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ABSTRACT 24 

 25 

A clustering methodology is applied to cloud optical depth cloud top pressure (TAU-PC) 26 

histograms from the new, 1-degree resolution, ISCCP-H dataset, to derive an updated global 27 

Weather State (WS) dataset. Then, PC-TAU histograms from current-climate CMIP6 model 28 

simulations are assigned to the ISCCP-H WSs along with their concurrent radiation and 29 

precipitation properties, to evaluate model cloud, radiation, and precipitation properties in the 30 

context of the Weather States. The new ISCCP-H analysis produces WSs that are very similar to 31 

those previously found in the lower resolution ISCCP-D dataset. The main difference lies in the 32 

splitting of the ISCCP-D thin stratocumulus WS between the ISCCP-H shallow cumulus and 33 

stratocumulus WSs, which results in the reduction by one of the total WS number. The 34 

evaluation of the CMIP6 models against the ISCCP-H Weather States, shows that, in the 35 

ensemble mean, the models are producing an adequate representation of the frequency and 36 

geographical distribution of the WSs, with measurable improvements compared to the WSs 37 

derived for the CMIP5 ensemble. However, the frequency of shallow cumulus clouds continues 38 

to be underestimated, and, in some WSs the good agreement of the ensemble mean with 39 

observations comes from averaging models that significantly overpredict and underpredict the 40 

ISCCP-H WS frequency. In addition, significant biases exist in the internal cloud properties of 41 

the model WSs, such as the model underestimation of cloud fraction in middle-top clouds and 42 

secondarily in midlatitude storm and stratocumulus clouds, that result in an underestimation of 43 

cloud SW cooling in those regimes. 44 

 45 

  46 
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1. Introduction 47 

 48 

Satellite observations of cloud properties have been used to evaluate climate models ever since 49 

the TIROS meteorological satellites, launched by NASA in the 1960s, provided the first remote 50 

retrievals of global cloud cover (e.g. Somerville et al. 1974). Two main objectives of those cloud 51 

evaluation efforts were to inform model developers of the deficiencies in the model cloud field 52 

so as to assist in improving cloud parameterizations in future model versions, and to increase our 53 

understanding of cloud related processes that play key roles in cloud climate feedbacks. 54 

Originally cloud fraction was the only observational field available for evaluation; but since the 55 

advent of the International Satellite Cloud Climatology Project (ISCCP, Rossow and Schiffer 56 

1991), the launch of microwave radiometers like SSMI (Ferraro et al. 1996) and active sensing 57 

instruments like Radars and LiDARs on CloudSat and CALIPSO (Stephens et al. 2008, Winker 58 

et al. 2009), additional cloud properties like top pressure, optical thickness, liquid water path, 59 

and vertical extent were included in the model evaluation comparisons. For a long while, those 60 

evaluations were based on comparisons of time- and space-mean cloud fields, often one at a time 61 

and independent from the coincident properties of the atmosphere (e.g. Hansen et al. 1983, 62 

Schmidt et al. 2006). These comparisons provided quantitative measures of the deficiencies of 63 

the properties of the simulated clouds but did not provide information on the connections 64 

between the properties of the cloud field and the coincident atmospheric state and processes. As 65 

a result, this type of analysis often did not provide modelers with sufficient leads to the 66 

components of the model parameterizations that could be responsible for the cloud property 67 

deficiencies, and did not provide information on the mechanics of cloud related processes that 68 

could be responsible for cloud climate feedbacks.  69 
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 70 

This pointed to the need to develop more process-based model evaluation techniques, and several 71 

methods were developed with the aim to sample observational data into distinct regimes and 72 

evaluate model cloud properties within each regime. The regime definition methods that were 73 

applied can be divided into two broad categories. In the first category, one or more atmospheric 74 

parameters were used to derive a dynamic or thermodynamic regime in observations and models, 75 

and the model clouds were evaluated in that particular regime. Following this methodology, 76 

model clouds were evaluated, among others, in tropical and midlatitude ascending and 77 

descending motion regimes (Bony and Dufrense 2005, Tselioudis and Jakob 2002), in combined 78 

vertical motion/boundary layer stability regimes (Grise and Madeiros 2016), and in midlatitude 79 

storm composites (Bodas-Salcedo et al. 2014). These analyses put model cloud deficiencies in 80 

the context of atmospheric processes, showing for example that model boundary layer cloud 81 

cover was deficient in subsidence regimes in general (Bony and Dufrense 2005, Tselioudis and 82 

Jakob 2002) and in midlatitude cold air outbreaks in particular (Bodas Salcedo et al. 2014), and 83 

that this low cloud bias may be in part due to a stronger than observed dependence of model 84 

cloud formation on vertical velocity and a weaker than observed dependence on boundary layer 85 

stability (Grise and Madeiros 2016).  86 

 87 

In the second regime definition category, data mining techniques such as cluster analysis or 88 

neural networks are applied to the cloud properties themselves in order to extract cloud-defined 89 

regimes, and the analysis of the atmospheric conditions is subsequently used to understand the 90 

regime behavior. A data mining technique used widely in cloud property analysis relies on the 91 

application of the K-means clustering algorithm (Anderberg 1973) on combined histograms of 92 
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cloud optical depth (τ) – cloud top pressure (TAU-PC) from the ISCCP or the Moderate 93 

Resolution Imaging Radiospectometer (MODIS) datasets. The method was first applied to the 94 

2.5-degree, 3-hourly ISCCP-D1 dataset for the region of the Western Pacific (Jakob and 95 

Tselioudis, 2003). It was then extended to the whole tropics in Rossow et al. (2005), and to the 96 

globe in Tselioudis et al. (2013). The derived cluster centroids represented distinct cloud type 97 

distributions characterized by distinct TAU-PC histograms, and were shown to relate to discrete 98 

atmospheric regimes that were termed Weather States (WSs). Application of the same clustering 99 

method to MODIS TAU-PC histograms (Oreopoulos et al. 2014) produced a set of Cloud 100 

