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Proposed editorial summary: 12 

The response of low clouds to warming is uncertain among climate models and dominates 13 

spread in their projections. Satellite estimates of tropical cumulus and stratocumulus cloud 14 

feedbacks, derived using surface warming trends, suggest a more moderate climate sensitivity than 15 

many models predict. 16 

 17 

Global climate models (GCMs) predict warming in response to increasing greenhouse 18 

gases, partly due to decreased tropical low-level cloud cover and reflectance. We use satellite 19 

observations that discriminate stratocumulus (Sc) from shallow cumulus (Cu) clouds to 20 

separately evaluate their sensitivity to warming and constrain the tropical contribution to 21 

low-cloud feedback. We find an observationally inferred low-level feedback two times 22 

smaller than a previous estimate. Cu are insensitive to warming whereas GCMs exhibit a 23 

large positive cloud feedback in Cu regions. In contrast, Sc show sensitivity to warming and 24 

the tropical inversion layer strength, controlled by the tropical Pacific SST gradient. Models 25 

fail to reproduce the historical SST gradient trends and therefore changes in inversion 26 

strength, generating an overestimate of the positive Sc cloud feedback. Continued weak east-27 

Pacific warming would therefore produce a weaker low-cloud feedback and imply a more 28 

moderate climate sensitivity (3.47  0.33 K) than many models predict.  29 
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 30 

When subjected to "external" forcings, such as anthropogenic changes in atmospheric 31 

greenhouse gases (GHGs), the atmosphere and surface warm at a rate determined not only by the 32 

forcing itself, but also by feedbacks, i.e., changes in other parts of the climate in response to the 33 

forcing, that either strengthen (positive feedback) or weaken (negative feedback) the warming. 34 

The most uncertain feedbacks are those due to changes in clouds, particularly low-altitude 35 

stratocumulus (Sc) and shallow cumulus (Cu) clouds over the oceans1,2. In response to surface 36 

warming, GCMs predict that low clouds primarily dissipate and amplify the warming by reflecting 37 

less solar radiation1. However, the range of low-cloud feedbacks simulated by individual climate 38 

models is diverse, varying from a small negative feedback to a large positive feedback1. In 39 

particular, the spread in tropical low-cloud feedback is the single biggest uncertainty in model’s 40 

estimates of climate sensitivity2–4, which explains the high correlation between the two quantities 41 

(Fig. 1f). Ultimately, this uncertainty limits our ability to project the magnitude of future climate 42 

change impacts.  43 

 44 

Sc and Cu are driven by different cloud processes: cloud-top radiative cooling for Sc as 45 

opposed to surface convection for Cu5. In the tropics, Sc typically produce nearly overcast 46 

conditions off the west coasts of continents (Fig. 1a-c) and strongly reflect shortwave (SW) 47 

radiation back to space (Fig. 1b). Cu are more scattered and therefore have a smaller radiative 48 

effect (Fig. 1b). They are located in the extensive open ocean trade wind regions further west (Fig. 49 

1a-c), Thus, there is no a priori reason to expect Sc and Cu to exhibit the same feedback in response 50 

to increasing GHGs. In GCMs, cloud feedback from regions dominated by Sc is comparable in 51 

strength to that in regions expected to be dominated by Cu or at the border between the two regimes 52 

(Fig. 1d)1,3. As a result, both regions contribute significantly to the difference in equilibrium 53 

climate sensitivity (ECS) between high-ECS and low-ECS models (Figs. 1e,f). A few multi-model 54 

studies have attempted to determine Sc or Cu cloud feedbacks, using fixed geographic areas6  or 55 

large-scale conditions7 as proxies to indirectly infer the presence of each cloud type, and found 56 

that the feedbacks are highly variable among models for both cloud types and roughly equally 57 

uncertain8,9. These studies, while intriguing, are limited because they do not robustly distinguish 58 

Cu and Sc clouds in GCM output and thus are not able to determine their respective feedbacks. 59 

Different feedbacks for Sc and Cu clouds are supported by idealized large-eddy simulation (LES) 60 



studies, yet understanding of the underlying reasons remains incomplete, particularly for trade-61 

wind Cu10, which may even produce negative feedbacks11.  62 

We use a new active remote sensing satellite product, the Cumulus and Stratocumulus 63 

CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Dataset 64 

(CASCCAD)12, to explicitly identify Cu and Sc based on cloud morphology and altitude over 65 

2007-2016. Simultaneous observations of the two primary local “cloud-controlling” 66 

environmental factors for Cu and Sc, i.e., sea surface temperature (SST) and estimated inversion 67 

strength (EIS)13, are then used to estimate the change in low-cloud fraction6,8 (LCC) for each cloud 68 

type in response to a change in global mean surface temperature (T).  69 

 70 
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 72 

Although other controlling factors8 may affect low-cloud feedbacks14, we do not consider them 73 

in the present study because their collective contribution to the low-cloud feedback is very small 74 

(see Supplementary Text 2 and Supplementary Fig. 4), consistent with previous findinds8,14. 75 

