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Course Agenda

1. Introduction

2. cFE Services

a) Executive Services

b) Software Bus

c) Event Services

d) Time Services

e) Table Services

3. Application Layer

a) cFS Applications

b) cFS Libraries

4. [Optional] Integration with COSMOS
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cFS and COSMOS

• cFS has been used with several ground systems

• ASIST

• ITOS

• COSMOS

• COSMOS is an open-source ground system solution

• https://cosmosrb.com/

This module will show how to 
operate cFS with COSMOS
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Module Agenda

• Getting Started

• Defining Commands 

• Defining Telemetry

• Creating Telemetry Displays

• Basic Scripting

• Test Runner
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Module Prerequisites

• Have a running cFS build environment that includes the cFS 
sample_app

– This is the result of completing Exercise 1 in the main cFS training 
package

• Have COSMOS installed on development machine

– Installation instructions here: https://cosmosrb.com/docs/installation/
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Exercise 0 – Build and Run the cFE

Part 1 - Setup
To setup the cFS Bundle directly from the latest set of interoperable repositories:

git clone https://github.com/nasa/cFS.git

cd cFS

git checkout bootes-rc2

git submodule init

git submodule update

Copy in the default makefile and definitions:

cp cfe/cmake/Makefile.sample Makefile

cp -r cfe/cmake/sample_defs sample_defs

If running on a standard Linux build as a normal user, allow OSAL “permissive mode” for best effort message queue 
depth and task priorities.

• Open the sample_defs/default_osconfig.cmake file 

• Find the “OSAL_CONFIG_DEBUG_PERMISSIVE_MODE” parameter and set it to TRUE

Subsequent exercises assume 
that cFS was cloned into the 

home directory (“~/cFS”)
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Exercise 0 – Build and Run the cFE

Part 2 – Build and Run
The cFS Framework, including sample applications, will build and run on the pc-linux platform support package (should 
run on most Linux distributions), via the steps described in 
https://github.com/nasa/cFE/tree/master/cmake/README.md.  Quick-start is below:

To prep, compile, and run (from cFS directory above):

make prep

make

make install

cd build/exe/cpu1/

./core-cpu1

Should see startup messages and CFE_ES_Main entering OPERATIONAL state.  Note the code must be executed from 
the build/exe/cpu1 directory to find the startup script and shared objects.



cFS Training- Page 10

Exercise 0 Recap

cFE Version

cFE 
Services 
Started
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Navigating COSMOS
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Terms

• Target – a destination for commands and/or a source of 
telemetry

– When communicating with cFS, each cFS app is typically a target

– Much of COSMOS is organized around targets

• Tool – one of the main “out of the box” components of COSMOS

– Everything on the “Launcher” screen is a tool

– Each tool can be configured

– The “Command and Telemetry Server” must be running in order to use 
the other tools

• Interface – mechanism by which COSMOS communicates with a 
given target
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System Configuration
(system.txt)

Must either auto declare (all targets) 
or declare each target individually.  
Typically needs to be modified in a 

real system

Connection details.  Can often be 
left unchanged.

Scripts that read and write log files.  
Can be changed or left as-is.

Default locations of log files.  Can 
often be left unchanged.
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Command/Telemetry Server Configuration
(cmd_tlm_server.txt)

Configure the log writer.  Note that 
the ruby script is the same one 

specified in system.txt

Alternate ways of defining 
interfaces. Each target must be 

associated with an interface in order 
to be used.  Interfaces are often 

customized, though there are some 
built-in choices. 

