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A B S T R A C T   

The optically active component of dissolved organic material in aquatic ecosystems, or colored dissolved organic 
matter (CDOM), is represented by the coefficient of absorption due to the dissolved aquatic constituents at 440 
nm, aCDOM(440). Remote sensing of aCDOM(440) enables characterization of ecosystem processes and aids in 
retrieval of chlorophyll a, a proxy for phytoplankton biomass. Spectrally adjacent band-ratio domains, e.g., blue 
to green, have previously been applied for remote sensing of aCDOM(440) in coastal and oceanic waters with 
similar results compared to more complex semi-analytical algorithms. Estimation of aCDOM(440) from ratios of 
the most spectrally separated ocean color wavebands (end members), e.g., ultraviolet (UV) to near-infrared 
(NIR), termed end-member analysis (EMA), has previously been shown to increase the accuracy of global 
aCDOM(440) retrievals from in-water observations of diffuse attenuation and to enable a unified algorithmic 
perspective without requiring regional adjustment of internal bio-optical parameters. EMA of above-water ob
servations is evaluated herein, with a focus on coastal and inland waters in which increasing optical complexity 
and likelihood of bottom reflectance challenge the oceanic algorithms developed for deep and optically simple 
(case-1) waters. Analysis herein of three independent, in situ, bio-optical datasets indicates significant correla
tion between aCDOM(440) and end-member band ratios (next-generation 320 and 780 nm or legacy 412 and 670 
nm ratios) with a coefficient of determination, R2, of 0.87 (log-scale) or higher based on a dataset spanning the 
dynamic range of global, conservative water bodies. For applicable wavelengths, EMA algorithms are shown to 
agree with case-1 relationships and to produce consistent log-scale uncertainties across more than three orders of 
magnitude in aCDOM(440) values (0.001–2.305 m− 1). EMA using UV and NIR wavelengths (320 and 780 nm) is 
applied to low-altitude airborne observations and satisfies 25% uncertainty based on unbiased percent differ
ences (UPDs) within each of three dissimilar match-up sites ranging in aCDOM(440) from 0.02–0.57 m− 1. Results 
demonstrate that EMA is a useful and robust approach for the remote sensing of aCDOM(440) in coastal and inland 
waters, which are generally shallower, contain more optically complex environments, and span a greater range in 
aCDOM(440) than oceanic waters.   

1. Introduction 

Aquatic dissolved organic matter (DOM) modifies the vertical 
deposition of solar heat to surface waters, provides carbon storage on 
ephemeral to geological timescales, and fuels the microbial pump that 
recycles nutrients to maintain global phytoplankton stocks (Pegau, 
2002; Chang and Dickey, 2004; Jiao et al., 2010; Hansell and Carlson, 
2014). Oceanic sources of DOM include microbial degradation of 
phytoplankton (Rochelle-Newall and Fisher, 2002; Nelson et al., 2004) 
and phytoplankton secretions for photo-protection (Castillo et al., 

2010), e.g., mycosporine-like amino acids (MAAs) as described by 
Morrison and Nelson (2004) and Jessup et al. (2009). Weathering of 
terrestrial material injects DOM into aquatic ecosystems, and rivers 
transport DOM from inland to estuarine and coastal waters (Del Castillo 
et al., 2000). The optically active component of DOM, termed colored 
dissolved organic matter (CDOM), has been used as a DOM tracer 
(Spencer et al., 2012; Vantrepotte et al., 2015) and enables remote 
sensing (space or airborne) of ecosystem processes, e.g., for analysis of 
large run-off events (Kudela and Chavez, 2004) or for measurement of 
oceanic circulation rates (Nelson et al., 2010). 
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Decadal analysis of satellite imagery has revealed global fluctuations 
in ocean color observations related to basin-scale oscillations in oceanic 
CDOM content (Nelson and Siegel, 2013). Improving remote estimation 
of CDOM has been a key objective for aquatic remote sensing because 
the accuracy of remote estimation of chlorophyll a concentration 
(Chl a), which is a proxy for phytoplankton biomass, degrades in waters 
with elevated CDOM loads (Carder et al., 1989; Gregg and Casey, 2004; 
Siegel et al., 2005; Brown et al., 2008; Sauer et al., 2012; Siegel et al., 
2013). Traditional Chl a remote-sensing algorithms, i.e., blue-green 
band ratios (O’Reilly et al., 1998), target high Chl a-specific absorp
tion of blue light, a spectral characteristic that also describes CDOM 
absorption, in which spectral dependencies are modeled (Bricaud et al., 
1981) as follows: 

aCDOM(λ) = aCDOM(440) e− S(λ− 440) , (1)  

where λ is wavelength, aCDOM(440) is the absorption coefficient of 
CDOM at 440 nm, and S is the spectral slope of CDOM absorption. 
Natural variability in S corresponds to differences in lability (humic 
versus fulvic) or source (marine versus riverine) of DOM (Carder et al., 
1989). S values ranging from 0.015–0.03 nm− 1 are common among 
oceanic waters (Nelson and Siegel, 2013), although discrepancies exist 
in the literature due, in part, to differences in wavelength intervals and 
fitting (Twardowski et al., 2004). An expanded range in S of 
0.0095–0.0410 nm− 1 for oceanic, coastal, and inland waters was re
ported in Hooker et al. (2020). 

Remote estimation of aCDM(440), or the combined absorption of 
CDOM and detritus at 440 nm, has been most successful in the optically 
simple oligotrophic ocean using inversion or semi-analytical methods, e. 
g., the Garver-Siegel-Maritorena (GSM) algorithm (Maritorena et al., 
2002) or the Quasi-Analytical Algorithm (QAA) by Lee et al. (2002). 
Smaller-scale optimizations of existing semi- or quasi-analytical algo
rithms have improved remote sensing of regional coastal ecosystems 
(Aurin and Dierssen, 2012; Joshi and D’Sa, 2018), and improvements to 
the GSM and QAA by Matsuoka et al. (2013), Dong et al. (2013), Wang 
et al., 2017, and other researchers have enabled the separation of the 
dissolved and detrital components, i.e., aCDOM(440) from aCDM(440). As 
a computationally simpler alternative to semi- or quasi-analytical al
gorithms, band-ratio approaches using neighboring wavelengths (e.g., 
412 and 443 nm or 443 and 555 nm) have produced similar results as 
algorithms with greater spectral and computational requirements in 
oceanic environments (Morel and Gentili, 2009), and band-ratio ap
proaches have also been applied to coastal (e.g., Kahru and Mitchell, 
2001; Mannino et al., 2014) and lacustrine (e.g., Kutser et al., 2005; 
Brezonik et al., 2015) environments. 

