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Research Highlights

1. The global decreasing trend in CO has shown a recent slowdown.

2. Fire emissions in NH boreal regions counteract decreasing CO in late summer.

3. AOD helps interpret CO trends and variability.

4. Trends in four industrial regions show impact from varying air quality controls.
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Abstract

Following past studies to quantify decadal trends in global carbon monoxide (CO) using satellite 

observations, we update estimates and find a CO trend in column amounts of about -0.50 % per 

year between 2002 to 2018, which is a deceleration compared to analyses performed on shorter 

records that found -1 % per year. Aerosols are co-emitted with CO from both fires and 

anthropogenic sources but with a shorter lifetime than CO. A combined trend analysis of CO and 

aerosol optical depth (AOD) measurements from space helps to diagnose the drivers of regional 

differences in the CO trend. We use the long-term records of CO from the Measurements of 

Pollution in the Troposphere (MOPITT) and AOD from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument. Other satellite instruments measuring CO in the thermal

infrared, AIRS, TES, IASI, and CrIS, show consistent hemispheric CO variability and 

corroborate results from the trend analysis performed with MOPITT CO. Trends are examined 

by hemisphere and in regions for 2002 to 2018, with uncertainties quantified. The CO and AOD 

records are split into two sub-periods (2002 to 2010 and 2010 to 2018) in order to assess trend 

changes over the 16 years. We focus on four major population centers: Northeast China, North 

India, Europe, and Eastern USA, as well as fire-prone regions in both hemispheres. In general, 

CO declines faster in the first half of the record compared to the second half, while AOD trends 

show more variability across regions. We find evidence of the atmospheric impact of air quality 

management policies. The large decline in CO found over Northeast China is initially associated 

with an improvement in combustion efficiency, with subsequent additional air quality 

improvements from 2010 onwards. Industrial regions with minimal emission control measures 

such as North India become more globally relevant as the global CO trend weakens. We also 

examine the CO trends in monthly percentile values to understand seasonal implications and find

that local changes in biomass burning are sufficiently strong to counteract the global downward 
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trend in atmospheric CO, particularly in late summer.

1. Introduction

Carbon monoxide (CO) is an atmospheric tracer for incomplete combustion, with major primary 

sources from fossil fuels and fires and secondary production from hydrocarbon oxidation. CO is 

destroyed through photochemical oxidation and is the dominant sink for the hydroxyl radical 

(OH), thus impacting the self-cleansing capacity of the atmosphere (e.g., Lelieveld et al., 2016) 

and methane (CH4) lifetime (Prather, 2007; Gaubert et al., 2017a). CO is a short-lived climate 

pollutant (SLCP) via its impact on carbon dioxide and ozone formation, and the methane budget,

with a radiative forcing of 0.23 Wm-2 (Myhre et al, 2013) but whose impact is sensitive to 

emission location (Bowman and Henze, 2012). The moderate CO lifetime of weeks to months 

(e.g., Holloway, et al., 2000) allows for observation of distinct pollution plumes that gradually 

succumb to atmospheric mixing, making it useful for studying both pollution sources and 

atmospheric background loadings.

Tropospheric CO is accessible to remote sensing through its absorption of infrared radiation and 

is observed by several satellite instruments. The longest running satellite instrument is the 

Measurements Of Pollution In The Troposphere (MOPITT), aboard the NASA Terra satellite, 

which has been observing CO since 2000 (Drummond et al., 2010). A consistent record 

combined with recent algorithm improvements that minimize bias drift (Deeter et al., 2019) 

ensure that MOPITT CO is suitable for atmospheric trend calculations.

Atmospheric CO has been decreasing globally for the last two decades, primarily due to 

improvements in the combustion efficiency of anthropogenic sources, in addition to a global 

decline in tropical fires (Novelli et al., 2003; Zeng et al., 2012; Worden et al., 2013; Schultz et al.
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2015; Yin et al., 2015; Jiang et al., 2017; Gaubert et al., 2017; Andela et al., 2017; Tang et al., 

2019; Zheng et al., 2019). Recently, positive fire trends in Northern Hemisphere boreal regions 

(e.g., for the USA, Dennison et al., 2014) may have counteracted the globally decreasing CO. 

While trends in CO over fire-prone regions such as the Amazon and Southern Africa are more 

difficult to determine due to the large source interannual variability (Strode and Pawson, 2013), 

the CO record from MOPITT is potentially long enough to determine trends within this 

variability. Inverse modeling studies to estimate CO emissions and trends using MOPITT 

observations confirm reductions from fossil fuel combustion and tropical biomass burning (Jiang

et al., 2017, Zheng et al., 2018b, 2019). Strode et al. (2016) show that accurate emissions and 

ozone chemistry are critical for model simulations that agree with observations and to interpret 

trends in CO concentrations. Additionally, changing air quality policies, such as the 2010 China 

Clean Air Policy (Zheng et al., 2018), can reduce or increase pollution emissions with impacts on

trends in atmospheric composition..

Atmospheric aerosols are also a marker of pollution processes. Fine particulate matter (diameter 

< 2.5 μm; PM2.5) has a significant negative impact on human health (e.g., McClure and Jaffe, 

2018). Depending on type, aerosols can have either cooling or warming radiative forcing on 

climate (e.g., Ramanathan and Carmichael, 2008). Through impacting photolysis rates, aerosols 

can impact other pollutants such as ozone (Li et al., 2019). Previous studies have demonstrated 

that satellite observations of atmospheric aerosol along with CO can provide additional 

information in determining CO sources and understanding CO spatial and temporal variability 

(e.g., Edwards et al., 2004).  The most reliable satellite observations are of bulk aerosol total 

column optical depth (AOD), and these are also available on Terra from the Moderate Resolution

Imaging Spectroradiometer (MODIS) instrument. Of particular interest here are the organic 
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carbon and black carbon aerosols that are directly emitted along with CO during the incomplete 

combustion of fossil fuels and biomass (e.g., Edwards et al., 2004; Arellano et al., 2010). 

However, distinguishing carbonaceous aerosol from other different aerosol types that contribute 

to the AOD, and especially the component from fine mode aerosol, is challenging. Aerosols are 

also formed from secondary reactions of pollutant precursor gases, and these may or may not 

originate from the same combustion sources as CO. For example, sulfate aerosol results from the

oxidation of sulfur dioxide (SO2), although the SO2 emissions are not necessarily associated with 

CO sources. (e.g., Unger et al., 2006). Spatial correlation of MODIS AOD with short-lived 

species SO2, nitrogen dioxide (NO2) and formaldehyde has been used to suggest dominant 

aerosol types for different global regions (Veefkind et al., 2011).

The shorter lifetime of aerosols, ~ 4 to 12 days (e.g., Kanakidou et al., 2005) means that they are 

not observed as far away from sources as CO, so AOD trends are more indicative of local and 

regional behavior in air pollution. The economically developing regions of the Asian landmass 

and surrounding oceanic regions are reported to show increasing AOD from satellite-based 

measurements using MODIS and Multi-angle Imaging SpectroRadiometer (MISR) AOD, 

whereas North America, South America, and Europe show decreasing AOD (Mehta et al. 2016). 

Ground-based analysis also shows increases over India, for example, at a rate of 2.3% per year 

between 1985 and 2012 and at 4% per year since 2000 (Krishna Moorthy et al., 2013). In the US,

air quality related to surface-measured aerosols (PM2.5) has been improving, as shown by a 

decreasing trend, except where there are fires in the northwest (McClure and Jaffe, 2018). 

This paper presents the trends in CO measured from space between 2002 and 2018 and uses 

satellite-measured AOD to help understand CO variability. We split the records into two time 
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periods to measure the trend temporal stability, as well as examine trends over different source 

and outflow regions, and analyze monthly percentile values. In Section 2 we present the CO and 

AOD satellite-based measurements and describe the trend analysis methodology. Section 3 

shows the CO and AOD records across different spatial and temporal scales, including regional 

trends (Section 3.4). Section 4 discusses potential impacts on atmospheric trends by investigating

the co-variation of CO and AOD, as well as monthly CO percentile data. Conclusions are 

presented in Section 5.

2. Methods

2.1 Long-term CO and AOD measured from space

The NASA/Terra satellite, launched in December 1999, carries two key instruments for the work 

of this paper, MOPITT and MODIS. Terra follows a sun-synchronous orbit with equator crossing

times of ~10:30 local solar time (LST).

2.1.1 MOPITT CO

MOPITT is a nadir-viewing instrument that began measuring CO in 2000 and provides global 

coverage about every three days. The cross-track scanning angle is ±26 degrees to yield a swath 

width of ~640 km. Pixel resolution is ~22 km × 22 km at nadir. MOPITT uses gas correlation 

spectrometry to complete broadband measurements in the thermal infrared (TIR) near 2140 cm-1 

and the near infrared (NIR) near 4275 cm-1 (Drummond et al., 2010). The MOPITT retrieval 

algorithm is described in detail elsewhere (Deeter et al., 2019; Worden et al., 2013). Briefly, an 

optimal estimation algorithm is applied to upwelling radiances that have gone through CO filled 
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gas cells of varying lengths to retrieve CO profiles of volume mixing ratio (VMR) on 10 vertical 

layers, which are integrated to provide reported column amounts. The recent version 8 (V8) 

algorithm includes: updates to the N2 and H2O spectroscopic data; accounting for temporal bias 

drift and water vapor in the radiance bias correction; and updating to MODIS cloud Collection 

version 6.1 to determine clear conditions. Validation covers a range of locations and shows 

minimal bias drift for column amounts (Buchholz et al. 2017; Deeter et al., 2019). Improvements

in retrieval stability for the V8 daytime retrievals result in a negligible drift of -0.015±0.061% 

per year relative to NOAA airborne flask-sampling for CO total column over the MOPITT 

mission (Deeter et al., 2019).

While including NIR channel information in the retrievals enhances MOPITT sensitivity to CO 

in the lower troposphere, we use the TIR-only product in order to compare with other TIR 

instruments (AIRS, TES, IASI, CrIS, introduced below). We use V8, TIR, daytime retrievals 

over land and/or ocean scenes, depending on the region of interest. Level-2 total column CO 

retrievals are used for regional trend analysis and monthly statistics (doi: 

10.5067/TERRA/MOPITT/MOP02T_L2.008), while Level-3 monthly averaged total column CO

is used for the global gridded trend and zonal average analyses (doi: 

10.5067/TERRA/MOPITT/MOP03TM_L3.008). We filter Level-2 retrievals in the same way as 

Level-3, that is: anomaly diagnostics all must be false to remove negative Averaging Kernel 

elements and thermal anomalies; signal-to-noise in the 5A channel must be greater than 1000; 

and pixel 3 is removed because of the large noise variability (Deeter et al., 2015). Filtering in this

way reduces inter-pixel differences (Hedelius et al., 2019). Data from 2002 onwards are used for 

trend analysis to avoid discontinuities with the early 2000-2001 data taken before the MOPITT 

cooler failure and instrumental reconfiguration that occurred in 2001 (Deeter et al., 2004).
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2.1.2 MODIS AOD

As a passive imaging radiometer, MODIS measures reflected solar and thermal radiation in 36 

bands with a 2330 km wide viewing swath, achieving near global coverage each day. At nadir 

view, spatial resolution is 1 km or finer, depending on band. The calibration has been updated 

over time, mitigating an observed drift in radiance and reflectance due to sensor degradation.