Optional router specification

Optional background task
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Exercise 1 – Create a new target 

Objective:  Create a new target for the sample app

Part 1 – Add sample_app to COSMOS
1. Navigate to the config/targets directory in COSMOS

2. Create a directory called “SAMPLE”

3. Enter the “SAMPLE” directory

4. Create a file called “target.txt”

5. Navigate to the directory “cosmosdemo/config/system”

6. Open the file “system.txt” and add the line “DECLARE_TARGET SAMPLE”

• This tells COSMOS to look for the target you just created

7. Navigate to the directory “cosmosdemo/config/tools/cmd_tlm_server”

8. Open the “cmd_tlm_server.txt” file

9. Under the PACKET LOG WRITER section, create a LOCAL interface, add the line “TARGET 
sample” under it

INTERFACE LOCAL udp_interface.rb 127.0.0.1 1234 1235 nil nil 128 nil nil

TARGET sample

• For simplicity you can delete everything in the “cmd_tlm_server.txt” file below the LOCAL 
interface
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Exercise 1 – Part 2

Part 2 – Launch COSMOS

1. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

• You may need to click “Update Project CRCs” when COSMOS starts up

2. Click on “Command and Telemetry Server” and click “OK” on the dialog that pops up

Successful startup confirms 
that Part 1 was done correctly.
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Exercise 1 - Recap
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Command Databases

• A command database defines the commands that can be sent to 
flight software

• COSMOS uses text-based command databases

• These databases must specify every field in a command (even 
those that don’t change)
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Location of Command Database
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Relationship with cFS

• The COSMOS command database generally relies on the 
following files in a cFS app:

– XX_msg.h

– XX_msgids.h

– XX_msgdefs.h

• Each command message structure defined in XX_msg.h should 
be defined in the command database

• The XX_msgids.h and XX_msgdefs.h files are used to find 
arguments to commands

– MsgID, Command Code, etc.
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Defining a Command Database

• The command database file resides in the cmd_tlm folder under 
the target

• In the file, each command starts with a COMMAND tag
COMMAND <Target> <Command Name> <Endianness> <Description>

• Under the COMMAND tag, each parameter is appended to the 
command

– Using APPEND_ID_PARAMETER or APPEND_PARAMETER

Reference: https://cosmosrb.com/docs/command/
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Review: cFE Software Bus Messages

• By default Consultative Committee for Space Data Systems 
(CCSDS) packets used to implement messages

• CCSDS Primary Header (Always big endian)

• CCSDS Command Packets
‒ Secondary packet header contains a 

command function code
• CCSDS Telemetry Packets

‒ Secondary packet header contains a 
time stamp of when the data was 
produced

typedef struct{

CCSDS_PriHdr_t     Pri;

CCSDS_CmdSecHdr_t  Sec;

} CFE_SB_CmdHdr_t;

typedef struct{

CCSDS_PriHdr_t     Pri;

CCSDS_TlmSecHdr_t  Sec;

} CFE_SB_TlmHdr_t;
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No-Op Example

• Sample_app No-Op Command in cFS:
typedef struct

{

uint8    CmdHeader[CFE_SB_CMD_HDR_SIZE];

} SAMPLE_NoArgsCmd_t;

• Sample_app No-Op Command in COSMOS:
COMMAND SAMPLE SAMPLE_NOOP BIG_ENDIAN “Sample_app NOOP Command”    

APPEND_ID_PARAMETER STREAM_ID 16 UINT  0x1882    0x1882 0x1882 “” 

APPEND_PARAMETER    SEQUENCE 16 UINT  0xC000    MAX_UINT16 0xC000    “” 
FORMAT_STRING "0x%04X"                                         

APPEND_PARAMETER    PKT_LEN  16 UINT  0x0001    0x0001 0x0001 “” 
FORMAT_STRING "0x%04X"                                                                  

APPEND_PARAMETER    CMD_ID   8  UINT  0         0          0         “” 
APPEND_PARAMETER    CHECKSUM 8  UINT  MIN_UINT8 MAX_UINT8  MIN_UINT8 “”

SAMPLE_APP_CMD_MID 
from sample_app_msgids.h
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Other Command Parameters

