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ABSTRACT 12 

We extend and enhance the concept of the Cloud Regimes (CRs) developed from two-13 

dimensional joint histograms of cloud optical thickness and cloud top pressure from the 14 

Moderate Resolution Imaging Spectroradiometer (MODIS), by adding precipitation 15 

information in order to better understand cloud-precipitation relationships. Taking advantage 16 

of the high-resolution Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation 17 

dataset, cloud-precipitation “hybrid” regimes are derived by implementing the k-means 18 

clustering algorithm with advanced initialization and objective measures to determine the 19 

most optimal clusters. By expressing precipitation rates within 1-degree grid cell as 20 

histograms and making choices on the relative weight of cloud and precipitation, we could 21 

obtain several editions of hybrid cloud-precipitation regimes (CPRs), and examine their 22 

characteristics.  23 

In the deep tropics, when precipitation is weighted weakly, the cloud part of the hybrid 24 

centroids resembles the centroid of cloud-only regimes, but still tightens the cloud-25 

precipitation relationship by decreasing the precipitation variability of each regime. As 26 

precipitation weight progressively increases, the shape of the cloudy part of the hybrid 27 

centroids becomes blunter, while the precipitation part of the centroids sharpens. In the case 28 

where cloud and precipitation are weighted equally, the CPRs representing high clouds with 29 

intermediate to heavy precipitation exhibit distinct features in the precipitation parts of the 30 

centroids, which allows us to project them onto the 30-minly IMERG domain. Such a 31 

projection can be used to overcome the temporal sparseness of MODIS cloud observations, 32 

which leads to great application potential for various convection-focused studies, including 33 

diurnal cycle analysis. 34 

SIGNIFICANCE STATEMENT 35 
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Clouds and precipitation are related closely, but in complex ways. In this work we 36 

attempt to provide a classification of daytime cloud-precipitation co-occurrence and co-37 

variability, with emphasis in tropical regions. We achieve such a classification using k-means 38 

clustering algorithm applied on cloud property and precipitation intensity histograms which 39 

yields “hybrid” clusters. These hybrid clusters reveal more detailed features of coincident 40 

daytime cloud and precipitation systems than clusters where clouds and precipitation are 41 

treated separately. Moreover, the realization that precipitation features associated with high 42 

and thick clouds have very distinct patterns enables hybrid cluster prediction based solely on 43 

precipitation information, which has the important implication that rarer cloud observations 44 

can be extended to the more frequent (including nighttime) precipitation domain. 45 

  46 

1. Introduction 47 

In many applications, a variable or combinations of variables that co-vary need to be 48 

sorted into groups whose members are considered similar. One option to accomplish the 49 

grouping is clustering analysis, a discipline of unsupervised machine learning. Among 50 

various algorithms that perform clustering, “k-means” is one of the most popular options in 51 

geophysical sciences due to its simplicity and efficiency in processing large volumes of data. 52 

Examples of recent studies where k-means clustering is used are the grouping of precipitation 53 

patterns to identify the South Pacific convergence zone (SPCZ; Pike and Lintner 2020), 54 

analysis of geopotential height data to identify weather patterns for subseasonal forecast 55 

(Robertson et al. 2020), and finding dominant modes in sea surface temperature data to 56 

identify two kinds of the North Pacific Meridional Mode (NPMM; Zhao et al. 2020), etc.  57 
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k-means clustering has also been applied in the last two decades to cloud grouping. Based 58 

on the gridded Level-3 2D-joint histogram of cloud top height (CTP) and cloud optical 59 

thickness (COT) retrieved from the International Satellite Cloud Climatology Project 60 

(ISCCP), dominant mixtures of clouds, later called “weather states”, were identified in the 61 

tropical western Pacific (Jakob and Tselioudis 2003), the deep tropics from 15S to 15N 62 

(Rossow et al. 2005), extended tropics and mid-latitudes (Oreopoulos and Rossow 2011), and 63 

globally (Tselioudis et al. 2013). The same methodology was extended to similar 2D-joint 64 

histogram of CTP and COT retrieved from the Moderate Resolution Imaging 65 

Spectroradiometer (MODIS), to obtain cloud groups referred to as “cloud regimes (CRs)” 66 

(Oreopoulos et al. 2014, 2016; Jin et al. 2020). 67 

Clouds and precipitation are closely related to each other, albeit in complex ways, so the 68 

effort of Luo et al. (2017) to perform joint clustering of cloud and precipitation information 69 

came as a natural progression in expanding clustering applications. Using the Tropical 70 

Rainfall Measuring Mission (TRMM) Ku-band Precipitation Radar and the CloudSat W-band 71 

Cloud-Profiling Radar, they first built 2D joint histogram of height and radar reflectivity 72 

(a.k.a. H-dBZ histogram) for rather sparse coincident observations, on which they then 73 

performed k-means clustering analysis. They also tested another expanded version of joint 74 

histograms where CALIOP lidar products were added to capture optically thinner clouds, and 75 

obtained a larger number of meaningful joint cloud-precipitation groups. This pioneering 76 

work opened new pathways to group microphysical properties of hydrometeors by regimes 77 

with data that can also resolve vertical structures. Combined cloud-precipitation analysis, but 78 

without joint clustering, have also been performed within the framework of weather states or 79 

CRs. But in these studies precipitation variability was a dependent variable sorted for specific 80 
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kinds of cloud mixtures as represented by the weather states or CRs (e.g., Lee et al. 2013; 81 

Rossow et al. 2013; Tan et al. 2015; Tan and Oreopoulos 2019). 82 

Recently, precipitation datasets have been greatly improved in terms of quality and 83 

spatiotemporal coverage due to advances in algorithms such as the Integrated Multi-satellitE 84 

Retrievals for GPM (IMERG) product providing precipitation rates at 0.1 every 30 minutes. 85 

The combination of the IMERG precipitation and MODIS cloud products provides an 86 

unprecedented opportunity to examine cloud-precipitation joint variability not possible with 87 

previous generation datasets. We thus return in this study to the joint clustering concepts of 88 

Luo et al. (2017) aiming once again to identify dominant mixtures of cloud and precipitation 89 

patterns. While our data, Level-3 cloud and precipitation products, do not have the capability 90 

to resolve vertical variability, we can perform joint clustering with much wider coverage 91 

compared to the availability of the Level-2 reflectivity and backscatter. It turns out that the 92 

existence of a tight coupling between clouds and precipitation in some of our “hybrid” 93 

regimes allows us to take advantage of the higher temporal resolution of IMERG to greatly 94 

expand the rarer cloud information suffering the limitations of sun-synchronous satellite 95 

observations. We discuss this further in section 5 of this paper. 96 

The remainder of the paper provides the details of data and k-means clustering 97 

methodology (sections 2 and 3), formally presents the cloud-precipitation hybrid regimes and 98 

discusses their characteristics in section 4. Section 6 summarizes the study and discusses 99 

possible applications of the new dataset.  100 

 101 

2. Data 102 

a. MODIS cloud data 103 
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Cloud properties are retrieved from the Moderate Resolution Imaging Spectroradiometer 104 

(MODIS) instrument aboard the Terra and Aqua satellites. The MODIS cloud product 105 

(MOD08_D3 and MYD08_D3; King et al. 2003; Platnick et al. 2003, 2017b) provides Level-106 

