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Abstract8

This paper presents a formalization of several termination criteria for first-order recursive functions.9

The formalization, which is developed in the Prototype Verification System (PVS), includes the10

specification and proof of equivalence of semantic termination, Turing termination, size change11

principle, calling context graphs, and matrix-weighted graphs. These termination criteria are defined12

on a computational model that consists of a basic functional language called PVS0, which is an13

embedding of recursive first-order functions. Through this embedding, the native mechanism for14

checking termination of recursive functions in PVS could be soundly extended with semi-automatic15

termination criteria such as calling contexts graphs.16
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1 Introduction23

Advances in theorem proving have enabled the formal verification of algorithms used in24

safety-critical applications. For instance, the Prototype Verification System (PVS) [11] is25

extensively used at NASA in the verification of safety-critical algorithms of autonomous26

unmanned systems.1 These algorithms are typically specified as recursive functions whose27

computations are well-behaved, i.e., they terminate for every possible input. In computer28

science, program termination is the quintessential example of a property that is undecidable.29

Alan Turing famously proved that it is impossible to construct an algorithm that decides30

whether or not another algorithm terminates on a given input [13]. Turing’s proof applies31

to algorithms written as Turing machines, but the proof extends to other formalisms for32

1 For example, see https://shemesh.larc.nasa.gov/fm.
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26:2 Formal Verification of Termination Criteria for First-Order Recursive Functions

expressing computations such as λ-calculus, rewriting systems, and programs written in33

modern programming languages.34

As is the case for other undecidable problems, there are syntactic and semantic restrictions,35

data structures, and heuristics that lead to a solution for subclasses of the problem. In Coq,36

for example, termination of well-typed functions is guaranteed by the Calculus of Inductive37

Constructions implemented in its type system [4]. Other theorem provers, such as ACL2,38

have incorporated syntactic conditions for checking termination of recursive functions [7].39

In the Prototype Verification System (PVS), the user needs to provide a measure function40

over a well-founded relation that strictly decreases at every recursive call [11]. Despite the41

undecidability result, termination is routine, but is often a tedious and time-consuming stage42

in a formal verification effort.43

This paper reports on the formalization of several termination criteria in PVS. In addition44

to the proper mechanism implemented in the type checker of PVS to assure termination of45

recursive definitions, this work also includes the formalization of more general techniques,46

such as the size change principle (SCP) presented by Lee et. al. [9]. The SCP principle states47

that if every infinite computation would give rise to an infinitely decreasing value sequence,48

then no infinite computation is possible. Later, Manolios and Vroon introduced a particular49

concretization of the SCP, namely the Calling Context Graphs (CCG) and demonstrated50

its practical usefulness in the ACL2 prover [10]. Avelar’s PhD dissertation proposes an51

improvement on the CCG technique, based on a particular algebra on matrices [3]. The52

formalization reported in this paper includes all these criteria and proofs of equivalence53

between them. While the formalization itself has been available for some time as part of the54

NASA PVS Library2, the goal of this paper is to report the main results. These results, which55

have been used in other works such as [2] and [12], have not been properly published before.56

Furthermore, this paper also presents a practical contribution: a mechanizable technique to57

automate (some) termination proofs of user-defined recursive functions in PVS.58

For readability, this paper uses a stylized PVS notation. The development presented in59

this paper, including all lemmas and theorems, are formally verified in PVS and are available60

as part of the NASA PVS Library.361

2 PVS & PVS062

PVS is an interactive theorem prover based on classical higher-order logic. The PVS63

specification language is strongly-typed and supports several typing features including64

predicate sub-typing, dependent types, inductive data types, and parametric theories. The65

expressiveness of the PVS type system prevents its type-checking procedure from being66

decidable. Hence, the type-checker may generate proof obligations to be discharged by the67

user. These proof obligations are called Type Correctness Conditions (TCCs). The PVS68

system includes several pre-defined proof strategies that automatically discharge most of the69

TCCs.70

In PVS, a recursive function f of type [A→B] is defined by providing a measure function71

M of type [A→T], where T is an arbitrary type, and a well-founded relation R over elements72

in T . The termination TCCs produced by PVS for a recursive function f guarantee that the73

measure function M strictly decreases with respect to R at every recursive call of f .74

2 https://github.com/nasa/pvslib/tree/master/PVS0 and https://github.com/nasa/pvslib/tree/
master/CCG

3 https://shemesh.larc.nasa.gov/fm/pvs.

https://github.com/nasa/pvslib/tree/master/PVS0
https://github.com/nasa/pvslib/tree/master/CCG
https://github.com/nasa/pvslib/tree/master/CCG
https://shemesh.larc.nasa.gov/fm/pvs
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ackermann_TCC5: OBLIGATION
∀ (m,n: N): n ≠ 0 ∧ m ≠ 0 ⇒ lex2(m,n-1) < lex2(m,n)

ackermann_TCC6: OBLIGATION
∀ (m,n: N, f: [{z ∶ [N ×N] ∣ lex2(z‘1, z‘2) < lex2(m, n)}→ N]):
n ≠ 0 ∧ m ≠ 0 ⇒ lex2(m-1, f(m,n-1)) < lex2(m,n)

Figure 1 Termination-related TCCs for the Ackermann function in Ex. 1.

▶ Example 1. ackermann(m, n: N) : RECURSIVE N =75

IF m = 0 THEN n+176

ELSIF n = 0 THEN ackermann(m-1,1)77

ELSE ackermann(m-1, ackermann(m,n-1))78

ENDIF79

MEASURE lex2(m,n) BY <80

Example 1 provides a definiton of the Ackermann function in PVS. In this example, the81

type A is the tuple [N ×N] and the type B is N. The type T is ordinal, the type denoting82

ordinal numbers in PVS. The measure function lex2 maps a tuple of natural numbers83

into an ordinal number. Finally, the well-founded relation R is the order relation “<” on84

ordinal numbers. The termination-related TCCs generated by the PVS type-checker for the85

Ackermann function are shown in Figure 1. Since all the TCCs are automatically discharged86

by a PVS built-in proof strategy, the PVS semantics guarantees that the function ackermann87

is well defined on all inputs.88

PVS0 is a basic functional language used in this paper as a computational model for89

first-order recursive functions in PVS. More precisely, PVS0 is an embedding of univariate90

first-order recursive functions of type [Val→Val] for an arbitrary generic type Val. The91

syntactic expressions of PVS0 are defined by the grammar92

e ∶∶= cnst(v) ∣ vr ∣ op1(n, e) ∣ op2(n, e, e) ∣ rec(e) ∣ ite(e, e, e),93

where v is a value of type Val and n is a natural number. Furthermore, cnst(v) denotes a94

constant with value v, vr denotes a unique variable, op1 and op2 denote unary and binary95

operators respectively, rec denotes a recursive call, and ite denotes a conditional expression96

