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Abstract 
Empirical orthogonal function modeling is explained and applied to identify compact discrete-time 

nonlinear unsteady aerodynamic models from data generated by an unsteady three-dimensional 

compressible Navier-Stokes flow solver for an airfoil undergoing various pitching motions. Model 

structures, model parameter estimates, and model parameter uncertainty estimates for 

nondimensional lift, drag, and pitching moment coefficient models were determined directly from 

the data. Prediction tests using data that were not used in the modeling process showed that the 

identified models exhibited excellent prediction capability, which is a strong indicator of an 

accurate model.  
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Nomenclature 

  angle of attack, deg or rad 

t  sampling interval, s 

  model parameter 

Σ  covariance matrix 

DC  nondimensional aerodynamic drag coefficient 

LC  nondimensional aerodynamic lift coefficient 

mC  nondimensional aerodynamic pitching moment coefficient 

i  discrete time index 

n  number of model terms 

N  number of data points 

u  model input 

v  model residual z y= −  

y  model output 

z  measured output 

 

SUPERSCRIPTS 

  time derivative 

  Fourier transform 

 T
 transpose 
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I.  Introduction 
 Complex nonlinear dynamic systems can be modeled using Nonlinear Auto-Regressive 

Moving Average with eXogenous input (NARMAX) models [1,2]. For a single-input, single-

output system, a NARMAX model is a generally nonlinear discrete-time model relating the current 

output to current and past values of the input, as well as past values of the model output. For 

nonlinear unsteady aerodynamics, this form can be simplified to modeling the current output using 

generally nonlinear terms involving only the current and past values of the input.  

 An important step in discrete-time nonlinear unsteady aerodynamic modeling is selecting an 

appropriate form for the model structure, both in terms of the number of past values to include, as 

well as which functions of the current and past values to select for the model. This is called model 

structure determination. The model structure including only current and past values of the input is 

conducive to efficient model structure determination, mainly because the associated model 

parameter estimation problem is linear [3-5]. Furthermore, this general model structure is the 

desired form for uses such as aerodynamic analysis, nonlinear simulation, and control system 

design, among others.  

 The idea of using empirical orthogonal polynomial functions to model generally nonlinear 

dependencies was developed independently in the UK [1,2] in the context of industrial modeling 

and in the US [3-6] in the context of aerodynamic modeling. The statistical metrics used for the 

model term selection were different in these separate developments, but the general idea of 

orthogonalizing candidate functions to clarify their importance to modeling the variation in the 

measured output, and thereby determining an acceptable subset of the candidate functions for the 

model, was similar.  

 Past work in nonlinear aerodynamic modeling using empirical multivariate orthogonal 

functions focused on quasi-steady nonlinear modeling with multivariate dependencies, where 

nondimensional aerodynamic coefficients were modeled as general nonlinear functions of the 

current values of explanatory variables, using empirical orthogonal functions generated from the 

data. Current measured aircraft states and controls were considered as candidate explanatory 

variables [3-9].  

 The present work extends this quasi-steady nonlinear modeling approach by applying 

empirical orthogonal function modeling to identify compact discrete-time nonlinear unsteady 

models using both current and past values of a single input or physical explanatory variable. The 

method is applied to discrete-time data generated by an unsteady three-dimensional compressible 

Navier-Stokes flow solver for an airfoil undergoing various pitching motions [10] to identify 

models for the longitudinal nondimensional aerodynamic coefficients, namely lift coefficient ,LC  

drag coefficient DC , and pitching moment coefficient mC , as a function of current and past values 

of angle of attack. The aerodynamics are generally nonlinear and unsteady, and the model forms 

are identified from the data using empirical orthogonal functions, without any prior information or 

analyst judgment. This application is intended to investigate the use of the empirical orthogonal 

function approach to identify discrete-time nonlinear unsteady aerodynamic models from time 

series data. The case of multivariate nonlinear unsteady aerodynamic dependencies for multiple 

outputs will be shown as an extension of the simpler case examined in this work. Such extensions 

do not require any further analytic development, but would require additional computational effort 

and good experiment design.  
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 The next section contains a brief description of the empirical orthogonal function modeling 

approach. In the Results section, the empirical orthogonal function modeling technique is applied 

to computational fluid dynamics data for an airfoil to identify compact discrete-time models for 

nondimensional longitudinal aerodynamic coefficients, including prediction tests using data that 

were not used for the model identification. The final section provides a summary and conclusions.  

