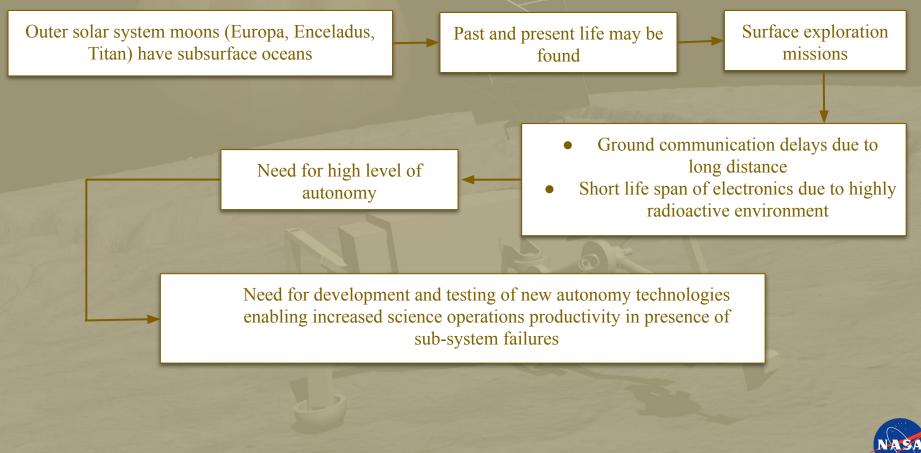


OceanWATERS Lander Robotic Arm Operation

<u>Damiana Catanoso</u>¹, <u>Anjan Chakrabarty</u>², <u>Jason Fugate</u>², <u>Ussama Naal</u>², <u>Terence M. Welsh</u>³, <u>Laurence J. Edwards</u>⁴ ¹Universities Space Research Association, ²KBR, ³Logyx LLC, ⁴NASA Ames Research Center



PRESENTATION OUTLINE

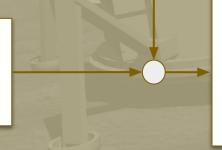
- The OceanWATERS simulation testbed
 - Europa Lander system
 - Robotic arm description
 - Modes of operation
 - Power consumption
 - Arm-terrain interaction
 - Conclusions and future work

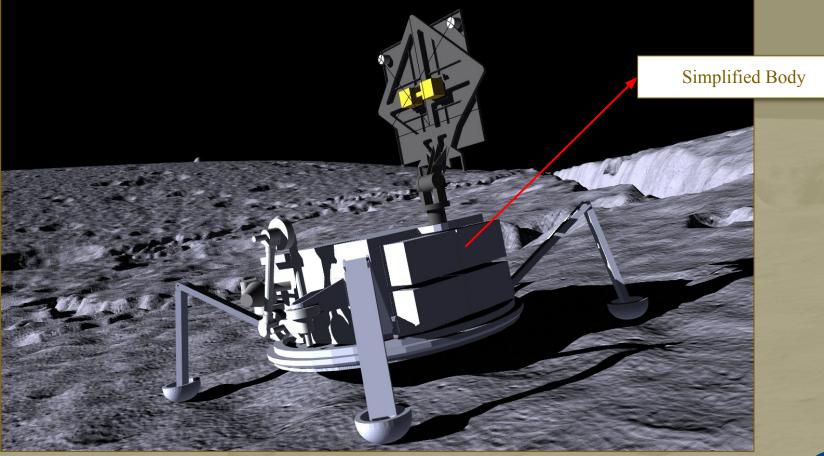
BACKGROUND AND MOTIVATION

THE OCEANWATERS SIMULATION TESTBED

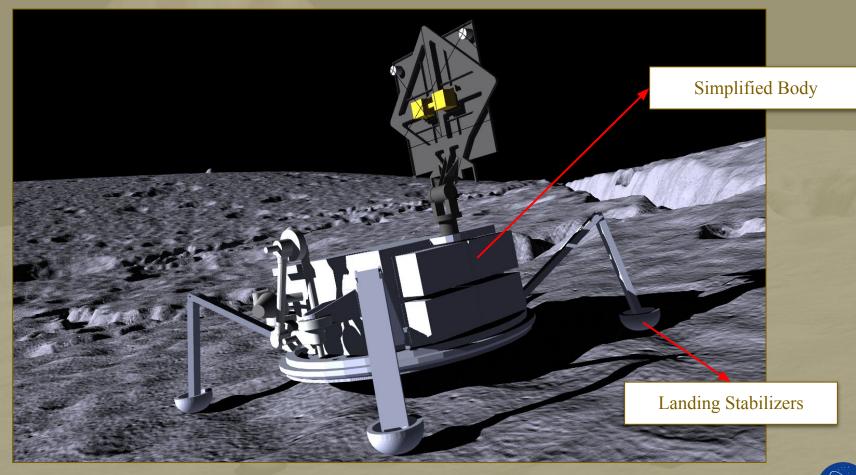
Jet Propulsion Laboratory California Institute of Technology