(“if-then-else”). The first parameter of op1 and op2 is an index used to identify built-in97

operators of type [Val→Val] and [[Val × Val] → Val], respectively. In the following, the98

collection of PVS0 expressions is referred to as PVS0Expr
Val, where the type parameter for99

PVS0Expr is omitted when possible to lighten the notation. The PVS0 programs with values100

in Val, denoted by PVS0Val, are 4-tuples of the form (O1, O2,�, e), such that101

O1 is a list of unary operators of type [Val→Val], where O1(i), i.e., the i-th element of102

the list O1, interprets the index i as referred by in the application of op1,103

O2 is a list of binary operators of type [[Val×Val] →Val], where O2(i) interprets the104

index i in applications of op2,105

� is a constant of type Val representing the Boolean value false in the conditional106

construction ite, and107

e is a expression from PVS0Expr: the syntactic representation of the body of the program.108

Operators in O1 and O2 are PVS pre-defined functions, whose evaluation is considered to be109

atomic in the proposed computational model. These operators make it easy to modularly110

embed first-order PVS recursive functions in PVS0, while maintaining non-recursive PVS111

ITP 2021



26:4 Formal Verification of Termination Criteria for First-Order Recursive Functions

functions directly available to PVS0 definitions. Henceforth, if p = (O1, O2,�, e) is a PVS0112

program, the symbols pO1
, pO2

, p
�
, and pe denote, respectively, the first, second, third,113

and fourth elements of the tuple. Since there is only one variable available to write PVS0114

programs, arguments of binary functions such as Ackermann’s need to be encoded in Val,115

for example using tuples as shown in Example 2.116

▶ Example 2. The Ackermann function of Example 1 can be implemented as the PVS0[N×N]117

program ack ≡ (O1, O2,�, e), where the type parameter Val of PVS0 is instantiated with118

the type of pair of natural numbers, i.e., [N×N]. In this encoding, the first projection of119

the result of the program represents the output of the function. The components of ack are120

defined below.121

O1(0)((m, n)) ≡ IF m = 0 THEN ⊺ ELSE � ENDIF .122

O1(1)((m, n)) ≡ IF n = 0 THEN ⊺ ELSE � ENDIF .123

O1(2)((m, n)) ≡ (n + 1, 0).124

O1(3)((m, n)) ≡ IF m = 0 THEN � ELSE (max(0, m − 1), 1) ENDIF .125

O1(4)((m, n)) ≡ IF n = 0 THEN � ELSE (m, max(0, n − 1)) ENDIF .126

O2(0)((m, n), (i, j)) ≡ IF m = 0 THEN � ELSE (max(0, m − 1), i) ENDIF .127

� ≡ (0, 0), and for convenience ⊺ ≡ (1, 0).128

e ≡ ite(op1(0,vr), op1(2,vr),129

ite(op1(1,vr), rec(op1(3,vr)), rec(op2(0,vr,rec(op1(4,vr)))))).130

Example 2 illustrates the use of built-in operators in PVS0. Any unary or binary PVS131

function can be used as an operator in the construction of a PVS0 program. In order to show132

that ack correctly encodes the Ackermann function, it is necessary to define the operational133

semantics of PVS0.134

2.1 Semantic Relation135

Given a PVS0 program p, the semantic evaluation of a PVS0Expr expression ei is given by136

the relation ε defined as follows. Intuitively, it holds when given a subexpression ei of a137

program p, the evaluation of ei on the input value vi results in the output value vo.138

▶ Definition 3 (Semantic Relation). Let p be a PVS0 program on a generic type Val, ei be an139

expression in PVS0Expr, and vi, vo, v, v′, v′′ be values from Val. The relation ε(p)(ei, vi, vo)140

holds if and only if141

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vo = v if ei = cnst(v)
vo = vi if ei = vr

∃ v′ ∶ ε(p)(e1, vi, v′) ∧ vo = χ1(p)(j, v′) if ei = op1(j, e1)
∃ v′, v′′ ∶ ε(p)(e1, vi, v′) ∧ ε(p)(e2, vi, v′′)

∧ vo = χ2(p)(j, v′, v′′) if ei = op2(j, e1, e2)
∃ v′ ∶ ε(p)(e1, vi, v′) ∧ ε(p)(pe, v′, vo) if ei = rec(e1)
∃ v′ ∶ ε(p)(e1, vi, v′) ∧ (v′ ≠ p

�
⇒ ε(p)(e2, vi, vo))

∧ (v′ = p
�
⇒ ε(p)(e3, vi, vo)) if ei = ite(e1, e2, e3)

142

where143

χ1(p)(j, v) =
⎧⎪⎪⎨⎪⎪⎩

pO1
(j)(v) if j < ∣pO1

∣
p
�

otherwise.
144
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145

χ2(p)(j, v1, v2) =
⎧⎪⎪⎨⎪⎪⎩

pO2
(j)(v1, v2) if j < ∣pO2

∣
p
�

otherwise.
146

The following lemma states that the ack program encodes the function ackermann.147

▶ Lemma 4. For all n, m, k ∈ N, ackermann(m, n) = k if and only if there exists i ∈ N such148

that ε(ack)(acke, (m, n), (k, i)).149

This lemma can be proved by structural induction on the definition of the function ackermann150

and the relation ε. A proof of this kind of statement is usually tedious and long. However,151

it is fully mechanizable in PVS assuming that the function and the PVS0 program share152

the same syntactical structure. A proof strategy that automatically discharges equivalences153

between PVS functions and PVS0 programs was developed. The following theorem shows154

that the semantic relation ε is deterministic.155

▶ Theorem 5. Let p be a PVS0 program. For any PVS0Expr expression ei and values156

vi, v′o, v′′o ∈ Val, ε(p)(ei, vi, v′o) and ε(p)(ei, vi, v′′o ) implies v′o = v′′o .157

PVS0 enables the encoding on non-terminating functions. The predicate ε-determined,158

defined below, holds when a PVS0 program encodes a function that returns a value for a159

given input.160

▶ Definition 6 (ε-determination). A PVS0 program p is said to be ε-determined for an input161

value vi ∈ Val (denoted by Dε(p, vi)) when ∃vo ∈ Val ∶ ε(p)(pe, vi, vo).162

2.2 Functional Semantics163

The operational semantics of PVS0 can be expressed by a function χ ∶ [PVS0→ [PVS0Expr ×164