3 cloud observations at daily time scales with 1°×1° horizontal resolution. Among various 107 

variables in Level-3 products, we specifically use the ISCCP-like 2D joint histogram of cloud 108 

optical thickness (COT) and cloud top pressure (CTP). The histogram is composed of cloud 109 

fraction (CF) values along 7 classes of CTP and 6 classes of COT (for a total 42 histogram 110 

bins), thus providing information about pixel-level cloud variability at the 1° scale. Since the 111 

recent major version of the MODIS atmospheric datasets, known as “Collection 6” (Platnick 112 

et al. 2017a), a separate histogram for “partially cloudy” (PCL) pixels is provided, flagged as 113 

such by the so-called “clear-sky restoral” algorithm (Pincus et al. 2012; Zhang and Platnick 114 

2011). The 2D joint histograms used in this study include the sum of the PCL and nominal 115 

joint histograms, as in Jin et al. (2018, 2020). The update from Collection 6 to Collection 6.1 116 

used here is relatively minor (Platnick et al. 2018). 117 

b. IMERG precipitation data 118 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) data provides seamless 119 

precipitation estimates at a 0.1° grid every half hour by unifying observations from a network 120 

of partner satellites in the Global Precipitation Measurement (GPM) constellation (Huffman 121 

et al. 2019a,b; Tan et al. 2019a). The most recent major update version V06 extends spatial 122 

coverage to the entire globe (except over frozen surfaces at high latitudes) and the temporal 123 

period back to June 2000 (the pre-GPM era of the Tropical Rainfall Measuring Mission – 124 

TRMM) onwards. The IMERG product comprises three runs (Early, Late, and Final), of 125 

which we use the Final run which is of best quality. We note that for this study we limit the 126 
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data period for both cloud and precipitation from June 2014 to May 2019 in order to avoid 127 

potential risk of inconsistencies between the GPM and TRMM satellites. 128 

c. Spatio-temporal matching between MODIS and IMERG data 129 

The MODIS Level-3 gridded data is provided daily for each of the Terra and Aqua 130 

satellites. Observations on swath paths for a large portion of the globe take place at similar 131 

local time but varying Coordinated Universal Time (UTC). In order to temporally match 132 

MODIS cloud data and IMERG precipitation data which are segmented by UTC, we 133 

calculate the UTC of each MODIS grid cell using the assigned mean solar zenith angle in the 134 

Level-3 product, and then select the temporally closest IMERG data point. The details of this 135 

temporal matching method are described in Jin et al. (2018), and although in that paper the 136 

precipitation data was the TRMM Multi-satellite Precipitation Analysis (TMPA), the 137 

principle of the method is the same. Spatial matching is much easier: for each 1°×1° grid cell 138 

of MODIS clouds, the one hundred enclosed precipitation rates of 0.1°×0.1° resolution are 139 

assigned. Hence, we ultimately obtain 42 values of binned cloud fraction and 100 values of 140 

precipitation rates for 5 years, for each 1° grid cell that has Terra and Aqua cloud 141 

observations. 142 

 143 

3. Application of k-means clustering 144 

In this study we build our basis dataset of hybrid regimes using k-means. The k-means 145 

clustering algorithm (Anderberg 1973; MacQueen 1967) is one of the most popular 146 

unsupervised clustering algorithms. This simple algorithm can handle very large data 147 

volumes efficiently, hence it is widespread in various studies implementing clustering of 148 

geophysical variables, as noted in the Introduction. The underlying principle of the algorithm 149 
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is that for input data consisting of m_samples  n_features, feature distances are calculated 150 

between each sample and given centroids, and each sample is assigned to the centroid 151 

corresponding to the smallest distance. The mean of newly assigned samples becomes the 152 

new centroid, and the assignment is repeated until the new centroids are (nearly) identical to 153 

the centroids of the previous iteration. Eventually all data are assigned to the group with the 154 

most similar members, which minimizes the total Mean Squared Error of the grouped data. In 155 

this study, we set the threshold of centroid movement to 1.0e-6, which yields convergence in 156 

a few hundred iterations (we set no limit on the total number of iterations). 157 

a. Preparing input data: how to balance between cloud and precipitation data 158 

Previously, Jin et al. (2020) derived tropical cloud regimes (TCRs) using MODIS cloud 159 

2D joint histogram data. Since the cloud histogram bin values ranged from 0 to 1 by 160 

definition, TCRs could be obtained from the k-means clustering algorithm without any 161 

normalization process. In order to derive hybrid regimes, the range of values of IMERG 162 

precipitation rates must be equivalent to the cloud histogram data. This was easily 163 

accomplished by transforming precipitation rates to normalized histogram bin values, 164 

similarly to the cloud data.  165 

In transforming precipitation data into a histogram, one issue to consider is how to choose 166 

the number of bins. Too small a number of bins results in excessive smoothing, which makes 167 

notable precipitation patterns indistinguishable. Conversely, too large a number of bins 168 

increases noise and prevents us from obtaining meaningful clusters. Since it is known that 169 

similar clouds can have varying precipitation rates (e.g., Jin et al. 2018, 2020), we gravitated 170 

towards a rather coarser binning of the precipitation histograms. After some testing, we 171 

settled on an approximately logarithmically-spaced 6-bin precipitation histogram with bin 172 

boundaries at 0.03, 0.1, 0.33, 1, 3.33, 10, 999mm/h. We note that these histogram bin 173 
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boundaries exclude no-rain counts for consistency with the cloud histogram, and also very 174 

small precipitation rates below 0.03mm/h.  175 

The second issue we had to address was the relative weight between cloud and 176 

precipitation when applying the clustering algorithm. If we combine cloud and precipitation 177 

histograms without any weighted treatment, the relative importance of cloud compared to 178 

precipitation in the k-means clustering calculation is 7 to 1 because the cloud histogram 179 

consists of 42 bins while the precipitation histogram consists of 6 bins (for a total of 48 bins). 180 

With Euclidean distance adopted as the measure to assign data to one of centroids in the k-181 

means algorithm, the number of bins translates linearly to relative importance. In this sense, it 182 

is possible to make both cloud and precipitation equally important by combining the 42-bin 183 

cloud histogram with the precipitation histogram replicated seven times for a total of 84 bins 184 

that come from two equal 42-bin contributions from the cloud and precipitation side. In this 185 

study, a total of 3 different versions of weights for cloud and precipitation were tested, 186 

namely 7:1, 7:3, 7:7.  Only the 7:1 and 7:7 versions will be shown in the manuscript itself, 187 

with the 7:3 version shown in the Supplementary Material Part A. We also derive a new set 188 

of cloud-only regimes to be used as a reference by following the same procedures, described 189 

in the next subsection, as for the hybrid regimes. 190 

In terms of regional coverage, we performed the k-means algorithm separately for the 191 

deep tropics (15S-15N) and for much larger portion of the globe that expands to 192 

midlatitudes (50S-50N). The two domains for 5 years for both Terra and Aqua data result 193 

in populations of ~34 million and ~116 million data points once missing values are excluded. 194 