To derive aerosol, the observed spectral reflectances are inverted to AOD values from look-up-

tables that have been created with radiative transfer code that include different assumptions about

surface properties and aerosol types. The DT algorithm (Levy et al., 2013) retrieves aerosol over 

open ocean and dark vegetated land surfaces while the DB retrieval algorithm adds retrievals 

over bright surfaces (Hsu et al., 2013). Both sets of algorithms report AOD at 0.55 m along with                

quality assurance. Based upon selection of retrievals that pass recommended quality assurance 

(QA=3, see Sayer et al., 2014), the merged Dark Target / Deep Blue (DTDB) product (Levy at 

al., 2013; Gupta et al., 2020), yields a single AOD value (at 10 km spatial resolution) in non-

cloudy, non-ice/snow scenes. Aggregations of such ‘Level 2’ products onto daily and monthly 

1°x1° grids lead to ‘Level 3’ products. MODIS Collection 6.1 (C6.1) represents a consistent 

reprocessing of all MODIS products, including original geolocation, calibration, aerosol 

retrieval, and Level 3 aggregation.

In this work, we have used the C6.1 monthly aggregations from MODIS-Terra known as 

MOD08_M3 (https://dx.doi.org/10.5067/MODIS/MOD08_M3.061, Platnick et al., 2017). We 

use C6.1 because the previous Collection 6 (C6) showed some artifact trends (Levy et al., 2018) 

when compared to MODIS on Aqua (King et al., 2013). Since the calibration has been made 

consistent, C6.1 appears to be largely free of artificial drifts, which we have confirmed via 

comparisons with MODIS trends on Aqua (Supplementary Figure C2). Wei et al., (2019a) also 
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found C6.1 products were improved relative to C6. Wei et al., (2019b) found MODIS C6.1 

performed best at capturing temporal variations and was closest to ground-based observations.

2.2 Other nadir-viewing, TIR satellite CO measurements

To assess the consistency of the hemispheric temporal variability of CO in Section 3.3, we 

compare data from a number of different nadir-viewing satellite instruments that make 

measurements in the TIR band of CO. All these satellites have sun-synchronous orbits and, 

besides AIRS, use optimal estimation approaches to retrieve CO columns from measured 

radiances. Northern Hemisphere (NH) and Southern Hemisphere (SH) monthly averages are 

collated from each instrument. A summary of instrument specific details are given in Table 1.

Table 1: Data selection criteria and specifications by instrument.

MOPITT AIRS TES IASI-A and IASI-B CrIS

Instrument 
type 

Gas filter correlation
radiometer (GFCR)

Grating 
spectrometer 

Fourier 
Transform 
Spectrometer 
(FTS)

FTS FTS

Spectral 
range and 
resolution 
for CO

2140-2192 cm-1 
(0.04 cm-1 effective)

2170-2200 cm-1

(~1.8 cm-1)
2086.06 -2176.66
cm−1

(0.1 cm-1 
apodized)

2143−2181.25 cm−1

(0.5 cm-1 apodized)
2185.25-2200 cm-1

unapodized 
(0.625 cm-1)

Data version V8T (TIR-only) V006 V007 Lite FORLI 20151001 MUSES
Cloud 
screening

Clear sky conditions 
from MODIS 
Collection 6.1 and 
MOPITT Signal

Cloud-cleared 
radiances

Eff. cloud OD 
<0.4

< 25% clouds in pixel Cloud effective 
optical depth < 0.1

Data quality 5A SNR > 1000;
Remove Pixel #3;
Retrieval Anomaly 
Diagnostics OK

QF = 0 Master QF = 1
DFS > 0.9

SQF=0;
COTC<20x1018 
molec./cm2; 
RMS<=2.7e-9 W/(cm2 
sr cm−1);
-0.15e-
9<=bias<=0.25e-9 W/
(cm2 sr cm−1)

Master QF=1

Ground 
resolution

22x22 km 50 km x 50 km 8x5 km 12 km diameter 14 km radius

Daytime
Global 

~3 days Daily Sparse sampling; 
16 day orbit track

Daily Daily (sub-
sampled in this 
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coverage repeat study)

Column 
uncertainty 
for single 
obs. 

5–6 % 10 % 6–7 % A & B: 5–7 % 6-7 % (??)

Time range 
used 

03/2000–12/2018 09/2002–12/2018 01/2005–12/2009 A: 01/2008–12/2018
B: 01/2013–12/2018

11/2015–3/2019

Instr. 
operation
gaps

8–9/2009 20160924 4–6/2005
1–3/2010

none May 2019

Avg. ret. per 
month

NH: 684520
SH: 627344

NH: 1419165
SH: 1359028

NH: 6249
SH: 3672

NH: A-2216361, B-
2417436
SH: A-1905719, B-
1976112

NH: 13071
SH: 12293

Data source https://doi.org/10.50
67/TERRA/MOPITT
/MOP02T_L2.008

https://doi.org/10.5
067/Aqua/AIRS/D
ATA202

 NASA Langley 
Atmospheric 
Science Data 
Center. 
https://doi.org/10.
5067/AURA/TES
/TL2COLN.007

A: 
https://doi.org/10.2532
6/16
B: 
https://doi.org/10.2532
6/17

JPL MUSES team 
(tes.jpl.nasa.gov)

2.2.1 AIRS 

The Atmospheric Infrared Sounder (AIRS), on board NASA/Aqua was launched in 2002 and 

crosses the equator at 13:15 LST∼  (Aumann et al., 2003). Ground-pixel size is nominally 13.5 

km × 13.5 km, but is degraded to 45 km × 45 km as a trade-off to increase global coverage using 

a cloud-clearing algorithm (Susskind et al., 2003). The 1650 km AIRS swath provides near 

global coverage twice daily. Radiance spectra from the AIRS grating spectrometer are used to 

determine cloud and surface properties along with vertical profiles of atmospheric trace gases 

(including CO at 4.6 μm) and temperature. Previous comparisons of AIRS and MOPITT CO 

showed good agreement in horizontal spatial variability, but found AIRS CO to be higher than 

MOPITT (V3) (Warner et al., 2007). However, the comparison in Worden et al. (2013), found 

better agreement using more recent versions of the retrieval algorithms for both instruments. We 

use the Level 2 V006 AIRS retrievals here, (AIRS2RET, AIRS Science Team, 2013), which has 

50 km x 50 km spatial resolution. The AIRS2RET Level 2 product was created Level-2 using 
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AIRS IR-Only retrievals. NH and SH monthly average values were computed for daytime 

retrievals (SZA<90).

2.2.2 IASI 

There are three Infrared Atmospheric Sounding Interferometer (IASI) TIR Fourier Transform 

Spectrometer (FTS) instruments currently in orbit: IASI-A, B, and C onboard the Eumetsat 

satellites Metop-A, B and C, launched in 2006, 2012, and 2018, respectively. They fly in the 

same orbit, crossing the equator at ~9:30 a.m. LST. IASI observations comprise 4 pixels that 

each have a 12 km ground resolution at nadir. A 2200 km swath provides global coverage twice 

daily (Clerbaux et al., 2009). CO profiles are retrieved with the Fast Optimal Retrievals on 

Layers for IASI (FORLI, version 20151001) algorithm (Hurtmans et al., 2012), using invariant a 

priori information. IASI CO has been validated against ground-based observations 

(Kerzenmacher et al., 2012), aircraft data (Pommier et al., 2010, Klonecki et al., 2012) and other 

satellite measurements (George et al., 2009). Comparison between MOPITT and IASI CO 

records found that, while a priori was the dominant source of between-instrument bias, timing 

and vertical sensitivity differences also contribute to CO differences (George et al., 2015). While 

the IASI-A record is long enough to determine trends, it is worth noting that this CO record is 

not currently retrieved using homogeneous temperature, humidity and cloud information. This 

causes a few discontinuities in the IASI-A CO record, which could affect the long-term trend and

it is therefore not suited for trend studies at this time. Different versions of these IASI auxiliary 

parameters (distributed by Eumetsat) have been improved over time (from V5 to V6 in Sept. 

2014, and from V6 to V6.1 in Sept. 2015). Reprocessing of these data with homogeneous 

auxiliary data is in progress at Eumetsat but they are not yet available at the time of this analysis 
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(Oct. 2019). Despite this, IASI data are still useful for confirming the hemispheric CO 

seasonality and interannual variability observed by the other satellites. NH and SH monthly 

average values for daytime (SZA<80), were computed after filtering for Super Quality Flag 

(SQF)=0 (see https://iasi.aeris-data.fr/CO_readme/), CO total column < 20x1018 molecules/cm2, 

Root Mean Square (RMS) ≤ 2.7e-9 W/(cm2 sr cm−1) and -0.15e-9≤ bias ≤ 0.25e-9 W/(cm2 sr cm−1).

2.2.3 TES 

The Tropospheric Emission Spectrometer (TES) was launched on the NASA/Aura satellite in 

2004 and crosses the equator at 13:40 LST, 25 minutes after the NASA/Aqua satellite. TES 

measures radiance spectra of Earth’s surface and atmosphere, with relatively fine spectral 

resolution (0.10 cm−1 at nadir, apodized) (Beer, 2006), and retrieves trace gases, temperature 

(Bowman et al., 2006) as well as cloud top pressure and cloud optical depth (Kulawik et al., 

2006). TES CO profiles and total column amounts have been validated with respect to in situ 

measurements (Luo et al., 2007, 2015).

For this study, we use V007 Level 2 data and select daytime retrievals filtered with master 

quality flag = 1 (good) that accounts for variations in retrieval performance, e.g., residual 

radiance mismatch, and the degrees of freedom for signal (DFS) 0.9. The TES algorithm ⩾

retrieves on both clear and cloudy scenes, but for this work, only clear scenes are considered in 

month averages. Cloud-free retrieval criteria are defined as an effective cloud optical depth 

(OD) 0.4. ⩽ Prior to December 2005, the TES instrument was in a different configuration for CO 

(Rinsland et al., 2006), resulting in a land bias for filtered data, especially over the fire-prone 

regions of South America and Africa. After 2005, sampling footprints are nearly uniformly 
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distributed over land and ocean when filtered. Consequently, we use TES data after December 

2005. Also, in order to conserve the instrument lifetime, from 2010 onwards routine sampling 

was spatially limited. Therefore, TES data acquired after 2009 are not included in our analysis.

2.2.4 CrIS 

The Cross-track Infrared Sounder (CrIS) was launched in October 2011 on the Suomi National 

Polar-Orbiting Partnership (S-NPP) satellite (NOAA-19) with an equator-crossing time of 

~13:30 LST. The CrIS scan pattern consists of nine detectors (each called a Field of View: FOV) 

in a 3×3 pattern (collectively named a Field of Regard: FOR). At nadir, each FOV diameter is  

~14 km. The CrIS cross-track scan consists of thirty Earth-view FORs, plus additional 

calibration FORs. CrIS is a FTS operating in three spectral bands between 648 cm-1 and 2555 cm-

1, including the CO TIR R-branch above 2155 cm-1. CrIS achieves daily coverage of over 95% of

Earth’s surface. The full-spectral-resolution retrieval of CO (0.625 cm-1) has been operational 

since late 2015, with significant improvements in sensitivity to CO compared to the original 2.5 

cm-1 resolution (Gambacorta et al., 2014). Here we use CrIS retrievals processed by the MUlti-

SpEctra, MUlti-SpEcies, MUlti-SEnsors (MUSES) algorithm (Fu et al., 2016), which performs 

single pixel (FOV) retrievals, and has heritage in the TES algorithm (e.g.,Worden et al, 2007;  

Luo et al, 2013), using the same Kulawik et al. (2006) approach for retrievals of cloud. 

Retrievals presented here use the NASA v2 L1B Full Spectral Resolution (FSR) radiances 

(Revercomb and Strow, 2018), which are available from November 2015 onward. CO retrievals 

from FSR radiances offer significant improvements in sensitivity compared to retrievals using 

the nominal spectral resolution (NSR) radiances (δ = 2.5 cm-1 in the CO region) (Gambacorta et 

al., 2014). 
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In order to expedite analysis, sub-sampling of observations was tested to ensure that the NH and 

SH CrIS monthly averages were insensitive to the sub-sampling employed (Appendix A1.2). 