Val ×N] → Val ⊎ {♢}]. This function returns either a value of type Val or a distinguished165

value ♢ /∈ Val. The natural number argument represents an upper bound on the number of166

nested recursive calls that are to be evaluated. If this bound is reached and no final value167

has been computed, the function returns ♢.168

▶ Definition 7 (Semantic Function). Let p be a PVS0 program, ei a PVS0Expr expression, vi169

a value from Val, n a natural number, v′ = χ(p)(e1, vi, n), and v′′ = χ(p)(e2, vi, n).170

χ(p)(ei, vi, n) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if n > 0 and ei = cnst(v)
vi if n > 0 and ei = vr

χ1(p)(j, v′) if n > 0, ei = op1(j, e1), and v′ ≠ ♢
χ2(p)(j, v′, v′′) if n > 0, ei = op2(j, e1, e2),

v′ ≠ ♢, and v′′ ≠ ♢
χ(p)(e, v′, n − 1) if n > 0, ei = rec(e1), and v′ ≠ ♢
χ(p)(e2, vi, n) if n > 0, ei = ite(e1, e2, e3), v′ ≠ ♢,

and v′ ≠ p
�

χ(p)(e3, vi, n) if n > 0, ei = ite(e1, e2, e3), v′ ≠ ♢,

and v′ = p
�

♢ otherwise.

171

ITP 2021



26:6 Formal Verification of Termination Criteria for First-Order Recursive Functions

The following theorem states that the semantic relation ε and the semantic function χ172

are equivalent.173

▶ Theorem 8. For any PVS0 program p, vi, vo ∈ Val and ei ∈ PVS0Expr, ε(p)(ei, vi, vo) if174

and only if vo = χ(p)(ei, vi, n), for some n ∈ N.175

A program p is χ-determined for an input vi, as defined below, if the evaluation of p(vi)176

produces a value in a finite number of nested recursive calls.177

▶ Definition 9 (χ-determination). A PVS0 program p is said to be χ-determined for an input178

value vi ∈ Val (denoted by Dχ(p, vi)) when there is an n ∈ N such that χ(p)(pe, vi, n) ≠ ♢.179

As a corollary of Theorem 8, the notions of ε-determination and χ-determination coincide.180

▶ Theorem 10. For all p ∈ PVS0Val and value vi ∶ Val, Dε(p, vi) if and only if Dχ(p, vi).181

In Definition 9, there may be multiple (in fact, infinite) natural numbers n that satisfy182

χ(p)(pe, vi, n) ≠ ♢. The following definition distinguishes the minimum of those numbers.183

▶ Definition 11 (µ). Let p be a PVS0 program and vi a value in Val such that Dχ(p, vi),184

the minimum number of recursive calls needed to produce a result (denoted by µ(p, vi)) is185

formally defined as min({n ∈ N ∣ χ(p)(pe, vi, n) ≠ ♢}).186

If p is χ-determined for a value vi, then for any n ≥ µ(p, vi) the evaluation of χ(p)(pe, vi, n)187

results in a value from Val. This remark is formalized by the following lemma.188

▶ Lemma 12. Let p be a PVS0 program and vi a value from Val such that Dχ(p, vi). For189

any n ∈ N such that n ≥ µ(p, vi), χ(p)(pe, vi, n) = χ(p)(pe, vi, µ(p, vi)).190

2.3 Semantic Termination191

The notion of termination for PVS0 programs is defined using the notions of determination192

from Section 2.2.193

▶ Definition 13 (ε-termination and χ-termination). A PVS0 program p ∈ PVS0Val is said to194

be ε-terminating (noted Tε(p)) when ∀vi ∈ Val ∶ Dε(p, vi). It is said to be χ-terminating195

(Tχ(p)) when ∀vi ∈ Val ∶ Dχ(p, vi).196

As a corollary of Theorem 10, the notions of ε-termination and χ-termination coincide.197

▶ Theorem 14. For every PVS0 program p, Tε(p) if and only if Tχ(p).198

Not all PVS0 programs are terminating. For example, consider the PVS0 program p′ with199

body rec(vr). It can be proven that Dε(p′, vi) does not hold for any vi ∈ Val. Hence, Tε(p′)200

does not hold and, equivalently, nor does Tχ(p′). Since terminating programs compute a201

value for every input, the function χ can be refined into an evaluation function for terminating202

programs that does not depend on the existence of a distinguished value outside Val, such203

as ♢.204

▶ Definition 15. Let PVS0↓ε be the collection of PVS0 programs for which Tε holds, let205

p ∈ PVS0↓ε , and vi be a value in Val. The semantic function for terminating programs206

ϵ ∶ [PVS0↓ε → Val → Val] is defined in the following way.207
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ϵ(p)(vi) ≡ ϵe(p)(pe, vi), where v′ = ϵe(p)(e1, vi), v′′ = ϵe(p)(e2, vi), and208

ϵe(p)(ei, vi) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if ei = cnst(v)
vi if ei = vr

χ1(p)(j, v′) if ei = op1(j, e1)
χ2(p)(j, v′, v′′) if ei = op2(j, e1, e2)
ϵe(p)(e, v′) if ei = rec(e1)
ϵe(p)(e2, vi) if ei = ite(e1, e2, e3) and ϵe(p)(e1, vi) ≠ p

�

ϵe(p)(e3, vi) if ei = ite(e1, e2, e3) and ϵe(p)(e1, vi) = p
�

209

▶ Theorem 16. For all terminating PVS0 program p, i.e., Tε(p) holds, and values vi, vo ∈ Val,210

ε(p)(pe, vi, vo) holds if and only if ϵ(p)(vi) = vo.211

While Tε and Tχ provide semantic definitions of termination, these definitions are im-212

practical as termination criteria, since they involve an exhaustive examination of the whole213

universe of values in Val. The rest of this paper formalizes termination criteria that yield214

mechanical termination analysis techniques.215

3 Turing Termination Criterion216

In contrast to the purely semantic notions of termination presented in Section 2, the so-called217