In this study, we focus on the deep tropical results only, while the near-global results are 195 

shown in the Supplementary Material Part B. 196 

b. Initializing with k-means++ algorithm  197 
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The k-means clustering algorithm is, by definition, deterministic to the initial values, 198 

namely the centroids chosen initially. If more than one of the initial centroids are chosen from 199 

potentially the same cluster group (i.e., they are similar to each other), the end result of the 200 

clustering may not be optimal. To reduce the probability of this happening, and to improve 201 

the performance of the k-means clustering, a “k-means++” algorithm was developed for 202 

smarter initialization (Arthur and Vassilvitskii 2007). The k-means++ employs a weighted 203 

random selection method, where the distance from a pre-selected initial centroid is set as the 204 

weight of the data member. If two or more initial centroids are already selected, the minimum 205 

distance is selected as the weight. This process ensures that the farthest (largest Euclidean 206 

distance) data member from pre-selected centroid(s) has the highest possibility to be chosen, 207 

thus ultimately making the initial centroids well-separated from each other. We employ the k-208 

means++ algorithm to initialize the k-means clustering scheme with 50 different sets of initial 209 

centroids (i.e., 50 realizations) for each candidate number k of clusters, in order to potentially 210 

achieve the best k-means clustering results (see next subsection).  211 

c. Criteria for choosing the optimal number of clusters 212 

The k-means clustering algorithm requires the number of clusters, k, as a preset to be 213 

decided by the user. By the nature of k-means clustering, a larger number of clusters always 214 

decreases the magnitude of “error”, measured by the “Within-Cluster(intra-cluster) Variance 215 

(WCV)”, since the larger k the less diverse the members of a group are. At the same time, a 216 

large k has the undesirable effect of diminishing the level of data compression, which is 217 

another way of saying that too many clusters make the grouping less practical and useful. An 218 

appropriate value of k therefore represents a compromise between the amount of error and the 219 

level of compression.  220 
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Several methods exist to determine the optimal value of k. One of the most basic and 221 

intuitive methods is the so-called “elbow” method. By observing the percentage of explained 222 

variance as a function of the number of clusters, the value of k is selected when the marginal 223 

gain of explained variance is small with another cluster added. An issue with this method is 224 

that characterizing the gain as marginal is subjective and ambiguous. In many cases the 225 

“elbow” point is not obvious, which makes this method unreliable (e.g., Ketchen and Shook 226 

1996).  227 

The Calinski-Harabasz criterion (CHC; Caliński and Harabasz 1974) is another popular 228 

method to determine the most optimal k. The basic idea of CHC is to maximize the overall 229 

“between-cluster(inter-cluster) variance (BCV),” which indicates maximum separation 230 

among clusters, while minimizing the error expressed by WCV. A CHC metric is defined as 231 

𝐶𝐻𝐶𝑘 =
𝐵𝐶𝑉

(𝑘 − 1)

𝑊𝐶𝑉

(𝑁 − 𝑘)
⁄  232 

where N is the total number of data points, and k is the number of clusters. The BCV and 233 

WCV are defined as   234 

𝐵𝐶𝑉 = ∑ 𝑛𝑖‖𝜇𝑖 − 𝜇‖2

𝑘

𝑖=1

 235 

𝑊𝐶𝑉 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 236 

where ni is the number of data points in cluster i (Ci), i is the mean of data points in 237 

cluster i (a.k.a. centroid), and  is the overall mean of all data points. The value of k yielding 238 

the maximum CHC represents the best choice for cluster number k.  239 

The Davies-Bouldin criterion (DBC; Davies and Bouldin 1979) also pursues the 240 

maximum separation of clusters with minimum errors in the clusters as CHC, but uses 241 

different measures. The DBC metric is defined as  242 
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𝐷𝐵𝐶𝑘 =
1

𝑘
∑ 𝑚𝑎𝑥𝑗≠𝑖{𝑅𝑖,𝑗}

𝑘

𝑖=1

 243 

𝑅𝑖,𝑗 =
𝑆𝑖 + 𝑆𝑗

𝐷𝑖,𝑗
 244 

where Ri,j is the ratio of within-cluster scatter of the ith and jth clusters (Si, Sj) to the separation 245 

between the ith and jth clusters (Di,j). Si and Di,j are defined as  246 

𝑆𝑖 = (
1

𝑛𝑖
∑ ‖𝑥 − 𝜇𝑖‖

2

𝑥∈𝐶𝑖

)

1
2⁄

 247 

𝐷𝑖,𝑗 =  ‖𝜇𝑖 − 𝜇𝑗‖ 248 

Here, the within-cluster scatter (Si) represents average distance between each data point and 249 

centroid, and the separation measure Di,j is the Euclidean distance between two centroids. For 250 

a given k, by choosing the maximum ratio for each cluster, DBC measures the worst-case 251 

scenario for each cluster. The minimum value of DBC represents therefore the most optimal 252 

number of clusters. 253 

Figure 1 shows the dependence on k of these criteria in the case of 6 precipitation 254 

histogram bins with weight number 1 (i.e., 48-element combined array, referred to as 255 

“Cld42+Pr6x1”). The left panel (Fig. 1a) shows maximum BCV and minimum WCV as a 256 

function of k. The elbow method can be applied to both BCV and WCV. (We note that, 257 

because the explained variance is defined as BCV divided by total variance and total variance 258 

is a fixed number, it is essentially the same to apply the elbow method to either explained 259 

variance or BCV.) However, both BCV and WCV change smoothly as k increases, and it is 260 

hard to find an “elbow” in the above figure. In the right panel (Fig. 1b), DBC clearly 261 

indicates that 16 is the optimal k while CHC monotonically decreases as k increases. The 262 

CHC metric heavily depends on the total population of data points (N) by definition, and in 263 

the case of huge N (N 34M for our deep tropics domain), variability of CHC is dominated 264 
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by the term, N/(k-1), which results in monotonical decrease with k in a reasonable range. 265 

Taking all these into account, DBC is chosen as the primary criterion for selecting the 266 

optimal number of clusters, and the trial producing the globally minimum DBC value 267 

determines the final set of regimes composed of k centroids. Table 1 shows the values of k 268 

that came out of this procedure for the four (i.e., including zero) precipitation weights, for 269 

both the narrow and extended domains in latitudes. Figures similar to Fig. 1 for the other 270 

cases are shown in the Supplementary Materials. 271 

 272 

4. Details of tropical hybrid regimes 273 

a. Cloud-only regimes 274 

A set of cloud-only regime is derived as the baseline with which the cloud-precipitation 275 

hybrid regimes can be compared to. Jin et al. (2020) previously derived a set of cloud regimes 276 

with k=10 in the same deep tropics domain, with the last regime being decomposed to 4 sub 277 

regimes, for a total of 13 regimes, using the concept of “nested clustering” (Luo et al. 2017; 278 

Mason et al. 2014; Oreopoulos et al. 2016). Here, the data period is shortened from 14 years 279 

to 5 years to accommodate the availability of precipitation observations, and DBC is 280 

employed to select the final set of regimes without invoking nested clustering. 281 

Figure 2 shows that the (deep) tropics cloud-only regime (TCR; please note that for 282 

economy we drop the tropical “T” designation in the following figures) set is composed of 8 283 

high-cloud regimes, 5 low-cloud regimes, and one mixed semi-clear regime (TCR14). Each 284 

TCR, except TCR14, has a unique distinct peak of bin cloud fraction. This is a notable 285 

difference from the previous TCR set reported by Jin et al. (2020), particularly for high 286 

clouds with relatively large optical thickness. Figure 1 in Jin et al. (2020) showed three TCRs 287 
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relevant to convective activity, with peaks of similarly large cloud fraction values at two 288 

neighboring histogram bins. These blunt peaks seem to have now split into two TCRs. For 289 

example, the old TCR1 had the largest cloud fraction bin values across the cirrostratus (Cs) 290 

and cumulonimbus (Cb) bins, according to the traditional ISCCP cloud types (Rossow and 291 

Schiffer 1999), and these have now split into peaks that occur in TCR1 and TCR2. By 292 

comparing the assignments of each grid cell to old and new TCRs, we confirm that the most 293 

grid cells previously assigned to old TCR1, TCR2, and TCR3 in Jin et al. (2020) are now 294 

assigned to TCR1 to TCR6. Among them, the first three TCRs dominate precipitation, and 295 

