
NASA/TM–20210000619/Rev 1

Core Flight System (cFS) Training

March 2021

Flight Software Systems Branch, Code 582
Goddard Space Flight Center, Greenbelt, MD

Integration with COSMOS

Since its founding, NASA has been dedicated to the advancement
of aeronautics and space science. The NASA scientific and
technical information (STI) program plays a key part in helping
NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency
Chief Information Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The NASA STI program
provides access to the NTRS Registered and its public interface,
the NASA Technical Reports Server, thus providing one of the
largest collections of aeronautical and space science STI in the
world. Results are published in both non-NASA channels and by
NASA in the NASA STI Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of completed research
or a major significant phase of research that present the
results of NASA Programs and include extensive data or
theoretical analysis. Includes compilations of significant
scientific and technical data and information deemed to be of
continuing reference value. NASA counter-part of peer-
reviewed formal professional papers but has less stringent
limitations on manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are preliminary or of
specialized interest, e.g., quick release reports, working
papers, and bibliographies that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and technical findings by
NASA-sponsored contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical conferences,
symposia, seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical, or historical
information from NASA programs, projects, and missions,
often concerned with subjects having substantial public
interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign scientific and
technical material pertinent to
NASA’s mission.

Specialized services also include organizing and publishing
research results, distributing specialized research
announcements and feeds, providing information desk and
personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the
following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

Write to:

 NASA STI Information Desk Mail, Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

NASA STI Program ... in Profile

March 2021

Core Flight System (cFS) Training

Flight Software Systems Branch, Code 582
Goddard Space Flight Center, Greenbelt, MD

Integration with COSMOS

NASA/TM–20210000619/Rev 1

Notice for Copyrighted Information

This manuscript is a work of the United States Government authored as part of the official duties of employee(s) of
the National Aeronautics and Space Administration. No copyright is claimed by the United States under Title 17,

U.S. Code. All other rights are reserved by the United States Government. Any publisher accepting this
manuscript for publication acknowledges that the United States Government retains a non-exclusive, irrevocable,
worldwide license to prepare derivative works, publish, or reproduce this manuscript, or allow others to do so, for

United States Government purposes.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an
official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program
Mail Stop 148
NASA’s Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

703-605-6000

Available in electronic form at https://www.sti.nasa.gov and https://ntrs.nasa.gov

https://www.sti.nasa.gov/

1

National Aeronautics and Space Administration

Core Flight Executive (cFS)
Training

Integration with COSMOS

cFS Training- Page 2

Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

4. [Optional] Integration with COSMOS

cFS Training- Page 3

COSMOS - cFS Context

Development Tools
and Ground Systems

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

RTEMS

OS Abstraction API Platform Support Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingHousekeepingFile ManagerData StorageChecksum

Mcp750-VxWorksVxWorks

Application
Generator

Performance
Tools

Lab
Applications

Python
Ground System

Table Tools Unit Test Build System

Linux

PROM Boot FSW

Real Time OS Board Support Package

• • •

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive

Core Flight Executive API

cFS Training- Page 4

cFS and COSMOS

• cFS has been used with several ground systems

• ASIST

• ITOS

• COSMOS

• COSMOS is an open-source ground system solution

• https://cosmosrb.com/

This module will show how to
operate cFS with COSMOS

cFS Training- Page 5

Module Agenda

• Getting Started

• Defining Commands

• Defining Telemetry

• Creating Telemetry Displays

• Basic Scripting

• Test Runner

6

National Aeronautics and Space Administration

Prerequisites

cFS Training- Page 7

Module Prerequisites

• Have a running cFS build environment that includes the cFS
sample_app

– This is the result of completing Exercise 1 in the main cFS training
package

• Have COSMOS installed on development machine

– Installation instructions here: https://cosmosrb.com/docs/installation/

cFS Training- Page 8

Exercise 0 – Build and Run the cFE

Part 1 - Setup
To setup the cFS Bundle directly from the latest set of interoperable repositories:

git clone https://github.com/nasa/cFS.git

cd cFS

git checkout bootes-rc2

git submodule init

git submodule update

Copy in the default makefile and definitions:

cp cfe/cmake/Makefile.sample Makefile

cp -r cfe/cmake/sample_defs sample_defs

If running on a standard Linux build as a normal user, allow OSAL “permissive mode” for best effort message queue
depth and task priorities.