The performance of band-ratio algorithms is anticipated to improve 
by using more spectrally separated wavebands because the dynamic 
range of ocean color measurements as a function of aCDOM(440) in
creases within the ultraviolet (UV) and near-infrared (NIR) domains, i. 
e., the spectral end members, as shown by Hooker et al. (2013). The 
algorithmic approach based on greater spectral separation within 
waveband ratios, hereafter referred to as end-member analysis (EMA), 
also has the advantage of minimizing the effects of photosynthetic pig
ments, which have strong spectral dependencies (including non
linearities with Chl a) across the visible (VIS) domain (Bricaud et al., 
1995). Using VIS data products, Mannino et al. (2014) also found that 
increasing the spectral separation of waveband ratios improved the 
performance of aCDOM(440) band-ratio satellite algorithms, and Zhu 
et al. (2014) used in situ above-water instruments to show that including 
the longest available red wavelength in aCDOM(440) algorithms 
improved estimation of aCDOM(440) within freshwater environments. 

For in situ measurements across a global range of water masses (e.g., 
oceanic, estuarine, lacustrine, and riverine) and using a broad spectral 
range (UV-NIR) of in-water data products, Hooker et al. (2020) found 
that EMA based on diffuse attenuation coefficients for spectral down
ward irradiance, Kd(λ), enabled estimation of aCDOM(440) within a 2% 

root mean square difference (RMSD), with consistent log10-scale accu
racy for aCDOM(440) values spanning over three decades in range. The 
efficacy of a similarly expansive (UV–NIR) EMA algorithmic approach 
derived from above-water (as opposed to in-water) data products, i.e., 
the normalized water-leaving radiance, [LW(λ)]N, is evaluated herein 
using bio-optical theory, three independent in situ datasets, and 
airborne matchups to in situ water samples. 

2. Materials and methods 

2.1. Derivation of synthetic case-1 bio-optical datasets 

The radiance distribution and the optically relevant constituents of 
optically simple waters may be estimated to first order based solely on 
Chl a content because the optically active constituents (including algal 
and non-algal particles, CDOM, etc.) covary; a condition defined in 
optical oceanography as case-1 (Morel and Prieur, 1977), with all other 
conditions described herein as case-2. Under this perspective, biogeo
chemical relationships between aCDOM(440) and Chl a, for example as 
provided by Prieur and Sathyendranath (1981), enable derivation of a 
case-1 model relating aCDOM(440) to Chl a and, thus, to the bio-optical 
constituents and the theoretical light field of a water mass. A syn
thetic, case-1 aCDOM(440) dataset was derived using the parameteriza
tions of Morel (2009) as follows: 

aCDOM(440) = 0.032 [Chl a]0.63
. (2) 

Although the case-1 scenario is not upheld in optically complex 
waters, algorithmic agreement with case-1 relationships may be 
considered as a baseline for evaluating whether an algorithm is inter
nally consistent with the predefined bio-optical relationships of case-1 
waters. The parameterizations used in this study provided a general 
framework for considering the basis of an EMA algorithm within the 
parameterized ranges in Chl a and were not intended as a thorough 
review or recommendation of specific bio-optical models. 

Seawater absorption coefficients were obtained from Smith and 
Baker (1981) for red and NIR wavelengths and from Morel et al. (2007) 
for blue and UV wavelengths. Backscattering contributions of seawater 
were obtained following Twardowski et al. (2007). The absorption by 
particles (including algal and non-algal) were parameterized with 
spectral dependencies according to Bricaud et al. (1998), with co
efficients selected from the HydroLight Mid-range UV option of the New 
Case-1 Model (Mobley and Sundman, 2008). The scattering contribu
tions of particles were parameterized according to Huot et al. (2008). In 
keeping with these parameterizations, the derivations for two Kd(λ) and 
one [LW(λ)]N synthetic case-1 datasets are briefly described below. 

2.2. Biogeochemical parameterizations of Kd(λ) 

Kd(λ) may be treated as an inherent optical property (IOP), wherein it 
is dependent on the constituents of a water mass and not on the ambient 
light field, if Kd(λ) is normalized by the downwelling distribution 
function, Do(λ), which relates the subsurface scalar downwelling irra
diance to the subsurface downwelling irradiance (Gordon, 1989). The 
correction allows for the partitioning of Kd(λ) among optically relevant 
constituents (e.g., water, particles, and CDOM). Least-squares fitting 
relates Kd(λ) to absorption, a(λ), and back-scattering, bb(λ), coefficients 
(Gordon, 1989), such that: 

Kd(λ)
Do(λ)

= 1.0395

[
∑m

i=1
a(λ, i) +

∑m

i=1
bb

(

λ, i

)]

, (3)  

where a(λ) and bb(λ) are partitioned into i of m components (e.g., water, 
particles, and CDOM). By approximating the spectral fraction of 
downward irradiance contained within the solar beam at relevant 
wavelengths following Pan and Zimmerman (2010), the uncertainty 
relevant to an EMA algorithm due to spectral dependencies in Do, i.e., 
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variability in the ratios Do(670)/Do(412) and Do(780)/Do(320), was less 
than other sources of uncertainty in the case-1 parameterizations, e.g., 
natural variability in S. The parameterizations of a(λ, i) and bb(λ, i) 
described in Sect. 2.1, therefore, enabled a case-1 approximation based 
on Eq. (3) relating Kd(λ) band ratios to aCDOM(440). This synthetic 
dataset is hereafter referred to as GSyn. 

Kd(λ) has also been parameterized as a power-law function of Chl a 
within the VIS domain for waters spanning Chl a of 0.035–5.45 mg m− 3 

(Morel and Maritorena, 2001) and of 0.02–30 mg m− 3 (Morel, 1988), as: 

Kd(λ) = Kw(λ) + χ(λ) [Chl a]e(λ) , (4)  

where Kw(λ) is the diffuse attenuation coefficient of pure water, and χ(λ) 
and e(λ) are fitting coefficients. Despite a sparsity of available data, 
Morel and Antoine (1994) were able to extend the χ(λ) and e(λ) co
efficients to NIR wavelengths by assuming no biological contributions 
above 750 nm, i.e., χ(λ) decreases linearly between 700 and 750 nm, and 
to UV wavelengths by assuming a chlorophyll-specific Kd(λ) that re
sembles the specific absorption of non-algal particles (in clear waters) or 
of a pure algal suspension (in eutrophic waters). A second synthetic 
dataset of Kd(λ) ratios was derived from Eq. (4) following Morel and 
Maritorena (2001) and Morel and Antoine (1994). This synthetic dataset 
is hereafter referred to as MSyn. 

2.3. Biogeochemical parameterizations of [LW(λ)]N 

The principal above-water data product used herein is [LW(λ)]N, 
which was derived by normalizing the water-leaving radiance, LW(λ), for 
influences from the atmosphere and Sun, including geometry (e.g., the 
Earth-Sun distance). The case-1 model was used to derive a synthetic 
[LW(λ)]N dataset based on the approach of Gordon et al. (1988), with the 
refractive index of water obtained from Bashkatov and Genina (2003) 
and with the other relevant terms and coefficients consistent with those 
used in Sect. 2.2. The case-1 [LW(λ)]N model was compared with a 
HydroLight model (Liu et al., 1999) using the relative percent difference 
(RPD), with HydroLight as the reference in the difference calculations. 
The mean RPD value as a function of the spectral domains and total 
Chl a spanning 0.02–20 mg m− 3 was 1.1%, and the overall absolute 
percent difference (APD) was 13.9%. The comparison of spectral shape 
was significantly better, with values of the Pearson correlation coeffi
cient, ρ, for eutrophic, mesotrophic, and oligotrophic waters of 0.991, 
0.966, and 0.987, respectively. The synthetic [LW(λ)]N dataset was 
derived using the Processing of Radiometric Observations of Seawater 
using Information Technologies (PROSIT) software (Hooker et al., 
2018b), and is hereafter referred to as PSyn. 