Regimes similar in nature to the ISCCP Weather States. The ISCCP-D1 WSs were used in the 101 

evaluation of cloud simulations in the Climate Model Intercomparison phase 3 (CMIP3) 102 

(Williams and Tselioudis 2007, Williams and Webb 2009) and phase 5 (CMIP5) (Jin et al. 2016) 103 

family of models. The analysis of Williams and Webb (2009) showed large model spread and 104 

deficiencies in cumulus congestus (midlevel) and transition (shallow cumulus) clouds in the 105 

extra-tropics, at magnitudes similar to the previously identified model deficiencies in 106 

stratocumulus clouds in the tropics. This led to the more focused analysis of Bodas-Salcedo et al. 107 

(2014), who identified cold air outbreaks behind frontal zones in the Southern Oceans as a major 108 

regime of model cloud deficiencies. Similar deficiencies in CMIP5 model shallow cumulus 109 

clouds in North Atlantic cold air outbreaks was found in Remillard and Tselioudis (2015). The 110 

analysis of Jin et al. (2016) found tendencies in the CMIP5 models to underestimate the 111 

occurrence of optically thin clouds and clouds with mid-level tops, and to perform better in the 112 

simulation of optically thick storm clouds.  113 

 114 
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In the past few years, two new sources of data have become available to the science community. 115 

First, a new, 1-degree horizontal resolution version of the ISCCP cloud property products was 116 

introduced (ISCCP-H, Young et al. 2018). At the same time, the latest versions of climate 117 

models were used in the CMIP6 program to perform a suite of present and future climate 118 

simulations. The present study takes advantage of those new resources, by first applying the 119 

clustering methodology of Tselioudis et al. (2013) to the TAU-PC histograms of the ISCCP-H 120 

dataset, in order to derive an updated cloud-defined Weather State dataset. Then, TAU-PC 121 

histograms from the output of the CMIP6 model simulations are assigned to the derived Weather 122 

States along with their concurrent radiation and precipitation properties, with the objective to 123 

create model WS climatologies and to evaluate cloud, radiation, and precipitation properties in 124 

CMIP6 models in the context of the WSs. 125 

 126 

 127 

2. Datasets and analysis method 128 

 129 

a. ISCCP-H 1-degree dataset. 130 

 131 

A summary description of the new ISCCP-H products is provided by Young et al (2018), with 132 

complete details in the Climate-Algorithm Theoretical Basis Document (Rossow 2017). Overall, 133 

the ISCCP-H cloud property retrievals are very similar to the ISCCP-D ones, with only a few 134 

notable differences. Higher spatial resolution produces a more “U-shaped” distribution of cloud 135 

amount frequencies, hence as also shown below, the frequency of occurrence of completely clear 136 

conditions increases and the total cloud cover for the cloud WSs increases. The only significant 137 
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change in ISCCP-H cloud amount is a decrease by about 0.1 (absolute) over Antarctica in 138 

summertime, because of the removal of the test on the 3.7micron channel which is not available 139 

over the whole record. Average cloud top pressures in both polar regions increase by 30-40 mb 140 

in winter and decrease by about the same amount in summer relative to the ISCCP-D values, due 141 

mainly to the change in the ancillary atmospheric temperature profile dataset that is used (cloud 142 

top temperatures are nearly the same on average). There is an increase in the amount of high, 143 

thin clouds (identified in the summer where daylight is available), which appears to be consistent 144 

with CALIPSO observations. The final significant change in cloud properties is a decrease of the 145 

cloud top temperature threshold used to separate ice and liquid clouds to 253K from 260K, 146 

which reduces the relative amount of ice clouds in the ISCCP-H dataset. 147 

 148 

b. WS derivation through K-means clustering. 149 

 150 

The method described in detail in Tselioudis et al. (2013) and previous papers (Jacob and 151 

Tselioudis 2003, Rossow et al. 2005), was also used here to perform the cluster analysis of the 152 

ISCCP-H TAU-PC histograms. The K-means clustering algorithm (e.g., Anderberg 1973) was 153 

applied to the cloud fraction vector formed from the histograms of PC-TAU for each 3-hourly, 1-154 

degree ISCCP-H grid cell over the period July 1983–June 2015, to derive optimized PC-TAU 155 

clusters. Since TAU is only available during daytime in the ISCCP-H dataset, the derived 156 

clusters are also only available for 3-hourly daylight periods. In the cluster analysis, the ‘‘best’’ 157 

(optimum) cluster number K is determined objectively by a set of diagnostic checks, described in 158 

detail in Tselioudis et al. (2013). Briefly, the clustering algorithm is run in consecutive steps with 159 

K increasing by 1, and in every iteration statistical tests are carried out to check four criteria: 160 
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whether the clustering procedure converges, whether this convergence is insensitive to the set of 161 

centroids used to initiate the algorithm, whether the dispersion of all the vectors in each cluster is 162 

minimized, and finally whether a distinctly new centroid pattern has appeared when increasing K 163 

by 1 from the previous set of clusters. Note that grid points that are completely cloud free are not 164 

included in the cluster analysis process and form their own clear sky category. 165 

 166 

Based on the above criteria, the method is applied on the ISCCP-H TAU-PC histograms. The 167 

analysis produces a set of 10 cloud Weather States as the most stable result, and the dataset and 168 

plots for the ISCCP-H Weather States are archived and presented at: 169 

http://isccp.giss.nasa.gov/wstates/hggws.html. The cluster analysis of the ISCCP-H data yields 170 

two pairs of WSs that include very similar TAU-PC histograms and geographical distributions, 171 

with the only difference between them being the mean optical thickness of the two cloud clusters 172 

involved. Specifically, the clustering algorithm produces an optically thinner and an optically 173 

thicker cirrus WS (WS3 and WS6 respectively in the original set) as well as an optically thinner 174 

and an optically thicker stratocumulus WS (WS9 and WS10), with both pairs having very similar 175 

geographical distributions. Since the present paper focuses on the evaluation of the performance 176 

of a large model ensemble in simulating the properties of the observational WSs, to achieve 177 

better clarity for the evaluation results it was decided to merge those two pairs into one cirrus 178 

and one stratocumulus WS (WS3 and WS8 respectively in the merged set). The merging is done 179 

by creating two new WSs that include all grid cells assigned to the optically thin and thick cirrus 180 

and stratocumulus WSs respectively and are represented by the weighted average PC-TAU 181 

histogram of the original WSs. This results in the set of the eight cloud WSs presented and used 182 

in this paper. Any studies that require a more detailed resolution of the cirrus and stratocumulus 183 
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cloud fields, such as a more detailed model evaluation of those WSs, can be done by accessing 184 

the more detailed, ten cloud WS dataset that is archived in the ISCCP WS web page provided 185 

above. 186 

 187 

c. Model evaluation through WS assignment. 188 

 189 

Climate model AMIP simulations of the 20th century are evaluated in this study using the 190 