Turing termination criterion relies on the syntactic structure of recursive programs. In218

particular, this termination criterion uses a characterization of the input values that lead219

to the evaluation of recursive call subexpressions, i.e., rec(e). In order to define such220

a characterization, it is necessary to formalize a way to identify univocally a particular221

subexpression of a given PVS0 program. Furthermore, the subexpression as well as its222

actual position must be identified. If a given program body contains several repetitions223

of the same expression, such as op2(0,rec(vr),rec(vr)), which has two occurrences of224

rec(vr), the criterion needs them to be distinguishable from one another. Such a reference225

for subexpressions can be formally defined using the abstract syntax tree of the enclosing226

expression. To illustrate the idea, Figure 2 depicts a graphical representation of the abstract227

syntax tree of the ack program. A unique identifier for a given subexpression can be228

constructed by collecting all the numbers labeling the edges from the subexpression to the229

root of the tree. For example, the sequence of numbers that identify the subexpression230

rec(op1(4,vr)) is ⟨2, 0, 2, 2⟩. A syntax tree labeled using these sequences is called a labeled231

syntax tree.232

▶ Definition 17 (Valid Path). Let p be a PVS0 program, a finite sequence of natural numbers233

p is a Valid Path of p if p determines a path in the labeled syntax tree of p from any node e234

to the root of the tree. In that case, p is said to reach e in p.235

The notion of path is strictly syntactic. Nevertheless, a semantic correlation is also needed236

to state termination criteria focused on how the inputs change along successive recursive calls,237

as is the case for Turing termination criterion. A semantic way to identify a subexpression e238

of a given program p is to recognize all the values that exercise the particular subexpression239

e when used as inputs for the evaluation of p. It is possible to characterize such values by240

collecting all the expressions that act as guards for the conditional expressions traversed for241

a given path reaching e.242

Continuing the example based on the ack program, for the path ⟨2, 0, 2, 2⟩ reaching243

rec(op1(4,vr)), such expressions would be op1(0,vr) and op1(1,vr). For that specific244

ITP 2021



26:8 Formal Verification of Termination Criteria for First-Order Recursive Functions

Figure 2 Abstract syntax tree of the Ackermann function from Example 2.

path, the values to be characterized are the ones that falsify both guard expressions, i.e.,245

the values for which both expressions evaluate to p
�
. Nevertheless, for the path ⟨1, 2⟩246

reaching rec(op1(3,vr)), the collected expressions are the same, but it is necessary for the247

latter not to evaluate to p
�

in order to characterize the input values that would exercise248

rec(op1(3,vr)).249

The previous example shows that it is necessary not only to collect the guard expressions,250

but also to determine whether each one needs to evaluate to p
�

or not.251

▶ Definition 18 (Polarized Expression). Given a PVS0Expr expression e, the polarized version252

of e is a pair [PVS0Expr × {0, 1}] such that (e, 0), abbreviated as ¬e, indicates that e should253

evaluate to p
�

and the pair (e, 1), which is abbreviated simply as e, indicates the contrary.254

For a given program p, an input value vi, and a polarized expression c = (e, b) with255

b ∈ {0, 1}, c is said to be valid when the condition expressed by it holds. The predicate ε±256

defined below formalizes this notion.257

ε±(p)(c, vi) ≡
⎧⎪⎪⎨⎪⎪⎩

ε(p)(e, vi, p
�
) if b = 0,

¬ε(p)(e, vi, p
�
) otherwise.

258

The semantic characterization of a particular subexpression is formalized by the notion259

of list of path conditions defined below.260

▶ Definition 19 (Path Conditions). Let p be a valid path of a PVS0 program p and e the261

subexpression of pe reached by p. The list of polarized guard expressions of p that are needed262

to be valid in order for the evaluation of p to involve the expression e is called the list of path263

conditions of p.264

▶ Definition 20 (Calling Context). A calling context of a program p is a tuple (rec(e′), p, c)265

containing: a path p, which is valid in p, a recursive-call expression rec(e′) contained in pe266

and reached by p, and the list c of path conditions of p. The collection of all calling contexts267

of p is denoted by cc(p).268

The notion of calling context captures both the syntactic and the semantic characteriza-269

tions of the subexpressions of a program that denote recursive calls.270

▶ Example 21. The calling contexts for the ack function from Example 2 are:271

(rec(op1(3,vr)), ⟨1, 2⟩, ⟨¬op1(0,vr), op1(1,vr)⟩),272

(rec(op2(0,vr,rec(op1(4,vr)))), ⟨2, 2⟩, ⟨¬op1(0,vr),¬op1(1,vr)⟩), and273



C. A. Muñoz et. al. 26:9

(rec(op1(4,vr)), ⟨2, 0, 2, 2⟩, ⟨¬op1(0,vr),¬op1(1,vr)⟩).274

An input value vi is said to exercise a calling context cc = (e, p, c) in a program p when275

ε±(p)(c, vi) holds. A program p is TCC-terminating if for each calling context cc in p and276

every input value vi exercising cc, the value of the expression used as argument by the call277

in cc is smaller than vi. In this context, a value is considered smaller than another one if the278

former is closer to the bottom induced by a well-founded relation than the latter.279

▶ Definition 22 (TCC-termination). A PVS0 program p is said to be TCC-terminating, or280

Turing-terminating, on a measuring type M if there exist a function m ∶ [Val →M] and a281

well-founded relation <M on M such that for all calling context cc = (rec(e), p, c) among282

the calling contexts of p, for all vi, vo ∈ Val, if ε±(p)(c, vi) and ε(p)(e, vi, vo) hold, then283

m(vo) <M m(vi).284

The notion of TCC-termination on a program p is denoted by the predicate T
[M,<M ,m]
T (p),285

which is parametric on the measure type M , the well-founded relation <M , and the measure286

function m. TCC-termination is equivalent to ε-termination (and, therefore, to χ-termination)287

as stated by Theorem 25 below. A key construction used in the proof of Theorem 25 is the288

function Ω, defined as follows.289

▶ Definition 23 (Ω). Let <p,m be a binary relation on Val defined as v1 <p,m v2 if and only290

if m(v1) <M m(v2) and the evaluation of p with v2 as input reaches a recursive call rec(e)291

such that ε(p)(e, v2, v1) holds. Then, Ωp,m(v) ≡ min({i ∶ N+ ∣∀ v′ ∈ Val ∶ ¬(v′ <i
p,m v)})292

where v′ <i
p,m v denotes a chain of i + 1 values related by <p,m with endpoints in v′ and v.293

The following lemma states a relation between µ, the number of nested recursive calls in294

the evaluation of a particular input v, and Ωp,m for the same input v.295

▶ Lemma 24. Let p be a TCC-terminating PVS0 program, i.e., p satisfies T
[M,<M ,m]
T (p) for296

a measure type M , a well-founded relation <M over M , and a measure function m. For any297

value v ∈ Val, µ(p, v) ≤ Ωp,m(v).298

▶ Theorem 25. Let p be a PVS0 program, Tε(p) holds if and only if there exist a measure299

type M , a well-founded relation <M on M , and a measure function m such that T
[M,<M ,m]
T (p)300

holds as well.301

Proof. Assuming Tε(p), it can be proved that T
[N,<,µp]