• Open the sample_defs/default_osconfig.cmake file

• Find the “OSAL_CONFIG_DEBUG_PERMISSIVE_MODE” parameter and set it to TRUE

Subsequent exercises assume
that cFS was cloned into the

home directory (“~/cFS”)

cFS Training- Page 9

Exercise 0 – Build and Run the cFE

Part 2 – Build and Run
The cFS Framework, including sample applications, will build and run on the pc-linux platform support package (should
run on most Linux distributions), via the steps described in
https://github.com/nasa/cFE/tree/master/cmake/README.md. Quick-start is below:

To prep, compile, and run (from cFS directory above):

make prep

make

make install

cd build/exe/cpu1/

./core-cpu1

Should see startup messages and CFE_ES_Main entering OPERATIONAL state. Note the code must be executed from
the build/exe/cpu1 directory to find the startup script and shared objects.

cFS Training- Page 10

Exercise 0 Recap

cFE Version

cFE
Services
Started

11

National Aeronautics and Space Administration

Getting Started

cFS Training- Page 12

Navigating COSMOS

COSMOS

outputslibconfig toolsprocedures

Ruby
scripts for
advanced
processing

Log files
from

COSMOS
runs

Ruby
scripts for
sending

commands

COSMOS
tools

data

system

targets

tools

Reference: https://cosmosrb.com/docs/structure/

cFS Training- Page 13

Terms

• Target – a destination for commands and/or a source of
telemetry

– When communicating with cFS, each cFS app is typically a target

– Much of COSMOS is organized around targets

• Tool – one of the main “out of the box” components of COSMOS

– Everything on the “Launcher” screen is a tool

– Each tool can be configured

– The “Command and Telemetry Server” must be running in order to use
the other tools

• Interface – mechanism by which COSMOS communicates with a
given target

cFS Training- Page 14

System Configuration
(system.txt)

Must either auto declare (all targets)
or declare each target individually.
Typically needs to be modified in a

real system

Connection details. Can often be
left unchanged.

Scripts that read and write log files.
Can be changed or left as-is.

Default locations of log files. Can
often be left unchanged.

cFS Training- Page 15

Command/Telemetry Server Configuration
(cmd_tlm_server.txt)

Configure the log writer. Note that
the ruby script is the same one

specified in system.txt

Alternate ways of defining
interfaces. Each target must be

associated with an interface in order
to be used. Interfaces are often

customized, though there are some
built-in choices.

Optional router specification

Optional background task

cFS Training- Page 16

Exercise 1 – Create a new target

Objective: Create a new target for the sample app

Part 1 – Add sample_app to COSMOS
1. Navigate to the config/targets directory in COSMOS

2. Create a directory called “SAMPLE”

3. Enter the “SAMPLE” directory

4. Create a file called “target.txt”

5. Navigate to the directory “cosmosdemo/config/system”

6. Open the file “system.txt” and add the line “DECLARE_TARGET SAMPLE”

• This tells COSMOS to look for the target you just created

7. Navigate to the directory “cosmosdemo/config/tools/cmd_tlm_server”

8. Open the “cmd_tlm_server.txt” file

9. Under the PACKET LOG WRITER section, create a LOCAL interface, add the line “TARGET
sample” under it

INTERFACE LOCAL udp_interface.rb 127.0.0.1 1234 1235 nil nil 128 nil nil

TARGET sample

• For simplicity you can delete everything in the “cmd_tlm_server.txt” file below the LOCAL
interface

cFS Training- Page 17

Exercise 1 – Part 2

Part 2 – Launch COSMOS

1. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

• You may need to click “Update Project CRCs” when COSMOS starts up

2. Click on “Command and Telemetry Server” and click “OK” on the dialog that pops up

Successful startup confirms
that Part 1 was done correctly.