2.4. Description of above- and in-water data products 

Ratios of [LW(λ1)]N/[LW(λ2)]N, hereafter Λλ1
λ2

, were selected for 
comparison based on the following: a) recent advances (Hooker et al., 
2018a, 2018b, 2018c) in remote and in situ capabilities (Λ780

320); b) legacy 
remote and in situ capabilities (Λ670

412); c) proposed band-ratio ap
proaches (Λ555

443); and d) legacy capabilities for sensors with configura
tions not consistent with the common ocean color wavebands (Λ625

465). 
Accurate remote sensing of data products corresponding to all Λλ1

λ2 
ratios 

evaluated herein was possible using existing capabilities for low-altitude 
airborne remote sensing, including for the UV and NIR domains, 
recently documented in Hooker et al. (2018a), Kudela et al. (2019), and 
Guild et al. (2020). 

The primary objective of this study is to evaluate algorithms for 
airborne applications, although additional waveband pairs corre
sponding to configurations of various ocean color platforms are also 
shown in Table A.3 of Appendix A. The applicable Λλ1

λ2 
pairs listed above 

were obtained from the case-1 synthetic datasets as well as from three in 
situ datasets containing coincident observations of aCDOM(440) and 

[LW(λ)]N, with the latter spanning up to 320–780 nm, which are 
described below. 

An in situ, oceanic [LW(λ)]N dataset was created by reprocessing data 
obtained with legacy instruments, hereafter referred to as the OCEAN 
dataset, wherein the number of observations, N, was 113. The reproc
essing was performed for 16 wavebands spanning 320–780 nm with 10 
nm central bandwidths. The OCEAN dataset was obtained from both 
rocket-shaped profiler designs as well as the prototype Compact-Optical 
Profiling System (C-OPS), which used a novel kite-shaped backplane 
(Morrow et al., 2010). Consequently, vertical sampling resolution (VSR) 
was usually not less than 1 cm, and the first upwelling radiance obser
vations, Lu(z,λ), were typically obtained deeper than 0.3 m (the nominal 
first measurement depth of the C-OPS downward-pointing radiometer). 
The geographical areas sampled ranged from the Southern Ocean to 
tropical waters, plus northern mid-latitudes. The majority of the mea
surements were made in deep oceanic waters (63%) with the remainder 
in shallower coastal waters (37%); no inland waters were sampled, and 
the depths of the profiles were to the 1% light level or more. Additional 
details regarding the sampling and processing parameters of the OCEAN 
dataset are provided in Appendix B. 

A separate, in situ, global [LW(λ)]N dataset of oceanic, coastal, and 
inland waters was obtained using an advanced C-OPS design with an 
average VSR of 6.0 mm (0.9 mm within very shallow or attenuating 
waters) and with the first Lu(z,λ) observations routinely obtained at 
approximately 0.3 m (Hooker et al., 2020). The C-OPS spectral config
uration contained 19 wavebands with 10 nm bandwidths, and was ob
tained with the Compact-Propulsion Option for Profiling Systems (C- 
PrOPS) digital thrusters accessory (Hooker et al., 2018a), which enabled 
sampling of shallow, non-navigable waters, and which mitigated sam
pling difficulties related to adjacency, shading, and physical perturba
tions. For the in-water data presented herein, data collection was only 
initiated when the downward-pointing radiance aperture defined the 
principal solar plane with no intervening obstacles, i.e., was closest to 
the Sun. Deployment of the in-water profiler in the appropriate geom
etry with respect to the solar illumination was simplified by the use of 
the C-PrOPS thruster accessory, which allows the operator to steer the 
profiler into the principal plane with the downward-pointing radiance 
aperture always being closest to the Sun. The global dataset was 
designed with the intention of enabling algorithm development and 
validation in optically complex water bodies, and sampling was uni
formly spread across oceanic (31.2%), coastal (36.6%), and inland water 
(32.2%) ecosystems. The uniform distribution achieved is important for 
unbiased curve fitting of global waters. The diversity of water bodies 
represented within this dataset is also demonstrated by the range in 
aCDOM(440) of 0.001–2.305 m− 1, as well as the aforementioned expan
sive range in S of 0.0095–0.0410 nm− 1 (Hooker et al., 2020). 

Factual observations regarding essential water mass attributes were 
recorded prior to collection of the global dataset to establish a subjective 
classification scheme (Hooker et al., 2020). The rationale for prior 
subjective classification was not to exclude optically complex water 
bodies, but rather to identify waters with nonconservative perturbations 
(i.e., modifications not consistent with a linear mixing of parent water 
masses), which would not be expected to adhere to a global algorithmic 
approach. Examples of relevant categorical information include the 
persistence of a severe drought, which cuts off inflow to lakes and rivers 
and can increase resuspension due to shallowing of the water level, or 
flooding of lakes and rivers beyond nominal fill levels, which can 
introduce scoured terrigenous materials. The subjective classification 
scheme does not signify that these conditions are ignored in the evalu
ation of algorithm efficacy. Rather, the classifications provide extra in
formation to enable testing of whether particular environments (e.g., a 
drought-stricken lake) require an alternate or regionalized algorithmic 
approach. Measurements from the global dataset with no subjective 
classification assignments (conservative water bodies relevant to a 
global algorithmic perspective) are hereafter referred to as the GLOBC 
dataset (N = 612), while observations with nonconservative 
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classifications are referred to as the GLOBN dataset (N = 524) and are 
considered separately in Section 3.4. 

An additional in situ dataset containing 308 [LW(λ)]N EMA pairs for 
legacy (VIS) wavelengths (Λ670

412, Λ555
443, and Λ625

465) and using both above- 
and in-water instruments was obtained from the NASA bio-Optical 
Marine Algorithm Dataset (NOMAD), using version 2a (https://seaba 
ss.gsfc.nasa.gov/wiki/NOMAD), which is part of a long-standing re
pository of bio-optical measurements produced for ocean optics algo
rithm modeling and validation (Hooker et al., 1994; Werdell and Bailey, 
2002; Bailey, 2005). In-water data products from the NOMAD repository 
were previously applied to evaluate EMA based on Kd(λ) in Hooker et al. 
(2020), which found that the legacy products confirmed the in-water 
algorithm after quality control of the dataset, for example by 
removing coefficients clearer than pure water. The in situ dataset con
sisting of NOMAD [LW(λ)]N pairs is hereafter referred to as the NOMAD 
dataset. A synthetic Kd(λ) dataset was also produced from NOMAD 
[LW(λ)]N products using Jamet et al. (2012), which estimates in-water 
products from above-water observations using a neural network 
approach, and is hereafter referred to as the NNet dataset. The synthetic 
NNet dataset is discussed in Sect 4.1 to investigate whether remote- 
sensing methods to predict aCDOM(440) would benefit from working 
through Kd(λ) intermediates rather than directly estimating aCDOM(440) 
from above-water measurements. 