T (p) holds, where µp(v) = µ(p, v).302

The function µp(v) is well defined for every v since Tε(p) holds and then, by Theorem 14,303

Dχ(p, v) holds as well. Following the definition of χ and the determinism of ε (Lemma 5),304

it can be seen that µp(vo) < µp(vi) for each pair of values vi, vo such that ε±(p)(c, vi) and305

ε(p)(e, vi, vo) for every calling context (rec(e), p, c) in p. The opposite implication can be306

proved stating that if T
[M,<M ,m]
T (p) holds, for every v ∈ Val and any subexpression e of p,307

there exists a natural number n ≤ Ωp,m(v) such that χ(p)(e, vi, n) ≠ ♢, which assures Tε(p)308

by Theorem 14. The proof of such a property proceeds by induction on the lexicographic309

order given by (m(v), ∣e∣), where ∣e∣ denotes the size of the expression e. ◀310

Theorem 25 can be used as a practical tool to prove ε-termination of PVS0 programs, as311

illustrated by the following lemma.312

▶ Lemma 26. The PVS0 program ack from Example 2 is ε-terminating, i.e., Tε(ack) holds.313

Proof. In order to use the Theorem 25, it is necessary to prove first that there exist a314

measure type M , a well-founded relation <M over M , and a measure function m such that315
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T
[M,<M ,m]
T (ack) holds. Let M be the type of pairs of natural numbers [N×N], m the identity316

function, and <M the lexicographic order on [N×N], i.e., (a, b) <lex (c, d) ≡ a < c∨(a = c∧b < d)317

where < is the less-than relation on natural numbers. To prove that T
[[N×N],<lex,id]
T (ack)318

holds, it suffices to check that for every input pair vi, leading to any of the recursive-call319

subexpressions rec(e) in ack, vi is such that for every pair vo satisfying ε(ack)(e, vi, vo),320

vo <lex vi.321

There are only three recursive calls in ack (see Example 2), namely: rec(op1(3,vr)),322

rec(op1(4,vr)), and rec(op2(0,vr,rec(op1(4,vr)))). Each of them determines a case in323

the proof. For the first subexpression, note that any input value vi leading to rec(op1(3,vr))324

must be such that π1(vi) ≠ 0 and π2(vi) = 0, in order to falsify the guard in the outermost325

if-then-else and validate the guard in the innermost conditional. Because of the function326

O1(3) used to interpret op1(3, ⋅), for every vo such that ε(ack)(e, vi, vo) holds, π1(vo) must327

be equal to π1(vi) − 1; hence, vo <lex vi holds. For the other recursive-call subexpressions in328

ack, the values vi that lead to them satisfy π1(vi) ≠ 0 and π2(vi) ≠ 0. In particular, for the329

case of rec(op1(4,vr)), the function O1(4) forces any vo for which ε(ack)(e, vi, vo) holds, to330

be equal to (π1(vi), π2(vi)−1), satisfying vo <lex vi as well. Finally, for the values vi reaching331

rec(op2(0,vr,rec(op1(4,vr)))) and because of O2(0), the first coordinate of vo must be332

π1(vi) − 1, which is enough to conclude that vo <lex vi holds. Then, T
[[N×N],<lex,id]
T (ack)333

holds and, by Theorem 25, Tε(ack) holds as well. ◀334

The inequalities of the form vo <lex vi that are proved in Lemma 26 correspond to the335

actual termination correctness conditions generated by the PVS type checker for the function336

ackermann defined in Example 1.337

4 Calling Context Graphs338

The Size Change Principle (SCP) states that “a program terminates on all inputs if every339

infinite call sequence (following program control flow) would cause an infinite descent in340

some data values” [9]. Calling Context Graphs is a technique that implements the SCP [10].341

▶ Definition 27 (Valid Trace). Given p ∈ PVS0, an infinite sequence cc = ⟨rec(ei), pi, ci⟩i∈N342

of calling contexts of p, and an infinite sequence of values v from Val, cc and v are said to343

form a valid trace of calls if the following predicate τ holds.4344

τp(cc, v) ≡ ∀(i ∶ nat) ∶ (ε±(p)(ci, vi) ∧ ε(p)(ei, vi, vi+1)).345

▶ Definition 28 (SCP-Termination). A PVS0 program p is said to be SCP-terminating,346

denoted by TSCP (p), if there are no infinite sequence cc of calling contexts of p and no347

infinite sequence v of values in Val such that τ(cc, v) holds.348

▶ Theorem 29. For all p ∈ PVS0, Tε(p) if and only if TSCP (p).349

Proof. By Theorem 25 it is enough to prove that TT (p) and TSCP (p) are equivalent. Proving350

TSCP (p) given TT (p) is straightforward. To prove the other direction, it is necessary to351

use Ωp,m. Since one has TSCP (p), it is possible to provide a relation between parameters352

and arguments of recursive calls and prove that it is well-founded. Similarly to the proof of353

Theorem 25, the closure of this relation is then used to parametrize the function Ωp,m, which354

provides the height of the tree of evaluation of recursive calls as the needed measure. ◀355

4 Since ε± can be straightforwardly extended to lists of polarized expressions, the same symbol is used for
both versions along the text.
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cc1
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cc2

FF

55

,, cc3

XX

ll
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cc1 = (ack(m − 1, 1), m ≠ 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)), m ≠ 0 ∧ n ≠ 0)
cc3 = (ack(m, n − 1), m ≠ 0 ∧ n ≠ 0)

Figure 3 A possible CCG for the Ackermann function.