The partial derivatives ∂LCC/∂SST and ∂LCC/∂EIS can be calculated directly for Cu and Sc 76 

from CASCCAD over the decadal time span of the dataset and from a blend of observations and 77 

reanalysis products for SST and EIS (Supplementary Table 2).  They are assumed to reflect 78 

fundamental local small-scale processes that regulate Cu and Sc and are thus invariant over 79 

different time scales6,8.  The derivatives dSST/dT and dEIS/dT, on the other hand, indicate how 80 

the cloud-controlling environmental factors change as global mean surface temperature changes. 81 

These may be determined by large-scale processes associated with the tropical general circulation 82 

and may not be the same for different types of climate changes. In particular EIS should depend 83 

on changes in the large-scale tropical Walker circulation: a climate change that strengthens the 84 

SST gradient across the tropical Pacific Ocean should strengthen the Walker cell and increase EIS 85 

in the east Pacific Sc regions, while a change that weakens the gradient would weaken EIS instead4.  86 

Over the decadal period covered by CASCCAD, SST gradient changes are primarily due to El 87 

Niño and to a lesser extent the Pacific Decadal Oscillation, rather than anthropogenic climate 88 

change15,16.  89 

 90 



Cu-dominated regions cover a larger area of the tropics than Sc-dominated regions, but this is 91 

compensated by the greater cloud fraction in the Sc-dominated regions than in the Cu-dominated 92 

regions so that each type contributes a comparable amount to the total low cloud fraction (Figs. 93 

1a,c, 2a). While the locations of Sc- and Cu-dominated regions can be roughly reproduced using 94 

a threshold on EIS –identified as a better Sc predictor than other environmental variables13– to 95 

discriminate Sc and Cu (Supplementary Fig. 2), it does not allow us to compute the correct total 96 

and partial derivatives of Sc and Cu cloud fractions as a function of the cloud-controlling variables 97 

SST and EIS (Supplementary Fig. 3), as well as their associated feedbacks (Supplementary Text 98 

1). Despite the similar Sc and Cu cloud fractions, the observed response of low clouds to 99 

interannual local SST changes (i.e., the total derivative of LCC with respect to SST, dLCC/dSST, 100 

Eq. 2) is mainly controlled by Sc clouds in subsidence regimes over the tropical oceans (Fig. 2b).  101 

 102 
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 104 

Sc cloud fraction largely decreases with local surface warming on interannual time scales (Fig. 105 

2b), the result of a large decrease and increase of Sc cloud fraction with respect to SST and EIS 106 

(i.e., ∂Sc/∂SST and ∂Sc/∂EIS, see Methods), respectively (Fig. 2c-d). On the contrary, in response 107 

to local surface warming, the Cu amount slightly increases (Fig. 2b), driven by its EIS component 108 

(Fig. 2d). Transition and other cloud types contribute relatively little to the total change 109 

(Supplementary Fig. 5). 110 

 111 

These results provide an excellent test for GCMs, since they represent observed responses of 112 

specific cloud types to known SST changes that are routinely used to evaluate Coupled Model 113 

Intercomparison Project (CMIP) models. They do not reveal the long-term anthropogenic low-114 

cloud feedback by themselves because interannual and interdecadal EIS changes may differ from 115 

long-term EIS changes17.  Figures 2c-d do indicate, however, that the long-term low-cloud 116 

feedback is likely to be restricted primarily to the Sc regions, since ∂Cu/∂SST and ∂Cu/∂EIS are 117 

quite small.  This conflicts with GCM projections that indicate a mostly large positive low-cloud 118 

feedback in the Cu regions1,3 (Fig. 1d). One possible explanation for this model-observation 119 

discrepancy is the tendency for GCMs to create Sc-like artifact clouds at the base of Cu clouds, 120 



which are overly sensitive to changes in environmental conditions18. Another explanation is 121 

incorrect parameterized responses of Sc-Cu clouds to surface temperature and EIS changes19.      122 

 123 

Whether GCMs simulate the long-term anthropogenic low-cloud feedback correctly depends 124 

not only on their fidelity in parameterizing cloud processes, i.e., where Sc and Cu form and how 125 

they respond to cloud-controlling environmental factors, but also whether they correctly simulate 126 

the long-term evolution of the cross-Pacific SST gradient, which determines the evolution of EIS 127 

in the Sc regions17. For the past 20 to 30 years,  the SST and EIS pattern trends have generated 128 

unusually small low-cloud feedbacks in the tropics20,21 compared to that predicted by GCMs for 129 

long-term future climate. Recent studies argue that these pattern trends, which GCMs do not 130 

reproduce15,22, are a manifestation of the natural variability and will not last in the coming decades. 131 

Instead, it has been argued that a weakening cross-Pacific SST gradient will emerge, leading to a 132 

strong positive low-cloud feedback20,21,23. However, we find that even on longer time scales (over 133 

the past 40 to 60 years), a time interval that should begin to incorporate some effects of 134 

anthropogenic GHG forcing, both the observed SST –in agreement with these previous studies5– 135 

and EIS patterns changes remain consistently different from the long-term changes predicted by 136 

the models  (Fig. 3, Supplementary Fig. 6). Such a finding raises the question of how much 137 

weakening of the cross-Pacific SST gradient will actually occur in the future climate and what its 138 

ramification is for tropical low-cloud feedbacks. 139 

 140 

Here we further quantify what could be the future SW low-cloud feedback should these past 141 

