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MODELING AND SIMULATION OF ROTARY SLOSHING IN
LAUNCH VEHICLES

Jeb S. Orr∗

The nonlinear dynamics of propellant sloshing during orbital ascent are usually ne-
glected in the flight control analysis of large boost vehicles under the assumption
that the viscous damping of the fluid is sufficient to suppress nonlinear phenom-
ena and confine the fluid to small, planar free surface displacements. In this case,
the sloshing dynamics can be modeled using a spring-mass-damper or linearized
pendulum mechanical analog. However, large, smooth-wall tanks without signif-
icant internal hardware or ring baffles are still susceptible to nonlinear effects. In
particular, rotary sloshing can present a risk to flight control as it involves the for-
mation of a stable limit cycle which can lead to undesirable roll coupling. The
underlying phenomena of jump resonance does not manifest in linear models, but
can be reproduced using a nonlinear spherical pendulum or the Bauer paraboloid
model developed during the Apollo/Saturn program. In this paper, a detailed anal-
ysis of the rotary sloshing dynamics of these mechanical analogs is presented, and
discussed in the context of flight control stability. High-fidelity simulations of a
representative boost vehicle are used to verify the semi-analytical predictions of
the nonlinear dynamic response.

1 INTRODUCTION

Propellant motion, or “slosh,” and its effects on the dynamics of an ascending rocket has proven to
be one of the most formidable challenges in the design of flight control systems for liquid-propelled
rockets. In the case of space launch vehicles, the motion of propellant sloshing within the fuel tanks
is of great significance to the design as often more than 90% of the vehicle’s liftoff mass is liquid
propellant. The moving propellant appears to the rocket body and its control system as a lightly-
damped moving mass, which, depending on the vehicle configuration, may be difficult to stabilize
while maintaining sufficiently fast control response.

In the late 1950s and early 1960s, a significant research effort was dedicated to understanding the
dynamics of sloshing propellants as the size of liquid-propellant boosters began to grow to massive
scales. Techniques that would now be considered mass-inefficient and unconventional, such as
radially segmented tanks, floating metallic damper cans, and accordion baffles - used in the oxidizer
tanks of NASA’s Saturn I and IB launch vehicles - have now been replaced by simple ring baffles.
Ring baffles, combined with linear and nonlinear analysis of the vehicle dynamics, often reduce risk
of propellant instability to an acceptable level.

Propellant slosh is, however, not a solved problem. Sloshing propellant is usually modeled as a
linearized pendulum or an equivalent spring, mass, and damper coupled to the vehicle rigid and elas-
tic degrees of freedom such that the force and moment response of the mechanical analog matches
that of test-correlated semi-empirical models of a rigid tank. The portion of the equivalent liquid
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mass that is not in motion is lumped into the rigid-body mass. The properties of the mechanical
analog change as a function of propellant remaining and the vehicle acceleration. Such a strictly
linear model has two fundamental limitations: it is not valid near the natural frequencies of the pro-
pellant modes (at resonance), and it does not capture the important coupling between the degrees of
freedom of the lateral modes. The latter, which is the topic of this paper, can lead to stable rotary
limit cycles in the fluid response. This phenomenon is known as rotary slosh.

Analytical and experimental investigations by Miles1 and Hutton2 concluded that the qualitative
response of the spherical pendulum to periodic forcing is very similar to that of a cylindrical tank of
fluid. The spherical pendulum became a natural target of investigation in the search for a mechani-
cal analog. Hutton’s experimental data, published in 1963 and supported by Miles’s analytical work
on the nonlinear pendulum dynamics, showed that a fluid in a cylindrical container under constant
sinusoidal excitation contains essentially four fundamental response regions, depending on input
frequency: (1) stable, in-plane motion or unstable high-amplitude motion below the resonant fre-
quency, (2) chaotic motion near resonance, (3) rotary motion in a narrow band just above resonance,
and (4) either stable rotary or planar motion above resonance. At higher excitation amplitudes or
for initial conditions corresponding to large angular displacements, the pendulum exhibits the same
nonlinear phenomena of stiffening, softening, and jump resonance. However, when compared with
the fluid test data, the out-of-plane (rotary) dynamics of the pendulum did not exhibit the proper
amplitude ratio at frequencies above resonance. This limitation was highlighted by Bauer et al.3