▶ Definition 30. Let < be a well-founded relation over Val, SCP<(p) holds if for all infinite356

sequence cc of calling contexts of p and for all infinite sequence v of values in Val such that357

τ(cc, v) holds, v is a decreasing sequence on <, i.e., for all i ∈ N, vi+1 < vi.358

▶ Theorem 31. For all p ∈ PVS0Val, TSCP (p) if and only if SCP<(p) for a well-founded359

relation < over Val.360

The proof of Theorem 31 uses the fact that every well-founded order provides a non-infinite361

decreasing sequence of elements.362

▶ Definition 32. A Calling Context Graph of a PVS0 program p (p ∈ PVS0Val) is a directed363

graph Gp = (V, E) with a node in V for each calling context in p such that given two calling364

contexts of p (rec(ea), Pa, Ca) and (rec(eb), Pb, Cb), if365

∃(va, vb ∶ Val) ∶ ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ∧ ε±(p)(Cb, vb),366

then the edge ⟨(rec(ea), Pa, Ca), (rec(eb), Pb, Cb)⟩ ∈ E.367

The condition on the edges admits any fully connected graph of calling contexts to be368

considered a CCG. For the sake of exemplification, another possible CCG for the Ackermann369

function as defined in the Example 1 is depicted in the Figure 3, where the calling contexts370

from Example 21 are abbreviated to improve readability. The lack of the loop on cc1 does not371

prevent the graph to be considered a CCG because there exist no tuples (a, b), (c, d) ∈ [N×N]372

such that ε±(ack)(Ccc1 , (a, b)) ∧ ε(ack)(ecc1 , (a, b), (c, d)) ∧ ε±(ack)(Ccc2 , (c, d)), since this373

formula can be expanded to (a ≠ 0 ∧ b = 0) ∧ (c = a − 1 ∧ d = 1) ∧ (c ≠ 0 ∧ d = 0).374

The following standard notions from Graph Theory will be used in the definitions below.375

A walk of Gp is a sequence cci1 , . . . , ccin of calling contexts such that for all 1 ≤ j < n there is376

an edge between ccij and ccij+1 . The collection of all walks of a given graph G is denoted377

by WalkG. A circuit is a walk cci1 , . . . , ccin , with n > 1, where cci1 = ccin . A cycle is an378

elementary circuit, i.e., a circuit cci1 , . . . , ccin where the only repeating nodes are cci1 and379

ccin
. The notation ∣w∣ will be used in the following to denote the length of a walk w and ∣G∣380

to denote the size of a graph G. Additionally, if w = cc1,⋯, ccn the expression w[a..b] will381

denote the walk cca,⋯, ccb when 1 ≤ a ≤ b ≤ n.382

▶ Definition 33. Let M be a family of N measures µk ∶ Val →M , with 1 ≤ k ≤ N , and < be383

a well-founded relation over M . A measure combination of a sequence of calling contexts384

cci1 , . . . , ccin is a sequence of natural numbers k1, . . . , kn, with 1 ≤ kj ≤ N representing measure385

µkj , such that for all 1 ≤ j < n, v, v′ ∈ Val, ε±(p)(Cj , v) ∧ ε(p)(ej , v, v′) implies µkj(v) ⊳j386

µkj+1(v′), where ccij = (rec(ej), Pj , Cj) and ⊳j∈ {>,≥}. A measure combination is descending387

if at least one ⊳j is >.388

▶ Definition 34. Let Gp be a CCG of a PVS0 program p ∈ PVS0Val and let M be a family389

of measures for a well-founded relation < over a type M . The graph Gp is said to be CCG390

terminating (denoted by TCCG(Gp)) if for all circuits cci1 , . . . , ccin in WalkGp there is a391

descending measure combination k1, . . . , kn, with k1 = kn.392
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cc2M2
55
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M1 = [
1 0
−1 −1] M2 = [

1 −1
−1 −1] M3 = [

0 −1
−1 1 ]

Figure 4 A MWG for the p program for the Ackermann function, where the family of measures
M is composed by µ1(m, n) =m and µ2(m, n) = n.

▶ Theorem 35. For all p ∈ PVS0Val, TSCP (p) if and only if TCCG(Gp) for some CCG Gp393

of p and some family of measures M.394

Since the number of circuits in a CCG is potentially infinite, CCG termination does not395

directly provide an effective procedure to check termination. Even though the number of396

cycles in a graph is indeed finite, it is not enough to check for decreasing measure combinations397

in cycles (see [3] for details).398

5 Matrix-Weighted Graphs399

Matrix-Weighted Graphs is a technique to check for descending measure combinations in a400

CCG using an algebra over matrices [3]. Let M be a family of N measures, every edge in401

the CCG is labeled with a matrix of dimension N ×N and values in {−1, 0, 1}. The type of402

these matrices will be denoted by MN
3 .403

▶ Definition 36 (Matrix Weighted Graph). Let p be a PVS0 program in PVS0Val and M be a404

family of N measures {µi}N
i=1. A matrix-weighted graph WM

p of p is a CCG Gp = (V, E) of405

p whose edges are correctly labeled by matrices in MN
3 .406

An edge (cca, ccb) ∈ E is said to be correctly labeled by a matrix Mab when for all407

1 ≤ i, j ≤ N ,408

if Mab(i, j) = 1, for all va, vb ∈ Val, ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies µi(va) >409

µj(vb).410

if Mab(i, j) = 0, for all va, vb ∈ Val, ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies µi(va) ≥411

µj(vb).412

An entry Mab(i, j) = −1 provides no information about va, vb ∈ Val with respect to µi and413

µj .414

The Figure 4 depicts a possible MWG for the p program implementing the Ackermann415

function.416

The algebra of matrices used to define the notion of MWG termination is given by the417

following operations. Multiplication of matrices with values in {−1, 0, 1} is defined as usual,418

where addition and multiplication of such values is defined below. Let x, y ∈ {−1, 0, 1},419

x × y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 if min(x, y) = −1,

1 if min(x, y) ≥ 0 ∧max(x, y) = 1,

0 otherwise,

x + y =max(x, y).420

▶ Definition 37 (Weight of a Walk). Let p be a PVS0 program, Wp a MWG for p, and421

wi = cci1 , . . . , ccin a walk in such graph, the weight of wi, noted by w(wi), is defined as422

Πn−1
j=1 Mijij+1 . A weight w(wi) is positive if there exists 1 ≤ i ≤ N such that w(wi)(i, i) > 0.423
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▶ Example 38. Continuing the example in Figure 4, the weights for walks w1,3 = cc1, cc3
and w2,3 = cc2, cc3 are shown below. Both of them are positive.

w(w1,3) = [
1 1
−1 −1] w(w2,3) = [

1 −1
−1 −1]

The lemma below states a useful property about walk weights.424

▶ Lemma 39. Let Wp be an MWG for a PVS0 program p and w = cc1,⋯, ccn be a walk of425

Wp, then w(w) = w(cc1,⋯, cci) ×w(cci,⋯, ccn).426

As in the case of the calling context graphs, a walk in a MWG represents a trace of427

recursive calls. Hence, circuit denotes a trace ending at the same recursive call where it428

starts. In line with the notion of CCG termination, a MWG is considered terminating when,429

for every possible circuit, the matrix representing its weight has at least one positive value in430

its diagonal.431

▶ Definition 40 (Matrix-Weighted Graph Termination). Let p a PVS0 program and let Wp be432

a MWG of p. The graph Wp is said to be MWG terminating (denoted by TMW G(Wp)) when433

for every circuit wi of Wp, w(wi) is positive.434

The equivalence between the notions of termination for CCG and MWG is stated by435