40 to 60-year trends in SST and EIS (Fig. 3a-b-c-d) continue in the future. Previous studies have 142 

shown that the change in SW CRE is primarily driven by the change in LCC6,8,14,19. Consequently, 143 

the low-cloud feedback can be inferred by multiplying the change in LCC by the sensitivity of SW 144 

CRE to LCC6,8,14 (i.e., dCRE/dT = dCRE/dLCC dLCC/dT), where the change in LCC is estimated 145 

from the sum of the partial derivatives of LCC with respect to controlling factors multiplied by the 146 

change in controlling factors (Eq. 1). Given the different responses of Sc and Cu to warming (Fig. 147 

2), we further refine this method by computing separately the contributions from Sc and Cu clouds 148 

from the CASCCAD data (dCRESc/dT and dCRECu/dT), weighting them as a function of their 149 

relative presence in a given location (i.e., Sc/(Sc+Cu) or Cu/(Sc+Cu)) and summing them to get 150 

the SW low-cloud feedback inferred from observations (dCRE/dT; see Eq. 4 in Methods). 151 



Similarly, we also use the CASCCAD results to infer what would be the future SW low-cloud 152 

feedbacks should the SST and EIS patterns estimated from two future climate scenarios predicted 153 

by GCMs (Fig. 3e-f-g-h; abrupt-4xCO2 and uniform +4K; see Methods) really occur in the future. 154 

 155 

These resulting estimated tropical low-cloud feedback, referred to as “observationally 156 

inferred” feedbacks, are shown in Fig. 4.  If the SST and EIS pattern trends observed over the past 157 

40 to 60 years continue in the coming decades, they will generate an observationally inferred SW 158 

low-cloud feedback up to two times smaller (Fig. 4a) than it would be if the future pattern trend 159 

resembles the pattern trend predicted by the CMIP6 models for an abrupt-4xCO2 climate warming 160 

scenario (Fig. 4g), and three times smaller than that of a hypothetical uniform +4K surface 161 

warming (Fig. 4j). By using the satellite dataset that is the most accurate for cloud-type 162 

discrimination and the most sensitive to Cu clouds, as well as by accounting for the spatial-163 

dependence of the Sc and Cu partial derivatives as determined by the Sc/(Sc+Cu) fraction 164 

(Supplementary Fig. 8 and 9), our observationally inferred feedback estimate for an abrupt-4xCO2 165 

SST and EIS pattern change scenario is 0.56  0.15 Wm-2K-1 in subsidence regimes over the 166 

tropical oceans. Our result is two times smaller and with a five times narrower range than a 167 

previous multi-observational analysis estimate8, which does not account for the different responses 168 

of Sc and Cu to warming and their relative presence in a given location (i.e., Sc/(Sc+Cu) fraction; 169 

Supplementary Fig. 10). The majority of this feedback is driven by Sc clouds in Sc-dominated 170 

regions regardless of the climate warming scenario (Fig. 4c-f-i-l and Supplementary Fig. 7c-f), 171 

contrary to previous belief3,9,24,25, because (1) these Sc clouds are very sensitive to both surface 172 

warming and inversion strength, (2) Cu clouds are only weakly sensitive to inversion strength 173 

variations and are insensitive to surface warming (Supplementary Fig. 9), and (3) Sc clouds are 174 

less frequent in Cu-dominated regions than many GCMs simulate18 (Fig. 1c). 175 

 176 

Although a variety of cloud feedbacks exist (e.g., high-cloud and cloud phase-related optical-177 

depth feedbacks), the SW low-cloud feedback is a large contributor to the net total cloud feedback 178 

and its multimodel variability in modern GCMs1. As a result, it greatly influences the magnitude 179 

of model climate sensitivity2–4 (Fig. 1f). Given the evidence presented here, we assess the 180 

implications of possible smaller tropical low-cloud feedbacks for the ECS of Earth’s climate to 181 

increasing CO2 emissions. Assuming for illustration purposes that the influence of low-cloud 182 



feedback on overall ECS in state-of-the-art GCMs participating in the 6th Coupled Model 183 

Intercomparison Project (CMIP6) (Fig. 1f) is representative of the real-world relationship between 184 

the two, we estimate a plausible real-world ECS as a function of the observationally inferred low-185 

cloud feedbacks from different hypothetical scenarios of SST and EIS pattern change in a climate 186 

warming (Supplementary Fig. 11), i.e., historical 40- and 60-year trends, GCM-simulated abrupt-187 

4xCO2, and GCM-simulated +4K. Should the historical SST and EIS pattern trends (for either 188 

1979-2018 or 1959-2018) persist, our observational constraint would suggest an ECS of 3.47  189 

0.33 K and 3.73  0.36 K as opposed to 3.82  0.38 K for a warming pattern similar to the CMIP6 190 

mean abrupt-4xCO2 climate change. These estimates do not represent the true ECS but rather 191 

provide an estimate of the possible change in ECS related to the SST/EIS pattern effect on low-192 

cloud feedback. Additionally, we address the possible effect of a biased tropical low-cloud 193 

feedback on ECS below. 194 

 195 

The 1.5-4.5 K spread in model ECS has remained fairly constant since the first multi-model 196 

assessment26. However, the new GCM generation includes a number of models with even larger 197 