in 1965, who then proposed a modified mechanical model derived from the same linear potential
theory used to develop the spring-mass-damper models of the fluid. Importantly, Bauer introduced a
variable nonlinear spring which can be adjusted to match the test data. Expanded to third order, this
model still has the form of the Duffing equation, which also arises in the analysis of the spherical
pendulum. This structure allows the use of harmonic balance techniques to produce semi-analytical
solutions.

2 TRADITIONAL MECHANICAL MODELS

A spring-mass or pendulum mechanical analog is the established method for modeling liquid
dynamics in boost vehicles, primarily for axisymmetric, cylindrical tanks in conditions where sur-
face tension effects can be ignored (Bo > 100). Spring-mass parameters can be derived for many
geometries, including rectangular, conical, and radially or annular segmented tanks. Usually an
analyst is concerned only with the first one to three antisymmetric free surface modes, although the
first mode is always a driving factor for flight dynamics. Under the assumptions of an irrotational,
inviscid incompressible fluid in a rigid, flat-bottomed cylindrical tank, the fluid antisymmetric mode
frequencies are given by4

ω2
n =

ḡ

a
εn tanh

(
εn
h

a

)
(1)

where εn , {ε 3 J ′1(ε) = 0} are the roots of the first derivative of J1, a Bessel function of the first
kind;

εn = 1.841, 5.332, 8.536, 11.706, . . . , (2)

the liquid height is h, and the tank radius is a. The value ḡ is the absolute axial acceleration in units
consistent with h and a. For tanks without flat bottoms, this relationship is accurate for any section
of the tank where h & 2a, since the value of tanh

(
εn

h
a

)
→ 1.

2



The resultant spring-mass parameters can be extracted via equivalence analysis of the forced
response; the sloshing mass is

mn = 2mL
tanh

(
εn

h
a

)
εn

h
a (ε2n − 1)

(3)

wheremL is the total liquid mass; by mechanical analogy, the spring and damper values kn = mnω
2
n

and dn = 2mnζnωn, respectively. The location of the sloshing mass with respect to the liquid free
surface is resolved to provide an equivalent force and moment on the rigid tank;

ln =
a

εn
tanh

(
εn
h

a

)
. (4)

The pendulum length is given by

Ln =
a

εn
coth

(
εn
h

a

)
(5)

and the pivot location with respect to the tank bottom is

lpn = h− ln + Ln. (6)

It should be noted that these parameters are valid only within the range of liquid heights that are
within the barrel section of the tank. Additional corrections must be applied when the free surface
reaches the upper and lower domes.

Of course, the spring-mass and linearized pendulum models are equivalent, if the pendulum is
expanded in a first-order Taylor series about small angles. Both models will produce the same
force and moment response on the tank, subject to the necessary transformation of the parameters
to account for the change in hinge point. For the linearized spring-mass model, the relative accel-
eration δ̈s of the first liquid mode slosh mass m1 is incorporated into the nonlinear angular motion
equations, for example, as

IT ω̇ +m1r
×
s δ̈s = −ω×ITω − 2m1 (rs + δs)

×ω×δ̇s −m1δ
×
s ḡ (7)

where IT is the total vehicle inertia, ω is the body angular rate, and ḡ is the quasi-steady axial accel-
eration. The RHS of Equation 7 contains the usual gyroscopic and Coriolis terms, along with a slosh
offset effect that arises when using a simplified, quasi-steady mass matrix.5 This simplified expres-
sion is adequate for a linear slosh model and nonlinear vehicle dynamics, under the assumption that
the sloshing displacements are small and the vehicle is not spinning. This is, however, not a nonlin-
ear slosh model. While it is possible to incorporate a complete dynamic and kinematic description
of a nonlinear spherical pendulum into the vehicle dynamics, doing so often introduces significant
simulation complexity and it is sufficient to model a “loosely coupled” local spherical pendulum. In
the discussion that follows, it will be assumed that only the lowest-frequency antisymmetric liquid
mode (m1) is modeled, and ms = m1, ks = k1, etc.