• Command parameters can have types INT, UINT, FLOAT, 
DERIVED, STRING, BLOCK

• Parameter ranges are specified with Minimum, Maximum, and 
Default values

• For numbers, FORMAT_STRING specifies the input format of 
the number

– Ex. "0x%04X" specifies input in hexadecimal

• Parameters can also be selected from a drop down list using the 
STATE tag
APPEND_PARAMETER ENABLE 32 UINT 0 1 0 "Enable setting"

STATE FALSE 0

STATE TRUE 1
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Exercise 2 – Part 1

Objective:  Create a command database for sample_app and send 
commands to cFS  (2 parts total)

Part 1 – Add sample_app to COSMOS
1. Navigate to the config/targets/SAMPLE directory in COSMOS

2. Inside “target.txt”, add the following line: COMMANDS sample_cmds.txt
• Note: This file tells COSMOS the name of the file containing the command database

3. Inside the “SAMPLE” directory”, create a “cmd_tlm” directory

4. Inside the “cmd_tlm” directory, create a file “sample_cmds.txt”

5. Open the file sample_cmds.txt

6. Create a command definition for each command in sample_app_msg.h

• You should have a total of 3 commands

• They will be similar to the No-Op command example

• sample_app_msg.h is located in the cFS tree at apps/sample_app/fsw/src/sample_app_msg.h
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Exercise 2 – Part 2

Part 2 – Send commands to sample_app

1. In a different terminal window, start the cFS

1. Leave this running, but put the window aside and return to the terminal window with COSMOS

2. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

1. You may need to click “Update Project CRCs” when COSMOS starts up

3. Click on “Command and Telemetry Server” and click “OK” on the dialog that pops up

4. Click on the “Cmd Packets” tab and scroll down until you see the target SAMPLE on the left

5. Click on the “View in Command Sender” button beside “SAMPLE_NOOP”

6. Click “Send” on the Command Sender window

1. A no-op event message should show up in the cFS terminal window
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Exercise 2 - Recap

The sample_cmds.txt file:
COMMAND SAMPLE SAMPLE_NOOP BIG_ENDIAN “Sample_app NOOP Command”    

APPEND_ID_PARAMETER STREAM_ID 16 UINT  0x1882    0x1882 0x1882 “” 

APPEND_PARAMETER    SEQUENCE  16 UINT  0xC000    MAX_UINT16 0xC000    “” 
FORMAT_STRING "0x%04X"                                                                   

APPEND_PARAMETER    PKT_LEN   16 UINT  0x0001    0x0001 0x0001 “” 
FORMAT_STRING "0x%04X"                                                                  

APPEND_PARAMETER    CMD_ID    8  UINT  0         0          0         “” 
APPEND_PARAMETER    CHECKSUM  8  UINT  MIN_UINT8 MAX_UINT8  MIN_UINT8 “”

COMMAND SAMPLE SAMPLE_RESET BIG_ENDIAN “Sample_app Reset Counters Command”    

APPEND_ID_PARAMETER STREAM_ID 16 UINT  0x1882    0x1882 0x1882 “” 

APPEND_PARAMETER    SEQUENCE  16 UINT  0xC000    MAX_UINT16 0xC000    “” 
FORMAT_STRING "0x%04X"                                                                   

APPEND_PARAMETER    PKT_LEN   16 UINT  0x0001    0x0001 0x0001 “” 
FORMAT_STRING "0x%04X"                                                                  

APPEND_PARAMETER    CMD_ID    8  UINT  1         1          1         “” 
APPEND_PARAMETER    CHECKSUM  8  UINT  MIN_UINT8 MAX_UINT8  MIN_UINT8 “”

COMMAND SAMPLE SAMPLE_PROCESS BIG_ENDIAN “Sample_app Process Command”    

APPEND_ID_PARAMETER STREAM_ID 16 UINT  0x1882    0x1882 0x1882 “” 

APPEND_PARAMETER    SEQUENCE  16 UINT  0xC000    MAX_UINT16 0xC000    “” 
FORMAT_STRING "0x%04X"                                                                   