ECS27, which is largely attributed to contributions from low-cloud feedbacks, mostly at middle 198 

latitudes and partly in the tropics. A simple comparison of the relationship between low-cloud 199 

feedbacks and ECS of the previous and current GCM generations suggests that an increase in 200 

tropical low-cloud feedbacks explains up to a third of the ECS increase (Supplementary Fig. 11), 201 

consistent with a more detailed analysis27. Furthermore, our observationally inferred estimate of 202 

low-cloud feedback for an abrupt-4xCO2 climate scenario indicates that both high-ECS and low-203 

ECS CMIP6 models simulate unrealistic tropical low-cloud feedback, suggesting an intermediate 204 

ECS as more plausible (Fig. 5). The high-ECS models produce low-cloud feedback two times 205 

larger than the observationally constrained inference (0.56  0.15 Wm-2K-1, Fig. 5a). We 206 

hypothesize that this occurs because high-ECS models simulate too many Sc-like clouds in regions 207 

dominated by Cu18, therefore generating a stronger response of low clouds to short-term surface 208 

warming, and these clouds might also be too sensitive to climate warming19. On the contrary, low-209 

ECS models predict a near-zero feedback on average, resulting from large compensating areas of 210 

negative and positive feedbacks (Fig. 5b), because they likely wrongly predict only a small 211 

decrease or an increase of low-cloud amount in response to global warming19 (which are 212 

manifested in partial derivative errors), besides possibly underestimating the amount of Sc 213 



clouds19, therefore generating a smaller response of low clouds to surface warming. Unfortunately, 214 

evaluating the separate GCM Sc and Cu cloud feedbacks is impossible since their respective cloud 215 

fractions are not reported in the CMIP archive.  216 

 217 

Using our new method in conjunction with an abrupt-4xCO2 SST and EIS pattern change 218 

scenario in subsidence regimes over the tropical oceans from CMIP models, we find an 219 

observationally inferred tropical low-cloud feedback (0.56  0.15 Wm-2K-1) that is two times 220 

smaller and with a five times narrower range than a previous multi-observational analysis 221 

estimate8. However, if the historical 40-year SST and EIS  pattern trends persist in the future, our 222 

observational constraint suggests a 2.33 times smaller tropical low-cloud feedback in subsidence 223 

regimes (0.24  0.12 Wm-2K-1) associated with a moderate ECS (3.47  0.33 K), contrary to that 224 

in many GCMs (half of which have an ECS larger than 3.89 K). The magnitude of the ECS will 225 

be partly determined by whether the tropical Pacific Ocean begins to warm more rapidly in the 226 

east than in the west in the coming decades, as models predict, contrary to what it has been doing 227 

over the past 60 years15,16 (Fig. 3), which models cannot replicate5. Additional important 228 

contributors to the strength of the tropical low-cloud feedback, and therefore the ECS, include the 229 

Sc-Cu relative presence in a given location and their sensitivity to controlling factors. 230 

Consequently, we argue that to improve predictions of future climate warming, model 231 

development should focus on how to correctly simulate the observed historical SST pattern trend 232 

and on improving the separate response of Cu and Sc clouds to SST and EIS variations along with 233 

their geographical distributions. To this end, the Cu and Sc cloud fractions should be added to the 234 

list of mandatory CMIP variables to further understand and evaluate GCM low-cloud feedbacks 235 

using the observations and method presented here. 236 

 237 
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Methods 304 

Interannual low cloud response to surface warming forcings 305 

We calculate the interannual relationship between SST, EIS and low cloud fraction following 306 

the method used in Cesana et al.19. We focus on low clouds over the tropical oceans (between 35˚S 307 

and 35˚N) in subsidence regimes defined as having a large-scale pressure vertical velocity at 500 308 

hPa (⍵500) greater than 10 hPa/day (LCCsub), based on the monthly mean of three reanalysis 309 

products (Supplementary Table 2). This filtering captures most of the stratocumulus, 310 

stratocumulus-to-shallow-cumulus transition, and cumulus regions. The 10 hPa/d threshold 311 

ensures that we select subsidence regimes only and almost perfectly encompasses areas where the 312 

height at which the CALIPSO lidar attenuates is less than 2 km (see Supplementary Fig. 2 of 313 

Cesana et al.19). Thus the lidar is able to detect virtually all low clouds (cloud top below ~ 3 km) 314 

in these regions with little obscuration from higher clouds. As a result, these interannual 315 

relationships take into account the geographical variability of LCC over subsiding tropical ocean 316 

regions with the climatological seasonal cycle removed. 317 

After removing all grid boxes where ⍵500 is lower than 10 hPa/d, we use the monthly means 318 

of LCC and monthly anomalies of SST and EIS based on 10 years (120 months between January 319 

2007 and December 2016) of three SST datasets and three reanalysis-based EIS products 320 