2.5. Quality control and partitioning of datasets 

Initial quality control for the GLOBC and GLOBN datasets was based 
on prior subjective classification (Sect. 2.4). For the OCEAN dataset, in 
which prior subjective classification information was not available, an 
objective approach for partitioning Kd(λ) spectra based on fuzzy c-means 
analysis (Hooker et al., 2020) was applied following Moore et al. (2001). 
Median spectra that satisfied criteria corresponding with conservative 
water bodies in Hooker et al. (2020) and did not contain Kd(λ) below 
that of natural water, were retained. 

Additional quality control was performed for the OCEAN, GLOBC, 
and GLOBN datasets due to the inherent difficulty of measuring Lu(z,λ) 
from an in-water profiler within extremely attenuating waters, i.e., 
Kd(λ) > 10 m− 1. Although the VSR was optimized in the GLOBC and 
GLOBN datasets by technological improvements designed to increase 
surface loitering and stabilize aperture planar geometries (Hooker et al., 
2018a), the shallowest possible Lu(z,λ) measurements were limited by 
the length of the downward-pointing radiometer. Application of a Kd(λ) 
< 10 m− 1 filter was applied to account for increased uncertainty in 
deriving [LW(λ)]N data products, e.g., compared to Kd(λ), in highly 
attenuating water masses, which removed roughly 1% of the OCEAN 
dataset, 10% of the GLOBC dataset, and 30% of the GLOBN dataset. 
More observations were removed from the GLOBN dataset because the 
nonconservative water bodies contained a greater range in turbidity. For 
GLOBC validation comparisons herein (Sect. 3.3), the Kd(λ) threshold 
was relaxed in order to consider the complete dataset range in 
aCDOM(440). The subset of water bodies that satisfied Kd(λ) < 10 m− 1 

was previously considered in Houskeeper (2020). 

2.6. Description of airborne datasets 

The Compact-Airborne Environmental Radiometers for Oceanog
raphy (C-AERO) instrument suite uses above-water (airborne) radiom
eters, which typically have 19 wavelengths (nominally with 10 nm 
bandwidths), spanning the UV–NIR with 16 wavelengths plus the short- 
wave infrared (SWIR) with three wavelengths (Hooker et al., 2018a). 
The instruments are used to derive normalized data products by simul
taneously measuring the total radiance LT(λ) from the water surface at a 
specified angle with respect to nadir (typically 40◦), the indirect (sky) 
radiance Li(λ) measured in the same plane and at a complementary 
zenith angle as LT(λ), and the global solar irradiance Es(λ). The radiance 
radiometers have a narrow field of view (2.5◦ full view angle) and are 

fitted with a shroud to reduce long-wavelength scattering at the aper
ture. A spectrally-dependent synthetic or predictive dark current 
method—based on an operational range of environmental and instru
ment parameters characterized in the laboratory—improved radio
metric agreement between C-AERO and in situ measurements (Guild 
et al., 2020). The LW(λ) term was derived from the LT(λ) observations by 
filtering out sun glint in the LT(λ) data (the C-AERO instrument suite 
enabled rapid sampling of 15 or 30 Hz depending on the acquisition date 
for superior glint discretization and rejection), removing the sky 
reflection based on a spectral reflectance model depending on the 
viewing geometry (i.e., pointing angle of the radiometers) and wind 
speed, and computing normalized forms following published protocols 
(Hooker et al., 2002, 2004). 

The C-AERO instrument suite was flown aboard a Twin Otter aircraft 
operated by the Center for Interdisciplinary Remotely Piloted Aircraft 
Studies (CIRPAS) at the lowest safe altitude (LSA), which was as low as 
100 ft (30.5 m) in order to exclude atmospheric effects, and measure
ments were screened for improper pointing relative to the solar azimuth. 
C-AERO observations were obtained in the following major water 
bodies: a) San Francisco Bay Delta (SFBD), a tidally mixed estuary; b) 
Lake Tahoe (LT), an oligotrophic alpine lake; and c) Monterey Bay (MB), 
a coastal marine sanctuary partially sheltered from upwelling favorable 
winds by the coastline geometry. All flights coincided with water sam
pling for aCDOM(440) in which samples were filtered through a Whatman 
GD/X 0.2 μm syringe filter and then measured with a Cary Varian 50 
spectrophotometer with a 10 cm path-length (Hooker et al., 2020). The 
locations of the C-AERO data products and water sampling sites are 
shown in Fig. 1. 

Signal-to-noise ratios for the C-AERO measurements (including for 
the UV and NIR domains) were shown to exceed those of other relevant 
remote platforms within SFBD and LT (Kudela et al., 2019), and coin
cident in-water C-OPS data products demonstrated radiometric [LW(λ)]N 
agreement of ρ = 0.989 and 0.999 at LT (N = 4) and SFBD (N = 3), 
respectively. Geospatial interpolations (two-dimensional with 50 m 
resolution) were produced from the C-AERO measurements (approxi
mately 3.4 m surface spot size, i.e., the sensor’s footprint at the water 
surface, at LSA for native resolution) using the natural neighbor method 
(Sibson, 1981) without extrapolation beyond the boundary of the 
airborne measurements and with the closest nearshore retrievals 
masked. 

2.7. Derivation of algorithm fits for [LW(λ)]N EMA 

The Λλ1
λ2 

pairs indicated log-linear association with coincident 
aCDOM(440) observations, and a power-law relationship was applied to 
model aCDOM(440) from [LW(λ)]N as follows: 

aCDOM(440) = A
[
Λλ1

λ2

]B
, (5)  

where the coefficients A and B were derived by minimizing an absolute 
deviation cost function, and their associated uncertainties were esti
mated by nonparametric bootstrapping. The distribution of aCDOM(440) 
observations within the OCEAN dataset emphasized a narrow range in 
aCDOM(440), and an iterative random thinning of the oversampled range 
was performed to obtain a median curve fit that was representative of 
the full dataset range in aCDOM(440). Additional aCDOM(440) products 
were derived based on the GSM (Maritorena et al., 2002) and an updated 
version (v5) of the QAA (Lee et al., 2009), with the contributions of the 
dissolved and detrital components partitioned following Matsuoka et al. 
(2013) and Dong et al. (2013), respectively. For our implementation of 
the GSM following Matsuoka et al. (2013), the spectral slopes for 
backscattering of particles and for absorption of the dissolved and 
detrital organic pools were derived from individual spectra and without 
applying regional (i.e., arctic) tunings for phytoplankton absorption. 
The GSM and QAA algorithms required wavelengths spanning 412 to 
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555 nm and 412 to 670 nm, respectively, including the central VIS 
wavebands provided by legacy ocean color sensors. Differences in op
tical properties between 440 nm and 443 nm were considered negligible 
for the purposes of this work. 