TCR1 having the optically thickest and highest cloud dwarfs the other regimes in mean 296 

precipitation rate. 297 

b. Hybrid regime2 with precipitation weight of 1 (Cld42+Pr6x1) 298 

We first introduce the tropical cloud-precipitation (hybrid) regime (TCPR) set that 299 

corresponds to the precipitation weight of 1 (i.e., cloud-to-precipitation weight ratio is 7:1 300 

with 48-element array; Cld42+Pr6x1). By adding precipitation information this way, the 301 

optimal number of clusters according to the DBC increases from 14 to 16 in our tropical 302 

domain (Table 1 and Fig. 3). This TCPR set is composed of 9 high cloud regimes, 5 low 303 

cloud regimes, and 2 mixed regimes (including a semi-clear regime, TCPR16). A notable 304 

difference in centroids when rainfall information added is the newly occurring TCPR10. This 305 

regime represents high and low mixed clouds with intermediate cloud fraction and substantial 306 

precipitation. In order to investigate the origin of this version of TCPR10, we introduce a 307 

regime coincidence distribution matrix (Fig. 4) showing the RFO of new regimes (i.e., 308 

Cld42+Pr6x1; x-axis) for the grid cells assigned to one of the cloud-only regimes (y-axis). 309 

This graphical matrix indicates that grid cells assigned to TCPR10 belonged previously to 310 

various TCRs (e.g., TCR3, 5, 7, 10, 14, etc.). In terms of population, the biggest contributor 311 
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is TCR14 which is semi-clear regime with RFO 38% (Fig. 2). Because of the split of TCR14 312 

due to the addition of rainfall information, the similar semi-clear hybrid regime (TCPR16) 313 

has now a lower RFO value (32.8% in Pr6x1 TCPR16 vs. 37.9% for TCR14) and a lower 314 

cloud fraction (26% vs. 32%).   315 

The other contributor to the increased k from the cloud-only regimes to hybrid regimes is 316 

the split of TCR8 into TCPR8 and TCPR9. TCR8 in Fig. 2 represents a cirrus (Ci)-dominant 317 

regime with a cloud fraction peak in the bin of highest cloud top (lowest CTP) and smallest 318 

optical thickness; it is now split into two versions of Ci-dominated regimes with total cloud 319 

fractions of 58% (TCPR8) and 78% (TCPR9). While neither TCPR8 nor TCPR9 seem to be 320 

producing substantial rainfall, the precipitation histogram component of the centroid shows 321 

that TCPR8 has a slightly elevated chance of intermediate intensity precipitation.  322 

It is also worth noting that significant fractions of grid cells occupied by TCR3 are now 323 

assigned to TCPR5 in addition to TCPR3. TCPR3 and TCPR5 show clearly different 324 

precipitation characteristics: the estimated average precipitation rate of TCPR3 is 1.2mm/h 325 

with the peak of precipitation histogram around 1mm/h while the average rate of TCPR5 is 326 

0.2mm/h. A possible interpretation is that TCR3 has grid cells of similar clouds with varying 327 

precipitation intensities from light to intermediate, and grid cells of lighter precipitation are 328 

shifted to TCPR5 by the addition of precipitation information. Similar phenomena of lighter 329 

rain grid cells shifted to other hybrid regimes are also found for TCR1, TCR5, and TCR6 330 

indicating that within-regime precipitation variability decreases in the hybrid regimes because 331 

outliers with weak precipitation in cloud-only regimes are now removed. On the other hand, 332 

regimes dominated by low clouds show great consistency between the cloud-only and hybrid 333 

regime sets because there are barely any precipitation features that would make them 334 

distinguishable. 335 
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c. Hybrid regimes with precipitation weight of 7 (Cld42+Pr6x7) 336 

As the relative weight of precipitation increases from 1 to 3, the patterns of the cloud joint 337 

histogram component of the centroids lose peak sharpness, and some regimes even show 338 

blunt peaks across two adjacent levels of CTP (see Supplementary Material Part A). As the 339 

relative weight of precipitation further increases to 7, namely when cloud and precipitation 340 

histograms matter equally in the (84-element) combined arrays subjected to k-means 341 

clustering, the patterns of the mean joint cloud histogram exhibit even blunter peaks, and 342 

some hybrid regimes now share quite similar cloud patterns (e.g., TCPR3 and TCPR4; 343 

TCPR7 and TCPR8 and TCPR9 in Fig. 5). This suggests that precipitation rather than cloud 344 

has now a greater impact in determining the assignment to certain TCPRs, and a previous 345 

regime of the no or small precipitation weight set can be split into multiple regimes 346 

depending on the shape of the precipitation histogram. Indeed, the optimal number of clusters 347 

in the Cld42+Pr6x7 case (a.k.a. equal-weight set) increases to 19, with 13 high cloud 348 

regimes, 4 low cloud regimes and 2 mixed regimes (including the semi-clear regime).  349 

A similar matrix of regime coincidence distribution between precipitation weight number 350 

1 and 7 is displayed in Fig. 6. In the Cld42+Pr6x1 set, TCPR1, TCPR2 and TCPR3 351 

represents high and thick clouds producing intermediate to heavy precipitation. All these 352 

three TCPRs are now split into 3 or more TCPRs in the equal-weight set because of the 353 

increased impact of precipitation on the clustering. As a result, centroids of equal-weight set 354 

show distinct patterns in the precipitation histogram component of the centroid, something 355 

that can be interpreted as decreased variability in precipitation intensity and increased 356 

variability in cloud type mixtures in the grid cells belonging to a specific TCPR of the equal-357 

weight set. Also noteworthy is that TCPR10 of Cld42+Pr6x1 which was diagnosed as 358 

representing mixed clouds with intermediate precipitations is now split into 4 different 359 
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TCPRs. In terms of cloud histogram pattern, TCPR14 of Fig. 5 shares some similarity with 360 

TCPR10 of Fig. 3, but TCPR14 of the equal-weight set has notably smaller high-cloud 361 

fractions and intermediate-precipitation fractions. The decomposition of TCPR10 in 362 

Cld42+Pr6x1 is a major contributor to the increased number of clusters from 16 to 19.   363 

In summary, we find that the information added by precipitation helps to also distinguish 364 

clouds with a greater degree of detail in terms of cloud-precipitation relationship. In the set 365 

where the added precipitation information matters the least, namely the 7:1 weight ratio 366 

(Cld42+Pr6x1), the cloud histogram patterns are mostly consistent with the cloud-only 367 

regimes. Still, the added precipitation information rearranges some outlier grid cells in cloud-368 

only regimes (in terms of precipitation properties), thus resulting in tighter relationships 369 

between cloud and precipitation in the new regimes. The enhanced weight of precipitation 370 

obviously decreases the influence of cloud patterns in the resulting centroids, even to the 371 

degree where similar cloud histogram patterns (albeit with distinct precipitation histogram 372 

patterns) appear in the equal-weight set. These cloud and precipitation pattern changes occur 373 

mostly in regimes dominated by high-clouds; regimes dominated by low clouds are not 374 

changing much by increasing the precipitation weight indicating the lack of diversity in 375 

precipitation properties, at least according to IMERG.    376 

 377 

5. Projection onto IMERG domain 378 

a. Can cloud be predicted from precipitation? 379 

Cloud and precipitation are closely related, but at the same time there is significant 380 

precipitation variability within similar clouds, and vice versa. In the previous section, we 381 

showed two sets of tropical cloud-precipitation hybrid regimes, representing the dominant 382 
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mixtures of specific cloud types and corresponding precipitation intensities (other variants of 383 

relative weights and an extension that includes extratropics are shown in the Supplemental 384 