(Supplementary Table 2) as well as CALIPSO-CASCCAD observations for LCCsub and each cloud 321 

type, all interpolated to a 2.5˚x2.5˚ grid. We then compute a multilinear regression between LCCsub 322 

and the SSTsub,anom and EISsub,anom quantities to obtain the change in LCC per K of SST or EIS 323 

change, represented as the partial derivatives with respect to SST and EIS, i.e.,  
𝜕𝐿𝐶𝐶

𝜕𝑆𝑆𝑇
 𝑎𝑛𝑑 

𝜕𝐿𝐶𝐶

𝜕𝐸𝐼𝑆
. 324 

This process is repeated for each of the nine possible combinations of the three EIS and three SST 325 

datasets, resulting in nine different estimates of the partial derivatives.  326 

We can then compute the LCC partial derivatives for each CASCCAD cloud-type category: 327 

Sc, broken Sc, Cu under Sc, Cu with stratiform outflow, and Cu (Supplementary Fig. 5). For the 328 

purpose of this study, we define LCCtype (and CREtype), where type is either Sc or Cu, as the cloud 329 

fraction (and CRE) in a gridbox dominated by the Sc or Cu type. To this end, we mask out (set to 330 

0) the CASCCAD LCCs and CERES-EBAF CREs in regions where other cloud types dominate 331 

for each month, using a ratio between the cloud type fraction and the total low-cloud fraction, 332 

𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
, referred to as the Sc/(Sc+Cu) ratio (see Fig. 1c). The Cu type consists only of the Cu 333 



category of CASCCAD while the Sc type includes all clouds with a stratiform component, i.e.,, 334 

Sc, broken Sc, Cu under Sc, Cu with stratiform outflow and other clouds (see Cesana et al.12 for 335 

details about cloud types). 336 

To obtain the total derivative of LCC with respect to SST for a given low cloud type, we simply 337 

compute a linear regression instead of a multilinear regression, which we express as in Eq. 2. 338 

 339 

SST and EIS pattern changes and trends 340 

We make an observationally based inference of low-cloud feedback dCRE/dT as the sum of 341 

changes due to EIS and SST pattern changes of possible future climate scenarios multiplied by the 342 

partial derivatives of the cloud fraction of each low-cloud type (i.e., Sc and Cu) with respect to 343 

EIS and SST derived from the CASCCAD dataset (
𝜕𝐿𝐶𝐶

𝜕𝑆𝑆𝑇
 𝑎𝑛𝑑 

𝜕𝐿𝐶𝐶

𝜕𝐸𝐼𝑆
). In this study, we use four 344 

possible future climate scenarios: two based on common GCM future climate experiments, an 345 

abrupt quadrupling of CO2 (abrupt-4xCO2) and a uniform 4 K SST increase (amip-p4K, referred 346 

to as uniform +4K), and two based on observed historical changes (the past 40 and 60 years). For 347 

the abrupt-4xCO2 and uniform +4K GCM scenarios, as in Eq. 3 below, we compute the SST and 348 

EIS changes as the difference between the mean of years 121-150 of the climate change 349 

experiments (abrupt-4xCO2 and uniform +4K) minus that of the control (piControl and amip 350 

experiments, respectively) in subsidence regimes (as defined in the previous section) divided by 351 

the difference of the global mean surface temperature between the two experiments. For the abrupt 352 

4xCO2 experiment, we use 40 CMIP6 models while we use 10 CMIP6 models for the uniform 353 

+4K GCM experiment, based on data availability (see Supplementary Table 1). For the historical 354 

climate scenarios, we compute yearly trends of SST and EIS from observations and reanalyses 355 

(see list in Supplementary Table 2) normalized by the trend of change in global mean surface 356 

temperature over the same time period using the observed past 40 or 60 years. These trends 357 

illustrate what the low-cloud feedback would be if the historical SST and EIS pattern trends were 358 

to continue over the next few decades. To determine the yearly trends, we compute annual means 359 

of SST and EIS and subtract the global annual mean over the whole period of time (either 1979-360 

2018 or 1959-2018) from each individual year to get the yearly anomaly and then normalize by 361 

the anomaly of the global mean surface temperature to obtain a trend of SST and EIS by degree of 362 

global mean surface temperature change. The patterns presented in Fig. 3 represent the average of 363 



all the models, observations and reanalyses available. Note that for the EIS trend over the 60-year 364 

period, we only use two reanalysis.  365 

 366 

Observationally inferred SW low-cloud feedback 367 

To compute observationally inferred SW low-cloud feedback, we first assume that the change 368 

in SW CRE in subsidence regimes over the tropical oceans is primarily driven by the change in 369 