2.1 Analysis of the Pendulum Model

The planar pendulum can be analyzed using a Taylor expansion of the pendulum dynamics given
by

α̈+ 2ζpα̇+ p2 sinα = u cosα (8)

where u = εΩ2 cos Ωt is a small periodic input, ζ is a viscous damping factor, α is the pendulum
angle, and p =

√
ḡ/Ls is the frequency parameter. Note that in contrast with the above discussion,
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ε is used to represent a small quantity. The pendulum frequency p is not necessarily equal to the
input frequency Ω. Taylor expansion of Equation 8 yields the Duffing equation;

α̈+ 2ζpα̇+ p2α− 1

6
p2α3 = εΩ2 cos Ωt. (9)

The fourth term on the LHS is a nonlinear, third-order spring, and the remaining system is a linear
constant-coefficient ordinary differential equation with a resonant frequency equal to p

√
1− 2ζ2 ≈

p. It was shown by Miles1 that near resonance, an approximate solution is given by

α(t) ≈ ε
1
3a cos Ωt+ εa3 cos 3Ωt+O(ε

5
3 ) (10)

where a and a3 are constants to be determined. Like the free pendulum, the solutions consist of
odd harmonics. Introducing frequency and amplitude normalization, the frequency response of the
pendulum first harmonic in the vicinity of resonance can be described in terms of its amplitude
ratio A/ε and its frequency ratio η, where A = aε1/3 and η = Ω/p, respectively. Such an analysis
provides a measure of the nonlinear frequency response of the system to periodic inputs. A similar
approach is used to derive the response curves for the out-of-plane dynamics, and the response with
nonzero damping ζ.

For a linear system with natural frequency p subject to the same inputs, it can be shown that in
terms of the frequency ratio η, the magnitude response of the linear system is given by

|H(jη)| =
(
1 + 4η2ζ2 − 2η2 + η4

)− 1
2 (11)

and therefore the linear resonance curve can be compared with the nonlinear first harmonic reso-
nance curve using

aL = ε |H(jη)| ε−
1
3 = |H(jη)| ε

2
3 . (12)

2.2 Bauer Nonlinear Model

Bauer et al.3 derived an improved nonlinear model, based directly on the solution of the Laplace
PDE governing the fluid dynamics in the container. By integrating over the fluid displacement,
Bauer noted that the axial center of mass displacement of the first mode is given by

xs = −Cs
2a
r2
s = −Cs

2a

(
y2
s + z2

s

)
where the slosh parameter is Cs = ε1 tanh

(
ε1
h
r

)
. The axial displacement of the slosh mass acts

as if it is constrained to a parabolic surface. Bauer then conjectured a 2-degree-of-freedom model,
shown here without viscous damping, having the form

ÿs +
C2
s

a2

(
y2
s ÿs + ysẏ

2
s + yszsz̈s + ysż

2
s

)
+ ω2

s

[
1 +

αs
a2

(
y2
s + z2

s

)]
ys =uy (13)

z̈s +
C2
s

a2

(
z2
s z̈s + zsż

2
s + zsysÿs + zsẏ

2
s

)
+ ω2

s

[
1 +

αs
a2

(
y2
s + z2

s

)]
zs =uz. (14)