ISCCP-H Weather States. The models that are used in the analysis are all the ones that provide 191 

output from the application of an ISCCP simulator package (Bodas-Salcedo et al. 2011), which 192 

derives daily TAU-PC histograms from model cloud parameters. A list of the CMIP6 models 193 

that are used, along with their horizontal and vertical resolutions is provided in Table 1.  The 194 

majority of the models have horizontal resolutions close to the 1-degree resolution of the ISCCP-195 

H dataset, with two models having resolutions closer to 2 degrees. Note that when this resolution 196 

effect was tested  by degrading the ISCCP-H data to 2 degrees and repeating the WS assignment, 197 

the resulting WS dataset was almost identical with the 1-degree version, implying that the model 198 

resolution differences should not introduce discernable biases to the evaluation. To create a 199 

model WS climatology, each daily model TAU-PC histogram is assigned to the ISCCP-H WS 200 

with which it has the smallest Euclidian distance, and the derived model WS frequencies and 201 

cloud properties are evaluated against the corresponding ISCCP-H ones. In order to perform 202 

comparisons of compatible model-observations quantities, a modified ISCCP-H WS dataset is 203 

created through assignment of daily, rather than 3-hourly, ISCCP-H TAU-PC histograms to the 204 

WS centroids. The result of the transition to the daily ISCCP-H WSs is a significant reduction in 205 

the clear sky occurrence with smaller reductions in all high cloud-fraction WSs, and a 206 
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corresponding significant increase in the fair weather WS and a smaller increase in the cirrus 207 

WS. Once model WSs are assigned to ISCCP-H WSs, model radiation and precipitation 208 

composites for each WS are constructed and evaluated against analogous ISCCP composites, 209 

which are derived using for radiation the ISCCP-FH dataset (available at: 210 

https://isccp.giss.nasa.gov/projects/flux.html), and the CERES dataset (Loeb et al. 2018), and for 211 

precipitation the TRMM-3B42 (Huffman et al. 2007) dataset. Note that in order to map changes 212 

in the model cloud WS frequency and properties between the CMIP5 and CMIP6 model 213 

ensembles, the WS analysis is also performed on CMIP5 output of the previous generation of the 214 

analyzed CMIP6 models. 215 

 216 

 217 

3. Results 218 

 219 

a. Merged ISCCP-H Weather States 220 

  221 

Figure 1 shows the TAU-PC histograms of the 8 cloud WSs derived from the cluster analysis of 222 

the 1-degree resolution ISCCP-H data and the subsequent merging (top), along with global maps 223 

of the Relative Frequency of Occurrence (RFO) of each WS and of clear sky (bottom). The WS 224 

histograms are arranged as follows. The top three categories include high-top cloud WSs, namely 225 

optically thick tropical deep convective and anvil clouds (WS1-DCN), somewhat lower-top and 226 

optically thick midlatitude storm clouds (WS2-MDS), and optically thin high cirrus clouds 227 

(WS3-CIR). Those three high cloud categories occur 6.7%, 9.5%, and 15.9% of the time 228 

respectively, and while the deep convective and storm cloud WSs are practically overcast, the 229 
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cirrus WS has a cloud cover of about 80%. The latter may be in part due to the fact that the 230 

ISCCP satellite retrievals miss the thinnest cirrus clouds (Stubenrauch et al. 2013). The next two 231 

categories include polar clouds that show a mix of various top heights and optical thicknesses 232 

with an RFO of 3% and a cloud cover of 84.5% (WS4-PLR), and optically thick and nearly 233 

overcast middle-top clouds (WS5-MID) that occur 6.1% of the time.  Then there is the fair-234 

weather (WS6-FRW) category that has the lowest cloud cover (40%) and the highest frequency 235 

of occurrence (37.5%), and includes mostly scattered thin cumulus and cirrus clouds. Finally, 236 

there are the two low-top cloud categories. The first includes optically thinner and lower cloud-237 

top shallow cumulus clouds (WS7-SHC), which have a large cloud cover (79.6%) that indicates 238 

systemic organization rather than a scattered cloud field. The second includes optically thicker 239 

low clouds with larger cloud cover (90.7%) and higher cloud top, indicative of stratocumulus 240 

clouds (WS8-STC). The ninth Weather State (WS9-CLR) represents completely cloud-free grid 241 

boxes, which occur 4.2% of the time and were not included in the clustering analysis. Table 2 242 

lists the average cloud top pressure, cloud optical thickness, and cloud cover of all eight cloud 243 

WSs.  244 

 245 

The WS RFO maps (Fig.1-bottom) show that deep convective clouds (WS1) are concentrated 246 

primarily in the ITCZ/SPCZ region, with a small concentration in the entry regions of the 247 

northern midlatitude storm tracks near the west coasts of the Northern continents. Cirrus clouds 248 

(WS3) occur both in the ITCZ, with larger concentrations in the tropical West Pacific and Indian 249 

oceans, and in the vicinity of large mountain ranges like the Himalayas, Rockies, and Andes. The 250 

midlatitude storm clouds (WS2) occur in the core of the midlatitude storm tracks, while the 251 

middle top (WS5) and the organized shallow cumulus (WS7) clouds occur primarily in the 252 
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poleward and equatorward edges of the storm tracks respectively. The polar clouds (WS4) are 253 

well confined in the polar regions, and the stratocumulus clouds (WS8) occur mostly off the 254 

western coasts of the main continents, with additional occurrence in the midlatitude storm tracks. 255 