LCC6,8,14,19. We can therefore re-construct the low-cloud feedback using Eq. 1 and the sensitivity 370 

of SW CRE to LCC to convert the LCC change into a cloud feedback as: 371 

 372 

𝑑𝐶𝑅𝐸

𝑑𝑇
=

𝑑𝐶𝑅𝐸

𝑑𝐿𝐶𝐶
(

𝜕𝐿𝐶𝐶

𝜕𝑆𝑆𝑇
 
𝑑𝑆𝑆𝑇

𝑑𝑇
+

𝜕𝐿𝐶𝐶

𝜕𝐸𝐼𝑆
 

𝑑𝐸𝐼𝑆

𝑑𝑇
)    (3)  373 

 374 

where the dCRE/dLCC coefficient is the interannual CRE change with respect to LCC obtained 375 

by linearly regressing monthly CREs from CERES with LCCs from CASCCAD in subsidence 376 

regimes –to ensure that the effect of high clouds is negligible– over the tropical oceans following 377 

the method described above (see also Cesana et al.19).  378 

 379 

Since the partial derivatives of Sc and Cu cloud types with respect to SST and EIS are different 380 

(Fig. 2 and Supplementary Fig. 5), we must further estimate the contribution of each cloud type 381 

separately in Eq. 4 and add them up. However, this method assumes that the partial derivatives of 382 

Sc and Cu are constant in space across the tropics and therefore neglects the effect of the relative 383 

presence of Sc and Cu in a given location. In reality, the partial derivatives of LCC with respect to 384 

SST and EIS actually vary depending on how many Sc or Cu clouds are present in specific regions. 385 

In regions dominated by Cu clouds, the partial derivative of Sc clouds is very small, having 386 

therefore a relatively small impact on the cloud change compared to its Cu counterpart, and vice-387 

versa in regions dominated by Sc (see Figs. S8 and S9). To represent the radiative effect of each 388 

type of cloud depending on its relative presence in a given grid box, we weigh the partial 389 

derivatives of Sc and Cu clouds by the Sc/(Sc+Cu) ratio in each 2.5x2.5 grid box as: 390 

 391 

𝑑𝐶𝑅𝐸

𝑑𝑇
= ∑

𝑑𝐶𝑅𝐸𝑡𝑦𝑝𝑒

𝑑𝐿𝐶𝐶𝑡𝑦𝑝𝑒
(

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝜕𝑆𝑆𝑇
 
𝑑𝑆𝑆𝑇

𝑑𝑇
+

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝜕𝐸𝐼𝑆
 
𝑑𝐸𝐼𝑆

𝑑𝑇
) 

𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
2
𝑡𝑦𝑝𝑒=1   (4) 392 

 393 



Using a linear weight between the partial derivative values in their dominating and non-394 

dominating regions (Supplementary Fig. 1) as defined by the Sc/(Sc+Cu) ratio (i.e., where 
𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
 395 

is either greater or smaller than 50%), as presented in Eq. 7, gives almost identical results (not 396 

shown): 397 

 398 

𝑑𝐶𝑅𝐸

𝑑𝑇
= ∑

𝑑𝐶𝑅𝐸𝑡𝑦𝑝𝑒

𝑑𝐿𝐶𝐶𝑡𝑦𝑝𝑒
(

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝜕𝑆𝑆𝑇
𝑋𝑠𝑠𝑡

𝑑𝑆𝑆𝑇

𝑑𝑇
+

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝜕𝐸𝐼𝑆
𝑋𝐸𝐼𝑆

𝑑𝐸𝐼𝑆

𝑑𝑇
) 

𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
 (5) 399 

 400 

where 𝑋𝑌 =  

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒,𝑡𝑦𝑝𝑒

𝜕𝑌
 − 

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒,𝑜𝑡ℎ𝑒𝑟

𝜕𝑌

100

𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
, (6) 401 

 402 

Y is either SST or EIS, and 
𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒,𝑡𝑦𝑝𝑒

𝜕𝑌
 and 

𝜕𝐿𝐶𝐶𝑡𝑦𝑝𝑒,𝑜𝑡ℎ𝑒𝑟

𝜕𝑌
 are the partial derivatives computed for 403 

each type of cloud in their dominating region (i.e., where 
𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
 is greater than 50%) and non-404 

dominating regions (i.e., where 
𝐿𝐶𝐶𝑡𝑦𝑝𝑒

𝐿𝐶𝐶
 is smaller than 50%), respectively. 405 

 406 

Ignoring the effect of the relative presence of Sc and Cu clouds8 may result in an overestimate 407 

of the inferred low-cloud feedback by more than a factor two (left vs. right panels of 408 

Supplementary Fig. 10), especially in the trade-wind regions where the sensitivity of low clouds 409 

to surface warming is relatively small. This is because almost no Sc clouds form in the trade-wind 410 

regions in the real world (Fig. 1c), despite the tendency of many models to make significant Sc 411 

there.  In summary, errors in the spatial patterns of SST trend, Sc coverage, and Cu coverage all 412 

have the potential to cause errors in model-predicted ECS. 413 

 414 

GCM SW low-cloud feedbacks 415 

Most of the tropical cloud feedback comes from the shortwave (SW) effect of low clouds1,27, 416 

thus we focus on the SW low-cloud feedbacks here. For the abrupt-4xCO2 GCM experiments, we 417 

compute the “actual” cloud feedback simulated by each of the 40 CMIP6 models (Supplementary 418 

Table 1) as the change in SW CRE per unit change in global mean surface temperature2, where the 419 