Like TES, the MUSES algorithm retrieves in all-sky conditions. Cloud-screening was performed,

using an effective cloud optical threshold of 0.1. While there are operational CrIS CO products 

available for the FOR from NUCAPS (NOAA Unique Combined Atmospheric Processing 

System, Gambacorta et al., 2013), we instead use the MUSES single pixel (FOV) retrievals to 

take advantage of the full CrIS CO spatial resolution and error characterization derived from 

optimal estimation.

2.3 Analysis methodology

In order to compare timeseries in total column CO retrievals from different satellite instruments, 

we convert to column average VMR (XCO) by dividing by the reported dry air column for each 

retrieval. Trends are reported as relative trends (%) by dividing by the dataset mean value. 

Relative (%) trends in XCO are equivalent to relative trends in total column CO, but using XCO 

removes the dependence on surface topography that varies for the different instruments with 

different horizontal footprints.

The first step in trend determination is to remove the seasonal variability, which can obscure any 

linear trend. For the global map plots of column CO and AOD trends (Sect. 3.2), we remove 

seasonal variations using a 12-month running average prior to computing the linear trend. The 

endpoints are truncated, effectively removing the first and last 6 months for all the time series. 

This determines our bounds for the long-term trend as July 2002 - June 2018. For hemispheric 

and regional time series analysis (Sect. 3.3. and 3.4), we remove the seasonal variations in XCO 
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and AOD by subtracting the dataset mean annual cycle with monthly resolution to produce an 

anomaly time series in monthly averages.

Trend analysis on deseasonalized data proceeds by calculating the slope of a line for the linear 

equation:

where y is the dependent variable (e.g. CO amounts), t is time in fractional years, m is the slope 

(or linear trend), b is a constant and ϵ(t) is the noise, or residual. Weighted Least Squares (WLS)

linear regression, weighted by the monthly variance, is used to calculate hemispheric and 

regional trends by estimating the linear slope via equation 2:

for yi with σi standard deviation associated with time ti, where n is the total number of data 

points. Standard error in the slope is calculated two ways: using the WLS calculations or creating

an estimate that compensates for first-order autocorrelation in the noise (Appendix A3, 

Weatherhead et al., 1998). The greater of the two error values is recorded as a conservative 

estimate of the standard error in the slope. A significant trend is defined as being outside one 

standard error.

Monthly statistics in MOPITT CO are determined by collecting all XCO within a region (filtered 

as described in Section 2.1.1) for a particular month and year followed by calculations of the 

mean, standard deviation, median, 25th and 75th percentiles. The Theil-Sen method (Theil, 
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1950; Sen, 1968) is used to analyze the long-term trends in XCO regional percentiles separated by 

month (Sect. 4.2).  Theil-Sen analysis is a non-parametric trend estimation technique that 

calculates all the slopes between pairs of points and takes the median of these slopes (eq. 3):

for all yj, yi dependent variable values associated with the tj, ti times, for j>i. Significance of a 

Theil-Sen trend is determined using the Mann-Kendall test for p values < 0.05, 0.01 and 0.001 

(Mann, 1954; Kendall, 1975). We show in Appendix B1 that Theil-Sen results for the whole time

series are consistent with the WLS method. Note that because the lifetime of CO is ~2 months 

and consecutive values are a year apart the autocorrelation is not significant and is not 

considered for trends calculated by month (Appendix A3).

A full description of the uncertainty analysis on the XCO trend calculations is provided in 

Appendix A. Systematic sampling uncertainty is approximated by performing trend analysis on a

priori (Appendix A1.1) and random sampling uncertainty by using bootstrap analysis (Appendix 

A1.2). Systematic uncertainty from changes in instrument sensitivity over the MOPITT record is 

explored using averaging kernels applied to a reanalysis climatology (Appendix A2). 

Autocorrelation is analyzed for each region (Appendix A3). We also assess the consistency 

between trend determination methods (Appendix B1) as well as the robustness of the trend to 

removing the influence of outliers such as the large El Niño fires in 2015 (Appendix B2).
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3. Results

3.1 Zonal average time series of CO and AOD

We show the latitudinal and seasonal dependence of column CO and AOD using the zonal 

average time record (Figures 1a and 1b). The annual cycle of CO (Supplementary Figure C3) is 

determined by a combination of source seasonality and removal by reaction with OH.  

Photochemically produced OH depends on incoming solar radiation, leading to lower reactivity 

in winter and higher reactivity in summer.  In the background atmosphere, the OH sink 

dominates the seasonal behavior of CO. Consequently, the build-up of CO over the winter 

months produces an early spring peak, and destruction during summer leads to a late summer 

minimum. Since removal of aerosols is mainly by dry and wet deposition (e.g., Kanakidou, et al.,

2005), there is no corresponding winter accumulation, and AOD seasonality is determined 

mainly by production processes. Production by photochemical oxidation again depends on OH 

availability, and peaks in summer for secondary aerosol types such as sulfate aerosols (e.g., 

Edwards et al., 2004) and secondary organic aerosols (SOA) (e.g., Lack et al., 2004). Direct fire 

emissions of carbonaceous aerosols follow the annual cycles of dry season burning.

Due to pollution sources, both CO and AOD show higher mean values in the Northern 

Hemisphere (NH) compared to the Southern Hemisphere (SH). Peak CO at 30° to 50° N occurs 

at higher latitudes than the peak AOD (15° to 25° N). Enhanced CO columns are mainly 

influenced by fire and anthropogenic emissions, while AOD additionally experiences strong 

contribution of dust at lower latitudes that combines with the anthropogenic and fire aerosol 

sources. The lifetime of CO allows it to be transported to higher latitudes by dominant poleward 

flow, while aerosols with shorter lifetimes produce AOD enhancements closer to source regions. 
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Peak NH AOD is shifted equatorward in this study when compared to Edwards et al. (2004), 

which is a result of including the Deep Blue AOD retrieval over dust source regions, such as the 

Sahara, Middle East, Gobi, Taklamakan and India deserts. This algorithm was not available in 

the Edwards et al. (2004) study which used MODIS Collection 4. Additionally, Levy et al. 

(2013) found that AOD in MODIS C6 is generally lower than Collection 5 for Europe and North 

America, but higher over Eastern Asia.

The SH peak and interannual variability for both CO and AOD in the tropics are mainly driven 

by biomass burning in South America, Africa, Maritime Southeast Asia (SEA) and Australia 

(Edwards et al., 2004). The impact of CO and aerosol lifetime differences is also apparent as 

evidenced by the smearing of fire enhanced CO poleward (Fig. 1a) compared to AOD (Fig. 1b). 

The consistent feature of relatively large AOD at temperate southern latitudes (40° to 60° S, Fig. 

1b) is due to maritime aerosols such as sea salt (e.g., Witek et al., 2016), ocean biogenics, or 

transported smoke.

The anomaly plots show the percent anomaly relative to the monthly means (Fig. 1c and 1d). In 

general, relative interannual variability for CO shows similar strength between hemispheres, 

while for AOD, the SH interannual variability appears weaker than the NH (less saturated 

colors). Several large anomalies are consistent between CO and AOD. For example, the 2003 

high northern latitude enhancement is a response to the large boreal fires in Western Russia (e.g.,

Edwards et al., 2004); and the 2015 El Niño driven large Maritime SEA fire season emissions in 

September and October (Huijnen et al., 2016; Field et al., 2016) had a widespread impact 

producing the CO and AOD positive anomalies at the end of 2015 and the beginning of 2016. 

These examples highlight the direct co-emission of CO and aerosol from fire events. In contrast, 
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AOD includes many anomalies that are absent in the CO record, for example, the AOD anomaly 

in 2018 at about 20° N that was mainly due to dust emissions over the Arabian peninsula, 

combined with exported dust from the Sahara (Voss and Evan, 2020).

 
Fig 1. Zonal average plot of monthly average (a) MOPITT column CO and (b) MODIS AOD. 

Percent anomalies in (c) MOPITT CO and (d) MODIS AOD. Percent anomalies are calculated 

relative to the climatological month averages within each 2° zonal average box. White stripes in 

panel a and c during 2001 and 2009 represent missing MOPITT data due to instrumental 

diagnostic operations. White pixels at NH and SH high latitudes represent missing data for both 

instruments due to polar night.

The large positive anomalies in Figures 1c and 1d illustrate the substantial interannual variability

in both the CO and AOD records. However, we can also see that the background CO shows an 

overall global downward trend as observed by more widespread cool colors in later years 

compared to earlier years. In contrast, AOD shows a general upward trend in the SH while the 
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NH seems to increase between 2008 and 2012, followed by decrease. We investigate these trend 

behaviors in more depth in the following sections.

3.2 Spatial analysis of trends in CO and AOD

Figures 2a and 2b show the 2000-2018 global average maps of CO and AOD, respectively. 

Regions of high values for both constituents are apparent over Northeast China, North India and 

Central Africa. Trends in CO and AOD from 2002-2018 are shown in Figures 2c and 2d, globally

gridded at 2°x4°. The overall decline in CO coincides with the improvements in combustion 

efficiency for anthropogenic sources (Zheng et al., 2018), as well as the decrease in global fire 

emissions, e.g. from 1997 to 2009 as shown in the Global Fire Emissions Database, Version 3 

(GFED3) inventory (van der Werf et al., 2010) and the negative trend in global burned area in 

Andela et al. (2017) from 1998 to 2015. Since fire emissions account for about 33% of global 

CO emissions (Yin et al., 2015), a trend in fires can have substantial effect on atmospheric CO. 

AOD trends are more regionally variable and reflect changes in the different sources.

Burning regions around the South Atlantic show different trend results (Fig. 2c and 2d). South 

America has seen a strong decrease in both CO and AOD over the whole record due to the long-

term decrease in burning there (Andela et al., 2017; Deeter et al., 2018). However, recent 

increases in Amazon deforestation burning over the last few years may alter trends in that region,

especially for the recent decade. In contrast, southern Africa shows no trends in CO and AOD. 

Increasing burning in this region (Andela et al., 2017) might be counteracting transported 

decreasing trends. In addition, Zheng et al. (2019) find an increasing trend in anthropogenic 

sources in Central Africa that could also counteract the global downward CO trend. The AOD 

trend may be further confounded by dust and anthropogenic variability. In comparison, the 
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Pacific Northwest (PNW) has less interference from dust or anthropogenic aerosol sources and 

consequently sees a positive AOD trend due to climate driven changes in fire (McClure and 

Jaffe, 2018). The CO trend in the PNW is lower than the global average, but local behavior is 

combined with strong downward trends in transported CO from Asia. Therefore, CO is still 

decreasing in the PNW.

     

 
Fig 2: Global average (a) column CO and (b) AOD between 2000 and 2018. Boxes outline the 

sub-regions used for regional trend analysis, numbered 1 to 19, discussed in section 3.4. Trends 

in (c) CO from MOPITT and (d) AOD from MODIS between 2002 and 2018, gridded to 2°x4°.

To help interpret regional CO trends, we calculate CO residual trends. The lifetime of CO (~2 

months) is such that a global mean trend can be detected in well-mixed background air. We find 

the global mean CO trend (± 60° latitude) between 2002 and 2018 to be -0.50 (± 0.3) % per year,

which is a slow-down relative to the ~ -1 % per year trend between 2000 and 2011 found by 

Worden et al. (2013) using MOPITT V5 retrievals. This difference reflects an atmospheric 
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response because both MOPITT versions saw negligible drift in column amounts from TIR 

retrievals (Deeter et al., 2013, 2019). The slow-down potentially reflects diminishing returns 

from improvements in combustion efficiency and emission controls, as has been suggested by 

McDonald et al. (2013). In addition, emissions from economic production and transport have 

returned to pre-recession levels following the 2008-2009 global economic crisis (e.g., de Ruyter 

de Wildt, 2012). The residual trend in CO was calculated by subtracting the global mean trend 

from the total trend within 2° by 4° gridboxes. The result is a map of residual trends that enables 

interpretation of local behavior relative to the global mean trend (Fig. 3) and reveals regions that 

are decreasing faster than the global average (blue colors), and regions that are decreasing slower

than the global average trend (red colors), suggesting increasing regional emissions that 

counteract the global trend. Light colors show where the trend is close to the global average. A 

global average trend for AOD is not very meaningful due to the shorter lifetime (~8 days) of 

aerosols.