The fair-weather cloud WS shows high populations in the middle of the tropical and subtropical 256 

ocean basins and in the polar regions.  257 

 258 

The ISCCP-H WSs are very similar to the lower resolution ISCCP-D WSs (Tselioudis et al. 259 

2013), with only one significant difference: while the ISCCP-D analysis produced three 260 

stratocumulus WSs of low, medium, and high optical thickness, the ISCCP-H cluster analysis 261 

splits the low optical thickness stratocumulus WS between the shallow cumulus and the medium 262 

thickness stratocumulus WSs,  thus producing two stratocumulus WSs of medium and high 263 

optical thickness and reducing the total number of WS by one. Note, however, that in the merged 264 

analysis presented in this paper the two ISCCP-H stratocumulus WSs were further combined into 265 

one WS8-STC. Furthermore, the ISCCP-H cluster analysis produces a polar WS that is much 266 

better confined to the polar regions than the corresponding one in the ISCCP-D analysis. Finally, 267 

due to its higher resolution, the ISCCP-H WS set has a 2% higher amount of cloud free boxes 268 

than the ISCCP-D WS set and a little higher total cloud cover in all WS categories. 269 

 270 

The vertical structure of the merged ISCCP-H WSs is shown in Figure 2, derived from analysis 271 

of coincident retrievals from the CloudSat/CALIPSO Radar/LiDAR active measurements. The 272 

independently derived vertical profiles from the active instruments fall well within the cloud type 273 

assumptions derived from the radiatively derived ISCCP-H TAU-PC histograms. They show that 274 

deep convection and midlatitude storm cloud WSs consist primarily of extensive cloud layers 275 
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that cover the depth of the troposphere, cirrus clouds consist of thin high cloud layers, 276 

stratocumulus and shallow cumulus clouds consist of mostly isolated low cloud layers, while 277 

middle-top clouds consist of layers that top in the middle troposphere but also of coincident low 278 

and cirrus clouds, a situation that produces a mid-troposphere radiative IR signature (cf. Jin and 279 

Rossow 1997). The radar/lidar confirm the presence of more high-top and fewer low-top clouds 280 

in the ISCCP-H polar WS than its ISCCP-D counterpart, due to both the better restriction of this 281 

WS to the polar regions and to an increase in ISCCP-H high cloud detections in that region. 282 

Some of the cirrus missed by ISCCP appears in the composite radar/lidar for WS9 (CLR). In 283 

general, the vertical cloud structures in Fig. 2 appear to be less of a mixture of cloud layers and 284 

to have more distinct layer structures than the equivalent ones for ISCCP-D (Tselioudis et al. 285 

2013). 286 

 287 

The WSs derived from the cluster analysis of the TAU-PC histograms are named after cloud 288 

types that are customarily associated with morphological cloud characteristics, often visible in 289 

satellite images. An attempt to associate the WSs to cloud morphological features observed in 290 

satellite images is shown in Figure 3, where a grid of the derived WSs with their assigned 291 

number is overlaid on a visible image from the MODIS instrument on the Aqua satellite, for the 292 

case of a midlatitude storm system that covers most of the North Atlantic region. It can be seen 293 

that the cold and warm frontal conveyor belts of the storm are dominated by midlatitude storm 294 

WS2-MDS clouds, along with some embedded deep convective WS1-DCN clouds occurring 295 

mostly in the northern storm edge where the warm conveyor belt wraps around the low-pressure 296 

center. The WSs occurring in the cold air outbreak region behind the front can be seen as a 297 

transition between two distinct regimes. The regime in the northwestern region of the storm, 298 



 14 

where the continental cold/dry air flows over the warm Gulf Stream waters, and which is 299 

dominated by nearly overcast middle-top WS5-MID and stratocumulus WS8-STC clouds, and 300 

the regime further downstream, where, as the thicker cloud deck breaks up and cloud cover 301 

decreases, the region is dominated by shallow cumulus WS7-SHC. The pre-frontal maritime and 302 

post-frontal continental regions are dominated by fair weather WS6-FRW clouds. Note that the 303 

figure is a compilation of two Aqua overpasses that took place within the 3-hour window of the 304 

ISCCP observation, so there is some uncertainty in the observation time and exact time 305 

correspondence of each grid box with ISCCP cannot be expected. However, the figure 306 

demonstrates that the cloud types defined through the cluster analysis of the ISCCP TAU-PC 307 

histograms correspond closely with the dynamic regimes where those cloud types are expected to 308 

occur (cf. Lau and Crane 1995, Tselioudis et al 2013).  309 

 310 

b. Weather State Dynamical Characteristics 311 

 312 

The WS variability in the context of the conveyor belts of a midlatitude storm depicted in Fig. 3 313 

shows the strong dynamical controls on cloud property distribution. Model  cloud deficiencies 314 

often occur in specific dynamic regimes, and clouds occurring in post-frontal cold air outbreaks 315 

have been identified as primary sources of model error in previous evaluations of CMIP3 and 316 

CMIP5 models (e.g. Williams and Webb 2008, Bodas-Salcedo et al. 2014). These low and 317 

middle top cloud structures have distinct radiative characteristics and occur when particular 318 

combinations of dynamic and thermodynamic conditions are present. In addition, getting the 319 

atmospheric heating and cooling by the characteristic WS right is crucial to the feedbacks on the 320 

atmospheric dynamics (cf. Rossow et al. 2016). In order to start resolving the distinct dynamic 321 
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conditions under which the different WSs are formed, Figure 4 shows the distribution of mid-322 

tropospheric vertical velocity for each WS by plotting the WS box-and-whisker diagrams of 323 