 All of the data processing and modeling tasks for this work were done using a software 

toolbox written in MATLAB® called System IDentification Programs for AirCraft (SIDPAC) 

[5,6]. SIDPAC was developed at NASA Langley and has been applied successfully to a wide 

variety of flight test and wind tunnel experiments. SIDPAC has been used at more than 100 

organizations worldwide to solve aircraft system identification problems [11].  

 

II.  Method 
 The general form of a discrete-time NARMAX model for a single input u  and a single output 

y  with discrete-time index i  is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , 2 ,..., , , 1 ,...,y uy i F y i y i y i n u i u i u i n = − − − − −
 

 (1a) 

where  F  represents a general nonlinear function, and the maximum number of past values of 

the input and output needed are denoted by yn  and un  respectively. An example of a NARMAX 

model would be 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 2 3 4 51 1 2 3 1 1y i y i y i y i y i u i y i u i    = − + − − + − + − + −  (1b) 

where 1 2 3 4 5, , , ,      are unknown model parameters to be determined from the data.  

 For the nonlinear unsteady aerodynamic modeling problem, the general NARMAX model 

form can be simplified to use only current and past values of the input, each of which can also be 

considered as an explanatory variable, 

 ( ) ( ) ( ) ( ), 1 ,..., uy i F u i u i u i n= − −    (2a) 

 In this work, the explanatory variables are current and past values of the angle of attack, and 

the responses are nondimensional longitudinal aerodynamic force and moment coefficients. An 

example of a nonlinear unsteady aerodynamic model would be 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 2 3 43 3 1LC i i i i i i i         = + − + − + −  (2b) 

 Nonlinear unsteady aerodynamic effects depend in general on the current value of the angle 

of attack (the quasi-steady assumption), as well as the history of the angle of attack. The history 

of angle of attack at some time   prior to the current time t  can be approximated using current 

first-order and higher-order derivatives in a truncated Taylor series, 

 ( ) ( ) ( ) ( ) ( ) ( )
21

2
t t t t t       + − + − +  t   (3) 

This is the basis for using derivative terms to model unsteady effects. Other approaches include 

using analogies to expressions from simple aerodynamic theory to model the aerodynamic 
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dependence on explanatory variable history, and applying frequency-dependent stability and 

control derivatives, among others [5,12].  

 However, identifying a generally nonlinear model using past values of the explanatory 

variable(s) is a more direct interpretation of the physics. The problem lies in identifying how far 

into the past to extend the modeling (i.e., which past values should be used), and what forms the 

model terms should take to characterize the dependence on the current and past values. This is a 

discrete-time nonlinear model identification problem using current and past values of the 

explanatory variable(s). An analog of this problem from a different perspective is identifying an 

indicial function for nonlinear unsteady aerodynamics [5,12].  

 The form and number of the generally nonlinear model terms for a discrete-time nonlinear 

unsteady model, along with estimates of the model parameters and uncertainties can be determined 

using empirical orthogonal function modeling, as described next. All of the associated calculations 

are implemented in the SIDPAC program called mof.m.  

A. Orthogonal Function Modeling 

 The form of an empirical orthogonal function model is 

 1 1 2 2 ...y p p pn n  = + + +  (4) 

where y  is an N-dimensional vector of the model output,  1 2, ,...,y
T

Ny y y= , composed of a 

linear combination of n mutually orthogonal modeling functions , 1,2,...,p j j n= . Each p j  is an 

N-dimensional vector which in general depends on the explanatory variables. The parameters 

, 1,2,...,j j n =  are unknown constant model parameters to be determined from the data.  

 Noisy output measurements are related to the model output by 

 1 1 2 2 ... n n  = + = + + + +z y p p p   (5) 

where z  is an N-dimensional vector of output or response measurements (e.g., nondimensional 

force or moment coefficient values),  1 2, ,...,z
T

Nz z z= , and   denotes the modeling error vector.  

 Equation (5) is a mathematical model for the functional dependencies in the measured data. 

The important questions of how to compute the mutually-orthogonal functions p j  from the 

explanatory variable data, as well how to select which orthogonal functions to include in Eq. (5), 

which implicitly determines n , will be addressed later. At this point, the properties of an empirical 

orthogonal function model will be examined.  