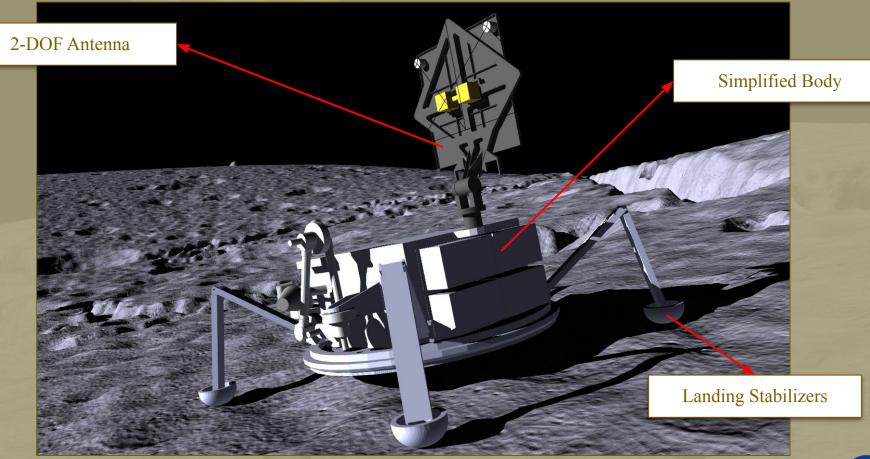
Physical testbed for validation

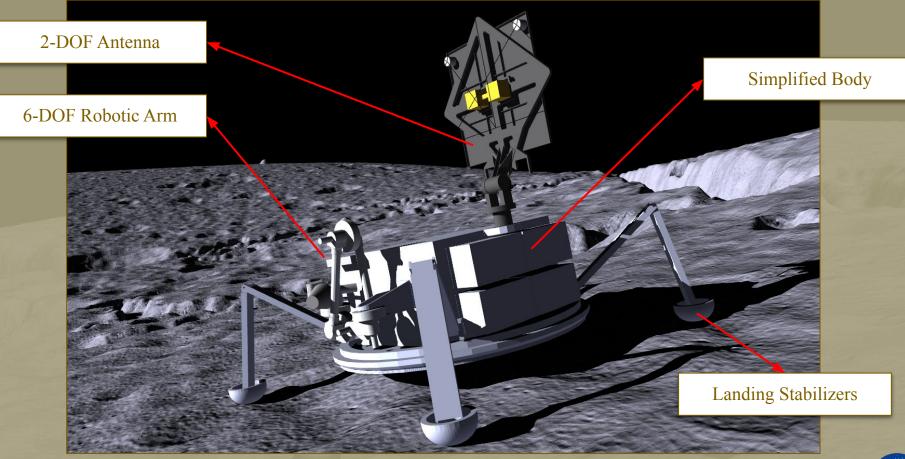


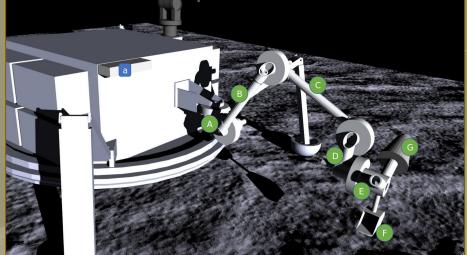

Europa Lander reference mission

- Lander model in simulation environment
 Test autonomous operations in presence of
 - Test autonomous operations in presence of sub-system failures
 - Based on the Robot Operating System (ROS) and Gazebo
 - Open source on GitHub

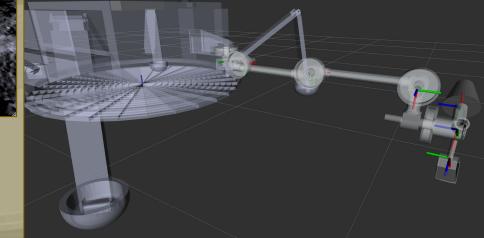



Ocean Worlds Autonomy Testbed for Exploration Research and Simulation OceanWATERS