The second term in Equations 13 and 14 is the paraboloid constraint of the slosh mass, and the
third term contains a nonlinear spring with an adjustable parameter αs. A schematic of such a
model is shown in Figure 1. By inspection, this model collapses to a linear spring-mass system if
truncated to first order in the displacement and velocity. This is convenient for implementation in
linear stability models. Importantly, the coupling of the y and z degrees of freedom is implicit in
the constraint, and does not require external kinematic equations.
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Figure 1. Bauer mechanical model

The harmonic response of the spherical pendulum is
shown in Figure 2 along with the Bauer model response
(αs = 2

3 ) and a portion of Hutton’s test data for a water
tank having a radius of about 6 inches. In Bauer’s model,
the equivalent wave amplitude at the wall is computed
from the radial displacement of the sloshing mass using

x̄W =
2rCs
ε21 − 1

rs. (15)

2.3 Harmonic Analysis

As was shown by Miles, the planar response is parti-
tioned into four primary branches (I-IV). Branch I is the
low-amplitude stable response below resonance. The lin-
ear model and the nonlinear model agree well for η <
0.95 and η > 1.05 (see Figure 3). Near resonance, the
nonlinear system exhibits the characteristic folding be-
havior, where the amplitude response is multi-valued at
a given input frequency. Branches II and III are unstable;
that is, it is not possible to develop a limit cycle on an un-
stable branch, and the response will collapse onto a stable
branch.

Branch VI is the stable rotary branch. Along branch
VI, the response is stable, periodic, high-amplitude, and
contains two components along the two response degrees of freedom that are 90 degrees out of
phase. In the region just above resonance, there is only a rotary solution.

One characteristic that arises applying the Ritz averaging method to the Bauer model is that the
nonplanar branch exhibits two characteristic curves which converge to a single amplitude at higher
frequency. These curves represent the different in-plane and out-of-plane amplitudes, representing
a slightly elliptical response of the system at low amplitudes when close to the linear resonant fre-
quency. This asymmetry is difficult to discern in the test data but is readily reproduced in nonlinear
simulation using carefully controlled initial conditions.

Bauer hinted in his original report3 that the introduction of damping does not significantly change
the characteristics of the rotary branch (VI). The author conjectures that Bauer and his colleagues
did not assert this conclusively since the solution for the damped branch VI requires an iterative
numerical method, which is now feasible (albeit still difficult) using modern computational tech-
niques.

A comparison of the effect of 1% viscous damping on the linear and nonlinear resonances is
shown in Figure 3. Damping has the important property that for the in-plane response, the amplitude
is decreased to a point that the linear and nonlinear models are not substantially different. However,
the out-of-plane response is essentially unaffected by damping, and it has been observed that the
rotary limit cycle may indeed be more stable (in an average potential energy sense) than the planar
limit cycle at the same driving frequency.3 This is an important result; the Bauer model incorporates
a global viscous dissipation term that is proportional to the velocity of the slosh mass with respect
to the paraboloid.
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Figure 2. Spherical pendulum and Bauer resonance curves

3 ADVANCED ROTARY MODEL

Bauer’s mechanical model (Equations 13 and 14) can be modified and extended for incorporation
into modern flight dynamics simulations. While mechanical model parameters can be based on
linear potential theory using Bessel functions for analytic boundary conditions, Lomen6 introduced
a numerical method to determine the parameters that is now common in practice. This method is
more general in the sense that it can determine the natural frequencies for an arbitrary container
that is a body of revolution, and these natural frequencies and slosh masses are used directly in the
model. The liquid modal parameter Cs = ε1 tanh

(
ε1
h
a

)
is related to the natural frequency;

ω2
s =

g

a
ε1 tanh

(
ε1
h

a

)
=
ḡ

a
(16)
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Figure 3. Damped and undamped resonance curves

thus C2
s
a2

= ω4
s
ḡ2

where ωs is the g-scaled natural frequency, and the spring coefficient is given by