 Define an N n  matrix P , 

  1 2, , ...,P p p pn=  (6) 

and let  1 2, ,...,θ
T

n  = . Equation (5) can then be written as a standard least squares regression 

problem, 

 z Pθ = +  (7) 

The error vector   is to be minimized in a least squares sense. The goal is to determine θ  that 

minimizes the least squares cost function 
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 ( ) ( )
1 1

2 2

T TJ − − =z Pθ z Pθ=    (8) 

The parameter vector estimate θ̂  that minimizes this cost function is [5] 

 
1

θ̂ P P P z
T T

−
 =
 

 (9) 

The estimated parameter covariance matrix is [5] 

 ( )( ) ( )
1

2
ˆ

ˆ ˆ
θ

Σ θ θ θ θ P P
T TE 

− 
= − − =

  
 (10) 

where E is the expectation operator, and the fit error variance 
  can be estimated from the 

residuals 

 ˆv z Pθ= −  (11) 

using 

 
( )

( ) ( )
( )

1 ˆ ˆˆ
TT

N n N n
  

− − =
 − − 

v v
z Pθ z Pθ

 =  (12) 

Parameter standard errors are computed as the square root of the diagonal elements of the 
θ̂

Σ  

matrix in Eq. (10), using ˆ  from Eq. (12). The identified model output ŷ  is computed as 

 ˆŷ Pθ=  (13) 

 In conventional least-squares modeling, the modeling functions are often polynomials in the 

explanatory variables, which in general are not mutually orthogonal and therefore are partially 

correlated. In the context of discrete-time nonlinear unsteady aerodynamic modeling for an airfoil, 

this corresponds to polynomials in the current and past values of the angle of attack. However, in 

this modeling approach, the model terms are not restricted to polynomial functions and in fact can 

be any arbitrary generally nonlinear functions of the explanatory variables.  

 If the modeling functions are instead empirical orthogonal functions generated from the 

explanatory variable data, it is easier to determine an appropriate model structure, because the 

explanatory capability of each modeling function is completely distinct from all of the others. This 

decouples the least squares modeling problem, as will be shown next.  

 For mutually orthogonal modeling functions, 

 0T
i j =p p  , , 1, 2, ...,i j i j n =  (14) 

and P P
T  is a diagonal matrix with the inner product of the orthogonal functions on the main 

diagonal. Using Eqs. (6) and (14) in Eq. (9), the jth element of the estimated parameter vector θ̂  

is computed as 

 ( ) ( )ˆ T T
j j j j = p z p p  (15) 
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Using Eqs. (6), (14), and (15) in Eq. (8), 

 ( ) ( )
2

1

1ˆ
2

z z p z p p
n

T T T
j j j

j

J

=

 
= − 

  
  (16) 

 Equation (16) shows that when the modeling functions are orthogonal, the reduction in the 

least-squares cost function resulting from including the term j j p  in the model depends only on 

the response variable data z and the added orthogonal modeling function p j . The least-squares 

modeling problem is therefore decoupled, which means that each orthogonal modeling function 

can be evaluated independently in terms of its ability to reduce the least-squares model fit to the 

data, regardless of which other orthogonal modeling functions are already selected for the model. 

When the modeling functions are instead polynomials in the explanatory variables (or any other 

non-orthogonal function set), the least-squares problem is coupled, and iterative analysis is 

required to find the modeling functions for an adequate model structure.  

 The orthogonal modeling functions to be included in the model are chosen to minimize 

predicted squared error, PSE, defined by [3-9,13,14] 

 
( ) ( ) 2

ˆ ˆ

PSE

T

max

n

N N


− −
 +

z Pθ z Pθ
 (17) 

or 

 
2

ˆ2
PSE max

J n

N N
= +  (18) 

 The constant 2
max  is the upper-bound estimate of the mean squared error between future 

data and the model, i.e., the upper-bound mean squared error for prediction cases. The upper bound 

is used in the model overfit penalty term to account for the fact that PSE is calculated when the 

model structure is not correct, i.e., during the model structure determination stage. Using the upper 

bound is conservative in the sense that model complexity will be reduced as a result of using an 

upper bound for this constant in the penalty term. Because of this, the value of PSE computed from 

Eq. (17) for a particular model structure tends to overestimate actual prediction errors on new data. 