NASA


THE ARM

Robotic arm links:

A) Shoulder link,
B) Proximal link,
C) Distal link,
D) Wrist link,
E) Hand link,
G) Grinder link,
a) Sample transfer dock

Base_link and the robotic arm link frames

MOTION PLANNING AND EXECUTION

ROS Service:

- define motion planning problem through Python API
- Set final and intermediate goal states in joint or Cartesian space

.py files

MoveIt motion planner:

- solves the planning problem
- Outputs a "plan" to get to each goal state.
- Each plan is a joint space position/velocity/acceleration trajectory that the arm should follow to get to each goal state

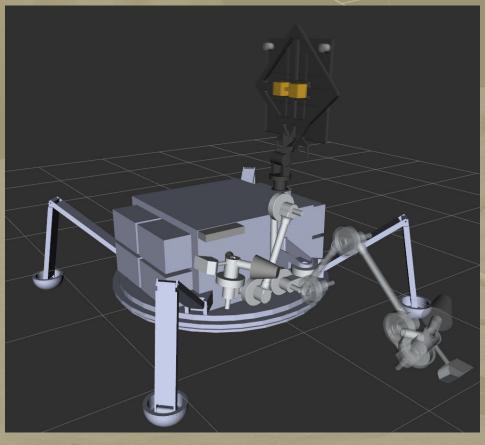
Publish Trajectory:

- ROS service
- Reads .csv file and publishes desired joint states on a specific topic for the controllers to activate it

.csv file

Fake controller:

- Interpolates trajectory position points
- Records interpolated trajectory in a .csv file

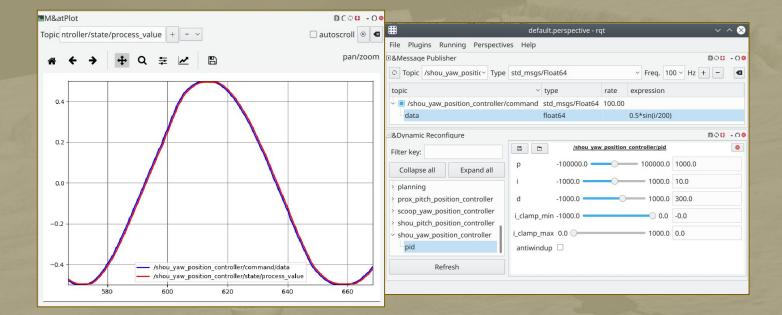


OceanWATERS Lander Robotic Arm Operation

plans

MOTION PLANNING AND EXECUTION

Rviz: "ghost" arm for planning VS real arm (solid arm):

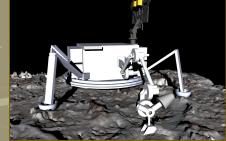


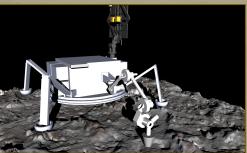
JOINT CONTROLLERS

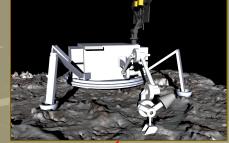
- Proportional Integral Derivative (PID) controllers for all joints

- Tuning using rqt plugins:
 - Dynamic reconfigure
 - Message publisher
 - Plotting tool

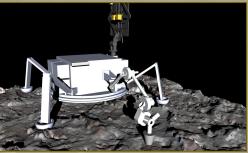
Name	Planned movement			
Unstow	Unstow arm			
Guarded_move	Perform a guarded move			
Grind	create a Trench grinding solid ice			
Dig_circular	Collect sample with circular motion			
Dig_linear	Collect sample with rasping motion			
Deliver_sample	Sample delivery and discard			
Stow	Stow arm			

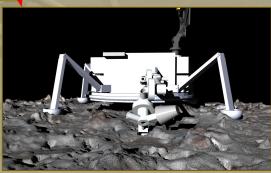



Name	Planned movement				
Unstow	Unstow arm				
Guarded_move	Perform a guarded move				
Grind	create a Trench grinding solid ice				
Dig_circular	Collect sample with circular motion				
Dig_linear	Collect sample with rasping motion				
Deliver_sample	Sample delivery and discard				
Stow	Stow arm				