cFS Training- Page 18

Exercise 1 - Recap

system.txt

cm
d_

tlm
_

se
rv

e
r.t

xt

19

National Aeronautics and Space Administration

Defining Commands

cFS Training- Page 20

Command Databases

• A command database defines the commands that can be sent to
flight software

• COSMOS uses text-based command databases

• These databases must specify every field in a command (even
those that don’t change)

cFS Training- Page 21

Location of Command Database

COSMOS

outputslibconfig toolsprocedures

Ruby
scripts for
advanced
processing

Log files
from

COSMOS
runs

Ruby
scripts for
sending

commands

COSMOS
tools

data

system

targets

tools XX cmd_tlm

cFS Training- Page 22

Relationship with cFS

• The COSMOS command database generally relies on the
following files in a cFS app:

– XX_msg.h

– XX_msgids.h

– XX_msgdefs.h

• Each command message structure defined in XX_msg.h should
be defined in the command database

• The XX_msgids.h and XX_msgdefs.h files are used to find
arguments to commands

– MsgID, Command Code, etc.

cFS Training- Page 23

Defining a Command Database

• The command database file resides in the cmd_tlm folder under
the target

• In the file, each command starts with a COMMAND tag
COMMAND <Target> <Command Name> <Endianness> <Description>

• Under the COMMAND tag, each parameter is appended to the
command

– Using APPEND_ID_PARAMETER or APPEND_PARAMETER

Reference: https://cosmosrb.com/docs/command/

cFS Training- Page 24

Review: cFE Software Bus Messages

• By default Consultative Committee for Space Data Systems
(CCSDS) packets used to implement messages

• CCSDS Primary Header (Always big endian)

• CCSDS Command Packets
‒ Secondary packet header contains a

command function code
• CCSDS Telemetry Packets

‒ Secondary packet header contains a
time stamp of when the data was
produced

typedef struct{

CCSDS_PriHdr_t Pri;

CCSDS_CmdSecHdr_t Sec;

} CFE_SB_CmdHdr_t;

typedef struct{

CCSDS_PriHdr_t Pri;

CCSDS_TlmSecHdr_t Sec;

} CFE_SB_TlmHdr_t;

cFS Training- Page 25

No-Op Example

• Sample_app No-Op Command in cFS:
typedef struct

{

uint8 CmdHeader[CFE_SB_CMD_HDR_SIZE];

} SAMPLE_NoArgsCmd_t;

• Sample_app No-Op Command in COSMOS:
COMMAND SAMPLE SAMPLE_NOOP BIG_ENDIAN “Sample_app NOOP Command”

APPEND_ID_PARAMETER STREAM_ID 16 UINT 0x1882 0x1882 0x1882 “”

APPEND_PARAMETER SEQUENCE 16 UINT 0xC000 MAX_UINT16 0xC000 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER PKT_LEN 16 UINT 0x0001 0x0001 0x0001 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER CMD_ID 8 UINT 0 0 0 “”
APPEND_PARAMETER CHECKSUM 8 UINT MIN_UINT8 MAX_UINT8 MIN_UINT8 “”

SAMPLE_APP_CMD_MID
from sample_app_msgids.h

cF
S

 P
rim

a
ry

H

ea
de

r
cF

S
 C

M
D

S

ec
on

da
ry

 H
e

ad
er

SAMPLE_APP_NOOP_CC
from sample_app_msg.h

cFS Training- Page 26

Other Command Parameters

• Command parameters can have types INT, UINT, FLOAT,
DERIVED, STRING, BLOCK

• Parameter ranges are specified with Minimum, Maximum, and
Default values

• For numbers, FORMAT_STRING specifies the input format of
the number

– Ex. "0x%04X" specifies input in hexadecimal

• Parameters can also be selected from a drop down list using the
STATE tag
APPEND_PARAMETER ENABLE 32 UINT 0 1 0 "Enable setting"

STATE FALSE 0

STATE TRUE 1

cFS Training- Page 27

Exercise 2 – Part 1

Objective: Create a command database for sample_app and send
commands to cFS (2 parts total)

Part 1 – Add sample_app to COSMOS
1. Navigate to the config/targets/SAMPLE directory in COSMOS

2. Inside “target.txt”, add the following line: COMMANDS sample_cmds.txt
• Note: This file tells COSMOS the name of the file containing the command database

