results among
studies are consistent within uncertainty [12,13,14].
The latest value [14] obtained with light curves and the
shape model generated from the Arecibo radar obser-
vation [15] shows pole orientation is found to be A=
316.0°, B1 =-48.7°, indicating a retrograde rotation.
Color: Phaethon is plotted near B, F, C, G-type on the
color-color diagrams with slight variation amongst
studies [16-19]. Note that they are all slightly shifted
from the typical values of the above spectral types.
Absolute magnitude: Due to the lack of observation at
small phase angle (20 deg) the absolution magnitude of
Phaethon (13.6 - 14.5) is determined with relatively
large uncertainty [17,18].
Polarization: Polarimetric observation made during
the 2016 apparition [20] and during the 2017 appari-
tion [21-26] all reveal large linear polarization. The
large polarization may be attributed to largegrain size
(mm size or greater) or large porosity of the surface
[e.g. 20]. Rotational variation are reported [23].



Size and shape: Large differences in the size estimate
were present in the Arecibo radar images (6 km, dia.)
[15] and thermophysical model-ling results of observa-
tions from NEOWISE mission (4.6 km, dia.) [29]. The
size determined by observations of 2019 stellar occul-
tation by Phaethon is 5.67x4.72 km [27, 28]. The size
defined with the occultation observation data shows
5.2km [30] and 5.55 km [31]. The latest shape model
generated with a combination of the Arecibo radar data,
multiple light curves and the occultation outcome
shows that the maximum extent along each axis is
6.4x6.2x5.2km and the volume-equivalent diameter is
5.3km (S. Marshall 2021, personal comm.). A promi-
nent radar dark feature is present near the north pole
and km-sized depression-like features are shown near
the equator and low latitude regions [15].

Albedo: The variable size estimates with a range of
absolute magnitude result in a range of current albedo
estimate of 0.079-0.16 [e.g. 20, 29, 32].
Visible reflectance spectra: Visible spectral observa-
tion revealed that blue slopes lacking absorption fea-
tures, with little rotational variation [16, 32], sup-
porintg previous studies. Some observation shows rota-
tional variation [33], in line with observation during
that 2007 apparition [34].
NIR reflectance spectra: The NIR observation data of
IRTF shows the lack of a 3 um feature, suggesting the
paucity of hydrated silicates on Phaethon [35].
Dust ejection: Neither coma nor m-size dust around
Phaethon are detected by optical observation with
Hubble Space Telescope [36-37] and thermal infrared
observation with VLT [38]. Visibe camera onboard
Parker Solar Probe successfully observed dust trail of
Phaethon [39].
Composition of Geminids dust: Spectroscopic obser-
vation of 2017 and 2018 Geminids show Na depletion
and variation [40], supporting the previous studies.
Unanswered questions for Phaethon:
Uncertainty in albedo: Uncertainty in absolute magni-
tude because of the lack of optical observation at the
small phase angles leads to albedo of Phaethon with
relatively uncertainty. Light-curve observation during
the approach phase and global surface imaging of
TCAP with a range of solar phase angle (0-90deg) will
resolve this question.
Visible spectral variation: Variation in spectral slope
in shorter visible wavelength [33] seems to be related
to viewing geometry and may link with semiglobal
feature and/or depend on observed latitude. Spetially-
resolved imaging by TCAP and MCAP of DESTINY*
will uncover the cause of the visible spectral variation.
Dust ejection and abundance: No dust ejection from
Phaethon are not observed by Ground-based and
space-based telescope around 1 au heliocentric dis-
tance, where DESTINY™* will flyby Phaethon. Howev-
er, as is the case of Bennu that OSIRIS-REX navigation

camera unexpectedly observed ejection of cm-sized
dust particles from Bennu during its approach phase
[41], DESTINY* may observe dust ejection from Phae-
thon with TCAP and/or DDA during the closest flyby.
Mineralogy: CK4 or heated CI/CM chondrites are
suggested for analogues of surface materials of Phae-
thon [42-44]. In such thermally altered carbonaceous
chondrites, phyllosilicates are dehydrated and con-
vered to olivine and thus the absorption of olivine cen-
tered at 1.05 micron is typically shown [45,46].
Strangely, 1 micron absorption have not been observed
among any NIR observation [e.g. 32], while MIR spec-
tra of Spitzer suggest the presence of olivine [J. Hanus,
2020 submitted]. This enigmatic question of olivine
features between NIR and MIR spectra can not be ad-
dressed by DESTINY™* observation and only be re-
solved by sample return. Returned sample by Bennu
and Ryugu may provide the clue for it.
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