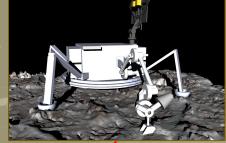


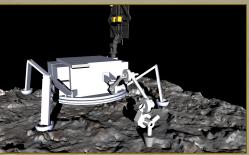
Name	Planned movement			
Unstow	Unstow arm			
Guarded_move	Perform a guarded move			
Grind	create a Trench grinding solid ice _			
Dig_circular	Collect sample with circular motion			
Dig_linear	Collect sample with rasping motion			
Deliver_sample	Sample delivery and discard			
Stow	Stow arm			

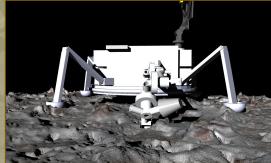




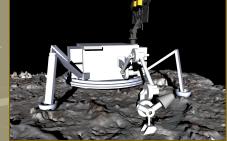
Planned movement Name Unstow arm Unstow Guarded_move Perform a guarded move create a Trench grinding solid ice -Grind Collect sample with circular motion, Dig_circular Collect sample with rasping motion Dig_linear Deliver_sample Sample delivery and discard Stow Stow arm

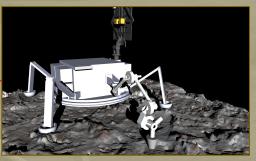


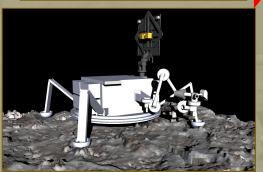


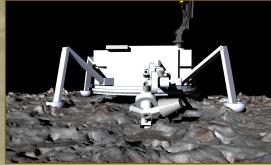


Planned movement Name Unstow arm Unstow Guarded_move Perform a guarded move Grind create a Trench grinding solid ice -Collect sample with circular motion, Dig_circular Dig_linear Collect sample with rasping motion Deliver_sample Sample delivery and discard Stow Stow arm

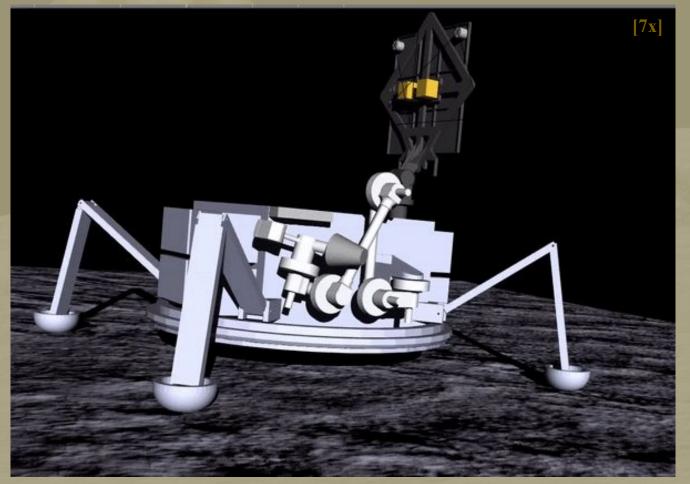




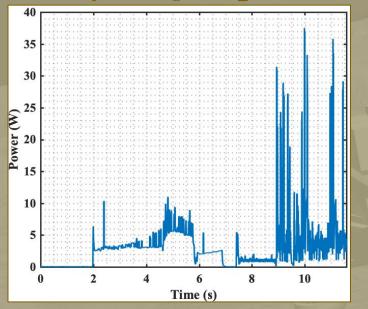




Planned movement Name Unstow arm Unstow Guarded_move Perform a guarded move Grind create a Trench grinding solid ice -Collect sample with circular motion, Dig_circular Dig_linear Collect sample with rasping motion Deliver_sample Sample delivery and discard Stow Stow arm



REFERENCE MISSION 1


POWER CONSUMPTION

Energy consumption estimation for each operation mode needed for:

Design: evaluate overall power requirements

Operation: decision making based on remaining battery level

Power required for guarded move:

Estimate power for each joint from instantaneous torque and angular speed: $P(k)_i = \tau_i(k)\dot{\theta}_i(k)$

Calculate total consumed power, sum $P(k)_i$

Estimate energy for a maneuver $(t_f - t_0)$ long $E = \sum_{t_0}^{t_f} P(k) dt_k$

ARM-TERRAIN INTERACTION

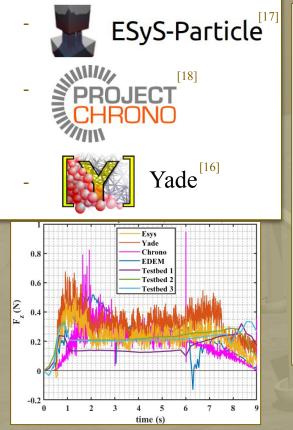
Analysis of Sample Acquisition Dynamics Using Discrete Element Method