Fig 3: Residual trend in CO columns from MOPITT calculated relative to the global average 

trend (-0.5% per year, +/- 60°) from 2002 to 2018.
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The different response in the two Atlantic fire-prone regions (South America and 

Central/Southern Africa) is immediately clear in the CO residual trend map. Residual trends from

these regions extend into their respective outflow paths over the Atlantic Ocean. Different 

patterns are also clear for industrial regions. Northeast China experiences the most negative CO 

trends globally, resulting from rapid improvements in combustion efficiency and a recent focus 

on air quality control (Zheng et al., 2018a,b; Tang et al., 2019). However, AOD decreases in 

Northeast China are weaker than in Eastern USA, reflecting the relatively new air quality 

policies in China compared to a longer-term focus in USA. India, on the other hand, shows 

strong increases in AOD and the CO residual trends are positive suggesting local pollution 

sources counteract any transported or background decreases in CO.

In the following sections we examine regional trends in more detail, including calculations of 

trend significance.

3.3 Hemispheric CO record across different instruments

Figure 4 shows the hemispheric monthly mean XCO time series from all satellite instruments 

(MOPITT, AIRS, TES, IASI and CrIS) available between January 2001 and December 2018. 

Overall, XCO magnitude, seasonal patterns, and interannual variability are consistent between 

instruments. Some differences in XCO values arise because we have not accounted for differences

in sampling coverage, horizontal resolution or vertical sensitivity between instruments.  

Although column results are less sensitive than profile retrievals to differences in vertical 

sensitivity, the different averaging kernels between instruments could give rise to slightly 

different results when applied to the same atmospheric state (George et al., 2009; 2015). 
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Comparisons of MOPITT, AIRS, TES, and IASI were previously conducted by George et al. 

(2009) and Warner et al. (2010), who found that biases are due to differences in spatial sampling,

instrument spectral resolution and retrieval methodology, including different a priori information.

Additionally, the number of TES observations is 2 orders of magnitude lower than the other 

instruments, so we would expect the non-colocation of TES observations with other instrument 

footprints to contribute to the CO differences. The SH high bias previously found when using 

AIRS V5 (Warner et al., 2010, Worden et al., 2013) has been removed in the comparison using 

updated retrievals from both instruments.

Figures 4c and 4d show the NH and SH anomaly records for all satellite instruments computed 

by subtracting the respective instrument record climatological monthly means. Anomalies reflect 

interannual variability due to changes in fire emissions that are in turn linked with climate 

variability (Buchholz et al., 2018), such as the 2015 El Niño influenced fire emissions from 

Maritime SEA (Huijnen et al., 2016) that impacted both hemispheres. There is also a relationship

of lower XCO with lower anthropogenic emissions due to the global financial crisis starting in late

2008, particularly for the NH (e.g., de Ruyter de Wildt et al., 2012). 

Trend values from linear fits (July 2002-June 2018) are shown for MOPITT and AIRS in Figs. 4c

and 4d, with standard errors. While IASI-A has a long enough record to determine trends, it 

currently does not have a fully harmonized record across the whole time period and is not yet 

suited for trend analysis (see discussion in Section 2.2.2). The instruments with shorter time 

records, IASI-B, TES and CrIS, do not show significant trends. However, all instruments show 

similar variability, lending confidence to the use of MOPITT and AIRS records for trend 

determination. MOPITT and AIRS XCO trends are consistent within <1σ. The SH trend is less 
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negative than the NH trend, and both hemispheres have a reduced trend compared to Worden et 

al. (2013). Although it does have some impact, we find that the large emissions in 2015 are not 

the main reason for the CO trend slow down (Appendix B2).

 

Fig 4: Multi-instrument time series of month average XCO for (a) NH (0° to 60°N) and (b) SH 

(60°S to 0°). Lower panels show the monthly anomalies relative to each dataset mean annual 

cycle, for (c) NH and (d) SH. Weighted least squares trends on the anomalies are indicated with 

standard error in percent per year for MOPITT and AIRS. The grey dashed line is the zero line 

for reference.

3.4 Regional trends in CO and AOD

In addition to hemispheric trend analysis, we select a number of regions for more detailed 

consideration (Fig 2a). Four industrial regions were chosen to align with Worden et al. (2013): 

Northeast China, North India, Europe and Eastern United States. Other regions are selected 
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based on the residual trend patterns from Fig. 2, combined with the burned area trends in Andela 

et al., 2017. Due to the shorter lifetime of aerosols, it was not relevant to calculate hemispheric 

trends for AOD, so only regional trends are shown.

CO trends (in XCO) and AOD trends, determined for the different sub-regions are shown in Table 

2, for the full 16-year period (July 2002-June 2018), as well as for two 8-year sub-periods (1st 

half: July 2002-June 2010 and 2nd half: July 2010-June 2018). CO trends in the first half of the 

record are consistent with those found in Worden et al. (2013).  Significant negative CO trends in

the 1st half of the record shift to slower, non-significant trends in the 2nd half. This leads to an 

overall slowdown in the CO downward trends for the full time period in every region. 

Exceptions are Southern Africa and South America, which show no significant CO trend for any 

time period. This is consistent with Strode and Pawson (2013) who found more than 20 years of 

data are necessary to find CO trends over highly variable regions. AOD is more regionally 

variable and generally shows more positive AOD trends in the 1st half of the record compared to 

the 2nd half.

Northeast China has the strongest negative CO trend across all time periods, at more than -1% 

per year. AOD in China moves from a positive to negative trend between first and second halves 

of the record, coinciding with the clean air policy implementation in 2010. The CO trend in India

is substantially lower than the other industrial regions and the full time period shows a positive 

trend in AOD, reflecting the minimal emission controls in that region. While in the first half of 

the record, both Europe and Eastern USA CO are decreasing at similar rates, in the second half, 

the Eastern USA CO trend is stronger than in Europe. This may be due to stronger local focus on 

air quality improvements in the USA than in Europe, as supported by the coinciding large 
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downward trend in Eastern USA AOD and the stronger reductions in USA anthropogenic CO 

emissions since 2010 compared to Europe as found by Jiang et al. (2017). Additionally, Eastern 

USA may be more influenced by CO transport from China than Europe, and consequently 

reflects the negative trend in transported CO.
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Table 2: Summary of Weighted Least Square (WLS, Eq. 2) trends in CO (XCO) and AOD for the 

monthly anomaly values over different time periods for 19 regions. Standard error in the slopes 

are also shown. Systematic error is shown where it was found to be significant (Appendix A). 

Colors define the trend type, determined significant relative to one standard error. Red 

background colors denote positive trends, blue denotes negative trends and yellow denotes no 

significant trend. Region numbers correspond with regions in Fig. 2.

Trend % per year (± standard error + systematic error)

CO AOD

Full

July 2002-

June 2018

1st half

July 2002-

June 2010

2nd half

July 2010- 

June 2018

Full

July 2002- 

June 2018

1st half

July 2002- 

June 2010

2nd half

July 2010- 

June 2018

Industrial

1. NE China -1.18 (0.3-0.1) -1.94 (0.8) -1.02 (0.7) -0.97 (0.5)  1.70 (1.5) -5.15 (1.5)

2. N India -0.28 (0.2) -0.56 (0.5) -0.17 (0.5)  1.34 (0.7)  1.45 (1.9)  1.50 (2.2)

3. Europe -0.89 (0.1+0.04) -1.58 (0.3) -0.47 (0.3) -0.97 (0.4)  0.26 (1.2) -1.51 (1.1)

4. E USA -0.85 (0.1+0.03) -1.59 (0.3) -0.73 (0.4a) -2.06 (0.3) -0.89 (1.7a) -3.84 (1.5a)

Fire-prone

5. NW USA -0.85 (0.2+0.1) -1.44 (0.5+0.1) -0.67 (0.4)  0.26 (0.6)  2.85 (1.7) -0.19 (2.7a)

6. NW Canada -0.60 (0.1+0.04) -1.35 (0.4a+0.05) -0.51 (0.3+0.03) -1.63 (0.3) -4.21 (1.0) -4.74 (1.2)

7. Siberia -0.59 (0.2a) -1.34 (0.6a-0.03) -0.32 (0.4-0.03)  0.78 (1.0a)  2.47 (3.6a) -2.51 (1.2)

8. Russia -0.80 (0.1+0.1) -1.38 (0.4+0.1) -0.66 (0.3+0.1)  0.90 (0.9)  2.23 (2.3) -3.35 (3.3)

9. Central America -0.46 (0.1) -1.05 (0.4) -0.23 (0.4)  0.18 (0.4)  0.12 (1.1) -0.03 (1.1)

10. S America -0.31 (0.4a) -0.47 (1.0a)  0.02 (1.0a) -0.43 (1.3a) -2.18 (3.7a)  1.22 (3.2a)

11. SAm Transport -0.39 (0.2) -0.77 (0.5) -0.03 (0.8a)  0.59 (0.3)  1.11 (0.7)  0.16 (0.8a)

12. Central Africa -0.22 (0.2) -0.55 (0.5) -0.12 (0.5) -0.10 (0.5)  0.06 (1.4)  0.92 (1.4)

13. Sthrn Africa -0.17 (0.3) -0.63 (0.7) -0.09 (0.7) -0.12 (0.6) -0.79 (1.8) -0.77 (1.8)

14. SAf Transport -0.07 (0.2) -0.46 (0.6)  0.14 (0.6)  0.16 (0.4) -0.30 (1.2) -0.72 (1.1)

15. Maritime SEA -0.51 (0.4a-0.1) -1.08 (1.0a-0.2) -0.14 (1.3a) -0.29 (1.0a) -0.73 (2.3a)  0.07 (3.4a)

16. NW Australia -0.25 (0.3a) -0.79 (0.7a)  0.03 (0.7a)  0.31 (1.0)  1.23 (2.8) -0.88 (3.1)

17. E Australia -0.32 (0.2) -0.90 (0.5)  0.16 (0.6a)  0.47 (0.8)  1.02 (2.2) -0.56 (2.5)

Background

18. NH (0 to 60)-0.57 (0.3) -1.12 (0.9) -0.43 (0.8) Inconclusive due to land/ocean
 and mix of regions19. SH (-60 to 0)-0.35 (0.3) -0.9 (1) -0.1 (1)

*Cardinal directions are abbreviated (e.g. Northeast = NE), SAm = South America, SAf = Southern Africa
aStandard error is taken from the estimate including autocorrelation where it is larger than the WLS estimate

(Appendix A3)
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4. Discussion

4.1 Covariation of CO and AOD

Co-variability analysis of CO and AOD provides further insights into trend behavior. Cloud 

masking may contribute to some monthly variability, but quantifying this contribution is beyond 

the scope of this study. However, we expect the main source of seasonal variability to be driven 

by chemical and physical processes, as discussed in section 3.1. Additionally, because both 

MOPITT and MODIS use the MODIS cloud detection, differences between their variability is 

expected to be due to source or chemistry differences. Co-variability in the industrial regions, 

(Fig. 5 and annual cycles in Supplementary Figure C3), ranges from little correlation between 

peak CO and peak AOD (e.g. North India) to a strong relationship (e.g. Northeast China).