Theorem 41 below.436

▶ Theorem 41. Let M be a family of N measures for a well-founded relation < over a type437

M . For all p ∈ PVS0Val, TCCG(CMp ) for some CCG CMp if and only if TMW G(WM

p ) for438

some MWG WM

p .439

Proof. This theorem follows from the fact that circuits in Wp, built from Gp using the same440

measures, have positive weights if and only if there exist corresponding descending measure441

combinations. This property is proved by induction in the length of circuits in Gp. ◀442

As pointed out in the previous section, a digraph such as any CCG or MWG can have443

infinitely many circuits. Nevertheless, since the information used to check MWG termination444

is the weight of the circuits and, for a fixed number N of measures, there are only finitely445

many possible weights, a bound on the length of the circuits to be considered can be safely446

imposed as shown in the lemma below.447

▶ Lemma 42. Let p be a PVS0 program and Wp a MWG for it. If for all circuit w in Wp448

such that ∣w∣ ≤ ∣Wp∣ ⋅ 3N2
+ 1, w(w) is positive, then Wp is MWG terminating.449

Proof. In order to prove TMW G(Wp), it is necessary to show that every circuit of Wp has450

positive weight. For every circuit w = cc1,⋯, ccn of Wp, if n ≤ ∣Wp∣ ⋅ 3N2
+ 1, then w(w) is451

positive by hypothesis. Otherwise, it can be proved that there exists another circuit w′ such452

that w(w) = w(w′) and ∣w′∣ ≤ ∣Wp∣ ⋅ 3N2
+ 1. Hence, by hypothesis, w(w)′ is positive and453

then w(w) is positive too.454

The existence of the circuit w′ can be shown by constructing a sequence of pairs455

⟨(cci, w(cc1,⋯, cci))⟩ni=1, where for each 1 ≤ i ≤ n, the vertex cci is the ith vertex in w and it is456

paired with the weight of the prefix of w of length i. By a simple counting argument, it can be457

seen that there cannot exist more than ∣Wp∣⋅3N2
of these pairs. Since n > ∣Wp∣⋅3N2

+1, there are458

two indices i, j such that (cci, w(cc1,⋯, cci)) = (ccj , w(cc1,⋯, ccj)) and i ≠ j. Without loss459

of generality, it can be assumed that i < j. Then, the walk w′′ = cc1,⋯, cci−1, ccj , ccj+1,⋯, ccn460

is a circuit, since cci = ccj and cc1 = ccn, and it is shorter than w. To calculate the461
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terminating?(Wp: MWG): bool =
LET f1 ← expandWeightLists(Wp, λ(v ∶ VWp) ∶ null)
IN terminatingAt?(Wp, 1, f1)

terminatingAt?(Wp: MWG, i ∶ N, fi ∶ [VWp → list[MN
3 ]]): bool =

i ≥ ∣Wp∣ ⋅ 3N2
+ 1 OR

LET fi+1 ← expandWeightLists(Wp, fi) IN
IF ∃ (cc ∈ VWp , M ∈ fi+1(cc)) ∶ ¬ positive?(M) THEN FALSE
ELSE fi = fi+1 OR terminatingAt?(Wp, i + 1, fi+1) ENDIF

expandWeightLists(Wp: MWG, fi ∶ [VWp → list[MN
3 ]]): [VWp → list[MN

3 ]] =
λ(v ∶ VWp): map(expandPartialWeight(fi), allCyclesAt(Wp,v))

expandPartialWeight(fi ∶ [VWp → list[MN
3 ]]): [WalkWp → list[MN

3 ]] =
λ(w ∶ WalkWp):

LET l ← cons(id×, fi(w[0]))
IN IF ∣w∣ = 1 THEN l

ELSE LET l1 ←map(λ (M ∶ MN
3 ) ∶ M ∗ w(w[0..1]))(l),

l2 ← expandPartialWeight(w[1 .. ∣w∣ − 1], fi)
IN pairwiseMultiplication(l1,l2) ENDIF

Figure 5 Dutle’s procedure to check termination on matrix-weighted graphs.

length of w′′, first it should be noted that, by Lemma 39, w(cc1,⋯, cci, ccj+1,⋯, ccn) =462

w(cc1,⋯, cci−1, ccj) ×w(ccj , ccj+1,⋯, ccn). Since cci = ccj and w(cc1,⋯, cci) = w(cc1,⋯, ccj),463

w(w′′) = w(cc1,⋯, ccj) ×w(ccj , ccj+1,⋯, ccn), which by Lemma 39 again is equal to w(w).464

If the length of w′′ is at most ∣Wp∣ ⋅ 3N2
+ 1, it can be taken to be w′. Otherwise, the465

same procedure can be repeated to shorten the circuit even further. Since this procedure466

removes at least one vertex each time, eventually a circuit shorter than ∣Wp∣ ⋅ 3N2
+ 1 and467

with the same weight than w will be obtained. ◀468

Lemma 42 allows for the definition of a procedure to check termination on a matrix-469

weighted graph. This procedure is referred to as Dutle’s procedure. Given a MWG WM

p =470

(V, E) on a family of N measuresM for a PVS0 program p, the general idea of this procedure471

is to build sequentially a family of functions fi ∶ V → list[MN
3 ] with 1 ≤ i ≤ ∣Wp∣ ⋅ 3N2

+ 1.472

These functions are such that for each vertex cc ∈ V and every circuit w in WM

p starting473

at cc and ∣w∣ <= i, there is a weight M ∈ fi(cc) for which M ≤ w(w). If for some i there474

is vertex cc and a weight M such that M ∈ fi(cc) and M is not positive, then it can be475

concluded that WM

p is not terminating, since there is a circuit whose weight is not positive.476

On the contrary, if the algorithm reaches the point where i = ∣Wp∣ ⋅ 3N2
+ 1 with positive477

matrices in the range of fi(cc) for each i, WM

p can be safely declared as terminating thanks478

to Lemma 42.479

Figure 5 depicts a pseudocode for Dutle’s procedure. The function terminatingAt?480

implements the rough idea described in the previous paragraph. The auxiliary function481

expandWeightLists computes fi+1 given its predecessor fi. Hence, for instance, f1 contains482

lower bounds for the weight of each cycle in the graph Wp. Starting from there, in every483

recursive call to terminatingAt?, for each vertex cc in Wp, fi+1(cc) grows with respect to484

fi(cc) by incorporating lower bounds for the circuits passing through cc that are longer that485
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the ones considered in fi(cc) by a complete cycle each. Then, fi provides information about486

a lower bound on each walk of length at most i as previously stated, but it also contains487

information about longer circuits. Hence, a guard that checks saturation of such functions488