Therefore, the PSE metric conservatively estimates the squared error for prediction cases.  

 A simple estimate of 2
max  that is independent of the model structure can be obtained by 

computing 2
max  as the residual variance estimate for a constant model equal to the mean of the 

measured response values, 

  
22

1

1

1

N

max i

i

z z
N


=

= −
−
  (19) 

where 

 

1

1
N

i

i

z z
N

=

=   (20) 
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 The PSE in Eq. (18) depends on the mean squared fit error, ˆ2J N , and a term proportional 

to the number of terms in the model, n . The latter term prevents overfitting the data with too many 

model terms, which is detrimental to model prediction accuracy [5,13,14]. The mean squared fit 

error ˆ2J N  must decrease with the addition of each orthogonal modeling function to the model 

(by Eq. (16)), whereas the overfit penalty term 2
max n N  must increase with each added model 

term (n increases). Introducing the orthogonal modeling functions into the model in order of most 

effective to least effective in reducing the mean squared fit error (quantified by ( ) ( )
2

p z p p
T T
j j j  

for the jth orthogonal modeling function) results in the PSE metric always having a single global 

minimum.  

 Based on Eqs. (16) and (18), an individual orthogonal function term j j p  will only be 

included in the model when 

 ( ) ( )
2

2T T
j j j maxp z p p  (21) 

Model terms that do not satisfy the inequality (21) will increase the PSE, which means that only 

model terms that reduce the mean squared fit error more than the estimated maximum noise 

variance for future data will be selected for the model. In other words, only orthogonal functions 

that can characterize variation in the response variable greater than the expected maximum noise 

level are selected for inclusion in the model.  

 Figure 1 depicts this graphically, using 

actual modeling results from Ref. [14]. The 

figure shows that after the first 6 modeling 

functions, the added model complexity 

associated with an additional orthogonal 

modeling function is not justified by the 

associated reduction in mean squared fit 

error. This point is marked by minimum 

PSE, which defines an adequate model 

structure with good predictive capability. 

Further statistical arguments for the form of 

PSE given in Eq. (17), including justification 

for its use in modeling problems, can be 

found in Ref. [13].  

 Modeling accuracy can be enhanced with a more sophisticated estimate of the maximum 

noise variance for future data, compared to the simple estimate obtained from Eqs. (19)-(20). An 

accurate noise variance estimate for the measured response data that is independent of any 

modeling can be found using the global Fourier smoothing technique implemented in SIDPAC 

program smoo.m [5,6,15]. This noise variance estimate is very accurate, so that 2
max  can be 

specified as 

 2 2ˆ25max =  (22) 

 

Figure 1.  Model structure determination using orthogonal 

functions and PSE 
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where 
2̂  is the noise variance estimate from global Fourier smoothing applied to the measured 

response data. Assuming the noise is Gaussian, Eq. (22) would correspond to conservatively 

placing the maximum noise variance at 25 times the estimated noise variance, corresponding to a 

5̂  maximum deviation. Simulation investigations have shown that this value produces accurate 

model structure determination results. Equation (22) was used with noise variance estimates from 

the global Fourier smoothing technique implemented in SIDPAC program smoo.m for all of the 

modeling in this work.  

 Using orthogonal functions to model the response variable makes it possible to evaluate the 

merit of including each modeling function independently, using the predicted squared error PSE. 

The goal is to select a model structure with minimum PSE, and the PSE always has a single global 

minimum for orthogonal modeling functions. This makes the model structure determination a 

well-defined and straightforward process that can be (and was) automated.  

B. Generating Empirical Orthogonal Modeling Functions 

 Empirical orthogonal functions can be generated from ordinary functions in the explanatory 

variables using a Gram-Schmidt orthogonalization procedure. This approach is described in 

Refs. [3-7], which are the basis for the material presented here. References [5,8,9] explain how 

empirical function orthogonalization can be done recursively in real time.  

 The process begins by choosing one of the ordinary functions as the first orthogonal function. 