2.8. Summary of algorithm validation statistics 

Algorithm performance was assessed using RMSD statistics, as fol
lows: 

RMSD =

[∑N
i=1(Xi − Yi)

2

N

]1/2

, (6)  

where Xi and Yi correspond to the algorithm and in situ values of 
aCDOM(440), respectively. When reported as a percentage, RMSD was 
normalized by the range in the in situ values. For comparison of match- 
up statistics and evaluation of subjective subcategories, algorithm un
certainty was also assessed with the root mean square log-difference 
(RMSLD), which was used for evaluating the success of the Sea- 
Viewing Wide Field-of-View Sensor (SeaWiFS) mission, e.g., by Gregg 

and Casey (2004), and was derived as follows: 

RMSLD =

[∑N
i=1(log10(Xi) − log10(Yi) )

2

N

]1/2

. (7) 

Mean absolute deviation (MAD), mean bias (MBIAS), and percent 
wins (PWINS) were assessed following Seegers et al. (2018), with PWINS 
defined as the percentage of observations in which an algorithm was the 
best performing of those evaluated. MAD and MBIAS were derived as 
follows: 

MAD = 10̂
[∑N

i=1

⃒
⃒log10(Xi) − log10(Yi)

⃒
⃒

N

]

, (8)  

and 

MBIAS = 10̂
[∑N

i=1(log10(Xi) − log10(Yi) )

N

]

. (9) 

Airborne matchups, which had a lower number of observations, were 
assessed using unbiased percent difference (UPD), derived as follows: 

Fig. 1. Locations of C-AERO surface observations obtained as a sequence of flight lines aligned with respect to the solar geometry: (a) SFBD in California; (b) LT in 
California and Nevada; and (c) MB in California. Twin Otter flight lines are indicated in solid black, with the location of C-AERO data products (generated 
approximately every 15 s of flight time) shown as red circles, and water sampling match-up sites indicated as orange triangles. Gray triangles indicate water sampling 
sites that were not considered for match-up statistics due to spatial or temporal separation. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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UPD =
200
N
∑N

i=1

|Xi − Yi|

(Xi + Yi)
. (10) 

Uncertainty requirements to within 35% were described in Hooker 
and McClain (2000) for operational ocean color products (i.e., Chl a). 
Allotting half of the total uncertainty budget to in situ activities (which 
includes radiometry and algorithm development), and assuming quad
rature summing of uncertainties, the target uncertainty for a near- 
surface activity (C-AERO operated at LSA) would be to within 25% in 
order to satisfy calibration and validation requirements for legacy 
oceanic measurements (Hooker et al., 2007). For future NASA missions, 
e.g., the Phytoplankton, Aerosol, Cloud, ocean Ecosystem mission 
(PACE), calibration and validation activities within open ocean waters 
may aim to achieve uncertainties within 15% (Hooker et al., 2007). In 
smaller and more challenging inland water bodies, which were not 
targeted by legacy ocean color missions, next-generation activities for 
remote sensing may aim to satisfy the 25% criteria. 

The relative performance of the different EMA algorithms was also 
compared by propagating radiometric and model uncertainties for the 
algorithms based on mean properties observed at LT, MB, and SFBD, 
which represent a gradient of dark to bright water targets. Briefly, the 
uncertainty in the EMA product was estimated as the quadrature sum of 
the radiometric and model contributions, each derived through partial 
differentiation, and consistent with the presentation of McKinna et al. 
(2019). Spectrally dependent radiometric uncertainties were estimated 
in Hooker et al. (2004, 2018b), and an expanded range of spectrally 
dependent radiometric uncertainties were considered herein as sensi
tivity testing in order to compare various end-member combinations and 
water targets. Coefficient uncertainties for the EMA algorithms were 
estimated by nonparametric bootstrapping. 

3. Results 

3.1. Case-1 evaluation of a Kd(λ) end-member approach 

A straightforward algorithmic approach for estimating aCDOM(440) 
was evaluated in Hooker et al. (2020), in which ratios of spectrally 
separated Kd(λ) pairs were predictors of aCDOM(440). The case-1 re
lationships between Kd(λ) band ratios and aCDOM(440) were evaluated 
herein by comparing the GSyn and MSyn datasets with the Kd(λ) EMA 
algorithms derived using the Hooker et al. (2020) dataset. EMA algo
rithms based on linear (Hooker et al., 2020) and power-law fits were 

considered for Kd(320)/Kd(780) and Kd(412)/Kd(670), respectively, 
which produced normally distributed residuals between algorithm and 
data pairs, shown in Fig. 2. GSyn and MSyn datasets were not extended 
beyond the Chl a value of 25 mg m− 3, consistent with the range 
considered in Bricaud et al. (1995, 1998), and were compared to the 
EMA algorithms using UPD statistics. The GSyn aCDOM slope coefficients 
were varied between 0.01 and 0.03 nm− 1 for sensitivity testing, shown 
in the Fig. 2 panel inlays. 

For the UV-NIR Kd(320)/Kd(780) pair, the Hooker et al. (2020) EMA 
relationship was to within 25% UPD of MSyn for aCDOM(440) above 
0.006 m− 1 (Chl a > 0.07 mg m− 3) and also to within 25% of GSyn for 
aCDOM(440) between 0.009 and 0.098 m− 1 (0.13 < Chl a < 5.91 
mg m− 3). For the VIS Kd(412)/Kd(670) pair, the power-law EMA rela
tionship was to within 25% UPD of MSyn for aCDOM(440) between 0.062 
and 0.201 m− 1 (2.88 < Chl a < 18.52 mg m− 3), and to within 25% of 
GSyn for aCDOM(440) above 0.076 m− 1 (Chl a > 3.96 mg m− 3). 

The Kd(412)/Kd(670) EMA power-law algorithm produced lower 
aCDOM(440) values than the synthetic case-1 datasets, although both 
remained within the spread of the data due to the increased variability of 
the Kd(412)/Kd(670) relationship compared to Kd(320)/Kd(780). For 
GSyn, an expanded range in S produced greater variability in Kd(320)/ 
Kd(780) than was apparent in the in situ data products, while the effect 
of S on Kd(412)/Kd(670) was less than the variability in the in situ data 
products for low values of Kd(412)/Kd(670). 

3.2. EMA algorithms derived for [LW(λ)]N pairs 

EMA algorithms for UV-NIR (Λ780
320) and VIS (Λ670

412, Λ555
443, and Λ625

465) 
[LW(λ)]N pairs were derived from the OCEAN, GLOBC, and NOMAD 
datasets (Table 1). For all datasets, the dynamic range in Λλ1

λ2 
increased 

with expanded spectral separation between wavelength pairs, with the 
greatest ranges observed in Λ780

320 for the OCEAN and GLOBC datasets and 
in Λ670

412 for the NOMAD dataset, which lacked the relevant UV and NIR 
wavelengths. The Λλ1

λ2 
EMA algorithm fits are overlaid in solid black on 

the OCEAN and GLOBC datasets in Figs. 3 and 4, respectively, with the 
PSyn synthetic case-1 dataset overlaid in solid gray for relevant legacy 
wavelengths. 