(fi+1 = fi) is also included to prematurely end the recursion if possible.489

In the pseudocode, cons(x, l) denotes the list constructed from the element x and the490

list l, null denotes the empty list, and map(f, l) is used to denote the list formed by the491

application of the function f to each element in l. Furthermore, positive?(M) checks if a492

matrix M is positive in the sense of Definition 37, allCyclesAt(G, v) returns the list of all493

the cycles in the graph G passing through node v (if any), id× denotes the matrix weight that494

acts as multiplicative identity, and pairwiseMultiplication(l1, l2) is the funtion that given495

two lists l1, l2 of matrices in MN
3 returns the list resulting from the pairwise multiplication of496

the elements in those lists.497

Dutle’s Procedure is a sound and complete procedure to decide positive weight of all498

circuits in a matrix-weighted graph and hence to check termination on MWG. This procedure499

has been formally verified in PVS as part of this work. The performance of the procedure500

can be improved in both execution time and used storage space. For example, the function501

expandWeightLists keeps enlarging the lists on the range of each fi+1 (with respect to its502

predecessor fi), while it is enough to keep such lists minimal, for instance by adding a new503

weight M to a list l only if there are no M′ in l already such that M′ ≤M.504

The notion of Matrix Weighted Termination can be used to define a procedure to505

automatically prove termination of certain recursive functions in PVS. Such a procedure506

consist of the steps described below.507

1. Extract the calling contexts from the PVS program definition. The set of calling contexts508

is finite and can be extracted from the program by syntactic analysis.509

2. Generate a sound CCG for the program.510

A fully connected CCG is sound (the more edges the more inefficient the method).511

The theorem prover itself can be used to soundly remove edges from the graph, i.e., an512

edge cca, ccb can be removed if ⊢ ∀(va, vb ∶ Val) ∶ ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒513

¬ ε±(p)(Cb, vb) can be discharged.514

In order to select measures to form the family M, the following heuristics can be used.515

The order relation < over natural numbers is usually a good starting point.516

Since CCG allows for a family of measures, it is sound to add as many measures as517

possible (of course the more measures the more inefficient the method).518

Predefined functions can be used, e.g., parameter projections (in the case of natural519

numbers), natural size of parameters (in the case of data types), maximum/minimum520

of parameters, etc. More complex recursions may need heuristics based on static521

analysis.522

3. Construct a MWG for the program based on the CCG defined in the previous step in the523

following way: all edges starting in a given calling context cca can be labeled with the524

same matrix Ma. It is sound to set all its entries to -1. The theorem prover can then be525

used to soundly set the entries in Ma(i, j) to either 0 or 1 as follows,526

If ⊢ ∀(va, vb ∶ Val) ∶ ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ µi(va) > µj(vb) can be527

proved, set Ma(i, j) to 1.528

If ⊢ ∀(va, vb ∶ Val) ∶ ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ µi(va) ≥ µj(vb) can be529

proved, set Ma(i, j) to 0.530

4. Use Dutle’s procedure to check termination on the MWG.531
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6 Conclusion, Related and Future Work532

The termination of programs expressed in a language such as PVS0 can be guaranteed by533

providing a measure on a well-founded relation that strictly decreases at every recursive534

call. This criterion can be traced back to Turing [14]. A related practical approach was535

further proposed by Floyd [6]. The inputs and outputs of program instructions are enriched536

with assertions (Floyd-Hoare first-order well-known pre- and post-conditions) so that if the537

pre-condition holds and the instruction is executed the post-condition must hold. To verify538

termination, these assertions are enriched with decreasing assertions that are built using539

a well-founded ordering according to some measure function on the inputs and outputs of540

the program. This approach can also be used in recursive functions as shown by Boyer and541

Moore [5]. In this case, a measure is provided over the arguments of the function. The542

measure must strictly decrease at every possible recursive call. The conditions to effectively543

check if a recursive call is possible or not are statically given by the guards of branching544

instructions that lead to the function call. In the case of PVS, as in many other proof545

assistants, the user provides a measure function and a well-founded relation for each recursive546

function. The necessary conditions that guarantee termination are built during type checking.547

In this paper, these conditions are referred to as termination TCCs and the process that548

generates termination TCCs for PVS0 is formally verified against other termination criteria.549

The functional language Agda tries to automatically check termination of programs550

by finding a lexicographic order on the parameters of the functions participating in the551

recursive-call chain [1]. This technique operates on multi-graphs whose edges are labeled552

with matrices, but they differ from the graphs and matrices used in this paper in several553

aspects. In that paper, each node represents a function instead of a calling context, each edge554

represents a call, and the matrices labeling the edges relate the arguments used in each call555

under the same order relation, instead of different measures as in the technique presented in556

this paper. Closer to the work in this paper, Krauss formalizes the size-change termination557

principle in Isabelle/HOL [8]. He also developed a technology based on this principle and the558

dependency pair criterion to verify the termination of a class of recursive functions specified559

in Isabelle/HOL. CCGs are implemented in ACL2s by Manolios and Vroon, where they560

report that “[CCG] was able to automatically prove termination for over 98% of the more561

than 10,000 functions in the regression suite [of ACL2s]” [10]. In his PhD thesis, Vroon562

provides a pencil and paper proof of the correctness of his method based on CCGs [15].563

The formalization presented in this paper includes proofs of equivalence among several564

termination criteria. Other related formalizations that use or connect to the one presented565

in this paper have been previously presented. For example, Alves Almeida and Ayala-Rincón566

formalized a notion of termination for term rewriting systems based on dependency pairs567

and showed how it can be related to the notions explained in this paper [2]. Also, Ferreira568

Ramos et. al. have presented a proof of termination undecidability constructed on the569

model language PVS0 [12]. The Matrix Weighted Graphs algebraic approach, which is an570

implementation of the CCG technique, was first presented in Avelar’s PhD along with its571

formalization in PVS [3]. That formalization does not include Dutle’s procedure. The authors572

are currently working on the implementation of proof strategies, based on computational573

reflection, that use the CCG/MWG technique to automate termination proofs of PVS574

recursive functions.575
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