Materials). In this section, we examine the feasibility of “predicting” clouds from solely 385 

precipitation information using these hybrid regimes. The reason we want to predict clouds is 386 

because the cloud observations suffer from substantial amounts of missing grid cells due to 387 

the swath width of the MODIS granules, and are much sparser temporally compared to the 388 

IMERG precipitation dataset. An extended dataset of cloud information with higher temporal 389 

resolution could be useful for various research endeavors.  390 

The availability of cloud-precipitation hybrid regimes simplifies a potential cloud 391 

prediction scheme because clouds in a grid cell are represented by the limited number of 392 

classes (regimes) derived from the clustering analysis. (Additional information about the 393 

clouds besides what hybrid regime they belong would obviously not be available.) Hence, the 394 

problem at hand is predicting one of the hybrid regimes based on only the precipitation 395 

information of a grid cell. The simplest way to assign a hybrid regime to grid cell at a time 396 

when no cloud information is available is to adopt the Euclidean distance criterion used in the 397 

k-mean clustering, but now applied only on the observed IMERG precipitation histogram and 398 

the precipitation component of the hybrid regime centroid. Of course, this assignment by 399 

precipitation is only possible when a reasonable amount of precipitation is detected; 400 

identification of hybrid regime occurrence in a grid cell where barely any rain occurs is 401 

impossible.  402 

The performance of hybrid regime prediction by matching observed and centroid 403 

precipitation histograms is summarized in Fig. 7 for the case of the equal-weight set 404 

(Cld42+Pr6x7) in the extended tropical domain of 20°S to 20°N. Figure 7 is a Fig.4-like 405 

regime coincidence distribution matrix between original TCPRs (y-axis) observed at the time 406 
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of Terra and Aqua daytime overpasses and predicted TCPRs by precipitation-only (x-axis) 407 

for the same grid cells. Among the 19 regimes, those with precipitation fraction (= sum of 6 408 

bins of precipitation histogram) below 10% are merged into the “Others” class. Overall, the 409 

prediction results are quite impressive; among regimes having significant amounts of 410 

precipitation, five regimes (CPR1, 2, 4, 8, 9) have precipitation-based prediction accuracy of 411 

TCPR occurrence above 95%. Furthermore, the accuracy of TCPR3 and TCPR7 prediction is 412 

also quite high, over 90%. This means that the precipitation signatures of members belonging 413 

to these hybrid regimes are unique enough to allow them to be differentiated from members 414 

of other regimes. These regimes commonly have precipitation fractions above 50%. While 415 

for TCPR5, exhibiting only 20% prediction accuracy, the estimated mean precipitation is 416 

greater than that of TCPR9, precipitation fraction is just 23%, less than half of TCPR9’s (Fig. 417 

5). A small total precipitation fraction usually means that histogram bin values are also small, 418 

which makes them hard to be distinguished from other regimes under our adopted Euclidean 419 

distance criterion. In addition, we also examined the accuracies geographically (by 420 

longitudes), and found that prediction accuracies are quite stable regardless of longitudes 421 

with only small drops of accuracy in the central Africa and South America in the case of 422 

TCPR1 and TCPR7 (see Supplementary Material Part A).  423 

The equal-weight set shows that the regimes having intermediate-to-heavy precipitation 424 

intensity can by predicted well by the precipitation-only histogram constructed by the 0.1° 425 

IMERG data, a result likely due to the significant impact of precipitation on the clustering 426 

process. We also tested the case of small precipitation weight, and as expected, the prediction 427 

accuracy was markedly lower, as shown in Fig. 8. In the case of Cld42+Pr6x1, 7 regimes 428 

pass the criterion of precipitation fraction above 10% among the 16 regimes. The highest 429 

accuracy, 81%, is achieved by TCPR1 which has the heaviest precipitation and thickest 430 
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clouds representing a group of convective cores (Fig. 3). The second highest prediction 431 

accuracy, 50%, is achieved by TCPR10 (mixed cloud types and a large fraction of light rain), 432 

while all other prediction skills are below 50%. In the case of TCPR2 and TCPR3 both of 433 

which have intermediate precipitation intensity, precipitation histogram patterns are too 434 

similar (Fig. 3) for them to be separable in the regime prediction. Still, Fig. 8 suggests a hint 435 

of different precipitation characteristics between TCPR2 and TCPR3, where the light 436 

precipitations tails of TCPR2’s rainfall distribution gives rise to TCPR10 assignment for 14% 437 

of the grid cells, while TCPR3 being biased towards heavy precipitation results in assignment 438 

of 13% of the grid cells to TCPR1.  439 

To summarize, we demonstrated that we can predict cloud patterns through the prediction 440 

of hybrid regimes from precipitation-only information when using the set of hybrid regimes 441 

derived with equal weighting between cloud and precipitation (Cld42+Pr6x7). A total of 7 442 

hybrid regimes can be predicted highly accurately when their precipitation features include 443 

intermediate to heavy rainfall intensity and their cloudiness corresponds to high-thick cloud 444 

patterns. In practical terms this means that through the process of assigning regimes by 445 

precipitation histogram Euclidean distance, we can transform the 30-minute full tropical 446 

coverage IMERG data into occurrence maps of these 7 regimes at 1-degree resolution and at 447 

the same 30-minute temporal resolution, i.e. we have achieved a projection of TCPRs onto 448 

the IMERG domain. In the following subsection, we present an application example of this 449 

newly built hybrid regime occurrence maps.  450 

b. Analysis example: Diurnal cycle of hybrid regimes  451 

Due to the reliance of cloud optical thickness retrievals on the availability of solar 452 

insolation, 2D joint histogram data of cloud is available once daily for each of Terra and 453 

Aqua, at around 10:30am and 1:30pm local solar time (LST), respectively. Hence, even a 454 
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combined analysis of Terra and Aqua can provide only limited information on cloud 455 

variability around noon in LST. The occurrence map of hybrid regimes projected onto 456 

IMERG domain according to our method described in the previous subsection radically 457 

improves the temporal resolution (30-min), thus enabling examination of the diurnal cycle of 458 

the hybrid regimes for which we have good prediction capability, based on the assumption 459 

that nighttime cloud-precipitation relationship remains the same as in daytime. Figures 9 and 460 

10 show the RFO of TCPR1 and TCPR2 of the Cld42+Pr6x7 set in the longitude-LST phase 461 

space, respectively. We note that LST is calculated by adding the regionally-dependent 462 

factor, longitude(24/360) to UTC as in Tan et al. (2019b). 463 

TCPR1 of the Cld42+Pr6x7 set represents deep convective cores with the heaviest 464 

precipitation. Previously, Jin et al. (2018, 2020) showed that the regime corresponding to the 465 

heaviest precipitation most frequently occurs in the tropical warm pool oceans. Figure 9 is 466 

consistent with the previous studies, and shows the highest RFO in the east and west of the 467 

Maritime Continent. Moreover, the temporal evolution indicates that the most active hour of 468 

TCPR1 occurrence is in the early morning, 2am to 8am in this region, consistent with Fig. 11 469 

in Yang and Smith (2006), but deviating from the findings of Kikuchi and Wang (2008) who 470 

noted oceanic peak between 6am to 9am. Other than the warm pool region, TCPR1 also 471 

notably occurs in the Amazon basin, and is slightly more active in the early morning than 472 

other local times, which is consistent with the precipitation diurnal cycle driven by dynamical 473 

processes (Vernekar et al. 2003). Regardless of the longitude, a hint of local RFO minimum 474 

appears just before noon, a feature that actually becomes clearer when examining TCPR2 in 475 