ERA-Interim 500-mb vertical velocity (Dee et al. 2011). The vertical velocity distributions show 324 

a regular progression, going from strong ascending motion in convective and storm clouds, to a 325 

mixed motion regime in cirrus and middle top clouds, to a descending regime in low top clouds, 326 

similar to the progression found for the ISCCP-D WSs in Tselioudis et al. (2013). However, Fig. 327 

4 shows that groupings of WSs have similar vertical velocity distributions, with small differences 328 

only in the distribution width or the length of the tails.  Stratocumulus and shallow cumulus 329 

clouds, for example, both occur primarily in moderate descending motion and have distribution 330 

tails reaching into the strong descending and weak ascending motion, with shallow cumulus 331 

clouds showing greater width and tail variability.  332 

 333 

Since vertical motion by itself only resolves broad differences between ascending and 334 

descending cloud regimes, a second layer of dynamical complexity can be added by looking at 335 

the differences in WS horizontal winds. Figure 5 shows wind roses of the 850mb wind from 336 

ERA-Interim (Dee et al. 2011) for each WS, illustrating wind direction and speed together with 337 

the relative occurrence of each wind subdivision. Note that Southern Hemisphere meridional 338 

wind direction has been reversed so that in the plot Northerly wind always implies an 339 

equatorward direction. At the top of each plot, the label shows the percentage of time that each 340 

WS occurs in the tropical, midlatitude, and polar regions. Most WS wind roses include one 341 

dominant wind direction regime, but several WSs show a second significant regime as well. 342 

Overall, the more tropical WSs (DCN, CIR, FRW) occur under the influence of easterly trade 343 

winds, but deep convection has a significant southwesterly wind component coming potentially 344 
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from convection embedded in midlatitude storm systems and from convection formed during the 345 

summer Asian monsoon. The more midlatitude WSs (MDS, MID) and the polar WS are 346 

dominated by westerly winds characteristic of the baroclinic jet regime, with the midlatitude 347 

storm WS showing a southwesterly component typical of the cold-frontal conveyor belt and the 348 

middle top WS showing a northwesterly component typical of the post-frontal cold air outbreak 349 

circulation. The stratocumulus and shallow cumulus WSs show almost equal frequency of 350 

occurrence in tropical and midlatitude regions, and both include a prominent  northeasterly wind 351 

component characteristic of the trade wind regime and a secondary but still significant 352 

northwesterly component characteristic of the post-frontal circulation.  353 

 354 

This further separation of WSs in horizontal wind regimes indicates that stratocumulus and 355 

shallow cumulus cloud structures, with similar radiative characteristics and even dynamical 356 

environments as far as the vertical motion field is concerned, can occur in two distinct dynamic 357 

regimes as defined by the horizontal wind: in cold air outbreaks behind frontal systems and in 358 

easterly trade wind regimes. This implies that clouds in those WSs can be formed through two 359 

distinct stratocumulus-to-shallow cumulus transition mechanisms; one in which cloud formation 360 

is driven by surface latent heating and boundary layer instability and cloud breakup by 361 

precipitation onset (Fig. 3), and the other in which cloud formation is driven by cloud-top 362 

radiative heating and turbulence and cloud break-up by dry air entrainment. In order to 363 

distinguish between the two different stratocumulus and shallow cumulus dynamic regimes, the 364 

STC and SHC WSs are split into their westward and eastward horizontal wind components using 365 

the 850mb wind plotted in Figure 6. The resulting TAU-PC histograms (not shown) are very 366 

similar, with slightly higher optical thickness for the westward components, and the global RFO 367 
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numbers are split almost evenly between the easterly-westerly components (4.9%-4.4% for STC, 368 

3.6%-4% for SHC). The resulting RFO global maps are shown in Figure 6, for the STC WS at 369 

the top and the SHC WS at the bottom. It can be seen that the splitting by the horizontal wind 370 

regime clearly separates the midlatitude from the tropical components of the stratocumulus and 371 

shallow cumulus WSs, thus making possible more targeted studies of the mechanisms involved 372 

in the two different cloud transitions. 373 

 374 

 375 

c. CMIP6 Model Cloud Evaluation 376 

 377 

The Relative Frequency of Occurrence (RFO) of the merged H-WSs from the ensemble of 378 

CMIP6 model AMIP simulations that provided the necessary TAU-PC histograms at daily 379 

resolution is shown in Figure 7, together with the daily merged ISCCP-H WS RFO. Note that the 380 

model WSs are derived through assignment of each model TAU-PC histogram to the ISCCP WS 381 

with which it has the smallest Euclidian distance. The figure also shows the model ensemble 382 

mean, and with smaller symbols the WS distributions of an ensemble of CMIP5 models which 383 

contains the earlier versions of the same models included in the CMIP6 ensemble. For most WSs 384 

the ensemble mean RFO of the CMIP6 models falls within or just outside the limits of the 385 

observational uncertainty, with the notable exception of the clear sky fractions that are 386 

significantly higher in all models than in the satellite retrievals. The main reason for this 387 

difference is that over the Sahara and Arabian desserts the models tend to simulate frequent 388 

daylight clear sky conditions while the satellites retrieve mostly fair-weather clouds. The good 389 

agreement of the model ensemble mean with observations shown in Fig. 4 is in several WSs the 390 
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result of a wide spread of model RFO values located on either side of the observed value. 391 

Moreover, systematic biases, with all or most models biased in the same direction, exist in 392 

several WSs. The most pronounced systematic bias occurs in the shallow cumulus WS, where all 393 

but two models significantly underestimate the RFO amount. Smaller systematic RFO biases 394 

exist in fair weather and deep convective clouds, where most CMIP6 models fall below the 395 

ISCCP line. The underestimate of shallow cumulus clouds found in both CMIP6 and CMIP5 396 

ensembles has also been noted in several previous analyses of CMIP5 simulations (e.g. Bodas-397 

Salcedo et al. 2014, Remillard and Tselioudis 2015) and was attributed to cloud underestimation 398 

in cold air outbreaks behind midlatitude frontal systems, while the underestimate of midlevel 399 

cloud was also found in the WS analysis of CMIP5 models of Jin et al. (2016).  400 