APPEND_PARAMETER    PKT_LEN   16 UINT  0x0001    0x0001 0x0001 “” 
FORMAT_STRING "0x%04X"                                                                  

APPEND_PARAMETER    CMD_ID    8  UINT  2         2          2         “” 
APPEND_PARAMETER    CHECKSUM  8  UINT  MIN_UINT8 MAX_UINT8  MIN_UINT8 “”
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Exercise 2 - Recap



cFS Training- Page 31

Exercise 2 - Recap
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Telemetry Databases

• A telemetry database defines the telemetry that can be received 
from the flight software

• COSMOS uses text-based telemetry databases

• These databases must specify every field in a telemetry packet

• The database must also tell COSMOS how to identify the packet
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Location of Telemetry Database
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Relationship with cFS

• The COSMOS telemetry database generally relies on the 
following files in a cFS app:

– XX_msg.h

– XX_msgids.h

• Each telemetry message structure defined in XX_msg.h should 
be defined in the telemetry database

• The XX_msgids.h file is used to find the message ID
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Defining a Telemetry Database

• The telemetry database file resides in the cmd_tlm folder under 
the target

• In the file, each command starts with a TELEMETRY tag
TELEMETRY <Target> <Packet Name> <Endianness> <Description>

• Under the TELEMETRY tag, each telemetry item is appended to 
the packet

– Using APPEND_ID_ITEM or APPEND_ITEM

Reference: https://cosmosrb.com/docs/telemetry/
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HK Example

• Sample_app housekeeping telemetry in cFS:
typedef struct {

uint8           TlmHeader[CFE_SB_TLM_HDR_SIZE];

SAMPLE_HkTlm_Payload_t Payload;

} OS_PACK SAMPLE_HkTlm_t;

• Sample_app housekeeping packet in COSMOS:
TELEMETRY SAMPLE SAMPLE_HK BIG_ENDIAN “Sample_app housekeeping telemetry”    

APPEND_ID_ITEM STREAM_ID 16 UINT  0x0883 “” 

APPEND_ITEM    SEQUENCE 16 UINT “” 

APPEND_ITEM    PKT_LEN  16 UINT “” 

APPEND_ITEM    SECONDS   32 UINT “” 

APPEND_ITEM    SUBSECS   16 UINT “”

APPEND_ITEM    CMD_CNT   8  UINT “Command Counter”

APPEND_ITEM    CMD_ERRS  8  UINT “Command Error Count”

APPEND_ITEM    SPARE     16 UINT “Spares”

SAMPLE_APP_HK_TLM_MID 
from sample_app_msgids.h
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Exercise 3

• Objective:  Create a telemetry database for sample_app and get 
telemetry from cFS (4 parts)

Part 1 – Add the sample_app HK packet

1. Navigate to the config/targets/sample directory in COSMOS

2. Open the target.txt file and add the line “TELEMETRY 
sample_tlm.txt”

3. Inside the “cmd_tlm” directory, create a file “sample_tlm.txt”

4. Add the definition for the sample_app housekeeping packet
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Exercise 3 – Part 2

Part 2 – Add a target for TO_Lab

This is necessary because we need to enable telemetry in cFS before 
we will see it in COSMOS.  

1. Navigate to the config/targets directory in COSMOS

2. Create a directory called “TO_LAB”

3. Enter the “TO_LAB” directory

4. Create a file called “target.txt”

5. Inside “target.txt”, add the following line: COMMANDS to_lab_cmds.txt

6. Inside the “TO_LAB” directory”, create a “cmd_tlm” directory

7. Inside the “cmd_tlm” directory, create a file “to_lab_cmds.txt”

8. Navigate to the directory “cosmosdemo/config/tools/cmd_tlm_server”

9. Open the “cmd_tlm_server.txt” file

10. Under the LOCAL interface, add the line “TARGET TO_LAB”

11. Navigate to the directory “cosmosdemo/config/system”

12. Open the “system.txt” file and add “DECLARE_TARGET TO_LAB”

Same process used to 
add the “SAMPLE” 
target in Exercise 1
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Exercise 3 – Part 3