Fig. 10. 476 

TCPR2 of the Cld42+Pr6x7 set also responds to quite heavy precipitation, with the peak 477 

of cloud fraction occurring at the same CTP level, but for slightly optically thinner clouds 478 
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(Fig. 5), suggesting a combination of convective cores and thick anvils. Figure 10 shows that 479 

TCPR2 also frequently occurs in the tropical warm pool oceans and Amazon basin, like 480 

TCPR1. However, the active hours are clearly different from TCPR1. For example, in 481 

addition to the early morning times as in Fig. 9, TCPR2 also frequently occurs just before 482 

noon and in the afternoon between 2pm and 6pm in the warm pool region. In the Amazon 483 

basin, the most active hour is shifted to afternoon, the time previous studies noted as the most 484 

active hours of continental convection driven by thermodynamic processes (Giles et al. 2020; 485 

Janowiak et al. 2005). 486 

In Fig. 10 we can see RFO local minima troughs four times a day: 12am-2am, 8am-10am, 487 

12pm-2pm, and 8pm-10pm. In these time windows, the occurrence of TCPR2 decreases 488 

abruptly, which may suggest an artifact in the IMERG dataset. Similar trough-like patterns 489 

are also detected with other TCPRs, notably for TCPR4, TCPR8, and TCPR9, as for TCPR2, 490 

and less prominently for TCPR3 and TCPR7, as for TCPR1 (see Supplementary Material Part 491 

A). The troughs, especially spaced in two pairs 12-h apart, points to the possibility of an 492 

artifact stemming from particular sensors on board sun-synchronous satellites used in 493 

IMERG. In particular, these times match the overpass times of several cross-track scanning 494 

sounders in the constellation which generate double-peaks in precipitation distributions over 495 

ocean (You et al. 2020). However, troughs of the same diurnal cycle analysis over land-only 496 

are still notable (but with weakened signal; see Supplementary Material Part A), indicating 497 

that there may be other unidentified factors at play or that the troughs represent true diurnal 498 

signals in fact. 499 

In summary, through the projection of hybrid regimes onto IMERG domain, the temporal 500 

resolution for some of regimes with the greatest precipitation contribution and most likely 501 

associated with convection, is greatly improved. In addition to the diurnal cycle analysis 502 
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shown in this subsection, this diurnally-extended dataset of cloud-precipitation hybrid 503 

regimes has enormous potential to examine other features of convective systems. We should 504 

also note that this projection method works not only for the deep tropical regimes, but also 505 

for the hybrid regimes of extended latitudes when the higher weights of precipitation are used 506 

in the clustering procedure (see Supplementary Material Part B). 507 

 508 

6. Summary and Conclusion  509 

We generated hybrid cloud and precipitation regimes (CPRs) by applying the k-means 510 

clustering algorithm, with advanced initialization and objective measures to select the optimal 511 

number of clusters k, on coincident cloud and precipitation data from MODIS and IMERG. 512 

We discussed how multiple versions of hybrid CPR sets can be obtained depending on the 513 

relative weighting of the cloud and precipitation information and the boundaries of the 514 

geographical domain. 515 

Given that precipitation was represented by a rather coarse 6-bin histogram and clouds 516 

were represented by a 42-element joint histogram, a naïve concatenation of cloud and 517 

precipitation arrays implies a 7 to 1 ratio in cloud versus precipitation weighting. When 518 

performing joint clustering with this 48-element array, the patterns of the cloud histogram 519 

centroids looked quite similar to those of cloud-only centroids, indicating a weak influence of 520 

precipitation on the clustering. However, for the cloud regime associated with intermediate to 521 

heavy rainfall intensity, some outliers with relatively lighter rainfall were moved to other 522 

regimes of corresponding rainfall intensity, making the precipitation variability of hybrid 523 

regimes generally tighter. As the weight of precipitation in the joint clustering progressively 524 

increased (by replicating the precipitation histograms as needed), the precipitation histogram 525 
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component of the hybrid centroids became more unique from those of the other centroids 526 

while the cloud histogram parts of the centroids started losing peak sharpness. In the set of 527 

equal-weight between cloud and precipitation, three CPRs of high clouds with light-to-528 

intermediate precipitation intensity even shared quite similar cloud histogram patterns (but 529 

with distinct precipitation histogram patters, of course). Compared to the high cloud regimes 530 

experiencing dramatic changes by varying the weight of precipitation, low cloud regimes 531 

remained relatively unchanged among different sets, because their weak rainfall did not 532 

impact the clustering process.  533 

Given that the precipitation histogram part of centroid became progressively more distinct 534 

from that of the other centroids as precipitation weight increased, we tested whether we can 535 

predict a specific CPR based on only the precipitation information of the grid cell. This 536 

attempt was motivated by the fact that IMERG dataset has much higher temporal resolution 537 

with nearly no missing data at 30-minute intervals compared to temporally sparse MODIS 538 

cloud observations. We found that, in the case of equal-weight set, seven high cloud regimes 539 

with intermediate-to-heavy precipitation can be predicted with over 90% accuracy by the 540 

precipitation information only. This result suggests that a projection of certain CPRs onto the 541 

IMERG domain is possible, opening thus a broad path for a variety of studies that require 542 

diurnally-resolved cloud information.  543 

In a previous study by Jin et al. (2020), three cloud-only regimes related to tropical 544 

convective activities were selected, to study various features of convective systems at 545 

synoptic scales. However, their investigation was limited to snapshots of convective systems 546 

near 1:30pm LST due to the limitation of MODIS cloud observation availability and with 547 

morning Terra observations filling swath gaps based on persistence assumptions. The 548 

IMERG-based projection method enabled by hybrid regimes as mentioned above can expand 549 
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their study in various directions. For example, thanks to 30-minute temporal resolution 550 

without gaps, diurnal cycle of convective systems can be examined in a manner demonstrated 551 

in Figs. 9 and 10. In addition, it is also possible to examine the life cycle of large-scale 552 

convective systems by systematically tracking them. While the prediction skill using IMERG 553 

precipitation is not perfect at all instances, the expansion of hybrid regimes to temporally 554 

high resolution is a significant advancement that can contribute to better understanding of 555 

large-scale tropical convective systems.  556 

 557 

Acknowledgments. 558 

We acknowledge funding from NASA’s Precipitation Measurement Missions program. 559 

Resources supporting this work were provided by the NASA High-End Computing (HEC) 560 

Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight 561 

Center. 562 

 563 

Data Availability Statement. 564 

IMERG precipitation data used in this study is openly available from the NASA Goddard 565 

Earth Sciences Data and Information Services Center (GES DISC) at 566 

https://doi.org/10.5067/GPM/IMERG/3B-HH/06 as cited in Huffman et al. (2019b). Daily 567 

MODIS L3 cloud histogram data for Terra (MOD08_D3) and Aqua (MYD08_D3) are openly 568 

available from the Level-1 and Atmosphere Archive & Distribution System (LAADS) 569 

Distributed Active Archive Center (DAAC) in the Goddard Space Flight Center at 570 

https://doi.org/10.5067/MODIS/MOD08_D3.061 and 571 

https://doi.org/10.5067/MODIS/MYD08_D3.061 as cited in Platnick et al. (2017b). The 572 

MODIS cloud regime and MODIS-IMERG cloud-precipitation hybrid regime datasets 573 

https://doi.org/10.5067/GPM/IMERG/3B-HH/06
https://doi.org/10.5067/MODIS/MOD08_D3.061
https://doi.org/10.5067/MODIS/MYD08_D3.061