CRE is the difference between clear-sky and all-sky top of the atmosphere flux. To do so, we first 420 

interpolate the model monthly outputs to a 2.5˚x2.5˚ grid and we then compute the difference 421 



between the mean SW CRE of years 121-150 of the climate change experiments minus that of the 422 

control in subsidence regimes (as defined in the method above) divided by the difference of the 423 

global mean surface temperature between the two experiments in subsidence regimes as shown in 424 

the following equation: 425 

 426 

𝑑𝐶𝑅𝐸𝐺𝐶𝑀

𝑑𝑇
427 

= (
1

𝑛 + 1 − 𝑖
∑ 𝐶𝑅𝐸𝑤𝑎𝑟𝑚

𝑛

𝑖

− 
1

𝑛 + 1 − 𝑖
∑ 𝐶𝑅𝐸𝑐𝑡𝑟𝑙

𝑛

𝑖

) (
1

𝑛 + 1 − 𝑖
∑ 𝑇𝑤𝑎𝑟𝑚

𝑛

𝑖

− 
1

𝑛 + 1 − 𝑖
∑ 𝑇𝑐𝑡𝑟𝑙

𝑛

𝑖

)⁄ (7) 428 

 429 

Where i =121 and n = 150, CRE is the SW CRE averaged over the tropical oceans in regimes 430 

of subsidence, warm means the climate change experiments (abrupt-4xCO2), and ctrl means the 431 

pre-industrial control run (piControl). Using the last 30 years of the simulation captures the essence 432 

of the long-term feedback28 without having to perform the regression analysis of the entire 150-433 

year period (not shown). 434 

Using this approach to quantify the GCM low cloud feedback gives results that are almost 435 

identical to using a radiative kernel method1,29 and similar to a more labor-intensive method28 (such 436 

as the partial radiative perturbation) in this case because for low clouds over the tropical oceans, 437 

non-cloud feedbacks and the LW component of cloud feedback are very small30. 438 

 439 

Uncertainty analysis 440 

Since the low cloud feedback is the sum of the Sc and Cu cloud feedbacks, its uncertainty is 441 

the sum of the absolute errors of Sc and Cu cloud feedbacks in quadrature such as: 442 

 443 

𝛿
𝑑𝐶𝑅𝐸

𝑑𝑇
= √(

𝑑𝐶𝑅𝐸𝑆𝑐

𝑑𝑇
)

2
 + (

𝑑𝐶𝑅𝐸𝐶𝑢

𝑑𝑇
)

2
(8) 444 

 445 

Following Eq. 6, dCRESc/dT and dCRECu/dT can be expressed as: 446 

 447 
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𝑑𝐸𝐼𝑆

𝑑𝑇
 (9) 448 

 449 



where the uncertainty of dCREtype/dLCCtype is negligible and dSST/dT and dEIS/dT are 450 

constants.  451 

Therefore, the uncertainty  dCREtype/dT only comes from ∂LCCtype/∂SST, ∂LCCtype/∂EIS and 452 

LCCtype/LCC and can be added in quadrature such as: 453 

 454 

𝛿
𝑑𝐶𝑅𝐸𝑡𝑦𝑝𝑒
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  456 

(10) 457 

 458 

We determine ∂LCCtype/∂SST and ∂LCCtype/∂EIS using the 10-90% confidence interval over 459 

the nine different observational estimates of the partial derivatives (i.e., combination of the three 460 

SST and three EIS datasets), which corresponds to 1.645 times one standard deviation. Note that 461 

using a 10-90% confidence interval from the bilinear regression of the partial derivatives does not 462 

change the results. For LCCtype/LCC, we use the 10-90% confidence interval over the standard 463 

deviation of the annual mean (using 10 years). 464 

 465 

Equilibrium climate sensitivity estimates 466 

The GCM ECS values used in this study are computed using the Gregory et al.31 method from 467 

150 years of abrupt-4xCO2 and piControl runs. The global annual mean anomalies of TOA net 468 

radiation are regressed against the annual mean anomalies of global mean surface air temperature. 469 

Then the x-intercept of the line is divided by two to provide an estimate of the ECS. All the ECS 470 

estimates come from an updated version of Supplementary Table 1 in Zelinka et al.27 except for 471 

TaiEMS1 and KACE-1-0-G, which we computed ourselves using the same method. 472 

Finally, we use the relationship between ECS and low-cloud feedback in CMIP6 models (Fig. 473 

1f and CMIP5 models in Supplementary Fig. 11) to derive an observationally constrained ECS 474 

from our observationally inferred low-cloud feedback. The uncertainty comes from the 10-90 % 475 

confidence interval of the best-fit regression between CMIP6 low-cloud feedbacks and ECS as 476 

well as the uncertainty estimates of the observationally inferred low-cloud feedback (see 477 

uncertainty analysis). However, it does not include uncertainty from other feedbacks not 478 

considered in our study.  479 
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climserv. HadISST1.1 files were downloaded from 499 

https://www.metoffice.gov.uk/hadobs/hadisst/. ERSSTv5 files were downloaded from the NOAA 500 

national centers for environmental information website 501 

(https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/). NCEP/DOE reanalysis2, NCEP-502 