Typically, a vector of ones (associated with the bias term in the model) is chosen as the first 

orthogonal function, 

 1 1p =  (23) 

In general, any function of the explanatory variables can be chosen as the first orthogonal function, 

without any change in the procedure. To generate the next orthogonal function, an ordinary 

function is made orthogonal to the preceding orthogonal function(s). Define the jth orthogonal 

function p j  as 

 

1

1

j

j j k j k

k


−

=

= −p ξ p  2, 3,..., tj n=  (24) 

where ξ j  is the jth ordinary function vector. For example, each ξ j  could be some ordinary 

polynomial function of the explanatory variables. The k j  for 1, 2, ..., 1k j= −  are scalars 

determined by multiplying both sides of Eq. (24) by p
T
k , then invoking the mutual orthogonality 

of the , 1,2, ...,pk k j= , and solving for k j  

 

T
k j

k j T
k k

 =
p ξ

p p
 1, 2,..., 1k j= −  (25) 

 The same process can be implemented in sequence for each ordinary function 

, 2, 3, ,ξ j tj n= . The total number of ordinary functions used as raw material for generating the 

empirical orthogonal functions, including the bias term, is tn . From Eqs. (23)-(25), it follows that 

each orthogonal function can be expressed exactly in terms of a linear expansion of the original 
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functions. The orthogonal functions are generated sequentially, and each orthogonal function can 

be considered an orthogonalized version of an original function.  

 The empirical orthogonal function generation method described here normally starts by 

generating all candidate ordinary functions in the explanatory variables. Note that the ordinary 

functions can be assembled from multiple explanatory variables, and this has been done in previous 

flight test applications [3-9]. An example of a pool of candidate ordinary functions might be all 

possible ordinary polynomial functions in the explanatory variables, up to a selected maximum 

order. If it turns out that a particular candidate modeling function is not needed in the model, the 

algorithm will not select the orthogonal function associated with that candidate modeling function. 

This occurs naturally and automatically in the course of the model structure determination process 

described earlier. Therefore, there is no harm in including explanatory variables and modeling 

functions that might not be important, except that additional computation time will be required to 

identify the model structure, because additional orthogonal functions will be generated and sorted. 

The final identified model will be the same. Consequently, the choices that the analyst needs to 

make initially to define the pool of candidate modeling functions are easy and not critical to the 

quality of the final modeling results. The form of the candidate ordinary functions is not limited to 

polynomials, as described in this example, and can be any arbitrary function of the explanatory 

variables [5-7].  

 If the p j  vectors and the ξ j  vectors are arranged as columns of matrices P and X , 

respectively, and k j  are elements in the kth row and jth column of an upper triangular matrix G 

with ones on the diagonal, 

 

12 13 1

23 2

3

1

0 1

0 0 1

0 0 0 1

G

t

t

t

n

n

n

  

 



 
 
 
 =
 
 
 
  

 (26) 

then 

 X P G=  (27) 

which leads to 

 1
P X G

−=  (28) 

The columns of 
1

G
−

 contain the coefficients for an exact linear expansion of each column of P 

(i.e., each empirical orthogonal function) in terms the original functions in the columns of X , 

which have physical meaning.  
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C. Orthogonal Function Generation Order 

 The method described in the preceding section for generating empirical orthogonal functions 

is sequential, and therefore has an order dependence. Consequently, processing candidate ordinary 

functions in a different order will produce a different set of empirical orthogonal functions, and in 

some cases, a different model. The reason is that the candidate ordinary functions often are 

mutually correlated to some extent, so that parts of them are proportional. In the extreme case 

where two candidate ordinary functions are linearly dependent, the orthogonalization process will 

include the first one and discard the second, because the second will have no distinct information 

to contribute to the model. A more common case occurs when a relatively important term is 

orthogonalized late in the process, which incurs unnecessary numerical inaccuracy when 

converting the orthogonal modeling terms selected for the model back to ordinary functions, which 

are physically meaningful.  

 To address this problem, the orthogonalization process described in the preceding section 

was modified to what might be called a forward dynamic programming orthogonalization. At each 

stage of the orthogonalization, each remaining candidate ordinary function is orthogonalized as 

the next in line for orthogonalization, rather than orthogonalizing the entire pool of candidate 

ordinary functions all at once at the start. This modified process evaluates each candidate ordinary 

function at each stage of the orthogonalization, as if it were the next in line for orthogonalization, 

and chooses the orthogonal function with the most capability to reduce the mean squared fit error 

(quantified by the quantity on the left side of inequality (21)) as the next orthogonal function in 

the sequence. The modified approach requires more computation, because the orthogonalization 

is repeated at each step for each candidate ordinary function that has not yet been orthogonalized. 