26 

File generated with AMS Word template 1.0 

derived in 15S-15N domain is available at https://data.nasa.gov/Earth-Science/Cloud-574 

Precipitation-Hybrid-Regimes-MODIS-IMERG-in-/ee3g-swmf.  575 

 576 

REFERENCES 577 

Anderberg, M. R., 1973: Cluster Analysis for Applications. Elsevier, 359 pp. 578 

Arthur, D., and S. Vassilvitskii, 2007: k-means++: the advantages of careful seeding. SODA 07 579 

Proc. Eighteenth Annu. ACM-SIAM Symp. Discrete Algorithms, 1027–1035. 580 

Caliński, T., and J. Harabasz, 1974: A dendrite method for cluster analysis. Commun. Stat. - 581 

Theory Methods, 3, 1–27, https://doi.org/10.1080/03610927408827101. 582 

Davies, D. L., and D. W. Bouldin, 1979: A Cluster Separation Measure. IEEE Trans. Pattern 583 

Anal. Mach. Intell., PAMI-1, 224–227, https://doi.org/10.1109/TPAMI.1979.4766909. 584 

Giles, J. A., R. C. Ruscica, and C. G. Menéndez, 2020: The diurnal cycle of precipitation over 585 

South America represented by five gridded datasets. Int. J. Climatol., 40, 668–686, 586 

https://doi.org/10.1002/joc.6229. 587 

Huffman, G. J., and Coauthors, 2019a: Algorithm Theoretical Basis Document (ATBD) version 588 

06. NASA Global Precipitation Measurement (GPM) Integrated Multi‐satellitE Retrievals 589 

for GPM (IMERG). 590 

https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06_0.pdf. 591 

——, E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019b: GPM IMERG Final 592 

Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth 593 

Sciences Data and Information Services Center (GES DISC). 594 

https://doi.org/10.5067/GPM/IMERG/3B-HH/06. 595 

https://data.nasa.gov/Earth-Science/Cloud-Precipitation-Hybrid-Regimes-MODIS-IMERG-in-/ee3g-swmf
https://data.nasa.gov/Earth-Science/Cloud-Precipitation-Hybrid-Regimes-MODIS-IMERG-in-/ee3g-swmf


27 

File generated with AMS Word template 1.0 

Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the Tropical 596 

Western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367. 597 

Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined 598 

from the CMORPH high spatial and temporal resolution global precipitation analyses. J. 599 

Geophys. Res., 110, D23105, https://doi.org/10.1029/2005JD006156. 600 

Jin, D., L. Oreopoulos, D. Lee, N. Cho, and J. Tan, 2018: Contrasting the co-variability of 601 

daytime cloud and precipitation over tropical land and ocean. Atmospheric Chem. Phys., 602 

18, 3065–3082, https://doi.org/10.5194/acp-18-3065-2018. 603 

——, ——, ——, J. Tan, and K. Kim, 2020: Large‐Scale Characteristics of Tropical Convective 604 

Systems Through the Prism of Cloud Regime. J. Geophys. Res. Atmospheres, 125, 605 

e2019JD021157, https://doi.org/10.1029/2019JD031157. 606 

Ketchen, D. J., and C. L. Shook, 1996: The Application of Cluster Analysis in Strategic 607 

Management Research: An Analysis And Critique. Strateg. Manag. J., 17, 441–458, 608 

https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G. 609 

Kikuchi, K., and B. Wang, 2008: Diurnal Precipitation Regimes in the Global Tropics. J. Clim., 610 

21, 2680–2696, https://doi.org/10.1175/2007JCLI2051.1. 611 

King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and 612 

profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 613 

41, 442–458, https://doi.org/10.1109/TGRS.2002.808226. 614 

Lee, D., L. Oreopoulos, G. J. Huffman, W. B. Rossow, and I.-S. Kang, 2013: The Precipitation 615 

Characteristics of ISCCP Tropical Weather States. J. Clim., 26, 772–788, 616 

https://doi.org/10.1175/JCLI-D-11-00718.1. 617 



28 

File generated with AMS Word template 1.0 

Luo, Z. J., R. C. Anderson, W. B. Rossow, and H. Takahashi, 2017: Tropical cloud and 618 

precipitation regimes as seen from near-simultaneous TRMM, CloudSat, and CALIPSO 619 

observations and comparison with ISCCP: Tropical Clouds From Radars and Lidar. J. 620 

Geophys. Res. Atmospheres, 122, 5988–6003, https://doi.org/10.1002/2017JD026569. 621 

MacQueen, J., 1967: Some methods for classification and analysis of multivariate 622 

observations. Proceedings of the fifth Berkeley symposium on mathematical statistics 623 

and probability, Vol. 1 of, Oakland, CA, USA., 281–297. 624 

Mason, S., C. Jakob, A. Protat, and J. Delanoë, 2014: Characterizing Observed Midtopped 625 

Cloud Regimes Associated with Southern Ocean Shortwave Radiation Biases. J. Clim., 27, 626 

6189–6203, https://doi.org/10.1175/JCLI-D-14-00139.1. 627 

Oreopoulos, L., and William. B. Rossow, 2011: The cloud radiative effects of International 628 

Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, 629 

https://doi.org/10.1029/2010JD015472. 630 

——, N. Cho, D. Lee, S. Kato, and G. J. Huffman, 2014: An examination of the nature of 631 

global MODIS cloud regimes. J. Geophys. Res. Atmospheres, 119, 8362–8383, 632 

https://doi.org/10.1002/2013JD021409. 633 

——, ——, ——, and ——, 2016: Radiative effects of global MODIS cloud regimes. J. 634 

Geophys. Res. Atmospheres, 121, 2299–2317, https://doi.org/10.1002/2015JD024502. 635 

Pike, M., and B. R. Lintner, 2020: Application of Clustering Algorithms to TRMM Precipitation 636 

over the Tropical and South Pacific Ocean. J. Clim., 33, 5767–5785, 637 

https://doi.org/10.1175/JCLI-D-19-0537.1. 638 



29 

File generated with AMS Word template 1.0 

Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling 639 

Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument 640 

Simulators. J. Clim., 25, 4699–4720, https://doi.org/10.1175/JCLI-D-11-00267.1. 641 

Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 642 

2003: The MODIS cloud products: algorithms and examples from terra. IEEE Trans. 643 

Geosci. Remote Sens., 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301. 644 

——, and Coauthors, 2017a: The MODIS Cloud Optical and Microphysical Products: 645 

Collection 6 Updates and Examples From Terra and Aqua. IEEE Trans. Geosci. Remote 646 

Sens., 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522. 647 

——, M. D. King, and P. A. Hubanks, 2017b: MODIS Atmosphere L3 Daily Product (C6.1). 648 

NASA MODIS Adaptive Processing System, Goddard Space Flight Center, 649 

[doi:10.5067/MODIS/MOD08_D3.061; doi:10.5067/MODIS/MYD08_D3.061],. 650 

——, and Coauthors, 2018: MODIS cloud optical properties: User guide for the collection 651 

6/6.1 Level-2 MOD06/MYD06 product and associated Level-3 datasets, Version 1.1. 652 

https://atmosphere-653 

imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MODISCloudOpticalPropertyUserGui654 

deFinal_v1.1_1.pdf. 655 

Robertson, A. W., N. Vigaud, J. Yuan, and M. K. Tippett, 2020: Toward Identifying 656 