In Northeast China (Fig. 5a, Supplementary Figure C3), both CO and AOD peak in late 

spring/early summer, but AOD remains high while CO rapidly decreases. This reflects the 

opposite effects of OH photochemistry on CO and sulfate aerosols, as well as the impact of dust 

aerosols on AOD during the dry summer months (Luo et al., 2014, Proestakis et al., 2018). The 

residential, industrial, and transportation sectors dominate CO emissions in China (Streets et al., 

2006; Li et al., 2017). Residential CO emissions include biomass and coal burning (Wang and 

Hao, 2012) and are generally higher in winter and spring than in summer (Liu et al., 2016). In 

addition, agricultural burning usually peaks in June in this region (Wu et al., 2017; Li et al., 

2018) and may also contribute to high CO in June. The decline in Northeast China CO during the

first half of the record does not correspond with a decline in AOD. This reflects the move to 

centralized energy production that improved combustion efficiency by replacing residential coal 

use with electricity and natural gas. This change in energy production had relatively large 
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impacts on emissions of CO, but not on aerosols. In 2010, China implemented Clean Air Policies

(van der A et al., 2017; Zheng et al., 2018a) and as a result, AOD started decreasing along with 

the continued decrease in CO, as seen at the inflection point around 2010 in Fig. 5a. This 

inflection point is consistent with results found by Filonchyk et al. (2019) for the whole of China 

using MODIS and MISR. The AOD decrease past 2010 is also consistent with reductions in 

anthropogenically emitted aerosol precursors SO2 and NO2 since 2012 (Kroktov et al., 2016; Qu 

et al. 2019; Wang and Wang, 2020).

Over North India, CO and AOD variability are out of phase (Fig. 5b, Supplementary Figure C3) 

with CO peaking in early spring and AOD peaking in summer. The spring peak in North India 

CO is related to the peak biomass burning activity (Bhardwaj et al. 2016). In India, mineral dust 

makes a large contribution to total AOD during the pre-monsoon season (Apr-Jun) while at other 

times of the year anthropogenic fine-mode aerosols are optically dominant (Sayer et al., 2014). A

positive trend in AOD over the full time period (Table 2) is due to several anthropogenic factors 

including increased SO2 and NO2 emissions from coal-powered power plants (Kroktov et al., 

2016; Li et al., 2017; Qu et al. 2019; Wang and Wang, 2020), more frequent fog events near the 

Indo-Gangetic Plain (Ghude et al., 2017), increased vehicular emissions (Manoj et al. 2019), and 

increasing crop-residue burning activity (Jethva et al., 2019). This region also shows the least 

negative CO trend, suggesting local emissions are offsetting the decreases in the global CO 

background. India’s CO emissions were increasing from 1996-2015 mainly due to increases in 

residential and agricultural sources (Pandey et al. 2014) as well as due to power production and 

transport activities (Sadavarte and Venkataraman 2014).
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Fig 5: Regional time series of month average XCO (red) and AOD (blue) over industrial regions, 
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Region numbers correspond with numbers in Table 2 and Figure 2. Vertical bars are monthly 

standard deviation. General tendencies from linear regression (WLS) are shown for the whole 

record (July 2002-June 2018, dotted line), as well as the 1st half and 2nd half of the record (solid

lines). Slope values are described in Table 2.

In both Europe and Eastern USA, the peak CO occurs before the peak AOD (Fig 5c and 5d, 

Supplementary Figure C3). This offset of several months is due to OH oxidation mainly driving 

seasonality, which maximizes in summer to remove CO and concurrently produce sulfate aerosol

(Edwards et al., 2004). Both regions also show concomitant reductions in AOD and CO for the 

whole time period, reflecting the implementation of strong air quality and climate-related 

policies, as has been observed by reductions in anthropogenically emitted aerosol precursors SO2

and NO2 (Kroktov et al., 2016). Additionally, CO and AOD seasonal variability in both these 

regions appear larger in the 1st half than the 2nd half of the record, suggesting reductions in the 

peak emission months and potential impacts on the chemical oxidation environment.

Fire-prone regions often experience strong correlation between CO and AOD (Fig. 6a, 

Supplementary Figure C3). The longer lifetime of CO is also clear in these regions, as observed 

by the peak AOD diminishing faster than CO, for example over Maritime SEA (Fig 6a). Over 

northwest USA in the first half of the record, the CO seasonal cycle is dominated by a single 

spring-time peak (Fig. 6b). A significant secondary CO peak shows up in late summer in the 

second half of the record, and in some years is as large as the spring-time peak CO, for example 

in 2017 and 2018. This coincides with a strengthening of the aerosol peak shoulder from about 

2012 onwards. This pattern suggests a regime shift associated with increasing fire in the region. 

Similar patterns are seen for the Canada and Siberia fire-prone regions (not shown). 
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Fig 6: Regional time series of XCO (red) and AOD (blue) over (a) Maritime Southeast Asia and 

(b) the northwest USA example fire-prone regions. Vertical bars are monthly standard deviation. 

General tendencies from linear regression (WLS) are shown for July 2002-June 2018 (dotted 

line), as well as the 1st and 2nd half of the record (solid lines). Slope values are described in 

Table 2.

4.2 Separating CO trends by monthly percentiles

Trend analysis separated by month is used to determine the seasonal implications and potential 

sources of the long-term trend. Trends are calculated on the monthly means and percentiles 

(25th, median, 75th) between January, 2002, and December, 2018. Theil-Sen is used for trend 
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calculation to minimize the impact of outliers.

Resulting trend arrays show a range of information useful for interpreting trends (Fig.7, Fig. 8 

and Appendix C). The size of the circle relates to the trend significance, with larger circles 

indicating a higher significance level. The color of the circles denotes the strength of the trend, 

with darker blues indicating stronger negative trends. The climatological annual cycle of column 

average VMR is displayed in colored squares on the left-hand side of the graph, where the size of

the square represents the coefficient of variation - a larger square corresponds to higher 

variability. Finally, the mean number of monthly retrievals are indicated on the right-hand side of

the plot.

It is apparent from the trend arrays which months and percentiles have strong and weak trends. 

Northeast China (Fig. 7a), experiences the strongest negative trends when compared to all other 

regions. Spring months (March, May and June) in Northeast China experience the strongest 

trends overall, at over -1.5 % per year for most of the percentiles in these months, which is 

consistent with the trend results found by Zhang et al. (2020). The downward trend is likely to be

strongest in spring because the impact of residential emissions of CO is greatest. This is 

supported by the downward trend in Northeast China CO being stronger in the 75th percentile 

compared to the 25th percentile, suggesting the trend is driven by a reduction in highly polluted 

events that would likely result from local sources.

Eastern USA (Fig 7c) and Europe (Appendix C), also see stronger trends in the 75th vs. the 25th 

percentile, albeit smaller in magnitude compared to Northeast China, implicating local emission 

reductions. In contrast, the trend array for North India (Appendix C) shows few significant 
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trends, reflecting that high variability or a positive trend locally counteracts any reductions in 

transported CO. Where they are significant, trends occur more frequently in the 25th percentile, 

representing a trend in background CO.

Fig 7: Arrays of quantile trend analysis for monthly CO data for different regions: (a) Northeast 

China, (b) Eastern USA, and (c) Northwest USA. Trends are shown as circles colored by percent 

per year, which is calculated relative to the regional mean column average VMR. The Mann-

Kendall p-value is indicated by the size of the circle. Trends by month for January to December 

travel up the page, and trends on annual average values are shown in the bottom row for 

comparison. Month average column average VMR is displayed as colored squares on the LHS 

with size of the square denoting coefficient of variation (σ/μ). The mean number of retrievals (n) 

within a month are displayed on the RHS, in amounts of thousands (K).
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Many regions of the NH do not see significant trends in late summer and early autumn, i.e. 

August and September (e.g. Fig. 7). This leads to small trends with low significance for the 

whole NH during these months (Fig. 8a). Several factors may be influencing the CO trend in 

these months. The large summer sink may effectively process any sources independent of the 

magnitude, smoothing out any trend behavior. Additionally, variability is relatively large in these 

months (see c.v. for Northeast China and Northwest USA in Fig 7a and c, respectively), which 

impacts the determination of significant trends. Finally, the recent upward trend in peak CO for 

boreal fire-prone regions described in Section 4.1 (e.g. Fig. 6b) likely counteracts a downward 

trend. Fire emissions in these boreal regions impact not only the local atmosphere, but also 

downwind regions through atmospheric transport, and may be responsible for a hemispheric 

weakening of the CO trend in these months. A modeling study would be required to quantify the 

contributions of each of these processes to trend determination.

Fig 8: Same as Fig 7, but for (a) NH and (b) SH.
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While the NH shows negative trends across all months of the year, the SH trends are more 

confined to one season. The SH sees no significant trends in mid-summer to early autumn (Fig 

8b), suggesting that sources are in equilibrium with the photochemical sink at this time of year. 

The downward CO trend is dominant in the fire season (Aug-Nov), which is consistent with the 

Andela et al. (2017) global decrease in burned area, and considering biomass burning is the 

major source of CO emissions in the SH (Holloway et al., 2000). Small CO trends prior to the 

SH burning season (May-July) may reflect a trend in transported air from the NH (Zeng et al., 

2012; Yang et al., 2019). Overall, the SH trend is mainly determined by the trend from fires, 

while the NH trend also reflects improvements in combustion efficiency. 

5. Conclusions

We use long-term measurements of MOPITT CO and MODIS AOD, taken from the Terra 

satellite, launched in December, 1999, to estimate global and regional trends in atmospheric 

pollution. Our study principal results are summarized below:

1) We find a decreasing global trend in CO total column: -0.50 (± 0.3) % per year over 

2002 to 2018. This trend represents a global slowdown in the CO decline as compared to 

CO trends from earlier studies over shorter periods that found a trend of -1% per year. We

attribute the slow-down to a reduced negative trend in  recent years by comapring trends 

for  2002-2010 with 2010-2018.

2) All the TIR CO satellite records from MOPITT, AIRS, TES, IASI and CrIS observe the

same hemispherical seasonality and interannual variations. This provides confidence in 

the MOPITT record for our subsequent detailed trend estimates. The AIRS CO NH and 

SH trends agree with MOPITT, while the other satellite instrument records are of 
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insufficient length or lack processing consistency to allow for confident computation of 

trends.

3) Due to the shorter lifetime of aerosol, global trends in AOD were not significant. 

However, significant regional trends in AOD help interpret CO variability for areas with 

common sources, as in fire-prone regions, or where there are impacts due to air quality 

regulations. CO and AOD concurrently decrease in North America, Europe, and more 

recently, China. India has increasing trends in AOD and negligible trends in CO, 

indicating regional CO emissions are sufficiently large to counteract the global declining 

CO background.

4) Analyses of trends by percentile and month indicate that the strongest (most negative) 

trends occur in the 75th percentile for the NH and that late summertime CO trends (when 

CO lifetime is shortest) are the least significant, in both hemispheres.

Overall, local contributions from human pollution or fire emissions can counteract the global 

downward trend in CO. In particular, the climate-driven positive fire trend in the NH boreal fire-

prone regions during summer locally counteracts the global downward CO trend and may also 

have hemispheric impacts through subsequent transport. Monitoring changes in regions with 

high local emissions will be critical for diagnosing future air quality and informing mitigation 

efforts.
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metadata) can also be found at NCAR RDA (doi in progress).
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List of Figure Captions:

Fig 1. Zonal average plot of monthly average (a) MOPITT column CO and (b) MODIS AOD. 

Percent anomalies in (c) MOPITT CO and (d) MODIS AOD. Percent anomalies are calculated 

relative to the climatological month averages within each 2° zonal average box. White stripes in 

panel a and c during 2001 and 2009 represent missing MOPITT data due to instrumental 

diagnostic operations. White pixels at NH and SH high latitudes represent missing data for both 

instruments due to polar night.