 401 

As noted before, in addition to the systematic model biases, in several WSs the models tend to 402 

fall into two contrasting groups that severely underestimate and severely overestimate 403 

respectively the ISCCP-H WS RFO values. In order to quantify the CMIP6 model RFO bias 404 

spread in a way that avoids the positive and negative bias cancellations of the averaging  Table 3 405 

shows the WS RFO absolute deviation in % of the CMIP6 and CMIP5 model ensembles from 406 

the observed RFO, normalized by the observed RFO value. It can be seen that in the CMIP6 407 

model ensemble the absolute WS RFO deviation is above 30% of the observational value for the 408 

cirrus, polar, stratocumulus,  mid-level, and shallow cumulus WSs, implying that the model 409 

ensemble mean agreement with the observations often results from the averaging of significant 410 

contrasting biases. Compared to the CMIP5 ensemble, the CMIP6 models show in five cloud 411 

WSs RFO absolute deviation values that are smaller than the CMIP5 model ones, thus resulting 412 
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in a smaller overall mean deviation and implying an improved representation of the WS RFO 413 

distribution by the CMIP6 models.  414 

 415 

As noted before, the WS assignment for the models is done through closest association of the 416 

model PC-TAU histograms with the ISCCP WSs, implying that the resulting model WSs can 417 

still differ significantly in their cloud cover, optical thickness, or cloud top pressure values or 418 

their geographical distribution from the ISCCP WS to which they are assigned. Those 419 

differences, which can result in model radiation or precipitation biases even in cases of correct 420 

WS RFO representations, are examined in Figure 8. The figure shows for each WS the model 421 

difference in (from top) mean cloud fraction, mean optical depth, and mean cloud top pressure 422 

from the corresponding ISCCP WS, and (bottom) the RMS difference of WS geographical 423 

pattern derived through differencing of the WS RFO maps of each model from the corresponding 424 

ISCCP maps. The CMIP5 model ensemble mean is also plotted on all the panels. It can be seen 425 

that with the only major exception of the shallow cumulus WS, CMIP6 models tend to 426 

underestimate WS cloud fraction by about 4-6%, and the underestimation is smaller than in 427 

CMIP5 models for most WSs. This difference, however, can be in part due to the generally lower 428 

horizontal model resolutions in the CMIP5 ensemble. At the same time, model cloud optical 429 

depth is higher than ISCCP in five WSs, the same in two, and lower only in polar clouds, but the 430 

polar model overestimation could be due to underestimation of cloud optical depth in ISCCP 431 

retrievals over ice surfaces. The CMIP5 ensemble similarly has higher optical depth than ISCCP 432 

in most WSs. Overall, it can be said that CMIP6 models still follow the “too few-too bright’ 433 

paradigm found in all previous generations of climate models (e.g. Webb et al. 2001, Weare 434 

2004, Karlsson et al. 2008, Nam et al. 2012). The cloud top pressure of the deep convective and 435 
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midlatitude storm WSs is larger than that found in ISCCP implying generally lower cloud tops in 436 

the model simulations, while for most other WSs the cloud top pressures are generally lower than 437 

in ISCCP indicating higher model cloud tops for cirrus, polar, and all low clouds. The bias for 438 

low cloud top pressures may be even worse because the ISCCP-H estimates seem to be biased 439 

low (Stubenrauch et al. 2013). Finally, the RFO geographical pattern differences between the 440 

CMIP6 model and ISCCP WSs are very small for deep convective, midlatitude storm, middle-441 

top, and shallow cumulus WSs, meaning that the cloud types that are associated with the ITCZ 442 

and the midlatitude storm tracks show almost identical patterns with the observed ones. The 443 

cirrus and fair weather WSs, cloud types that tend to be more widespread, show the largest 444 

pattern differences from the observations. Note, however, that part of the difference in the 445 

pattern may represent difference in the RFO values between the model and ISCCP WSs. The WS 446 

pattern biases found in the present analysis are similar between the CMIP6 and CMIP5 447 

ensembles and are both significantly smaller than the pattern differences found in a similar 448 

analysis of CMIP3 models by Williams and Webb (2008). 449 

 450 

The distribution of Shortwave and Longwave Cloud Radiative Effect (SWCRE/LWCRE) among 451 

the model Weather States is evaluated in Figure 9 against the observational distributions, derived 452 

from compositing the ISCCP-FH and CERES radiative flux data in the merged ISCCP-H 453 

weather states. The ISCCP-FH radiative flux retrievals are derived through the application of a 454 

radiative flux calculation on the ISCCP-H cloud field, and therefore they represent the radiative 455 

fluxes that the models would calculate if they faithfully simulated the ISCCP-H WS cloud 456 

property distributions. The difference between the ISCCP-FH and the CERES CRE values can 457 

be seen as the observational uncertainty, or even as the ISCCP-FH bias against the more direct 458 
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CERES flux retrievals. Figure 9 shows that in all WS categories the observational uncertainty is 459 

much smaller than the model spread, and that in certain categories clear model biases can be 460 

identified. The largest model bias occurs in the middle top WS, where the model mean cloud SW 461 

cooling is too small by 20-30W/m2, due primarily to the underprediction of cloud fraction in that 462 

WS (cf. Fig. 8). A smaller SWCRE bias occurs in the midlatitude storm and the stratocumulus 463 