αs = ksa2

msω2
s

. Using these relationships, Bauer’s equations (with damping) are

z̈s +
ω4
s

ḡ2

(
z2
s z̈s + zsysÿs

)
= −ω

4
s

ḡ2

(
zsż

2
s + zsẏ

2
s

)
− 2ωsζs

[
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ω4
s

ḡ2

(
z2
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− ω2

s

[
1 +

αs
a2
r2
s

]
zs + uz (17)

ÿs +
ω4
s

ḡ2

(
y2
s ÿs + yszsz̈s

)
= −ω
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s

ḡ2
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ysẏ

2
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2
s
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[
ẏs +

ω4
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ḡ2

(
y2
s ẏs + yszsżs

)]
− ω2

s

[
1 +

αs
a2
r2
s

]
ys + uy. (18)

It is possible to write these coupled equations in matrix form asMδ̈s = q with δs =
[
ys zs

]T
and rs = ‖δs‖ with

M =

 1 + ω4
s
ḡ2
y2
s

ω4
s
ḡ2
yszs

ω4
s
ḡ2
yszs 1 + ω4

s
ḡ2
z2
s

 = I +
ω4
s

ḡ2
δsδ

T
s . (19)
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The simplified vector form can be written as[
I +

ω4
s

ḡ2
δsδ

T
s

]
δ̈s = −2ωsζsδ̇s − ω2

sδs −
ω4
s

ḡ2

(
ṙ2
s + 2ωsζsδ

T
s δ̇s

)
δs −ω2

s
αs
a2
r2
sδs + u. (20)

The input term u contains the forcing terms arising from coupling with the nonlinear vehicle
dynamic equations; that is,

u =
{
−ab + r×s ω̇ + ω×r×sjω − 2ω×δ̇sj

}
2,3

(21)

where ab, ω̇ are the body frame translational and angular acceleration, respectively, and the remain-
ing terms are centripetal and Coriolis effects of the moving body frame. Elasticity is not included in
Equation 21 but these effects are incorporated in high-fidelity models.5 For simulation, the Bauer
model can be treated as a traditional spring-mass-damper model with additional nonlinear terms;
the only required additional data are the spring parameter (typically αs = 2

3 ) and the tank radius a.
Numerical analysis of this model’s response as a standalone module agrees nearly exactly with the
predictions of Figure 2, notably reproducing, with remarkable accuracy, the elliptical rotation pre-
dicted by the Ritz method. This confirms the validity of the series approximations used in deriving
the approximate solutions.

An improvement to the Bauer model is straightforward, noting that in practice, damping mecha-
nisms such as ring baffles do not provide global damping but instead are dependent on the direction
of the slosh wave with respect to the wall. That is, in a smooth-walled tank, an ideal ring baffle
provides damping approximately along the radial velocity direction but very little dissipation for
motion tangent to the wall. Thus, an established rotary slosh wave with an approximately constant
wave amplitude will not dissipate energy at the same rate as one having a strong periodic radial
component. This can be approximated in the mechanical model by incorporating split damping,
where a smooth-wall viscous damping value is applied to the tangential component of the sloshing
velocity but a baffle damping value is applied to the radial component.

The implementation of split damping can be accomplished with a temporary transformation to
polar coordinates. The dissipation force in Equation 20 can be written as Qd = −2ωsζsδ̇p with

δ̇p =

[
I +

ω4
s

ḡ2
δsδ

T
s

]
δ̇s (22)

where δ̇p is the paraboloid-relative velocity and δ̇s is the slosh mass velocity. The paraboloid-
relative velocity is used, consistent with Bauer’s assumptions, in that the velocity normal to the
wall increases as a function of wave amplitude. This is consistent with contemporary models of
nonlinear dissipation in lateral sloshing.7

By determining the radial and tangential velocities in mixed coordinates,

ṙp = ẏp cos θp + żp sin θp (23)

θ̇p =
1

rp
(żp cos θp − ẏp sin θp) . (24)

It can be shown that by applying a radial damping ζr to ṙp and a tangential damping ζt to θ̇p, the
dissipation force can be written as