Fig 2: Global average (a) column CO and (b) AOD between 2000 and 2018. Boxes outline the 

sub-regions used for regional trend analysis, numbered 1 to 19, discussed in section 3.4. Trends 

in (c) CO from MOPITT and (d) AOD from MODIS between 2002 and 2018, gridded to 2°x4°.

Fig 3: Residual trend in CO columns from MOPITT calculated relative to the global average 

trend (-0.5% per year, +/- 60°) from 2002 to 2018.

Fig 4: Multi-instrument time series of month average XCO for (a) NH (0° to 60°N) and (b) SH 

(60°S to 0°). Lower panels show the monthly anomalies relative to each dataset mean annual 

cycle, for (c) NH and (d) SH. Weighted least squares trends on the anomalies are indicated with 

standard error in percent per year for MOPITT and AIRS. The grey dashed line is the zero line 

for reference.

 Region numbers correspond with numbers in Table 2 and Figure 2. Vertical bars are monthly 

standard deviation. General tendencies from linear regression (WLS) are shown for the whole 

record (July 2002-June 2018, dotted line), as well as the 1st half and 2nd half of the record (solid

lines). Slope values are described in Table 2.

Fig 6: Regional time series of XCO (red) and AOD (blue) over (a) Maritime Southeast Asia and 

(b) the northwest USA example fire-prone regions. Vertical bars are monthly standard deviation. 

General tendencies from linear regression (WLS) are shown for July 2002-June 2018 (dotted 
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line), as well as the 1st and 2nd half of the record (solid lines). Slope values are described in 

Table 2.

Fig 7: Arrays of quantile trend analysis for monthly CO data for different regions: (a) Northeast 

China, (b) Eastern USA, and (c) Northwest USA. Trends are shown as circles colored by percent 

per year, which is calculated relative to the regional mean column average VMR. The Mann-

Kendall p-value is indicated by the size of the circle. Trends by month for January to December 

travel up the page, and trends on annual average values are shown in the bottom row for 

comparison. Month average column average VMR is displayed as colored squares on the LHS 

with size of the square denoting coefficient of variation (σ/μ). The mean number of retrievals (n) 

within a month are displayed on the RHS, in amounts of thousands (K).

Fig 8: Same as Fig 7, but for (a) NH and (b) SH.

Fig A1: MOPITT a priori total column XCO for month averages (top row) and daily averages 

(bottom row) comparing October 2002 with October 2018. Note that daily dates were chosen to 

display the same MOPITT orbital swaths. The square black box is the Northeast China industrial 

region of interest for this study and average XCO within this region is noted on each plot.

Fig A2: Changes in MOPITT monthly mean total column CO and standard error as a function of 

sub-sampling reduction factor (2n). Top three plots show results for NH June 2007 and bottom 

three plots show NH December 2007. 

Fig A3: Time series of degrees of freedom of signal (DFS) for MOPITT in the NH and SH. 

Fig A4: Autocorrelation coefficients in monthly CO residuals for the Northern Hemisphere full 

timeseries (left) and autocorrelation for an AR(1) model with ϕ = 0.83 (right). Blue shaded area 

shows the confidence intervals for p=0.01.

Fig A5: Autocorrelation coefficients in monthly January residual values for the Northern 

Hemisphere. Blue shaded area shows the confidence intervals for p= 0.01.
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Fig C1: Trend standard error (top) and significance - calculated trend relative to std err (bottom).

Fig C2: Trends in AOD from Aqua/MODIS between 2002 and 2018, gridded to 2°x4°.

Fig C3: Dataset average annual cycles in month average XCO (red) and AOD (blue) for the 

different regions. Region numbers correspond with regions in Fig. 2 and names in Table 2.

Fig C4: Gridded arrays of quantile trend analysis for monthly data for different regions. Trends 

are shown as circles colored by percent per year, which is calculated relative to the regional 

mean column average VMR. The Mann-Kendall p-value is indicated by the size of the circle. 

Trends in annual mean values are shown for comparison in the bottom row. Month average 

column average VMR along with the coefficient of variation are displayed as colored squares on 

the LHS. The mean number of retrievals (n) within a month are displayed on the RHS, in 

amounts of thousands (K).
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List of Equations in LaTeX code:

Equation 1:

\begin{equation}
y=mt + b + \epsilon(t)
\end{equation}

Equation 2:

\begin{equation}
m=\frac{\sum\limits_{i=1}^{n}\frac{1}
{\sigma_i^2}\sum\limits_{i=1}^{n}\frac{t_iy_i}{\sigma_i^2} - 
\sum\limits_{i=1}^{n}\frac{t_i}
{\sigma_i^2}\sum\limits_{i=1}^{n}\frac{y_i}{\sigma_i^2}}
{\sum\limits_{i=1}^{n}\frac{1}
{\sigma_i^2}\left(\sum\limits_{i=1}^{n}\frac{t_i^2}
{\sigma_i^2}-\left(\sum\limits_{i=1}^{n}\frac{t_i}
{\sigma_i^2}\right)^2\right)}
\end{equation}

Equation 3:

\begin{equation}
m= \widetilde{\left(\frac{y_j-y_i}{t_j-t_i}\right)}
\end{equation}

Equation A2:

\begin{equation}
\sigma_m \approx \frac{\sigma_\epsilon}{N^{3/2}}\sqrt{\frac{1 + \phi}
{1 - \phi}}
\end{equation}
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Appendix A. Uncertainties in MOPITT CO trend analysis

Uncertainties due to the instrument system are investigated in this section. Systematic and 

random sampling uncertainty is assessed by determining trends in a priori and using bootstrap 

sampling, respectively. Systematic uncertainties due to instrument sensitivity changes are 

investigated using the averaging kernels.

A1 Sampling bias

A1.1 Approximating systematic sampling uncertainty

Sampling changes may occur for the satellite instrument over time, for example, changes due to 

physical scene differences such as from cloud screening. Fig A1 shows how sampling differences

on different days and months can affect the mean values in MOPITT a priori, which are taken 

from climatology and have no interannual variability. Differences can be seen in the 1°×1° 

gridboxes containing no data (gray) as well as differences in some gridbox colors. For instance, 

October 2018 sees persistent clouds over central southern China which is not the case in 2002. 

These differences are only due to how the a priori was sampled, corresponding with each 

MOPITT observation.  While we do not necessarily expect changes in sampling over time, we 

use trend analysis on the sampled a priori values to approximate the impact of any systematic 

sampling changes within each region. This could be of particular importance for regions with 

large CO spatial variability, such as China.
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Fig A1: MOPITT a priori total column XCO for month averages (top row) and daily averages 

(bottom row) comparing October 2002 with October 2018. Note that daily dates were chosen to 

display the same MOPITT orbital swaths. The square black box is the Northeast China industrial 

region of interest for this study and average XCO within this region is noted on each plot.

Trends are calculated in the same way as the main text using a priori anomalies and WLS, 

weighted by monthly standard deviation within each region (Table A1.1). We also perform Theil-

Sen analysis on year average a priori anomalies from 2002-2018 to determine trend consistency. 

Overall, we find no significant trends in the sampled a priori for any of the regions or time 

periods. Thus, we can be confident that changes in sampling are not contributing to the trend 

analysis performed in the main text.
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Table A1.1: Summary of WLS trends in the a priori XCO anomalies for the 19 regions, shown for 

different time periods. Theil Sen trends are also shown for the full time series. Yellow 

backgrounds denote no significant trend for WLS analysis, relative to the slope standard error. 

Orange background indicates p>0.05 in Theil-Sen trends.

Theil-Sen (p) WLS Trend % per year (± standard error)

CO

2002-2018 Full
July 2002- June 
2018

1st half
July 2002- June 
2010

2nd half
July 2010- June 
2018

Industrial

1. NE China-0.005 (0.84)  0.031 (0.07)  0.07 (0.2)  0.09 (0.2)

2. N India-0.033 (0.59) -0.02 (0.1)  0.09 (0.3) -0.11 (0.3)

3. Europe-0.006 (0.65) -0.001 (0.03) -0.06 (0.1)  0.072 (0.09)

4. E USA-0.004 (0.71)  0.0003 (0.03) -0.005 (0.1)  0.02 (0.1)

Fire-prone

5. NW USA 0.004 (0.59)  0.001 (0.02) -0.014 (0.07)  0.013 (0.06)

6. NW Canada-0.0008 (0.90) -0.0028 (0.006)  0.002 (0.02) -0.020 (0.02)

7. Siberia-0.004 (0.71) -0.012 (0.01)  0.019 (0.03) -0.001 (0.04)

8. Russia-0.007 (0.34) -0.012 (0.05) -0.01 (0.1) -0.02 (0.1)

9. Cent. America 0.004 (0.15)  0.005 (0.03)  0.021 (0.08) -0.002 (0.08)

10. S America-0.006 (0.97)  0.02 (0.2) -0.07 (0.5)  0.05 (0.5)

11. SAm Tspt  BB  0.002 (0.59)  0.001 (0.04) -0.01 (0.1) -0.002 (0.1)

12. Central Africa -0.001 (0.97) -0.016 (0.06) -0.01 (0.2)  0.06 (0.2)

13. Southern Africa-0.001 (0.97)  0.002 (0.09) -0.11 (0.2)  0.03 (0.2)

14. SAf Tspt-0.004 (0.90) -0.01 (0.1)  0.08 (0.3) -0.03 (0.4)

15. Maritime SEA 0.014 (0.48)  0.02 (0.1)  0.11 (0.4) -0.01 (0.4)

16. NW Australia-0.001 (0.90)  0.011 (0.03)  0.04 (0.1)  0.01 (0.1)

17. E Australia 0.002 (0.59)  0.006 (0.08)  0.01 (0.2)  0.02 (0.2)

Background

18. NH (0 to 60)-0.002 (0.59) -0.001(0.07)  0.01 (0.2)  0.01 (0.2)

19. SH (-60 to 0)-0.003 (0.54)  0.001 (0.2) -0.02 (0.7)  0.01 (0.7)
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A1.2 Approximating random sampling uncertainty

We estimate random sampling errors in our trend estimate by resampling MOPITT CO within 

regions using the bootstrap method of resampling with replacement (Efron, 1979) following the 

implementation of Reuter et al. (2014) and Jiang et al. (2018). This procedure randomly creates 

one hundred resampled datasets, to produce an ensemble of trends from which we calculate a 

mean trend and standard deviation.

Specifically, the method proceeds as follows: beginning with a given MOPITT level 2 dataset for

a particular month and region, which contains N retrievals within the region, we construct a 

resampled dataset of N points by uniformly sampling the original data, with replacement.  

Consequently, there may be multiples of some of the original data within a resampled dataset; 

there may also be values in the original dataset that do not appear in the resampled dataset. This 

method effectively randomly increases (multiples) and decreases (left out) the weight of 

retrievals when contributing to the region mean. Regional means and standard deviation are 

calculated from the resampled dataset and time series of monthly means with corresponding 

standard deviations are built. We repeat this resampling process on the original data one hundred 

times to create an ensemble of one hundred time series, and in turn an ensemble of one hundred 

fitted trends for each region. Finally, we calculate a mean trend and a standard deviation over the

ensemble. The standard deviation of the resampled slopes is our measure of the trend uncertainty

due to resampling, which is summarized for all regions over 2002-2018 in Table A3.1.

We have also tested the extent to which MOPITT data can be sub-sampled and still provide 

equivalent mean monthly values for the total column. Figure A2 shows that selecting every 28 
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retrieval within the NH still gives the same values for the monthly mean CO column with 

acceptable standard error. These results informed the sub-sampling used for CrIS data processing

with the MUSES algorithm.