However, there is a significant advantage to doing the orthogonalization in this way, in that the 

most important functions are orthogonalized first, which keeps the number of model terms in the 

final model as small as possible.  

 To implement the approach, Eqs. (24)-(25) are applied individually to each candidate 

ordinary function not yet orthogonalized. Then the reduction in squared fit error that would result 

from adding the orthogonalized function associated with the jth candidate ordinary function to the 

model is computed as (see Eq. (16) or the left side of inequality (21)) 

 ( ) ( )
2

T T
j j j j = p z p p   (29) 

 At each step, the largest value of j  is used to select the next empirical orthogonal function, 

and that function is retained as the most recent in the orthogonalization. Then the process repeats 

until all of the candidate ordinary functions have been orthogonalized or the data information has 

been exhausted.  

 This approach uses the decoupled modeling capability of empirical orthogonal functions to 

determine the order in which the candidate ordinary functions are orthogonalized. The candidate 

ordinary functions are orthogonalized in the order of most to least potential for their corresponding 

orthogonal function to be selected for the model. This makes the model term selection process 

accurate and reduces the number of terms in the final model, which is good for both prediction 

accuracy and model parameter accuracy.  
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D. Conversion to Physically-Meaningful Models 

 After the model structure is determined using empirical orthogonal modeling functions for 

minimum PSE, the identified model output is 

 ˆˆ =y Pθ  (30) 

where the P  matrix now includes only the n  orthogonal functions selected in the model structure 

determination, tn n . Each retained orthogonal modeling function can be decomposed without 

error into an expansion of the original functions in the explanatory variables, using the columns of 
1

G
−

 in Eq. (28) corresponding to the retained orthogonal functions. Common terms are combined 

using double precision arithmetic to arrive finally at a model using only ordinary functions in the 

explanatory variables. Terms that contribute less than 0.1 percent of the final model root-mean-

square magnitude are dropped.  

 The final form of the model is a sum of ordinary functions in the explanatory variables, with 

associated model parameter estimates. There is no parameter uncertainty introduced from the 

conversion from orthogonal functions to ordinary functions, because Eq. (28) is exact. The 

uncertainty in the model parameters associated with the empirical orthogonal function model can 

be computed simply from Eq. (10), with only the empirical orthogonal functions selected for the 

model included in the calculation, and noting that ( )
1

T
−

P P  will be a diagonal matrix because the 

columns of P  are mutually orthogonal by design. The fit error variance estimate in Eq. (12) can 

be upgraded to account for colored residuals [5,6] after the modeling process is complete. Because 

the uncertainty in each model parameter in the orthogonal function model can be computed in a 

straightforward way, and each ordinary function is a linear combination of orthogonal functions 

by Eq. (28), the computation of the uncertainties in the model parameters for the final ordinary 

function model is a simple bookkeeping exercise.  

 

III.  Results 
 Computational fluid dynamics (CFD) data for an airfoil undergoing various pitching motions 

at Mach number 0.3 and Reynolds number 6 million were collected at a sampling rate of 

10,000  Hz, then downsampled to 200 Hz for analysis and modeling. The data were composed of 

time series for angle of attack in degrees and nondimensional aerodynamic coefficients for lift 

force ,LC  drag force DC , and pitching moment mC . Details of the unsteady, three-dimensional, 

compressible Navier-Stokes flow solver used to generate the data can be found in Ref. [10]. 

Because the modeling is based on information embodied in the data, modeling different 

aerodynamics at other flight conditions would require additional CFD runs to produce data with 

those characteristics.  

 The left side of Fig. 2 shows modeling data for angle of attack, which was a chirp signal with 

increasing frequency. The plots on the right show the data for nondimensional aerodynamic 

coefficients , ,L DC C  and mC , plotted against angle of attack in degrees. The plots indicate 

approximately linear dependency for LC , but nonlinear unsteady dependencies for DC  and mC .  
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Figure 2.  Modeling data 

 

 Figure 3 shows the same data transformed into the frequency domain using a high-accuracy 

finite Fourier transform [5,6]. The LC  data are clearly proportional to the angle of attack data, 

whereas the data for both DC  and mC  have distortions and higher-frequency content typical of 

nonlinear unsteady effects. The significant data information for all of the time series appears at 

frequencies below 10 Hz.  