Qd = −2ωsRd

[
I +

ω4
s

ḡ2
δsδ

T
s

]
δ̇s (25)
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with

Rd =
1

r2
s

[ (
y2
sζr + z2

sζt
)

yszs (ζr − ζt)
yszs (ζr − ζt)

(
y2
sζt + z2

sζr
) ] . (26)

Note that for ζr = ζt the expression collapses to the usual Bauer damping model. The improved
model with split damping is given by[

I +
ω4
s

ḡ2
δsδ

T
s

]
δ̈s = −ω2

sδs −
(
ω4
s

ḡ2
ṙ2
s + ω2

s

αs
a2
r2
s

)
δs − 2ωsRd

[
I +

ω4
s

ḡ2
δsδ

T
s

]
δ̇s + u. (27)

4 SIMULATION ANALYSIS

The improved Bauer model was implemented and evaluated as a standalone tank model to assess
the numerical response as compared with theory and test data from the Hutton series. In previously
published data, only the test and analytical solutions were compared with an assumption of zero vis-
cous damping. However, owing to the relatively small radius of Hutton’s tank, the viscous damping
is not insignificant. The smooth-wall log decrement damping for a cylindrical tank is given by

δ ≈ 5.23ν1/2a−3/4ḡ−1/4 (28)

where ν is the kinematic viscosity; the damping ratio is

ζ =

[
1 +

(
2π

δ

)2
]−1/2

(29)

yielding ζ = 0.184% for the Hutton tank. Fortunately, the test conditions for Hutton’s tank match
data later published by Silverman and Abramson8 validating Equation 28 for a 5.98 inch tank con-
taining water.

Time domain simulation results are shown in Figures 4-6. In each of these cases, the initial fluid
displacement is very nearly zero and the input is a constant sinusoidal acceleration consistent with
the original test conditions (ε = 0.0054). The radial wave amplitude is depicted with respect to
time, along with a projection of the slosh mass within the tank; the constant radial wave amplitude
from the test is shown in grey with the red portion used for Fourier analysis to extract the amplitude
and phase response. The simulated regime is η = 1.01, in which the limit cycles involve pure rotary
motion. A constant wave amplitude time history is indicative of a stable rotary limit cycle.

In Figure 4, the symmetric damping model is used with ζ = 0.184%, which readily converges
to the condition predicted by the theory and confirmed by test. The limit cycle trajectory is clearly
attractive with asymptotic convergence; the author conjectures that radial energy dissipation is actu-
ally required to stabilize the rotary limit cycle. In fact, in Figure 5, the radial damping is decreased
to ζr = 0.02%, consistent with smooth-wall damping for a larger tank. It is apparent that while
the initial transient has a shape similar to that shown in Figure 4, the limit cycle is not stable and
is instead chaotic. This nonlinear behavior is counterintuitive to launch vehicle controls engineers
versed in linear systems theory: in this case, the lack of dissipation precludes the formation of a
dangerous limit cycle. Comparatively, in Figure 6, the radial damping is increased to ζr = 3.7%,
in family with the damping produced near ring baffles. The response reaches the stable rotary limit
cycle more quickly, confirming that rotary responses can occur even in well-damped tanks, given
the correct combination of forcing function and initial conditions. In fact, related numerical experi-
ments show that a transition from planar to stable rotary motion is possible even at damping ratios
above ζr = 9% at slightly higher drive amplitudes.
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Figure 4. Hutton case 4, ζr = ζt = 0.184%.

Figure 5. Hutton case 4, ζr = 0.184%, ζt = 0.02%.

Figure 6. Hutton case 4, ζr = 3.7%, ζt = 0.184%.
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Figure 7. Slosh parameter dispersions yield unstable slosh-control coupling near T=30s.