FigA2: Changes in MOPITT monthly mean total column CO and standard error as a function of 

sub-sampling reduction factor (2n). Top three plots show results for NH June 2007 and bottom 

three plots show NH December 2007. 
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A2 Systematic uncertainty due to MOPITT sensitivity changes

Sampling may also be affected by changes in instrumental sensitivity, such as through 

degradation of the instrument over time. Some of this degradation of performance is known (e.g. 

cell gas loss) and is accounted for in the retrieval algorithm. Additionally, MOPITT retrieval 

sensitivity is related to the amount of atmospheric trace gas, so it would be expected to decline as

CO concentrations decline, similar to changes in sensitivity for satellite temperature retrievals 

with increasing CO2 (Shine et al., 2008). Sensitivity changes will be reflected in the instrument 

averaging kernels (AK). The degrees of freedom for signal (DFS) is a measure derived from the 

AK. Yoon et al. (2013), show that time varying AKs add uncertainty to trend analysis in 

MOPITT surface retrievals and Strode et al. (2016) found that MOPITT AKs impacted simulated

trends. We examine the hemispheric DFS over time (Fig A3) and find trend behavior that 

suggests we should quantify the impact of sensitivity changes on trend analysis for column 

values. The decreasing trend in DFS corresponds with an increase in instrument noise (Deeter et 

al., 2015), whereby changes in instrument signals contribute to a trend in the DFS. However, 

although the DFS shows a strong trend over 2001-2018, we do not expect large impacts on XCO 

trends because the DFS values remain above 1, and consequently enough information is 

available to retrieve column amounts.
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Fig A3: Time series of degrees of freedom of signal (DFS) for MOPITT in the NH and SH. 

To test the impact of sensitivity changes on XCO we create a global climatology from reanalysis 

(Gaubert et al., 2016, Gaubert et al., 2017b), and convolve with the MOPITT monthly level-3 

AKs and a priori (Eq. 1), before calculating regional averages and standard deviation and 

performing trend analysis. The MOPITT AKs are changing in time, while the climatology has no

interannual variability. As we saw in Appendix A1.1, the a priori have no significant trends. 

Therefore, any trends found in the smoothed climatology are a result of sensitivity changes.

col_vmr_smooth = (c_a + A(x_r - x_a))/c_d (Eq. A1)

Where:

col_vmr_smooth = smoothed climatology column average vmr

c_a = MOPITT a priori column

A = MOPITT column averaging kernel
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x_r = reanalysis profile in log(vmr)

x_a = MOPITT a priori profile in log(vmr)

c_d = MOPITT reported column of dry air

Trends on the smoothed reanalysis climatology for each region and time period are shown in 

Table A2.1, which have been calculated on anomalies with WLS in the same way as trends in the

main text, weighted by regional monthly standard deviation in the smoothed data. We also 

perform Theil-Sen analysis on year average values from 2002-2018. Some regions show 

significant trends in the smoothed reanalysis, meaning that instrument sensitivity could have 

impacted the trend analysis performed in the main text. Significant trends with p<0.05 for the 

Theil-Sen analysis are generally consistent with the trends that are outside one standard error in 

the WLS slope.

In particular, the full time series analysis over Northeast China, Europe and Eastern USA, as well

as full and shorter time periods for the NH boreal fire-prone regions and Maritime SEA may 

have been impacted by instrument sensitivity. In most of these regions the impact is small 

compared to the trend in XCO, however the uncertainty has been noted in section 3.4 as a 

systematic error. When reported as systematic errors, they impact the trend in the opposite 

direction as shown in Table A2.1. For example, we see a slightly positive trend (+0.145% per 

year) in the smoothed reanalysis for China over 2002-2018 that indicates some of the observed 

negative trends could be counteracted by instrument sensitivity. Therefore, we report a 

systematic error of -0.145 % per year for this effect on the regional trend.
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Table A2.1: Summary of estimated CO trends due to changes in MOPIT sensitivity. WLS trends 

in the anomalies of smoothed reanalysis climatology from the 19 regions are shown with 

standard error over the full, 1st half and 2nd half time periods. Theil Sen trends are also shown 

for the full time series. Red background colors denote positive trends, blue denote negative 

trends and yellow background denote no trend for WLS analysis. Orange background indicates 

p>0.05 for Theil-Sen.

Theil-Sen (p) WLS Trend % per year (± standard error)

CO

July 2002- June 
2018

Full
July 2002- 
June 2018

1st half
July 2002- 
June 2010

2nd half
July 2010- June 
2018

Industrial

1. NE China  0.125 (0.0001)  0.145 (0.07)  0.18 (0.2)  0.12 (0.2)

2. N India  0.016 (0.65)  0.04 (0.1)  0.20 (0.4)  0.02 (0.3)

3. Europe -0.041 (0.02) -0.047 (0.02) -0.040 (0.07) -0.031 (0.07)

4. E USA  0.024 (0.23) -0.032 (0.02)  0.024 (0.06) -0.014 (0.06)

Fire-prone

5. NW USA -0.063 (0.001) -0.079 (0.04) -0.14 (0.1) -0.072 (0.1)

6. NW Canada -0.058 (0.003) -0.0403 (0.007) -0.049 (0.02) -0.032 (0.02)

7. Siberia -0.030 (0.02) -0.007 (0.01)  0.031 (0.03)  0.031 (0.03)

8. Russia -0.095 (1.5e-05) -0.065 (0.03) -0.104 (0.07) -0.122 (0.07)

9. Cent. America -0.003 (0.77)  0.018 (0.03)  0.070 (0.09)  0.014 (0.09)

10. S America  0.105 (0.003)  0.05 (0.1)  0.05 (0.3)  0.09 (0.4)

11. SAm Tspt  BB -0.046 (0.02) -0.013 (0.08) -0.02 (0.2)  0.003 (0.2)

12. Central Africa  0.002 (0.84)  0.013 (0.03)  0.02 (0.08)  0.036 (0.09)

13. Southern Africa -0.016 (0.30) -0.04 (0.1) -0.07 (0.3) -0.02 (0.3)

14. SAf Tspt -0.001 (1) -0.008 (0.06)  0.06 (0.2) -0.05 (0.2)

15. Maritime SEA  0.157 (0.02)  0.135 (0.06)  0.22 (0.2)  0.07 (0.2)

16. NW Australia -0.005 (0.84)  0.004 (0.03)  0.02 (0.1) -0.045 (0.09)

17. E Australia -0.029 (0.13) -0.001 (0.09)  0.004 (0.3)  0.011 (0.2)

Background

18. NH (0 to 60) -0.037 (0.006) -0.01 (0.1) -0.0003 (0.3) -0.01 (0.3)

19. SH (-60 to 0) -0.019 (0.06) -0.01 (0.2) -0.05 (0.6)  0.006 (0.6)
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A3 Accounting for Autocorrelation

Autocorrelation in the noise (ϵ(t) of Equation 1) may impact the precision of the slope 

calculations. We determine autocorrelation in our monthly timeseries by performing ACF 

analysis in the residuals. Residuals generally show autocorrelation indicative of an first-order 

autoregressive, AR(1), model process. For example, the autocorrelation function for CO in the 

Northern Hemisphere (NH) region is shown in Fig A4, and is similar to an AR(1) model example

with the equivalent coefficient (ϕ).

Fig A4: Autocorrelation coefficients in monthly CO residuals for the Northern Hemisphere full 

timeseries (left) and autocorrelation for an AR(1) model with ϕ = 0.83 (right). Blue shaded area 

shows the confidence intervals for p=0.01.

Consequently, we compensate for an AR(1) noise process by adjusting the standard error to 

account for autocorrelation. According to Weatherhead et al. (1998) the standard error in the 

slope (σm) can be accurately approximated by the standard deviation in the noise (σϵ), combined 

with a scaling factor based on the autocorrelation coefficient at lag-1, ϕ:
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where N is the number of years of data (Weatherhead et al., 1998, equation 2).

We investigae autocorrelation in the residual for all regions and where it is found to be 

significant outside the 99 % confidence intervals, we calculate the standard errors according to 

equation A2 and collect the resaults in Table A3.1. The estimated standard error on the slope 

from equation A2 was compared with the WLS standard error and was found to be of 

approximate similar magnitude, and generally smaller than the WLS estimate, but sometimes 

larger. Therefore, as a conservative estimate of the standard error on the slope, we retain the 

larger of the two estimates in the main section of the manuscript.

The Theil-Sen trend estimates in Section 4.2 do not require compensation for autocorrelation in 

the noise, because consecutive values are separated by a year and CO has about a 2 month 

atmopsheric lifetime, meaning persistence is not significant. For example, the residuals for 

January trend analysis in the NH region show no autocorrelation (Figure A5), even though the 

NH full timeseries showed  the largest autocorrelation coefficient (ϕ = 0.83) of all datasets. 

Similarly, no significant autocorrelation in the residuals was found in other regions when trend 

analysis is completed in months across different years.
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Fig A5: Autocorrelation coefficients in monthly January residual values for the Northern 

Hemisphere. Blue shaded area shows the confidence intervals for p= 0.01.
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Table A3.1: Standard error estimate on the slope accounting for autocorrelation. Yellow 
background indicates higher errors than the WLS estimate.

Trend % per year (± standard error + systematic error)

CO AOD

Full
July 2002-
June 2018

1st half
July 2002-
June 2010

2nd half
July 2010- 
June 2018

Full
July 2002- 
June 2018

1st half
July 2002- 
June 2010

2nd half
July 2010- 
June 2018

Industrial

1. NE China 0.1 0.4 0.3 0.4 NS NS

2. N India 0.1 0.2 0.3 0.3 1.1 0.8

3. Europe 0.1 NS 0.3 NS NS 0.9

4. E USA 0.1 0.3 0.4 0.6 1.7 1.5

Fire-prone

5. NW USA 0.1 0.3 0.4 0.6 NS 2.7

6. NW Canada 0.1 0.4 0.3 NS NS NS

7. Siberia 0.2 0.6 0.5 1.0 3.6 NS

8. Russia 0.1 0.3 0.3 0.4 0.7 0.7

9. Central America 0.1 0.3 0.4 0.3 1.0 0.6

10. S America 0.4 1.0 1.0 1.3 3.7 3.2

11. SAm Transport 0.2 0.5 0.8 0.3 NS 0.8

12. Central Africa 0.1 0.2 0.3 0.4 NS 1.2

13. Sthrn Africa 0.1 0.3 0.5 0.3 NS 0.7

14. SAf Transport 0.1 NS 0.4 NS NS NS

15. Maritime SEA 0.4 1.0 1.3 1.0 2.3 3.4

16. NW Australia 0.3 0.7 0.7 0.4 NS 1.1

17. E Australia 0.2 0.4 0.6 0.4 1.1 1.0

Background

18. NH (0 to 60) 0.2 0.3 0.5 Inconclusive due to land/ocean
 and mix of regions19. SH (-60 to 0) 0.2 0.4 0.5

*Cardinal directions are abbreviated (e.g. Northeast = NE), SAm = South America, SAf = Southern Africa, 
NS = Autocorrelation is not significant for p=0.01

A4 Summary of uncertainties 2002-2008

A comparison between uncertainties and the WLS standard error for 2002-2018 trends is shown 

in Table A4.1. Systematic uncertainties are described in one direction and random uncertainty is 
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bi-directional. The uncertainties reported here are of opposite sign to the slopes calculated in 

Appendix A1.1 and A2. Although in some cases uncertainties are determined significant relative 

to their respective standard errors, all uncertainties are small compared to the standard error in 

the slope from the main text. Overall, the impact of these uncertainties on the trends found in the 

main text does not alter our main findings and conclusions.
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Table A4.1: Summary of uncertainties in the 2002-2018 trend analysis compared with WLS 

standard error in the slope. All values are shown in percent per year. Green backgrounds are 

significant.