3. Inside the “SAMPLE” directory”, create a “cmd_tlm” directory

4. Inside the “cmd_tlm” directory, create a file “sample_cmds.txt”

5. Open the file sample_cmds.txt

6. Create a command definition for each command in sample_app_msg.h

• You should have a total of 3 commands

• They will be similar to the No-Op command example

• sample_app_msg.h is located in the cFS tree at apps/sample_app/fsw/src/sample_app_msg.h

cFS Training- Page 28

Exercise 2 – Part 2

Part 2 – Send commands to sample_app

1. In a different terminal window, start the cFS

1. Leave this running, but put the window aside and return to the terminal window with COSMOS

2. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

1. You may need to click “Update Project CRCs” when COSMOS starts up

3. Click on “Command and Telemetry Server” and click “OK” on the dialog that pops up

4. Click on the “Cmd Packets” tab and scroll down until you see the target SAMPLE on the left

5. Click on the “View in Command Sender” button beside “SAMPLE_NOOP”

6. Click “Send” on the Command Sender window

1. A no-op event message should show up in the cFS terminal window

cFS Training- Page 29

Exercise 2 - Recap

The sample_cmds.txt file:
COMMAND SAMPLE SAMPLE_NOOP BIG_ENDIAN “Sample_app NOOP Command”

APPEND_ID_PARAMETER STREAM_ID 16 UINT 0x1882 0x1882 0x1882 “”

APPEND_PARAMETER SEQUENCE 16 UINT 0xC000 MAX_UINT16 0xC000 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER PKT_LEN 16 UINT 0x0001 0x0001 0x0001 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER CMD_ID 8 UINT 0 0 0 “”
APPEND_PARAMETER CHECKSUM 8 UINT MIN_UINT8 MAX_UINT8 MIN_UINT8 “”

COMMAND SAMPLE SAMPLE_RESET BIG_ENDIAN “Sample_app Reset Counters Command”

APPEND_ID_PARAMETER STREAM_ID 16 UINT 0x1882 0x1882 0x1882 “”

APPEND_PARAMETER SEQUENCE 16 UINT 0xC000 MAX_UINT16 0xC000 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER PKT_LEN 16 UINT 0x0001 0x0001 0x0001 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER CMD_ID 8 UINT 1 1 1 “”
APPEND_PARAMETER CHECKSUM 8 UINT MIN_UINT8 MAX_UINT8 MIN_UINT8 “”

COMMAND SAMPLE SAMPLE_PROCESS BIG_ENDIAN “Sample_app Process Command”

APPEND_ID_PARAMETER STREAM_ID 16 UINT 0x1882 0x1882 0x1882 “”

APPEND_PARAMETER SEQUENCE 16 UINT 0xC000 MAX_UINT16 0xC000 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER PKT_LEN 16 UINT 0x0001 0x0001 0x0001 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER CMD_ID 8 UINT 2 2 2 “”
APPEND_PARAMETER CHECKSUM 8 UINT MIN_UINT8 MAX_UINT8 MIN_UINT8 “”

cFS Training- Page 30

Exercise 2 - Recap

cFS Training- Page 31

Exercise 2 - Recap

32

National Aeronautics and Space Administration

Defining Telemetry

cFS Training- Page 33

Telemetry Databases

• A telemetry database defines the telemetry that can be received
from the flight software

• COSMOS uses text-based telemetry databases

• These databases must specify every field in a telemetry packet

• The database must also tell COSMOS how to identify the packet

cFS Training- Page 34

Location of Telemetry Database

COSMOS

outputslibconfig toolsprocedures

Ruby
scripts for
advanced
processing

Log files
from

COSMOS
runs

Ruby
scripts for
sending

commands

COSMOS
tools

data

system

targets

tools XX cmd_tlm

cFS Training- Page 35

Relationship with cFS

• The COSMOS telemetry database generally relies on the
following files in a cFS app:

– XX_msg.h

– XX_msgids.h

• Each telemetry message structure defined in XX_msg.h should
be defined in the telemetry database