Run simulations in **EDEM**^[19] commercial software, varying set of parameters

Embed data in lookup table

- Terrain types: ice, snow, sand
- Sample collection:
 - Circular-linear-circular
 - Multiple passes
 - Increasing depth between passes

Include in OceanWATERS open source DEM solution User runs customized simulations on demand


Embed data in lookup table

Parallel DEM-Gazebo simulation

Include it in Gazebo through dedicated plugin

Open source DEM software candidates:

ARM TERRAIN INTERACTION

Parameters, weights and total score for comparison, evaluation and selection of most suitable open source DEM software for integration in OceanWATERS:

Parameter name	EDEM	YADE	ESyS-Particle	Chrono	Weight
Scripting wrappers	1	1	1	0	0.65
C++ API	0	1	1	1	0
Limit in number of particles	0	0	0	0	0
Particle bonding	1	1	1	0	1
Polyhedral particle shape	0	1	0	1	0.5
Multi-sphere particle	1	1	1	0	0.8
Parallel computations	1	1	1	1	0
Super-computer suitable	0	0	1	1	0.4
Clear documentation	1	1	0.5	1	0.6
Active community	1	0.8	0.6	0.7	0.75
GPU capable	1	1	0	0.5	0.5
Fx normalized Score Compared to EDEM	1	0	1	0.56	0.9
Fy normalized Score Compared to EDEM	1	0.36	0	1	0.2
Fz normalized Score Compared to EDEM	1	0	0.68	1	0.7
Fx normalized Score Compared to Testbed	0.68	1	0	0.23	0.45
Fy normalized Score Compared to Testbed	1	0	0.25	0.92	0.05
Fz normalized Score Compared to Testbed	0	0.42	1	0.77	0.15
Total	0.84	0.68	0.67	052	N/A

Highest score: Yade

CONCLUSION

- OceanWATERS: a ocean worlds simulation testbed to test performance of autonomy algorithms under injected faults for surface exploration missions, based on Robot Operating System, open source on GitHub
- Europa Lander chosen as reference mission. Simplified lander model has: body, antenna, landing stabilizers, stereo camera, 6-DOF robotic arm with two end effectors: scoop, grinder
- Arm motion is planned and executed using ROS Services and the MoveIt planner
- Modes of operation are: unstow, guarded move, grind, dig circular, dig linear, deliver/discard sample, stow
- Power consumed by joints motors during operation is estimated
- Yade has been selected as open source DEM to determine dynamic feedback from terrain to scoop

FUTURE WORK

- Transition from a single-joint position controller to a collective trajectory (position+velocity) controller in OceanWATERS' Release 7
- Development of fault injection/system state interrogation facility
- Implementation of Yade-Gazebo co-simulation plugin

REFERENCES

- accessed [7] [1] "Oceanwaters github," on last 15 January 2021. [Online]. Available: https://github.com/nasa/ow_simulator/
- [2] L. Fluckiger and C. Neukom, "A new simulation framework for autonomy in robotic missions," in IEEE/RSJ International Conference on Intelligent Robots and Sys-[8] tems, vol. 3. IEEE, 2002, pp. 3030-3035.
- [3] L. Edwards, M. Sims, C. Kunz, D. Lees, and J. Bowman, "Photo-realistic terrain modeling and visualization for mars exploration rover science operations," in 2005 IEEE International Conference on Systems, Man and [9] Cybernetics, vol. 2. IEEE, 2005, pp. 1389–1395.
- [4] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J.-J. Hsu, A. Jonsson, B. Kanefsky, P. Morris, K. Rajan, J. Yglesias et al., "Mapgen: mixed-initiative planning and scheduling for the mars exploration rover mission," IEEE Intelligent Systems, vol. 19, no. 1, pp. 8–12, 2004. [10] C. Acton, N. Bachman, B. Semenov, and E. Wright,
- [5] M. Allan, U. Wong, P. M. Furlong, A. Rogg, S. McMichael, T. Welsh, I. Chen, S. Peters, B. Gerkey, M. Quigley et al., "Planetary rover simulation for lunar exploration missions," in 2019 IEEE Aerospace Conference. IEEE, 2019, pp. 1-19.
- [6] D. R. Andrews, A. Colaprete, J. Quinn, D. Chavers, [12] R. Arvidson, R. Bonitz, M. Robinson, J. Carsten, and M. Picard, "Introducing the resource prospector (rp) mission," in AIAA SPACE 2014 Conference and Exposition, 2014, p. 4378.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, "Ros: an opensource robot operating system," in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, [13] 2009, p. 5.