 Nonlinear quasi-steady modeling was attempted first, using generally nonlinear functions of 

the current values of the angle of attack to model current values of , ,L DC C  and mC . Empirical 

orthogonal function modeling was applied with candidate polynomial functions up to 5th order. As 

expected, this approach failed because of the unsteady aerodynamics apparent in the response plots 

shown in Fig. 2.  

 Empirical orthogonal function modeling was then applied using candidate polynomial 

modeling functions up to 3rd order, with explanatory variables composed of the current value of 

angle of attack and past values of angle of attack in radians with time lags up to 0.3 s. For both LC  

and DC  modeling, time lags up to 0.3 s were found to be necessary, but the modeling did not need 

the finest resolution of time lag that was available using 200 Hz data (5 ms). This was found by 

repeated modeling using angle of attack with various time lags as the explanatory variables for the 

candidate model terms. In these cases, the angle of attack time lags for the explanatory variables 

were [0 : 0.025: 0.3] s = . For mC  modeling, a finer mesh of time lags was needed, but the 

maximum lag required was smaller. The angle of attack lags for the explanatory variables used in 

the mC  modeling were [0 : 0.005: 0.2] s = .  
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 In theory, all of the modeling could have been done by including every possible time lag of 

the angle of attack up to some maximum lag, for example 0.5 s, and some maximum polynomial 

order, such as 5th order. However, it was more efficient to investigate subsets of those possibilities 

to identify the important time lags and polynomial model orders. This can be done readily with the 

empirical orthogonal function modeling program in SIDPAC called mof.m, which selects the best 

functions for the model from a pool of candidate model terms using the approach described earlier.  

 The identified models were 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4

2 215 40 45 5 60L L L L LC i i i i i i i         = + − + − − + − −  (31) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3 4 5

6 7 8

2

2

20 25 30

             10 45 15 40 35

D D D D D D

D D D

C i i i i i i i i

i i i i i

           

       

= + + − + − + −

+ − − + − − + −
 (32) 

 ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4

21 13 8m m m m mC i i i i i i        = − + + − + −  (33) 

 Model parameter values and the associated standard errors for these discrete-time nonlinear 

unsteady aerodynamic models are given in Table 1. Figures 4, 5, and 6 show the model fits to the 

 

       

Figure 3.  Spectral content of computational fluid dynamics data for an airfoil 

mC

DC

LC



frequency, Hz
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response data for LC , DC , and mC , respectively. The plots on the left show the model fit as a 

function of time, and the plots on the right show the model fit as a function of angle of attack. The 

lower plots show the residuals, which are the difference between the measured response data and 

the model output shown in the upper plots. The plots show excellent model fits to the measured 

response data, and the residuals show little deterministic content. Percent errors for the LC , ,DC  

and mC  model fits, calculated as 100 times the root-mean-square fit error divided by the root-

mean-square of the measured response, were 0.62 percent, 1.5 percent, and 1.66 percent, 

respectively.  

 For the LC  model, the linear quasi-steady term associated with 
1L  modeled 89 percent of 

the variation in measured LC , indicating a mostly linear quasi-steady response, whereas for the 

DC  model, the squared quasi-steady term associated with 
2D  modeled only 24 percent of the 

variation in measured DC . For the mC  model, the linear quasi-steady term associated with 
2m  

modeled only 15 percent of the variation in measured mC . These results are consistent with the 

earlier conclusions regarding nonlinear and unsteady effects based on analysis of Figs. 2 and 3.  

