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Introduction: Asteroid (3200) Phaethon is the par-

ent of Geminid meteor shower [1,2]. It is an active 

asteroid, recurrently ejecting dust during the perihelion 

passage at 0.14 au [3-5]. Phaethon is the flyby target of 

DESTINY+ (Demonstration and Experiment of Space 

Technology for INterplanetary voYage with Phaethon 

fLyby and dUst Science) mission [6]. Detailed under-

standing of the target asteroid is crucial for the mission 

planning and science payload design. Here, we present 

the current status of DESTINY+ and review the updat-

ed results of extensive astronomical observations of 

Phaethon during the close encounter in December, 

2017 [7] and observation campaigns for stellar occulta-

tion by Phaethon in 2019 [8].  

Current status of DESTINY+: DESTINY+ is a 

joint mission of technology demonstration and sciece 

observation, which was selected for JAXA/ISAS 

small-class space program in 2017 [8]. The spacecraft 

will be launched in 2024 with the enhanced solid-fuel 

Epsilon rocket into a highly elliptical orbit (270×30000 

km) and gradually raise its orbit by electric propulsion 

for 2 years. After multilple lunar swing-by and subse-

quent interplanetary cruising, the spacecraft will fly by 

Phaethon with a distance of 500±50 km at its closest 

approach and a relative speed of ~35 km/s in January 

2028. The flyby point is around the descending node of 

Phaethon with a geocentric distance of 0.33 au and a 

heliocentric distance of 0.91 au. After Phaethon flyby, 

the spacecraft may head to another target asteroid for 

an extended mission, such as asteroid 2005 UD, which 

is a possible breakup body of Phaethon [9].  

The science observation includes high-speed flyby 

imaging of Phaethon, and direct measurement of phys-

ical and chemical properties of dust particles in the 

interplanetary space, dust trail and nearby Phaethon. 

The flyby imaging is performed with a panchromatic 

telescopic camera (TCAP) with a tracking mirror and a 

VIS-NIR multiband camera (MCAP) with four bands 

(425, 550, 700, 850 nm) [10]. In-situ dust analyses 

with a dust analyser (DDA) which is a combination of 

impact-ionization dust detector and time-of-flight mass 

spectrometer enables to analyze mass, arrival direction 

speed and element composition for dust particle [11].  

Updated understanding of Phaethon: Updated 

results of astronomical observation are reviewed below.   

Rotation period: 3.6 hours is verified with refined op-

tical light curves [12,13]. The both studies consistently 

report 3.603957±0.000001 (hr) [12,13]. 

Pole orientation: Pole orientation is determined with 

shape models generated from light curves which were 

observed with variable phase angles. Results among 

studies are consistent within uncertainty [12,13,14]. 

The latest value [14] obtained with light curves and the 

shape model generated from the Arecibo radar obser-

vation [15] shows pole orientation is found to be λ1= 

316.0°, β1 = -48.7°, indicating a retrograde rotation. 

Color: Phaethon is plotted near B, F, C, G-type on the 

color-color diagrams with slight variation amongst 

studies [16-19]. Note that they are all slightly shifted 

from the typical values of the above spectral types. 

Absolute magnitude: Due to the lack of observation at 

small phase angle (20 deg) the absolution magnitude of 

Phaethon (13.6 - 14.5) is determined with relatively 

large uncertainty  [17,18].  

Polarization: Polarimetric observation made during 

the 2016 apparition [20] and during the 2017 appari-

tion [21-26] all reveal large linear polarization. The 

large polarization may be attributed to largegrain size  

(mm size or greater) or large porosity of the surface 

[e.g. 20]. Rotational variation are reported [23]. 



Size and shape: Large differences in the size estimate 

were present in  the Arecibo radar images (6 km, dia.) 

[15] and thermophysical model-ling results of observa-

tions from NEOWISE mission (4.6 km, dia.) [29]. The 

size determined by observations of 2019 stellar occul-

tation by Phaethon is 5.67×4.72 km [27, 28]. The size 

defined with the occultation observation data shows 

5.2km [30] and 5.55 km [31]. The latest shape model 

generated with a combination of the Arecibo radar data, 

multiple light curves and the occultation outcome 

shows that the maximum extent along each axis is  

6.4×6.2×5.2km and the volume-equivalent diameter is 

5.3km (S. Marshall 2021, personal comm.). A promi-

nent radar dark feature is present near the north pole 

and km-sized depression-like features are shown near 

the equator and low latitude regions [15].  

Albedo: The variable size estimates with a range of 

absolute magnitude result in a range of current albedo 

estimate of 0.079-0.16 [e.g. 20, 29, 32]. 

Visible reflectance spectra: Visible spectral observa-

tion revealed that blue slopes lacking absorption fea-

tures, with little rotational variation [16, 32], sup-

porintg previous studies. Some observation shows rota-

tional variation [33], in line with observation during 

that 2007 apparition [34].  

NIR reflectance spectra: The NIR observation data of 

IRTF shows the lack of a 3 µm feature, suggesting the 

paucity of hydrated silicates on Phaethon [35].  

Dust ejection: Neither coma nor m-size dust around 

Phaethon are detected by optical observation with 

Hubble Space Telescope [36-37] and thermal infrared 

observation with VLT [38]. Visibe camera onboard 

Parker Solar Probe successfully observed dust trail of 

Phaethon [39]. 

Composition of Geminids dust: Spectroscopic obser-

vation of 2017 and 2018 Geminids show Na depletion 

and variation [40], supporting the previous studies.  

Unanswered questions for Phaethon: 

Uncertainty in albedo: Uncertainty in absolute magni-

tude because of the lack of optical observation at the 

small phase angles leads to albedo of Phaethon with 

relatively uncertainty. Light-curve observation during 

the approach phase and global surface imaging of 

TCAP with a range of solar phase angle (0-90deg) will 

resolve this question. 

Visible spectral variation:  Variation in spectral slope 

in shorter visible wavelength [33] seems to be related 

to viewing geometry and may link with semiglobal 

feature and/or depend on observed latitude. Spetially-

resolved imaging by TCAP and MCAP of DESTINY+ 

will uncover the cause of the visible spectral variation. 

Dust ejection and abundance: No dust ejection from 

Phaethon are not observed by Ground-based and 

space-based telescope around 1 au heliocentric dis-

tance, where DESTINY+ will flyby Phaethon. Howev-

er, as is the case of Bennu that OSIRIS-REx navigation 

camera unexpectedly observed ejection of cm-sized 

dust particles from Bennu during its approach phase 

[41], DESTINY+ may observe dust ejection from Phae-

thon with TCAP and/or DDA during the closest flyby.  

Mineralogy: CK4 or heated CI/CM chondrites are 

suggested for analogues of surface materials of Phae-

thon [42-44]. In such thermally altered carbonaceous 

chondrites, phyllosilicates are dehydrated and con-

vered to olivine and thus the absorption of olivine cen-

tered at 1.05 micron is typically shown [45,46]. 

Strangely, 1 micron absorption have not been observed 

among any NIR observation [e.g. 32], while MIR spec-

tra of Spitzer suggest the presence of olivine [J. Hanuš, 

2020 submitted]. This enigmatic question of olivine 

features between NIR and MIR spectra can not be ad-

dressed by DESTINY+ observation and only be re-

solved by sample return. Returned sample by Bennu 

and Ryugu may provide the clue for it.  
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