Part 3 – Add a command database for to_lab

1. Navigate back to the “config/targets/to_lab/cmd_tlm” directory in 
COSMOS

2. Open the file “to_lab_cmds.txt”

3. Create a command definition for the TO_LAB_EnableOutput_t
command

• This definition is located in to_lab_msg.h (located in the cFS directory 
under apps/to_lab/fsw/src/)
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Exercise 3 – Part 4

Part 4 – Send commands/receive telemetry from cFS

1. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

1. You may need to click “Update Project CRCs” when COSMOS starts up

2. On the Launcher window, click on “Command and Telemetry Server” and click “OK” on the dialog 
that pops up

3. On the Launcher window, click on “Command Sender”

4. In the drop-down list beside target, select TO_LAB.  The command field should automatically 
update to “TO_LAB_ENABLE”.  Click Send.

1. An event message should appear in the cFS window

2. On the “Tlm Packets” tab o the “Command and Telemetry Server” window, the count of “SAMPLE_HK 
packets should be incrementing.

5. Click on the “View in Packet Viewer” button beside “SAMPLE_HK”

1. At this point, the “CMD_CNT” field should be “1” if you are still running the same cFS instance as in Exercise 
1, or 0 if you restarted cFS

6. Send a SAMPLE_APP NOOP command as in Exercise 1

1. The “CMD_CNT” field in the packet viewer should increment by 1
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Exercise 3 - Recap

The sample_tlm.txt file:

TELEMETRY SAMPLE SAMPLE_HK BIG_ENDIAN “Sample_app housekeeping telemetry”    
APPEND_ID_ITEM STREAM_ID 16 UINT  0x0883 “”

FORMAT_STRING "0x%04X" 

APPEND_ITEM    SEQUENCE  16 UINT “” 

FORMAT_STRING "0x%04X" 

APPEND_ITEM    PKT_LEN   16 UINT “” 

APPEND_ITEM    SECONDS   32 UINT “” 

APPEND_ITEM    SUBSECS   16 UINT “”

APPEND_ITEM    CMD_ERRS  8  UINT “Command Counter”

APPEND_ITEM    CMD_CNT   8  UINT “Command Error Count”

APPEND_ITEM    SPARE     16 UINT “Spares”
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Exercise 3 - Recap

The to_lab_cmds.txt file:

COMMAND TO_LAB TO_LAB_ENABLE BIG_ENDIAN “TO_Lab enable telemetry”    

APPEND_ID_PARAMETER STREAM_ID 16 UINT  0x1880    0x1880 0x1880 “” 

APPEND_PARAMETER    SEQUENCE  16 UINT  0xC000    MAX_UINT16 0xC000    “” 
FORMAT_STRING "0x%04X"                                                                   

APPEND_PARAMETER    PKT_LEN   16 UINT  0x0001    0x0001 0x0001 “” 
FORMAT_STRING "0x%04X"                                                                  

APPEND_PARAMETER    CMD_ID    8  UINT  6         6          6         “” 
APPEND_PARAMETER    CHECKSUM  8  UINT  MIN_UINT8 MAX_UINT8  MIN_UINT8 “”

APPEND_PARAMETER    DEST_IP   128 STRING “127.0.0.1” “Destination IP”
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Exercise 3 - Recap
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Exercise 3 - Recap
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Exercise 3 - Recap
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Telemetry Displays

• Provides a way to create custom telemetry displays that can be 
used in place of the packet viewer

• Can display values in “human readable” format

• Can display all data types

• By default, will automatically show staleness by graying out 
fields

• Provides a number of different layout tags for formatting pages

• Built-in widgets allow custom limit highlighting, graphing, and 
trending

• Interactive widgets can be tied to ruby scripts to initiate actions

Reference: https://cosmosrb.com/docs/screens/
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Location of Telemetry Displays
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Exercise 4