Compared to the coefficients derived from the GLOBC dataset, the 
OCEAN dataset normalizing coefficients (A) were 8.9% greater (Λ780

320) 
and 0.3% less (Λ670

412), and the exponential coefficients (B) were 2.9% 
(Λ780

320) and 18.1% (Λ670
412) greater (Table 1). NOMAD A and B coefficients 

for the Λ670
412 algorithm were elevated by 17.7% and 33.7%, respectively, 

Fig. 2. Kd(λ1)/Kd(λ2) relationships to aCDOM(440), 
with the Kd(λ) dataset that was presented in Hooker 
et al. (2020) shown in red, and the coefficient of 
determination, R2, reported for log10-transformed 
values. The data products are overlaid, respectively, 
as follows: (a) GSyn with S = 0.018 nm− 1 in solid 
gray, MSyn in dashed black, and EMA from Hooker 
et al. (2020) in solid black; and (b) GSyn with S =
0.018 nm− 1 in solid gray, MSyn in dashed black, and 
a least absolute deviation power-law fit in solid black. 
Panel inlays show relationships in linear space for a 
reduced range, with sensitivity testing for GSyn 
included in dashed gray, wherein S = 0.01 and 0.03 
nm− 1. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web 
version of this article.)   
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compared with the algorithm fit to the GLOBC dataset. The coefficient 
differences between datasets for the VIS Λλ1

λ2 
pairs were in some instances 

greater than the standard errors of the coefficients, indicating that the 
uncertanities associated with the VIS algorithms were underestimated, 
likely due to differences in the technology, distribution, or range of the 
datasets. Differences in the range of a dataset would alter the coefficients 
derived for a power-law fit, for example, if a power-law model was not 
appropriate. This scenario is supported for the VIS (but not the UV-NIR) 
algorithms, as follows: First, the data products shown in Fig. 4 indicate 
log-space nonlinearities in the clustering of points between the VIS Λλ1

λ2 

pairs and aCDOM(440) when viewed across an expanded aCDOM(440) 
range. Second, if the GLOBC dataset were confined to the aCDOM(440) 
range in the OCEAN dataset (0.004 – 0.613 m− 1), B would increase for 
the Λ670

412 algorithm by about 11%, and the coefficient uncertainties for 
the GLOBC and OCEAN algorithms would overlap. Polynomial algo
rithms were not pursued herein given the size and variability of the in 
situ datasets, and because within the more spectrally expansive GLOBC 
dataset, power-law fitting was reasonable for the Λ780

320 relationship. The 
log-linearity of the Λ780

320 algorithmic relationship was also robust to 
whether or not the Kd(λ) > 10 m− 1 data products were included during 
model fitting. 

The GLOBC dataset contains the greatest range in aCDOM(440) with 
the most uniform distribution, and was obtained with extrapolation 
intervals nearer to the surface and with finer VSR to improve mea
surement at end-member wavelengths. Algorithms fit to the GLOBC 
dataset indicate that RMSD increased with decreasing spectral separa
tion of the wavebands, and the dynamic range in Λλ1

λ2 
decreased by about 

two orders of magnitude between Λ780
320 and Λ555

443, in agreement with the 
perspective of Hooker et al. (2013). Due to decreasing sensitivity for the 
Λ555

443 and Λ625
465 algorithms within the global waters dataset, the 

subsequent analyses herein focus on validation for the Λ780
320 and Λ670

412 

algorithms. However, high R2 for the Λ625
465 relationship indicates that 

sensors with configurations that are not consistent with ocean color 
instruments may have potential oceanographic applications, which have 
not been widely exploited. 

3.3. Validation of aCDOM(440) algorithms 

The performance of the EMA (Λ780
320 and Λ670

412), GSM, and QAA algo
rithms was evaluated using the GLOBC dataset, which included oceanic, 
coastal, and inland water bodies and spanned more than three decades 
of dynamic range (0.001–2.305 m− 1) in aCDOM(440). The EMA algo
rithms considered were those fit to the OCEAN dataset (Table 1) in order 
to maintain independence from the GLOBC validation dataset. Results 
for each algorithm are shown in Fig. 5 using the GLOBC observations in 
which all of the relevant wavebands (spanning 320 to 780 nm) were 
available. 

The EMA aCDOM(440) algorithms produced higher PWINS plus lower 
RMSD, RMSLD, and MAD values than the GSM and QAA algorithms 
across the full GLOBC range in aCDOM(440), shown in Fig. 5. Algorithm 
performance varied greatly for the GSM and QAA algorithms as a 
function of aCDOM(440) range, and additional results are presented 
below for data within low (≤0.1 m− 1) and high (>0.1 m− 1) ranges of 
aCDOM(440) in situ observations, which approximately partition the 
GLOBC dataset into oceanic versus coastal/inland water bodies. Within 
the high aCDOM(440) partition, the GSM algorithm did not converge to a 
solution for 10 (5.1%) of the [LW(λ)]N spectra, while in the low 
aCDOM(440) partition, the GSM algorithm produced 3 (0.7%) negative 
retrievals. These problematic retrievals were not considered for the GSM 
statistics presented, but were included when presenting the performance 
of the EMA and QAA algorithms. 

RMSD within the high (>0.1 m− 1) aCDOM(440) range was 0.277, 
0.379, 0.497, and 0.540 m− 1 for the Λ780

320, Λ670
412, GSM, and QAA algo

rithms, respectively, which corresponded to 12.6%, 17.2%, 22.6%, and 
24.5% of the range in the high aCDOM(440) partition. Within this upper 
range, RMSD for the QAA was degraded by over-prediction of 
aCDOM(440), with positive bias of 1.368, although the method indicated 
high R2 (0.78 using log10-transformed values), perhaps indicating its 
potential for regional optimization. RMSLD values also indicated better 
performance of the EMA algorithms, with values of 0.133, 0.184, 0.278, 
and 0.236 for the Λ780

320, Λ670
412, GSM, and QAA algorithms, respectively. 

Within the low aCDOM(440) partition (≤0.1 m− 1), the relative per
formance of the algorithms was mixed across the statistical metrics re
ported. For example, RMSD values were lowest for the Λ780

320 and QAA 
algorithms, with 0.025, 0.032, 0.035, and 0.027 m− 1 for the Λ780

320, Λ670
412, 

GSM, and QAA algorithms, respectively, which corresponded to 25.0%, 
32.3%, 36.2%, and 27.9% of the range in the low aCDOM(440) partition. 
In contrast, RMSLD values were slightly lower for the Λ670

412 and GSM 
algorithms, with 0.243, 0.226, 0.234, and 0.316 for the Λ780

320, Λ670
412, GSM, 

and QAA algorithms, respectively. Performance of the Λ780
320 EMA algo

rithm was degraded relative to the Λ670
412 algorithm within the lowest 

aCDOM(440) waters in part by the difficulty of retrieving [LW(780)]N 
from an in-water profiler within clear waters (because the first Lu ob
servations are nominally at a depth of 0.3 m). New technologies that 
would mitigate this difficulty are described in Sect. 4.2. 