A Monte Carlo analysis using the high-fidelity launch vehicle simulation DELTA (Dynamic En-
vironment for Launch Trajectory Analysis) was used to assess the likelihood of rotary limit cycle
development in a typical liquid-propellant rocket configuration when compared with a traditional
pendulum model. Although statistically unlikely to occur, it was shown that in certain cases a
slightly unstable,∗ lightly damped slosh mode having about ζr = 1% radial damping could enter a
stable rotary limit cycle that was not predicted using the pendulum model (Figures 7 and 8). The
mechanism leading to rotary motion involves residual energy in the oxidizer tank from a guidance
maneuver occurring some 20 seconds prior to the onset of the sloshing instability.

5 CONCLUSIONS

Propellant slosh continues to present a concern for launch vehicle dynamics and control, particu-
larly as the launch vehicle industry pushes for increased performance, reduced integration overhead,
and mass savings that can be realized by reducing the number of baffles and eliminating internal
tank hardware. Certain tank geometries, particularly thin-wall pressure-stabilized tanks, may be
more susceptible to the development of slosh instabilities in the unbaffled configuration. These tank
designs lack the beneficial, approximately isotropic damping of an orthogrid/isogrid wall structure.
Seemingly beneficial reductions in flight control design conservatism that allow for marginally sta-
ble or unstable sloshing dynamics should not be accepted without a thorough analysis in time do-
main simulation. As is suggested by the present analysis, the right combination of conditions,
particularly large maneuvers, can produce a rotary limit cycle even in the presence of ring baffles.
The use of advanced, test-correlated nonlinear models, such as the improved Bauer model, should
be considered in the flight certification process when warranted to reduce risk.

∗In the sense of linear autopilot analysis using a spring-mass damper.
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Figure 8. Monte Carlo 6-DoF simulation case identifies rotary motion not predicted
by pendulum model.

ACKNOWLEDGEMENTS

This work was supported by the NASA Engineering and Safety Center (NESC) under contract
80LARC17C0003. The support of Neil Dennehy, Aron Wolf, Tannen VanZwieten, and the NESC
GN&C Technical Discipline Team (TDT) is gratefully acknowledged. In addition, the author would
like to thank Jing Pei of NASA LaRC for his insights in developing and improving the Bauer non-
linear model.

REFERENCES
[1] Miles, J.W., Stability of Forced Oscillations of a Spherical Pendulum, Quarterly of Applied Mathematics 

Vol. 20, No. 1 (April 1962), pp. 21-32. 
[2] Hutton, R., “An investigation of resonant, nonlinear, nonplanar free surface oscillations of a fluid,” 

NASA TN-D-1870, 1963. 
[3] Bauer, H.F., Clark, C.D., and Woodward, J.H., "Analytical Mechanical Model for the Description of the 

Rotary Propellant Sloshing Motion," Project A-767 Final Report, May 31, 1965. 
[4] Fontenot, L. L., NASA CR-941, Dynamic Stability of Space Vehicles, Volume VII – The Dynamics of 

Liquids in Fixed and Moving Containers, March 1968. 
[5] Barrows, T.M. and Orr, J.S., Dynamics and Simulation of Flexible Rockets, Chapter 5, Else-

vier/Academic Press, 2021. 
[6] Lomen, D.O., “Liquid Propellant Sloshing in Mobile Tanks of Arbitrary Shape,” NASA CR-222, 1965. 
[7] VanZwieten, T.S. et al., “Nonlinear Slosh Damping Testing and Analysis for Launch Vehicle Propellant 

Tanks,” AIAA SciTech 2020 Forum, Orlando, FL, AIAA 2020-2050, 6-10 January, 2020. 
[8] Silverman, S., and Abramson, H.N., “Damping of Liquid Motions and Lateral Sloshing,” NASA SP-106, 

Ch. 3, 1966.

12


	Introduction
	Traditional Mechanical Models
	Analysis of the Pendulum Model
	Bauer Nonlinear Model
	Harmonic Analysis

	Advanced Rotary Model
	Simulation Analysis
	Conclusions