 

 

Table 1.  Discrete-Time Nonlinear Model Parameters 

Parameter Estimate 

(Standard Error) 

Parameter Estimate 

(Standard Error) 

Parameter Estimate 

(Standard Error) 

1L  5.553 

(0.003) 
1D  0.0095 

(0.0000) 
1m  1.402 

(0.003) 

2L  0.751 

(0.002) 
2D  1.938 

(0.006) 
2m  −1.352 

(0.003) 

3L  14.943 

(0.187) 
3D  −8.919 

(0.048) 
3m  −0.0261 

(0.0003) 

4L  −13.651 

(0.342) 
4D  13.487 

(0.084) 
4m  0.902 

(0.021) 

  
5D  −6.346 

(0.042) 

  

  
6D  0.668 

(0.011) 

  

  
7D  −0.472 

(0.011) 

  

  
8D  −0.111 

(0.004) 
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Figure 4.  LC  model 

 

Figure 5.  DC  model 

 

Figure 6.  mC  model 
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 Figure 7 shows data used for prediction testing of the identified models. The left side of Fig. 7 

shows time series data for angle of attack in degrees, which was a oscillation with increasing 

amplitude. The plots on the right show the data for nondimensional aerodynamic coefficients 

, ,L DC C  and mC , plotted against angle of attack in degrees. The variation in angle of attack for 

this prediction data was different than the angle of attack variation for the data used to identify the 

models. The variation in angle of attack shown in Fig. 7 can produce spirals for the nonlinear 

unsteady aerodynamic response, as shown on the right side of the figure. None of the data shown 

in Fig. 7 was used in the modeling process.  

 The identified models from Eqs. (31)-(33) and Table 1 were applied to the data shown in 

Fig. 7. Figures 8, 9, and 10 show predictions of the response data for LC , DC , and mC , 

respectively. The predictions are similar in quality to the fits obtained during the model 

identification process, which is a strong indicator of accurate modeling. Percent errors for the ,LC  

,DC  and mC  model predictions, computed as 100 times the root-mean-square prediction error 

divided by the root-mean-square of the measured response, were 1.25 percent, 2.07 percent, and 

2.07 percent, respectively.  

 Although the modeling demonstrated in this work was done for a single response at a time 

and a single physical explanatory variable with various time lags, the same approach could be used 

with more than one physical explanatory variable and associated lagged versions of those 

quantities. This would of course involve more computations in the empirical orthogonal modeling 

process, and would require rich information content in the multivariate data, but there are otherwise 

no restrictions to the applicability of the approach to this more complex modeling problem.  

       

Figure 7.  Prediction data 
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Figure 8.  Lift coefficient prediction 

 

Figure 9.  Drag coefficient prediction 

 

Figure 10.  Pitching moment coefficient prediction 
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IV.  Conclusions 
 Empirical orthogonal function modeling was applied to identify compact and accurate 

discrete-time nonlinear unsteady models from computational fluid dynamics data for an airfoil 

undergoing various pitching motions. Nonlinear unsteady aerodynamic models for 

nondimensional longitudinal aerodynamic coefficients were identified using generally nonlinear 

polynomial modeling terms involving current and past values of the angle of attack. The identified 

models characterized the modeling data well and exhibited excellent prediction capability for data 

that were not used in the modeling process. Model structures, model parameter values, and 

uncertainty measures were determined from the measured data alone, using data record lengths 

less than 2 s.  

 The modeling approach demonstrated that past values of the explanatory variable(s) can be 

used in lieu of time-derivative information to model the unsteady aerodynamic effects. This has 

practical significance, because time-derivative information can be difficult to compute accurately, 

e.g., for low data sampling rates, real-time simulation, or real-time aerodynamic modeling.  

 The application examples shown in this work were for a single physical explanatory variable 

(angle of attack) and a single response variable (nondimensional longitudinal aerodynamic 

coefficients for lift, drag, and pitching moment, considered one at a time), but the approach can be 

extended to use multiple physical explanatory variables to model each measured response. This 

would require additional computations, along with adequate data information content in the 

multivariate data. The modeling process can be applied to individual measured responses one at a 

time, as was demonstrated in the application examples.  

 The empirical function modeling approach explained and demonstrated in this work is 

general and can be used to model complex dependencies in other applications. For aerodynamic 

modeling, nonlinear model terms using both present and past values of the explanatory variable 

data provide the capability to model general nonlinear unsteady aerodynamic effects. No analyst 

judgment is required for the model identification, apart from initially postulating the maximum 

possible complexity of the model. This can be done generously without any adverse effects on the 

final identified model, but incurs increased computations. A more efficient approach is to use 

repeated applications of empirical orthogonal function modeling for subsets of all possible time 

lags and model term complexity to identify an appropriate set of explanatory variables and 

candidate model terms.  
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