The results above are presented for the Matsuoka et al. (2013) and 
Dong et al. (2013) implementations of the GSM and QAA algorithms, 
respectively, which separate the detrital and dissolved contributions, or 
partition aCDOM(440) from aCDM(440). However, when the GSM and 
QAA algorithms were implemented without accounting for the detrital 
signal, i.e., equating aCDOM(440) with aCDM(440)—an approximation for 
open ocean waters—the performance improved in the clearer-water 
partition, but worsened in the higher aCDOM(440) waters and led to an 
over-prediction bias (i.e., elevated MBIAS). 

The performance metrics for the EMA algorithms were most 
improved relative to the GSM and QAA algorithms (for all 

Table 1 
The power-law coefficients derived from in situ datasets. R2 is derived from 
log10-transformed values. See Appendix A for additional waveband 
combinations.  

λ Pair Fit N R2 um(A) 
[m− 1] 

um(B) Dataset 

[LW(320)]N/ 
[LW(780)]N 

y =
0.281x− 0.542a 

112 0.89 0.041 0.066 OCEAN 

(x = Λ780
320) y =

0.259x− 0.558b 
550 0.87 0.009 0.018 GLOBC 

[LW(412)]N/ 
[LW(670)]N 

y =
0.242x− 0.787 

112 0.89 0.023 0.058c OCEAN 

(x = Λ670
412) y =

0.242x− 0.961 
606 0.92 0.010 0.036c GLOBC 

y =
0.285x− 0.638 

497 0.89 0.010c 0.039c NOMAD 

[LW(443)]N/ 
[LW(555)]N 

y =
0.066x− 1.523 

112 0.89 0.006 0.192c OCEAN 

(x = Λ555
443) y =

0.063x− 1.764 
609 0.87 0.008 0.129c GLOBC 

y =
0.065x− 1.399 

864 0.66 0.003 0.096c NOMAD 

[LW(465)]N/ 
[LW(625)]N 

y =
0.349x− 0.996 

112 0.87 0.041c 0.069c OCEAN 

(x = Λ625
465) y =

0.430x− 1.320 
609 0.80 0.023c 0.080c GLOBC 

y =
0.128x− 0.564 

133 0.34 0.043c 0.100c NOMAD  

a Algorithm applied to GLOBC validation (Sect. 3.3). 
b Algorithm applied to GLOBN analysis (Sect. 3.4) and to airborne imagery 

(Sect 3.5). 
c The differences between coefficients are greater in many cases than the 

uncertainties obtained by bootstrapping (discussed in Sect. 3.2, 3.5, and 4.1). 
This is true in all instances for B within the VIS (but not UV-NIR) algorithms, 
perhaps indicating that a power-law model is not appropriate for the Λ670

412, Λ555
443, 

and Λ625
465 VIS algorithms. 
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implementaions evaluated herein) in the higher aCDOM(440) water 
bodies. Although the aCDOM(440) > 0.1 m− 1 partition represents a small 
fraction of global waters by area, it constitutes a large portion of the total 
dynamic range in aCDOM(440) relevant to a global algorithmic 
perspective. For example, over 40% or 95% (in log10- or linear-space, 
respectively) of the aCDOM(440) range for conservative waters exceeds 
an aCDOM(440) value of 0.1 m− 1 based on the complete in situ range in 
the GLOBC dataset. Decreased performance of the GSM and QAA 
implementations using validation on a global dataset was anticipated 
given that both were tuned for oceanic or coastal ecosystems, and 
roughly one third of the GLOBC dataset corresponded to inland water 
bodies, which are in general more optically variable than oceanic or 
coastal waters and less likely to match the internal bio-optical param
eterizations of oceanic algorithms. The GLOBC dataset contained 
roughly uniform density of aCDOM(440) across the full range in log10- 
space, which was not in itself an objective of the sampling, but which 
resulted from the effort to represent a wide diversity of water bodies (e. 
g., lakes, rivers, bays, and marshes), and which was made possible by the 
prior subjective classification information. 

3.4. Efficacy of aCDOM(440) retrievals in nonconservative water bodies 

Observations of nonconservative waters from the GLOBC dataset 
were assessed within classifications defined in Hooker et al. (2020). The 
classifications do not necessarily indicate that optical or ecological 
conditions invalidate a global algorithmic approach, but they apply 

available prior information in order to quantify algorithm performance 
in conditions where algorithms might otherwise be expected to degrade. 
The classifications are briefly summarized as follows: a) resuspension 
(shallow regions with strong mixing, e.g., from tides or winds, which 
resuspends bottom material); b) refilled or flooded (lakes or rivers with 
an above average mean high-water line or which have recently been 
replenished); c) drought-stricken (a water body with significantly below 
normal elevation or water line); d) harbor (a sheltered area for docking 
vessels); e) harmful algal bloom or HAB (elevated concentrations of 
phytoplankton, which may produce toxic compounds); f) wetland or 
marsh (shallow, tidally influenced estuarine areas, often with brackish 
properties); g) polluted (waters containing anthropogenic sources that 
alter the natural water properties); h) alkaline lake (lacustrine ecosys
tems containing significantly elevated loads of salt compounds and 
generally high pH); i) river mouth (a region where a riverine ecosystems 
mixes with a larger water body, including lakes and bays); and j) inva
sive species (an ecosystem perturbed by anthropogenic introduction of 
noxious macroalgae). The classifications are consistent with the pre
sentation of Hooker et al. (2020), in which a more detailed discussion is 
provided on the optically relevant water mass modifications anticipated 
for each classification. The EMA performance results for the noncon
servative (GLOBN) dataset subcategories were assessed using EMA al
gorithms fit to the conservative (GLOBC) dataset, and are shown in 
Table 2. The statistics shown indicate whether particular environments 
are expected to be consistent with the EMA algorithms derived herein, or 
whether a regionalized approach would potentially be supported (e.g., if 

Fig. 3. OCEAN dataset (red dots), EMA algorithm (solid black line), and PSyn case-1 dataset (solid gray line) for: (a) Λ780
320; (b) Λ670

412; (c) Λ555
443; and (d) Λ625

465. The R2 

values are reported for log10-transformed values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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MAD approximates MBIAS, R2 is significant, and N is large). 
Despite overall decreased algorithm efficacy for the nonconservative 

waters, some subjective categories indicated RMSLD within that derived 
in the GLOBC validation comparison (Sect. 3.3), including (for the Λ780

320 

algorithm) harbors, river mouths, and refilled or flooded lakes and 
rivers. Other water bodies, such as HABs and drought-stricken lakes, 
indicated the potential for the development of a regionalized algo
rithmic approach based on high correlation (R2) between aCDOM(440) 
and Λ780

320, RMSLD near the GLOBC validation results, similar magnitude 
in MAD and MBIAS, and the relatively large number of observations 
considered (N = 60, 11) for an inland waters, ecosystem-specific dataset. 