• The XX_msgids.h file is used to find the message ID

cFS Training- Page 36

Defining a Telemetry Database

• The telemetry database file resides in the cmd_tlm folder under
the target

• In the file, each command starts with a TELEMETRY tag
TELEMETRY <Target> <Packet Name> <Endianness> <Description>

• Under the TELEMETRY tag, each telemetry item is appended to
the packet

– Using APPEND_ID_ITEM or APPEND_ITEM

Reference: https://cosmosrb.com/docs/telemetry/

cFS Training- Page 37

HK Example

• Sample_app housekeeping telemetry in cFS:
typedef struct {

uint8 TlmHeader[CFE_SB_TLM_HDR_SIZE];

SAMPLE_HkTlm_Payload_t Payload;

} OS_PACK SAMPLE_HkTlm_t;

• Sample_app housekeeping packet in COSMOS:
TELEMETRY SAMPLE SAMPLE_HK BIG_ENDIAN “Sample_app housekeeping telemetry”

APPEND_ID_ITEM STREAM_ID 16 UINT 0x0883 “”

APPEND_ITEM SEQUENCE 16 UINT “”

APPEND_ITEM PKT_LEN 16 UINT “”

APPEND_ITEM SECONDS 32 UINT “”

APPEND_ITEM SUBSECS 16 UINT “”

APPEND_ITEM CMD_CNT 8 UINT “Command Counter”

APPEND_ITEM CMD_ERRS 8 UINT “Command Error Count”

APPEND_ITEM SPARE 16 UINT “Spares”

SAMPLE_APP_HK_TLM_MID
from sample_app_msgids.h

cF
S

 P
rim

a
ry

H

ea
de

r
cF

S
 T

L
M

S

ec
on

da
ry

 H
e

ad
er

SAMPLE_HkTlm_Payload_t

cFS Training- Page 38

Exercise 3

• Objective: Create a telemetry database for sample_app and get
telemetry from cFS (4 parts)

Part 1 – Add the sample_app HK packet

1. Navigate to the config/targets/sample directory in COSMOS

2. Open the target.txt file and add the line “TELEMETRY
sample_tlm.txt”

3. Inside the “cmd_tlm” directory, create a file “sample_tlm.txt”

4. Add the definition for the sample_app housekeeping packet

cFS Training- Page 39

Exercise 3 – Part 2

Part 2 – Add a target for TO_Lab

This is necessary because we need to enable telemetry in cFS before
we will see it in COSMOS.

1. Navigate to the config/targets directory in COSMOS

2. Create a directory called “TO_LAB”

3. Enter the “TO_LAB” directory

4. Create a file called “target.txt”

5. Inside “target.txt”, add the following line: COMMANDS to_lab_cmds.txt

6. Inside the “TO_LAB” directory”, create a “cmd_tlm” directory

7. Inside the “cmd_tlm” directory, create a file “to_lab_cmds.txt”

8. Navigate to the directory “cosmosdemo/config/tools/cmd_tlm_server”

9. Open the “cmd_tlm_server.txt” file

10. Under the LOCAL interface, add the line “TARGET TO_LAB”

11. Navigate to the directory “cosmosdemo/config/system”

12. Open the “system.txt” file and add “DECLARE_TARGET TO_LAB”

Same process used to
add the “SAMPLE”
target in Exercise 1

cFS Training- Page 40

Exercise 3 – Part 3

Part 3 – Add a command database for to_lab

1. Navigate back to the “config/targets/to_lab/cmd_tlm” directory in
COSMOS

2. Open the file “to_lab_cmds.txt”

3. Create a command definition for the TO_LAB_EnableOutput_t
command

• This definition is located in to_lab_msg.h (located in the cFS directory
under apps/to_lab/fsw/src/)

cFS Training- Page 41

Exercise 3 – Part 4

Part 4 – Send commands/receive telemetry from cFS

1. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

1. You may need to click “Update Project CRCs” when COSMOS starts up

2. On the Launcher window, click on “Command and Telemetry Server” and click “OK” on the dialog
that pops up

3. On the Launcher window, click on “Command Sender”

4. In the drop-down list beside target, select TO_LAB. The command field should automatically
update to “TO_LAB_ENABLE”. Click Send.