WSs, due to the underprediction of cloud fraction despite the overprediction of cloud optical 464 

depth in those categories. In contrast, SWCRE is too strong in shallow cumulus clouds, due to an 465 

overprediction of cloud cover and optical depth in those clouds. In the LWCRE evaluation, the 466 

only clear bias is in the midlatitude storm WS, where the lower model cloud tops and cloud 467 

fraction (Fig.8) result in weaker LW cloud effects in all models. The somewhat weaker LW 468 

warming in the cirrus and middle-top WSs can only be explained by the lower cloud fraction in 469 

those regimes. 470 

 471 

The distribution of precipitation among the model WS is evaluated in Figure 10, against the same 472 

distribution from a composite of TRMM rain rate retrievals on the merged ISCCP-H weather 473 

states. The large majority of the observed precipitation falls in the deep convective and 474 

midlatitude storm WSs, with contributions from the cirrus (which may be due to platform space-475 

time mismatch near convective systems) and the middle top WSs, and this distribution is present 476 

in the model simulations as well. However, CMIP6 models show a spread in precipitation rate in 477 

the deep convective and to a lesser extent the storm cloud WS that is very large, with the extreme 478 

models differing by as much as 10-15 mm/day in deep convective precipitation rates. In the 479 

ensemble mean, CMIP6 models simulate higher, more realistic convective presipitation rates 480 

than CMIP5 models. Also, all models tend to show a small overestimation of the low rain rates 481 
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in all WSs other than the convective and storm cloud ones, indicating the presence of excess 482 

drizzle in the model simulations. 483 

 484 

 485 

4. Discussion 486 

 487 

A cluster analysis of TAU-PC histograms of the new, higher resolution ISCCP-H dataset 488 

produces cloud regimes that are very similar to the lower resolution ISCCP-D WSs. The main 489 

difference lies in the elimination of the ISCCP-D ‘thin stratocumulus’ category and the splitting 490 

of those clouds between the stratocumulus and shallow cumulus ISCCP-H WSs. This happens 491 

because the ISCCP-H dataset resolves better the stratocumulus-to-shallow cumulus transition, 492 

while in the coarser ISCCP-D retrievals the mixed-cloud transition scenes are classified as a thin 493 

stratocumulus category. Another important difference is found in the polar cloud WS, which has 494 

a different, more consistent with the active retrievals TAU-PC distribution than the ISCCP-D one 495 

and is much better confined to the polar regions. The overall consistency between the two ISCCP 496 

WS analyses is indicative of the similarities between the two ISCCP datasets, with the 497 

differences coming mostly from the higher horizontal resolution of the ISCCP-H data and from 498 

the changes in the cloud property retrievals over ice covered surfaces. This implies that results 499 

derived from analyses of the ISCCP-D WSs  of Tselioudis et al. (2013) will remain consistent if 500 

the ISCCP-H WSs are used instead, unless polar clouds are the analysis focus. 501 

 502 

The evaluation of the CMIP6 models against Weather States derived from cloud property cluster 503 

analysis, shows that in the ensemble average the models are producing an adequate 504 
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representation of the frequency and geographical distribution of the WSs, with some 505 

improvements compared to the WSs derived for the CMIP5 ensemble. However, in some WSs 506 

like cirrus and stratocumulus, the good agreement of the model ensemble mean with the 507 

observations comes from averaging two groups of models that significantly overpredict and 508 

underpredict the RFO values. In addition, significant biases exist in the cloud properties of the 509 

model WSs, such as the model underestimation of cloud fraction in middle-top clouds and 510 

secondarily in midlatitude storm and stratocumulus clouds, that result in an underestimation of 511 

cloud SW cooling in those regimes. The cloud defined WSs constitute a useful framework to 512 

initiate a ‘regime based’ evaluation of climate models.  513 

 514 

As shown in the case of the boundary layer clouds, however, cloud distributions with similar 515 

radiative characteristics can still derive from distinct atmospheric processes. In the context of 516 

model evaluation and its use to improve cloud simulations, where knowledge of the mechanisms 517 

involved in cloud formation and dissipation is crucial, it may be necessary to further split the 518 

WSs to obtain consistent dynamic regimes. As an example, Figure 11 shows the evaluation of 519 

the CMIP6 models separately for the RFO of the easterly and westerly components of the SHC 520 

and STC WSs. It can be seen that for the SHC WS, which is underestimated in the whole by the 521 

models (Fig. 7), this underestimate is more pronounced in the tropical (easterly) than in the 522 

midlatitude (westerly) component of the WS. For the STC WS, which is slightly overestimated 523 

in the whole (Fig. 7), this overestimate comes from an underestimate of the tropical component 524 

and an overestimate of the midlatitude one. Overall, models tend to underpredict stratocumulus 525 

and shallow cumulus amounts in the tropical trade wind regime more than in the midlatitude cold 526 

air outbreak regime. This information provides additional insight into the processes that may be 527 



 24 

responsible for potential model cloud deficiencies, but further dynamical or thermodynamical 528 

compositing may be needed to meaningfully resolve cloud formation and dissipation processes.  529 

 530 

As illustrated in Figure 3 for the case of a midlatitude storm, the cluster analysis derived WSs 531 

provide regime definitions that correspond to distinct combinations of dynamic and 532 

thermodynamic conditions that result in the formation of the distinct cloud type distributions. 533 

The evaluation of CMIP6 climate models using the WS distributions constitutes a meaningful 534 

‘regime-based’ evaluation, which can provide information pointing to the processes responsible 535 

for potential model deficiencies. Furthermore, if climate change is seen as a shift in the 536 

distribution of atmospheric regimes, then the ability of the models to reproduce the distribution 537 

of cloud, radiation, and precipitation properties among the regimes provides a test for their 538 

ability to simulate climate feedbacks resulting from atmospheric regime distribution shifts.  539 

 540 

 541 

DATA AVAILABILITY STATEMENT 542 

 543 

The ISCCP-H Weather State dataset discussed in this study is available in the following location: 544 
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 685 

Table 1  686 

CMIP6 models used in the WS analysis with Horizontal resolution and Vertical Layering. 687 