NCAR reanalysis1 and NOAA/CIRES/DOE 20th Century Reanalysis V3 were downloaded from 503 

the NOAA ESRL Physical Sciences Division website (http://www.esrl.noaa.gov/psd/data/). 504 
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Figures 531 

Figure 1: Observed low-cloud climatology and simulated low-cloud feedback. Maps of a) low-532 

cloud frequency of occurrence, referred to as low-cloud fraction throughout the manuscript, as 533 

observed by the version of CASCCAD that uses only CALIPSO lidar observations (CALIPSO-534 

CASCCAD) (%, cloud top below ~ 3 km), b) shortwave cloud radiative effect as observed by 535 

CERES-EBAF ed4.0 (W/m2), c) ratio of Sc cloud fraction to total low cloud fraction as observed 536 

by CALIPSO-CASCCAD (Sc/(Sc+Cu) ratio, %), d) “actual” low-cloud feedback in tropical ocean 537 

from 40 CMIP6 GCMs, calculated as the change in SW cloud radiative effect CRE with 538 

temperature (W/m2/K), e) difference between low-cloud feedback of the 19 highest- and 21 lowest-539 

ECS CMIP6 models with respect to the multimodel mean ECS (respectively high-ECS and low-540 

ECS, see Supplementary Table 1) and f) relationship between the “actual” low-cloud feedback and 541 

ECS in CMIP6 models, all in subsidence regimes (500 > 10 hPa/day, where 500 is the 500 hPa 542 

pressure vertical velocity). The solid blue line represents the 50 % iso-contour of CALIPSO-543 

CASCCAD Sc/(Sc+Cu) ratio, which discriminates Sc- from Cu-dominated regions, while the 544 

dashed blue line is the 1 K iso-contour of the EIS from reanalysis in the left column (see 545 

Supplementary Table 2) and the CMIP6 model mean in the right column, which may be used as a 546 

proxy to delimit Sc and Cu cloud regimes when averaged over a long period of time (see 547 

Supplementary Text 1 and Supplementary Fig. 2). 548 

 549 
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 551 

Figure 2: Observed sensitivity of low-cloud type to environmental factors (2007-2016). (a) 552 

Observed low-cloud fraction (%) in subsidence regimes over the tropical oceans (⍵500 > 10 553 

hPa/day) (all clouds in black, stratocumulus dominated regions in red, shallow cumuli dominated 554 

regions in blue);  b) interannual low-cloud change per K of SST warming (dLCC/dSST , % K-1), 555 

c) interannual low-cloud change per K of SST warming with EIS held constant (∂LCC/∂SST , % 556 

K-1), d) interannual low-cloud change per K of EIS increase with SST held constant (∂LCC/∂EIS, 557 

% K-1) from CALIPSO-CASCCAD and six observational and reanalysis products. The uncertainty 558 

bars correspond to the interannual mean variability for (a), and the 10-90% confidence interval 559 

using the three SST datasets for b), and three SST and EIS datasets for c) and d). 560 

 561 

 562 

  563 



Figure 3: SST and EIS observed historical trends and simulated future changes. Maps of SST 564 

(top) and EIS (bottom) change [K/K] for different climate warming scenarios in subsidence 565 

regimes (upper left to lower right): observed historical based on the past 40 and 60 years, simulated 566 

abrupt-4xCO2 and uniform +4K. The SST and EIS pattern differences in the abrupt-4xCO2 and 567 

uniform +4K scenarios are obtained from 40 and 14 CMIP6 models (Supplementary Table 1) while 568 

the historical trends are derived from a set of observational and reanalysis products depending on 569 

availability (Supplementary Table 2). See the Methods section for details on computation of the 570 

trends.  571 
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Figure 4: Observationally inferred total, Sc and Cu cloud feedback for different potential 574 

future SST pattern trends. Maps of observationally inferred (top row) total, (second row) Cu, 575 

and (third row) Sc cloud feedback (Wm-2K-1) inferred from the CALIPSO-CASCCAD-based 576 

partial derivatives and Sc/(Sc+Cu) fraction and potential future SST and EIS pattern changes from 577 

different climate warming scenarios (upper left to lower right): historical climate using the past 40 578 

and 60-year SST and EIS pattern trends based on observations and reanalyses, and  future climate 579 

using abrupt-4xCO2 and uniform +4K SST and EIS pattern changes based on CMIP6 models. 580 

Note that while the historical trends using the past 60 years produce a total feedback 15% smaller 581 

than that of an abrupt-4xCO2, its pattern is substantially different and converges to that of the 582 

historical climate using the past 40 years (see also the historical 50-year feedback in 583 

Supplementary Fig. 7). 584 
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Figure 5: Simulated vs. observationally inferred low-cloud feedback. Maps of  “actual” low-586 

cloud feedbacks derived from the abrupt-4xCO2 experiments of (a) high-ECS models, (b) low-587 

ECS models and (c) all CMIP6 models (see Supplementary Table 1), and (d) the observationally 588 

inferred feedback inferred from CALIPSO-CASCCAD-based partial derivatives and Sc/(Sc+Cu) 589 

fraction and potential future SST and EIS pattern changes from for the simulated abrupt-4xCO2 590 

(as in Fig. 4g), in subsidence regimes. 591 
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