1. An event message should appear in the cFS window

2. On the “Tlm Packets” tab o the “Command and Telemetry Server” window, the count of “SAMPLE_HK
packets should be incrementing.

5. Click on the “View in Packet Viewer” button beside “SAMPLE_HK”

1. At this point, the “CMD_CNT” field should be “1” if you are still running the same cFS instance as in Exercise
1, or 0 if you restarted cFS

6. Send a SAMPLE_APP NOOP command as in Exercise 1

1. The “CMD_CNT” field in the packet viewer should increment by 1

cFS Training- Page 42

Exercise 3 - Recap

The sample_tlm.txt file:

TELEMETRY SAMPLE SAMPLE_HK BIG_ENDIAN “Sample_app housekeeping telemetry”
APPEND_ID_ITEM STREAM_ID 16 UINT 0x0883 “”

FORMAT_STRING "0x%04X"

APPEND_ITEM SEQUENCE 16 UINT “”

FORMAT_STRING "0x%04X"

APPEND_ITEM PKT_LEN 16 UINT “”

APPEND_ITEM SECONDS 32 UINT “”

APPEND_ITEM SUBSECS 16 UINT “”

APPEND_ITEM CMD_ERRS 8 UINT “Command Counter”

APPEND_ITEM CMD_CNT 8 UINT “Command Error Count”

APPEND_ITEM SPARE 16 UINT “Spares”

cFS Training- Page 43

Exercise 3 - Recap

The to_lab_cmds.txt file:

COMMAND TO_LAB TO_LAB_ENABLE BIG_ENDIAN “TO_Lab enable telemetry”

APPEND_ID_PARAMETER STREAM_ID 16 UINT 0x1880 0x1880 0x1880 “”

APPEND_PARAMETER SEQUENCE 16 UINT 0xC000 MAX_UINT16 0xC000 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER PKT_LEN 16 UINT 0x0001 0x0001 0x0001 “”
FORMAT_STRING "0x%04X"

APPEND_PARAMETER CMD_ID 8 UINT 6 6 6 “”
APPEND_PARAMETER CHECKSUM 8 UINT MIN_UINT8 MAX_UINT8 MIN_UINT8 “”

APPEND_PARAMETER DEST_IP 128 STRING “127.0.0.1” “Destination IP”

cFS Training- Page 44

Exercise 3 - Recap

system.txt

cm
d_

tlm
_

se
rv

e
r.t

xt

cFS Training- Page 45

Exercise 3 - Recap

cFS Training- Page 46

Exercise 3 - Recap

47

National Aeronautics and Space Administration

Creating Telemetry Displays

cFS Training- Page 48

Telemetry Displays

• Provides a way to create custom telemetry displays that can be
used in place of the packet viewer