 688 

Model Horizontal resolution (lat x lon) Vertical Layering 

CESM2 0.94 x 1.25 32 levels 

CNRM-CM6-1 1.40 x 1.41 91 levels 

CNRM-ESM2-1 1.40 x 1.41 91 levels 

GFDL-CM4 2.0 x 2.5 33 levels 

GISS-E2-1-G 2.0 x 2.5 40 levels 

GISS-E3-G 1x1.25 102 levels 

HadGEM3-GC31-LL 1.25 x 1.875 85 levels 

IPSL-CM6A-LR 1.27 x 2.5 79 levels 

MRI-ESM2-0 1.12 x 1.125 80 levels 

UKESM1-0-LL 1.25 x 1.875 85 levels 

 689 

 690 

Table 2 691 

ISCCP-H Weather State mean values of cloud parameters. 692 

 DCN MDS CIR PLR MID FRW SHC STC 

Avg PC [hPa] 242.6 433.6 316.3 395.6 606.9 645.1 840.1 725.5 

AvgTAU 10.5 10.4 1.2 2.2 9.5 3.2 4 6.3 

Total CF [%] 99.5 99.2 79.9 84.5 97.2 40 79.6 90.7 

 693 

 694 

Table 3  695 

CMIP5 and CMIP6 model WS Normalized RFO Absolute Deviation from the ISCCP-H WS in 696 

%. The quantity is derived by averaging the absolute differences of model WS RFO from the 697 

ISCCP-H value and normalizing to the ISCCP-H value. 698 

 699 

 DCN MDS CIR PLR MID FRW SHC STC AVG 

CMIP6 (%) 21.4 20.9 49.8 69.8 35.8 12.12 48.9 34.9 36.7 

CMIP5 (%) 52.2 31.6 24.6 67.7 44.0 19.4 39.7 45.5 40.6 

  700 
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 701 

 702 
Figure 1. (Top) Cloud Top Pressure-Cloud Optical Thickness (PC-TAU) histograms for the eight 703 

cloud Weather States and a blank histogram (bottom-right) for clear sky. Noted on top of each 704 

histogram are the Relative Frequency of Occurrence (RFO) and the Total Cloud Cover (TCC). 705 

(Bottom) Global RFO maps of the 8 cloud WSs and of clear sky. 706 

707 



 33 

 708 
 709 

Figure 2. Cloud Vertical Structure (CVS) distributions for the 8 cloud WSs and for clear sky, 710 

derived from CloudSat/CALIPSO retrievals. The blue bars indicate cloud presence in a vertical 711 

layer, and the width of each CVS bar indicates the frequency of occurrence of this CVS in the 712 

particular WS (see Tselioudis et al. 2013, Fig. 4 for CVS definitions). The white bar (space) 713 

indicates clear sky, and the gray bar represents the sum of all CVSs that occur less than 5% of 714 

the time.  715 

  716 
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 717 

 718 

 719 

 720 
 721 

Figure 3: A MODIS-Aqua visible channel image over the North Atlantic superimposed on a grid 722 

that indicates with a numerical value the coincident ISCCP-H Weather State at the same time 723 

span and location. 724 

  725 
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 726 

Figure 4: Box-and-whisker diagram of ERA-Interim 500-mb vertical velocity distributions for 727 

the 8 cloud WSs. The line represents the median, the rhombus represents the mean, the box 728 

represents the 75th percentile, and the bar represents the 95th percentile of each distribution.  729 
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 730 
Figure 5: Wind rose diagrams for the 8 cloud WSs, from ERA-Interim 850mb wind data. The 731 

length of each "spoke" around the circle indicates the fraction of time that the wind blows from a 732 

particular direction, noted on the circles. Colors along the spokes indicate categories of wind 733 

speed, noted on the color bar at the bottom of the plot. At the top of each plot, the label shows 734 

the percentage of time that each WS occurs in the tropical (30S-30N), midlatitude (30-60N/S), 735 

and polar (60-90N/S) regions. 736 

  737 
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 738 
Figure 6. Global maps of the Relative Frequency of Occurrence (RFO) of the Stratocumulus 739 

(top) and the Shallow Cumulus (bottom) WSs, separately for their easterly wind (left panels) and 740 

their westerly wind (right panels) components. 741 
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 742 
 743 

Figure 7: Relative frequency of occurrence of the eight cloud WSs and clear sky, from the 744 

ISCCP-H dataset (solid line) and the AMIP 20th century simulations of the CMIP6 and CMIP5 745 

models (model symbols are indicated in the label). The gray bar around the line indicates the 746 

ISCCP-H interannual variability. The larger symbols on the right column correspond to the 747 

CMIP6 versions of the models and the smaller symbols on the left side to the CMIP5 versions of 748 

the models. The X sign is the mean of each model ensemble. 749 

  750 
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 751 

Figure 8: Difference between CMIP6 model and ISCCP-H WS mean (a) cloud fraction, (b) cloud 752 

optical depth, and (c) cloud top pressure, and (d) Root Mean Square Difference between the WS 753 

RFO maps of the CMIP6 models and ISCCP-H. The CMIP6 model ensemble mean difference is 754 

indicated with an X and the CMIP5 one with a +. CMIP6 model symbols are as indicated in Fig. 755 

6. 756 
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 757 

 758 

Figure 9: Mean values of CMIP6 model WS (top) Shortwave Cloud Radiative Effect (SW CRE), 759 

and (bottom) Longwave Cloud Radiative Effect (LW CRE). The CMIP6 model ensemble mean 760 

is indicated with an X, the CMIP5 mean with a +, and the mean values for the ISCCP-H WSs 761 

derived from the CERES and the ISCCP-FH radiative flux datasets are noted with horizontal 762 

bars. Model symbols are as indicated in Fig. 6. Positive/negative values indicate radiative 763 

warming/cooling. 764 
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 766 
 767 

Figure 10: Mean values of CMIP6 model WS precipitation. The CMIP6 model ensemble mean is 768 

indicated with an X, the CMIP5 mean with a +, and the mean values for the ISCCP-H WSs 769 

derived from the TRMM precipitation dataset is noted with a horizontal bar. CMIP6 model 770 

symbols are as indicated in Fig. 6. 771 
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 773 

Figure 11. Relative frequency of occurrence of the easterly and westerly components of the 774 

shallow cumulus (SHC) and stratocumulus (STC) WSs, from the ISCCP-H dataset (solid line) 775 

and the AMIP 20th century simulations of the CMIP6 models (model symbols are indicated in the 776 

label). The gray bar around the line indicates the ISCCP-H interannual variability. The X sign is 777 

the mean of each model ensemble. 778 