Objective:  Create a telemetry display for sample_app

1. Navigate to the config/targets/SAMPLE directory in COSMOS

2. Create a directory called “screens”

3. Inside the “screens” directory, create a file “sample_screen.txt”

4. Develop a screen that displays the sample_app housekeeping packet

• Try to experiment with different layouts

• Try changing the background color of the screen

5. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

1. You may need to click “Update Project CRCs” when COSMOS starts up

6. On the Launcher window, click on “Command and Telemetry Server” and click “OK” 
on the dialog that pops up

7. On the Launcher window, click on “Telemetry Viewer”

8. Click on “Show Screen” beside “SAMPLE_SCREEN”
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Exercise 4 - Recap
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Exercise 4 - Recap
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COSMOS Scripts

• COSMOS provides the ability to develop Ruby scripts 

• Ruby scripts can reference any defined commands and 
telemetry

• This is useful for testing and repeated onboard operations

Reference: https://cosmosrb.com/docs/scripting/
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Location of Scripts
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Exercise 5

Objective:  Write and execute a simple script for the sample_app

1. Navigate to the cosmos/procedures directory in COSMOS

2. Create a file called sample_script.rb

3. Write a script that sends a sample_app no-op command and receives the 
housekeeping telemetry

4. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

5. On the Launcher window, click on “Command and Telemetry Server” and click “OK” 
on the dialog that pops up

6. On the Launcher window, click on “Script Runner”

7. Click “File”  “Open”, navigate to the procedures directory and then select 
“sample_script.rb”

8. When the script loads, click “Start” on the script runner window
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Exercise 5 - Recap
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Exercise 5 - Recap
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Test Runner
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Test Runner

• The COSMOS test runner builds on the scripting capability to 
create organized, repeatable test suites

– Useful for functional, system, and regression testing

• Provides a pass/fail test summary and detailed test logs

• Tests can be organized and run by “test case”, “test group”, 
and “test suite”

– A Test Case is a single test.

– A Test Group is a collection of related tests cases.

– A Test Suite is a collection of test cases and/or test groups.
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Location of Test Runner
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Exercise 6

Objective:  Write a simple test for the sample_app

This will adapt the simple Ruby script from Exercise 4 into a COSMOS 
test suite and test case

1. Navigate to the cosmos/procedures directory in COSMOS

2. Create a file called sample_test.rb

3. Write a test that sends a sample_app no-op command, receives the housekeeping 
telemetry, and verifies that the sample_app command counter incremented by 1

• This script should have a test suite and a test case

• Look at example_text.rb for an example of syntax

4. Open the file “config/tools/test_runner/test_runner.txt” and add the line 
“LOAD_UTILITY ‘sample_test’”

5. Enter the main Cosmos directory and launch COSMOS with “ruby Launcher”

6. On the Launcher window, click on “Command and Telemetry Server” and click “OK” 
on the dialog that pops up

7. On the Launcher window, click on “Test Runner”
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Exercise 6 Continued

8. Select “SampleTestSuite” from the drop down list beside “Test Suite”

• The name might be different depending on your exact test script

• The “Test Group” and “Test case” fields should auto-populate

9. Click on “Start” next to the Test Suite

10. Optionally update the “OPERATOR_NAME” field in the dialog that appears and click 
“Start Test”

• At this point the test should run, showing the real-time execution of the script in the Test 
Runner window

• At the end of the test, a “Results” window will appear with a summary of the tests that passed 
and failed

• A detailed output from the script can be found in the “Script Output” panel at the bottom of the 
Test Runner window
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Exercise 6 - Recap

test_runner.txt
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Exercise 6 - Recap

sample_test.txt

Creates a Test Suite and 
adds one Test Group to it

Creates a single Test 
Case.

Note that test cases must 
start with “test”

Creates a Test Group to 
which individual test 
cases can be added
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Exercise 6 – Recap
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Exercise 6 - Recap
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