• Can display values in “human readable” format

• Can display all data types

• By default, will automatically show staleness by graying out
fields

• Provides a number of different layout tags for formatting pages

• Built-in widgets allow custom limit highlighting, graphing, and
trending

• Interactive widgets can be tied to ruby scripts to initiate actions

Reference: https://cosmosrb.com/docs/screens/

cFS Training- Page 49

Location of Telemetry Displays

COSMOS

outputslibconfig toolsprocedures

Ruby
scripts for
advanced
processing

Log files
from

COSMOS
runs

Ruby
scripts for
sending

commands

COSMOS
tools

data

system

targets

tools XX screens

cFS Training- Page 50

Exercise 4

Objective: Create a telemetry display for sample_app

1. Navigate to the config/targets/SAMPLE directory in COSMOS

2. Create a directory called “screens”

3. Inside the “screens” directory, create a file “sample_screen.txt”

4. Develop a screen that displays the sample_app housekeeping packet

• Try to experiment with different layouts

• Try changing the background color of the screen

5. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

1. You may need to click “Update Project CRCs” when COSMOS starts up

6. On the Launcher window, click on “Command and Telemetry Server” and click “OK”
on the dialog that pops up

7. On the Launcher window, click on “Telemetry Viewer”

8. Click on “Show Screen” beside “SAMPLE_SCREEN”

cFS Training- Page 51

Exercise 4 - Recap

cFS Training- Page 52

Exercise 4 - Recap

53

National Aeronautics and Space Administration

Basic Scripting

cFS Training- Page 54

COSMOS Scripts

• COSMOS provides the ability to develop Ruby scripts

• Ruby scripts can reference any defined commands and
telemetry

• This is useful for testing and repeated onboard operations

Reference: https://cosmosrb.com/docs/scripting/

cFS Training- Page 55

Location of Scripts

COSMOS

outputslibconfig toolsprocedures

Ruby
scripts for
advanced
processing

Log files
from

COSMOS
runs

Ruby
scripts for
sending

commands

COSMOS
tools

data

system

targets

tools

cFS Training- Page 56

Exercise 5

Objective: Write and execute a simple script for the sample_app

1. Navigate to the cosmos/procedures directory in COSMOS

2. Create a file called sample_script.rb

3. Write a script that sends a sample_app no-op command and receives the
housekeeping telemetry

4. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

5. On the Launcher window, click on “Command and Telemetry Server” and click “OK”
on the dialog that pops up

6. On the Launcher window, click on “Script Runner”

7. Click “File”  “Open”, navigate to the procedures directory and then select
“sample_script.rb”

8. When the script loads, click “Start” on the script runner window

cFS Training- Page 57

Exercise 5 - Recap

cFS Training- Page 58

Exercise 5 - Recap

59

National Aeronautics and Space Administration

Test Runner

cFS Training- Page 60

Test Runner

• The COSMOS test runner builds on the scripting capability to
create organized, repeatable test suites

– Useful for functional, system, and regression testing

• Provides a pass/fail test summary and detailed test logs

• Tests can be organized and run by “test case”, “test group”,
and “test suite”

– A Test Case is a single test.

– A Test Group is a collection of related tests cases.

– A Test Suite is a collection of test cases and/or test groups.

cFS Training- Page 61

Location of Test Runner

COSMOS

outputslibconfig toolsprocedures

Ruby
scripts for
advanced
processing

Log files
from

COSMOS
runs

Ruby
scripts for
sending

commands

COSMOS
tools

data

system

targets

tools

procedures

Ruby
scripts for
sending

commands

tools

cFS Training- Page 62

Exercise 6

Objective: Write a simple test for the sample_app

This will adapt the simple Ruby script from Exercise 4 into a COSMOS
test suite and test case

1. Navigate to the cosmos/procedures directory in COSMOS

2. Create a file called sample_test.rb

3. Write a test that sends a sample_app no-op command, receives the housekeeping
telemetry, and verifies that the sample_app command counter incremented by 1

• This script should have a test suite and a test case

• Look at example_text.rb for an example of syntax

4. Open the file “config/tools/test_runner/test_runner.txt” and add the line
“LOAD_UTILITY ‘sample_test’”

5. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

6. On the Launcher window, click on “Command and Telemetry Server” and click “OK”
on the dialog that pops up

7. On the Launcher window, click on “Test Runner”

cFS Training- Page 63

Exercise 6 Continued

8. Select “SampleTestSuite” from the drop down list beside “Test Suite”

• The name might be different depending on your exact test script

• The “Test Group” and “Test case” fields should auto-populate

9. Click on “Start” next to the Test Suite

10. Optionally update the “OPERATOR_NAME” field in the dialog that appears and click
“Start Test”

• At this point the test should run, showing the real-time execution of the script in the Test
Runner window

• At the end of the test, a “Results” window will appear with a summary of the tests that passed
and failed

• A detailed output from the script can be found in the “Script Output” panel at the bottom of the
Test Runner window

cFS Training- Page 64

Exercise 6 - Recap

test_runner.txt

cFS Training- Page 65

Exercise 6 - Recap

sample_test.txt

Creates a Test Suite and
adds one Test Group to it

Creates a single Test
Case.

Note that test cases must
start with “test”

Creates a Test Group to
which individual test
cases can be added

cFS Training- Page 66

Exercise 6 – Recap

cFS Training- Page 67

Exercise 6 - Recap

	Template.pdf
	TM 20205000691 REV 1.pdf
	ADP60BF.tmp
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

	Blank Page