Subseasonal Forecasts of Opportunity Using North American Weather Regimes. Mon. 657 

Weather Rev., 148, 1861–1875, https://doi.org/10.1175/MWR-D-19-0285.1. 658 



30 

File generated with AMS Word template 1.0 

Rossow, W. B., and R. A. Schiffer, 1999: Advances in Understanding Clouds from ISCCP. Bull. 659 

Am. Meteorol. Soc., 80, 2261–2287, https://doi.org/10.1175/1520-660 

0477(1999)080<2261:AIUCFI>2.0.CO;2. 661 

——, G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution 662 

of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. 663 

Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584. 664 

——, A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical Precipitation Extremes. J. 665 

Clim., 26, 1457–1466, https://doi.org/10.1175/JCLI-D-11-00725.1. 666 

Tan, J., and L. Oreopoulos, 2019: Subgrid Precipitation Properties of Mesoscale Atmospheric 667 

Systems Represented by MODIS Cloud Regimes. J. Clim., 32, 1797–1812, 668 

https://doi.org/10.1175/JCLI-D-18-0570.1. 669 

——, C. Jakob, W. B. Rossow, and G. Tselioudis, 2015: Increases in tropical rainfall driven by 670 

changes in frequency of organized deep convection. Nature, 519, 451–454, 671 

https://doi.org/10.1038/nature14339. 672 

——, G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019a: IMERG V06: Changes to the 673 

Morphing Algorithm. J. Atmospheric Ocean. Technol., 36, 2471–2482, 674 

https://doi.org/10.1175/JTECH-D-19-0114.1. 675 

——, ——, ——, and ——, 2019b: Diurnal Cycle of IMERG V06 Precipitation. Geophys. Res. 676 

Lett., 46, 13584–13592, https://doi.org/10.1029/2019GL085395. 677 

Tselioudis, G., W. Rossow, Y. Zhang, and D. Konsta, 2013: Global Weather States and Their 678 

Properties from Passive and Active Satellite Cloud Retrievals. J. Clim., 26, 7734–7746, 679 

https://doi.org/10.1175/JCLI-D-13-00024.1. 680 



31 

File generated with AMS Word template 1.0 

Vernekar, A. D., B. P. Kirtman, and M. J. Fennessy, 2003: Low-Level Jets and Their Effects on 681 

the South American Summer Climate as Simulated by the NCEP Eta Model. J. Clim., 16, 682 

297–311, https://doi.org/10.1175/1520-0442(2003)016<0297:LLJATE>2.0.CO;2. 683 

Yang, S., and E. A. Smith, 2006: Mechanisms for Diurnal Variability of Global Tropical Rainfall 684 

Observed from TRMM. J. Clim., 19, 5190–5226, https://doi.org/10.1175/JCLI3883.1. 685 

You, Y., V. Petkovic, J. Tan, R. Kroodsma, W. Berg, C. Kidd, and C. Peters-Lidard, 2020: 686 

Evaluation of V05 Precipitation Estimates from GPM Constellation Radiometers Using 687 

KuPR as the Reference. J. Hydrometeorol., 21, 705–728, https://doi.org/10.1175/JHM-D-688 

19-0144.1. 689 

Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective 690 

particle radius retrievals for marine water clouds from three MODIS spectral bands. J. 691 

Geophys. Res., 116, https://doi.org/10.1029/2011JD016216. 692 

Zhao, J., J. Kug, J. Park, and S. An, 2020: Diversity of North Pacific Meridional Mode and Its 693 

Distinct Impacts on El Niño‐Southern Oscillation. Geophys. Res. Lett., 47, 694 

e2020GL088993, https://doi.org/10.1029/2020GL088993. 695 

 696 

TABLES 697 

Table 1. Optimal values of k according to the DBC metric for the two domains and four 698 

precipitation weights. 699 

Deep Tropics (15S-15N) Low-to-Mid Latitudes (50S-50N) 

Cloud-only k=14 Cloud-only k=15 

Pr_wt=1 k=16 Pr_wt=1 k=20 
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Pr_wt=3 k=16 Pr_wt=3 k=19 

Pr_wt=7 k=19 Pr_wt=7 k=22 

 700 

FIGURES 701 

 702 

Figure 1. Criteria for selecting optimal number of clusters (k) are displayed as a function of k 703 

for the case of 7:1 weighting in the combined cloud-precipitation array (Cld42+Pr6x1). (a) 704 

Between-cluster variance (BCV; blue circles) and within-cluster variance (WCV; orange 705 

triangles), and (b) Calinski-Harabasz criterion (CHC; green circles) and Davies-Bouldin 706 

criterion (DBC; red triangles). We note that for the same k, a set of initial centroids (i.e., one 707 

realization) selected as the best by one criterion can be different from that selected for 708 

another criterion.   709 

 710 
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 711 

Figure 2. Deep tropics cloud-only regime centroids (mean histograms, left) and geographical 712 

distribution of relative frequency of occurrence (RFO, right). Bin cloud fraction values 713 

exceeding 5% are shown explicitly on the centroid panels. The precipitation histograms 714 

shown below the cluster centroids are composite means for each cloud regime. In addition to 715 

the total cloud fraction, total precipitation fraction which is the sum of all precipitation 716 

histogram bin values, and estimated mean precipitation rate based on the histogram are also 717 

given on the panel title. Above the RFO panels, individual Terra and Aqua RFOs are 718 

provided in brackets.  719 

 720 
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 721 

Figure 3. Similar to Fig. 2 but now the precipitation part of the centroids was also derived 722 

from clustering where precipitation contributed with a weight number of 1 (Cld42+Pr6x1; 723 

i.e., 7:1 ratio in 48-element combined array in clustering).  724 

 725 
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 726 

Figure 4. Regime coincidence distribution matrix comparing assignment frequencies on the 727 

same grid cell between the cloud-only regimes of Fig. 2 (y-axis) and the hybrid regimes 728 

Cld42+Pr6x1 of Fig. 3 (x-axis). The values of the matrix are normalized across rows, and 729 

values above 10% are explicitly shown. Please note that while the regimes were derived with 730 

data in 15S-15N, regime assignment was performed in the extended domain, 20S-20N for 731 

both Terra and Aqua, because tropical phenomena often extend beyond the 15 latitude 732 

boundaries. 733 

 734 
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 735 

Figure 5. As Fig. 3 but with precipitation contributing with weight number 7 (Cld42+Pr6x7; 736 

i.e., 7:7 ratio in 84-element combined array in clustering).  737 

 738 

 739 
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 740 

Figure 6. As Figure 4 but between Cld42+Pr6x1 (y-axis; Fig. 3) and Cld42+Pr6x7 (x-axis; 741 

Fig. 5). 742 

 743 

 744 
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 745 

Figure 7. As Fig. 4 but between original Cld42+Pr6x7 (y-axis) and regimes assigned by 746 

precipitation only (x-axis). Regimes with precipitation fractions below 10% have been 747 

combined in the “Others” category. 748 

 749 
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 750 

Figure 8. Same as Figure 7 but for the set of Cld42+Pr6x1. 751 

 752 

 753 
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Figure 9. RFO of TCPR1 of the Cld42+Pr6x7 set predicted by precipitation-only in a 754 

longitude (x-axis) and local solar time (LST; y-axis) phase space. Bin resolutions are 10 in 755 

longitude, and 1-hour in time. The top and right panels show RFO marginal histograms (sums 756 

across rows and columns before normalization) for the same resolution of longitude and LST.  757 

 758 

 759 

Figure 10. Same as Fig. 9, but for TCPR2. 760 

 761 
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