Sampling uncertainty MOPITT
sensitivity

(systematic)
Std err from

WLS

 Approximated Std
err with

autocorrelation

systematic random

Industrial

1. NE China -0.031 ±0.005  -0.145 ±0.3 ±0.1
2. N India +0.02 ±0.003  -0.04 ±0.2 ±0.1
3. Europe +0.001 ±0.003 +0.047 ±0.1 ±0.1
4. E USA -0.0003 ±0.004 +0.032 ±0.1 ±0.1

Fire-prone

5. NW USA  -0.001 ±0.004 +0.079 ±0.2 ±0.1
6. NW Canada +0.0028 ±0.004 +0.0403 ±0.1 ±0.1

7. Siberia +0.012 ±0.006 +0.007 ±0.1 ±0.2
8. Russia +0.012 ±0.001 +0.065 ±0.1 ±0.1

9. Cent. America  -0.005 ±0.001 -0.018 ±0.1 ±0.1
10. S America  -0.02 ±0.002  -0.05 ±0.2 ±0.3

11. SAm Tspt  BB  -0.001 ±0.002 +0.013 ±0.2 ±0.2

12. Central Africa +0.016 ±0.001  -0.013 ±0.2 ±0.1

13. Southern Africa  -0.002 ±0.002 +0.04 ±0.3 ±0.1

14. SAf Tspt +0.01 ±0.002 +0.008 ±0.2 ±0.1

15. Maritime SEA  -0.02 ±0.003  -0.135 ±0.2 ±0.4

16. NW Australia  -0.011 ±0.001 -0.004 ±0.1 ±0.3

17. E Australia  -0.006 ±0.001 +0.001 ±0.2 ±0.2

Background
18. NH (0 to 60) +0.001 ±0.0004 +0.01 ±0.3 ±0.2
19. SH (-60 to 0) -0.001 ±0.0005 +0.01 ±0.3 ±0.2
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Appendix B. Other impacts on trend analysis

We investigate the robustness of trend analysis to using different methods, accounting for the 

seasonal cycle in different ways, using different trend methodologies, as well as the impact of 

outliers.

B1 Selection of trend analysis methodology

Noise is anything that deviates the data from the model (the linear trend), and consequently 

increases uncertainty in trend analysis. The seasonal cycle in CO data therefore adds noise to the 

trend analysis. There are several methods one can use to remove the impact of seasonality on 

trend analysis. We investigate four methods of accounting for seasonality.

Method 1: use year average values in trend calculations.

Method 2: calculate the 12-month moving average. Because seasonality occurs during a 

12-month period, any shorter or longer time period (not divisible by 12) would introduce 

some seasonal information. 

Method 3: subtract the whole dataset month average values.

Method 4: remove the seasonal cycle using a harmonic fit.

We also assess the use of Theil-Sen on year-average values. The Theil-Sen method is robust to 

outliers, but is sensitive to cyclic data, therefore we use yearly averages of the monthly anomaly 

data.

All methods calculate consistent trend signs and magnitudes within one standard error, apart 

from the WLS on running averages for South America. Regions that show difficulty for 

interpreting significant trends (Southern Africa) are also generally consistent. In the main text, 

we choose to use method 2 before applying WLS. Retaining month anomaly values helps to 
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assess the monthly contributions to interannual variability (e.g. Fig. 3c and 3d).

Table B1.1: Summary of weighted least-squares different methods of accounting for seasonality. 

Theil Sen trends are also shown for the full time series. Blue backgrounds denote negative trends

and yellow background denote no trend for WLS analysis. Orange background indicates p>0.05 

for Theil-Sen (non-significant).

Theil-Sen (p) on
year average

Method 1:
WLS Trend on
year average
(± standard

error)

Method 2:
WLS Trend on

Runave

Method 3:
WLS Trend on
Anomaly (using

mean annual
cycle) 

Method 4:
WLS Trend on
Anomaly (using

harmonics)

2002-2018 Full July 2002- June 2018: % per year 
(± standard error)

Industrial

1. NE China-1.20 (2.2e-05) -1.16 ( 0.3) -1.22 (0.3) -1.18 (0.3) -1.18 (0.3)

2. N India-0.19 (0.036) -0.27 ( 0.1) -0.26 (0.2) -0.28 (0.2) -0.28 (0.2)

3. Europe-0.77 (3.2e-05) -0.79 ( 0.2) -0.78 (0.1) -0.89 (0.1) -0.88 (0.1)

4. E USA-0.78 (1.5e-05) -0.79 ( 0.2) -0.84 (0.1) -0.85 (0.1) -0.84 (0.1)

Fire-prone

5. NW USA-0.71 (3.4e-04) -0.80 ( 0.2) -0.74 ( 0.2) -0.85 (0.2) -0.83 (0.2)

6. NW Canada-0.59 (4.6e-04) -0.58 ( 0.2) -0.63 ( 0.1) -0.60 (0.1) -0.59 (0.1)

7. Siberia-0.67 (1.5e-03) -0.57 ( 0.2) -0.61 ( 0.1) -0.59 (0.1) -0.58 (0.1)

8. Russia-0.72 (1.0e-05) -0.77 ( 0.2) -0.77 ( 0.1) -0.80 (0.1) -0.79 (0.1)

9. Cent. America-0.49 (2.0e-03) -0.52 ( 0.2) -0.48 ( 0.1) -0.46 (0.1) -0.46 (0.1)

10. S America-0.70 (0.053) -0.53 ( 0.4) -0.70 ( 0.2) * -0.31 (0.2) -0.30 (0.2)

11. SAm Tspt  BB -0.64 (5.8e-03) -0.53 ( 0.2) -0.55 ( 0.2) -0.39 (0.2) -0.38 (0.2)

12. Central Africa -0.23 (0.015) -0.25 ( 0.1) -0.23 (0.2) -0.22 (0.2) -0.22 (0.2)

13. Southern Africa-0.26 (0.11) -0.21 ( 0.2) -0.20 (0.3) -0.17 (0.3) -0.17 (0.3)

14. SAf Tspt-0.04 (0.90) -0.08 ( 0.2)  0.04 (0.2) -0.07 (0.2) -0.07 (0.2)

15. Maritime SEA-0.69 (0.029) -0.71 ( 0.3) -0.54 (0.2) -0.51 (0.2) -0.50 (0.2)

16. NW Australia-0.49 (0.053) -0.32 ( 0.3) -0.37 (0.1) -0.25 (0.1) -0.25 (0.1)

17. E Australia-0.44 (0.015) -0.45 ( 0.2) -0.42 (0.2) -0.32 (0.2) -0.32 (0.2)

Background

18. NH (0 to 60)-0.57 (4.6e-04) -0.59 ( 0.1) -0.54 (0.3) -0.57 (0.3) -0.56 (0.3)
19. SH (-60 to 0)-0.47 (7.4e-03) -0.47 ( 0.1) -0.39 (0.3) -0.35 (0.3) -0.35 (0.3)

*Significantly different trend result outside 1�
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B2 Impact of outliers on trend analysis

WLS trend analysis is less impacted by outliers than ordinary least squares because variability 

associated with outliers de-weights the outlier contribution to trend analysis. However, we wish 

to quantify the impact of the large El Niño in 2015 on trend analysis. Figures 3c and 3d show the

hemispheric impact of the 2015 fires in Maritime SEA. The large contribution to atmospheric 

CO loading from this event remained in the atmosphere for over 2 months (Field et al., 2016). 

Resulting high values could have skewed our results towards less negative trends. Consequently, 

we investigate the impact of removing XCO data from July 2015 to June 2016, and recalculate 

trends. The comparison between trends calculated with and without Maritime SEA fire influence 

in 2015 is shown in Table B2.1.

When removing the MSEA event from analysis, trends become consistently more negative. The 

shorter period experiences more impact on trends than the longer period. Largest differences are 

seen around the SH fire-prone regions. However, most of the trends are not significantly different

from what was calculated in the main text, relative to one standard error. Furthermore, trend 

changes do not alter our conclusions from the main text. We still find the slowdown in the CO 

trend such that the earlier record has a stronger trend than either the later record or long-term 

record.

We were also interested in the large dip in 2008-2009 that might particularly influence the trends 

in our early sub-time period (Fig. 3c), so we removed February 2008 to January 2010 and 

recalculated trends (not shown). While we found some substantial differences in trend 

magnitudes for some regions, the overall message remained that the earlier period experienced 

more negative trends in CO compared to the later period or the whole time period.
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Table B2.1: Summary of WLS trends in the anomaly XCO from the 19 regions with standard 

error, shown for different time periods. The original record values are the same as found in Table 

2. Trends without 201507-201606 removes the extended influence from the large fires in 

Maritime SEA during the burning season of 2015. Green background colors indicate differences 

outside one standard error.

WLS Trend on Runave % per year (+/- standard error)

Original Without 201507-
201606

Original Without 201507-
201606

Full July 2002-June 2018 2nd half July 2010-June 2018

Industrial

1. NE China-1.18 (0.3) -1.26 (0.3) -1.02 (0.7) -1.14 (0.7)
2. N India-0.28 (0.2) -0.34 (0.2) -0.17 (0.5) -0.29 (0.5)
3. Europe-0.89 (0.1) -1.00 (0.1) -0.47 (0.3) -0.67 (0.3)
4. E USA-0.85 (0.1) -0.98 (0.1) -0.73 (0.3) -0.95 (0.3)

Fire-prone

5. NW USA-0.85 (0.2) -0.95 (0.2) -0.67 (0.4) -0.85 (0.4)

6. NW Canada-0.60 (0.1) -0.67 (0.1) -0.51 (0.3) -0.64 (0.3)

7. Siberia-0.59 (0.1) -0.64 (0.1) -0.32 (0.4) -0.40 (0.4)

8. Russia-0.80 (0.1) -0.88 (0.1) -0.66 (0.3) -0.81 (0.3)

9. Cent. America-0.46 (0.1) -0.58 (0.1) -0.23 (0.4) -0.46 (0.4)
10. S America-0.31 (0.2) -0.40 (0.2)  0.02 (0.6) -0.16 (0.6)

11. SAm Tspt  BB -0.39 (0.2) -0.48 (0.2) -0.03 (0.5) -0.24 (0.5)

12. Central Africa -0.22 (0.2) -0.27 (0.2) -0.12 (0.5) -0.21 (0.5)

13. Southern Africa-0.17 (0.3) -0.29 (0.3) -0.09 (0.7) -0.34 (0.7)

14. SAf Tspt-0.07 (0.2) -0.18 (0.2)  0.14 (0.6) -0.08 (0.6)

15. Maritime SEA-0.51 (0.2) -0.63 (0.2) -0.14 (0.5) -0.34 (0.5)

16. NW Australia-0.25 (0.1) -0.34 (0.1)  0.03 (0.4) -0.15 (0.4)

17. E Australia-0.32 (0.2) -0.42 (0.2)  0.16 (0.5) -0.01 (0.5)

Background
18. NH (0 to 60)-0.57 (0.3) -0.67 (0.3) -0.43 (0.8) -0.63 (0.8)
19. SH (-60 to 0)-0.35 (0.3) -0.46 (0.4) -0.1 (1) -0.3 (1)
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Supplementary Material

Fig C1: Trend standard error (top) and significance - calculated trend relative to std err (bottom).
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Fig C2: Trends in AOD from Aqua/MODIS between 2002 and 2018, gridded to 2°x4°. 
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Fig C3: Dataset average annual cycles in month average XCO (red) and AOD (blue) for the 

different regions. Region numbers correspond with regions in Fig. 2 and names in Table 2.
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Fig C4: Gridded arrays of quantile trend analysis for monthly data for different regions. Trends 

are shown as circles colored by percent per year, which is calculated relative to the regional 

mean column average VMR. The Mann-Kendall p-value is indicated by the size of the circle. 

Trends in annual mean values are shown for comparison in the bottom row. Month average 

column average VMR along with the coefficient of variation are displayed as colored squares on 

the LHS. The mean number of retrievals (n) within a month are displayed on the RHS, in 

amounts of thousands (K).
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