K. Hand, A. Murray, J. Garvin, W. Brinckerhoff, B. Christner, K. Edgett, B. Ehlmann, C. German, [14] S. M. LaValle, Planning algorithms. A. Hayes, T. Hoehler et al., "Europa lander study 2016 report: Europa lander mission," NASA Jet Propuls. Lab., La Cañada Flintridge, CA, USA, Tech. Rep. JPL D- [15] 97667, 2017.

- O. M. Umurhan, M. B. Allan, L. J. Edwards, A. Tardy, T. M. Welsh, and U. Wong, "High resolution digital elevation models of the devil's golf course: a possible [16] terrestrial analog of europa's surface," AGUFM, vol. 2019, pp. P53C-3468, 2019.
- "Spice tools supporting planetary remote sensing," [17] 2016.
- of sample acquisition dynamics using discrete element method," in 2020 IEEE Aerospace Conference. IEEE, 2020, pp. 1-11.
- R. Volpe, A. Trebi-Ollennu, M. Mellon, P. Chu,

K. Davis, J. Wilson et al., "Results from the mars [19]

phoenix lander robotic arm experiment," Journal of Geophysical Research: Planets, vol. 114, no. E1, 2009.

S. Chitta, I. Sucan, and S. Cousins, "Moveit! [ros topics]," IEEE Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

Cambridge university press, 2006.

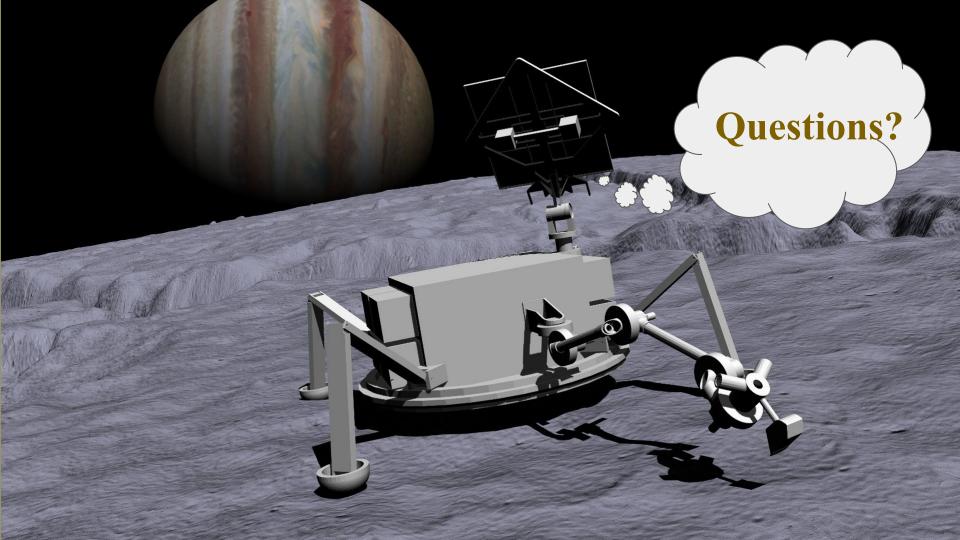
T. Foote, "tf: The transform library," in Technologies for Practical Robot Applications (TePRA), 2013 IEEE International Conference on, ser. Open-Source Software workshop, April 2013, pp. 1-6.

J. Kozicki and F. V. Donze, "Yade-open dem: An opensource software using a discrete element method to simulate granular material," Engineering Computations, 2009.

D. Weatherley, "Esys-particle v2. 0 user's guide," 2009.

- D. Catanoso, T. Stucky, J. Case, and A. Rogg, "Analysis [18] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor, H. Sugiyama, and D. Negrut, "Chrono: An open source multi-physics dynamics engine," in International Conference on High Performance Computing in Science and Engineering. Springer, 2015, pp. 19-49.
 - "Edem simulation," last accessed 16 October 2020. [Online]. Available: https://www.edemsimulation.com/

ACKNOWLEDGEMENTS


Universities Space Research Association

The OceanWATERS Team present and past members