For drought-stricken lakes, harbors, and river mouths, water mass 
classification is possible from a remote perspective. For example, maps 
of harbors and river mouths are accessible, and lake levels can be 
assessed through satellite imagery or by applying external knowledge of 
drought conditions. For other environments, classification is more 
difficult. For example, tidal estuaries are strongly affected by tidal cy
cles, which may alternate source water masses or lead to changes in 
depth and resuspension processes. An operator in a boat can better avoid 
mud flats or vegetation, although the validation dataset primarily 
sampled high tide conditions in these environments because access by 
boat was sometimes not possible during low tide. 

3.5. Analysis of airborne imagery 

The C-AERO EMA data products were evaluated with respect to 

contemporaneous water sampling, with the Λ780
320 EMA algorithm indi

cating UPD less than 25% for all sites and consistently below that ob
tained by applying the Λ670

412 algorithm, although water sample matchups 
were sparse (N = 4, 1, and 3 unique replicates at LT, MB, and SFBD, 
respectively). The sites spanned over an order of magnitude in 
aCDOM(440), with mean in situ values of 0.023 m− 1, 0.103 m− 1, and 
0.560 m− 1 at LT, MB, and SFBD, respectively. Matchups between 
airborne observations and in situ water samples indicated UPD of 
23.3%, 24.5%, and 11.9% for the Λ780

320 algorithm and 25.8%, 34.2%, and 
25.7% for the Λ670

412 algorithm, at LT, MB, and SFBD, respectively. Nearest 
neighbor spatial interpolations based on the Λ780

320 EMA algorithm using 
the C-AERO flight data are shown in Fig. 6. 

Coincident water samples for the SFBD C-AERO flights were obtained 
in Grizzly Bay and not in San Pablo Bay, although the observed structure 
in aCDOM(440) within San Pablo Bay was consistent with sampling in a 
prior year, as well as information on tidal cycles and bathymetry. In 
particular, a transition between roughly 0.3 m− 1 (green) and 0.5 m− 1 

(yellow) aCDOM(440) was indicated in the San Pablo C-AERO observa
tions near the 2 m bathymetric contour (the bottom depth was greater 
than the 0.1% light level for the Λ780

320 wavebands within the regions 
shown). A similar aCDOM(440) gradient was observed in situ during prior 
sampling, with aCDOM(440) of 0.554 m− 1 observed in the northern edge 
of San Pablo Bay, compared to 0.337 m− 1 observed roughly 13 km due 
south. Sampling at four sites farther south into San Francisco Bay 
recorded a mean value of 0.207 m− 1. Within the Carquinez Strait that 
joins San Pablo Bay and Grizzly Bay, a mean aCDOM(440) value of 0.553 

Fig. 4. GLOBC dataset (red dots), EMA algorithm (solid black line), and PSyn case-1 dataset (solid gray line) for: (a) Λ780
320; (b) Λ670

412; (c) Λ555
443; and (d) Λ625

465. The R2 

values are reported for log10-transformed values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

H.F. Houskeeper et al.                                                                                                                                                                                                                         



m− 1 and decreased salinity (9 ppt) relative to the San Francisco Bay 
water (28–30 ppt) was recorded in situ on the same day as the C-AERO 
flights, but high spatial heterogeneity within the strait combined with an 

increased spatial offset from the airborne observations precluded match- 
up analysis for this point. The C-AERO observations of SFBD were ob
tained on a flood tide with an eastward-flowing current at the in-water 

Fig. 5. Algorithm versus in situ aCDOM(440) from the GLOBC dataset for: (a) Λ780
320; (b) Λ670

412; (c) GSM; and (d) QAA. Linear axes are included as inlays, with a one-to- 
one line shown in solid black for all panels. R2 is derived from log10-transformed values. 

Table 2 
Performance of [LW(λ)]N end-member algorithms within various water mass classifications.  

Algorithm Watermass classification N R2 RMSD 
[m− 1] 

RMSLD MAD MBIAS 

Λ780
320 Resuspension 66 0.09 0.031 0.308 1.771 0.767 

Refilled or Flooded 15 0.69 0.219 0.183 1.386 0.790 
Drought-Stricken 60 0.71 0.194 0.269 1.698 1.573 
Harbor 48 0.66 0.120 0.162 1.358 1.050 
HAB 11 0.70 0.150 0.250 1.515 0.721 
Wetland or Marsh 28 0.16 0.146 0.399 2.089 1.859 
Polluted 38 0.14 0.142 0.407 1.895 1.596 
Alkaline Lake 34 0.38 0.165 0.374 2.176 2.095 
River Mouth 16 0.94 0.113 0.103 1.202 0.949 
Invasive Species 10 0.71 0.165 0.504 3.023 3.023 

Λ670
412 Resuspension 66 0.11 0.053 0.364 2.060 0.698 

Refilled or Flooded 15 0.22 0.281 0.274 1.645 0.745 
Drought-Stricken 60 0.72 0.169 0.268 1.654 1.515 
Harbor 48 0.66 0.095 0.177 1.383 1.222 
HAB 11 0.94 0.095 0.137 1.303 0.814 
Wetland or Marsh 28 0.01 0.213 0.487 2.510 2.182 
Polluted 38 0.53 0.065 0.263 1.597 1.257 
Alkaline Lake 34 0.27 0.174 0.384 2.186 2.062 
River Mouth 16 0.94 0.100 0.130 1.277 0.845 
Invasive Species 10 0.98 0.105 0.289 1.936 1.936 

The R2 values were derived from log10-transformed data, with bold indicating satisfaction of P ≤ 0.01. 
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sampling locations. The Grizzly Bay SFBD match-up site was in a tidally- 
mixed system, potentially denoting the nonconservative Resuspension 
water mass classification. 

Uncertainty propagation for the EMA algorithms based on the 
GLOBC coefficient uncertainties presented in Table 1 and using a range 
of radiometric uncertainties exceeding those outlined in Hooker et al. 
(2018b) and Hooker et al. (2004) suggested that the Λ780

320 and Λ670
412 al

gorithms would satisfy 15% uncertainty for targets resembling LT, MB, 
and SFBD. Target brightness was a primary factor determining the 
relative performance of Λ780

320 compared to Λ670
412, due in part to the low 

(although nonzero) signal of [LW(780)]N in clear (i.e., resembling LT) 
waters. For example, the estimated uncertainties for the Λ780

320 algorithm 
were greater than those derived for the Λ670

412 algorithm in dark water 
bodies resembling LT, but were lower in bright water bodies resembling 
SFBD. For an intermediate target resembling MB, uncertainties were less 
for the Λ780

320 algorithm as long as radiometric uncertainties assigned to 
the end-member wavelengths were not severely degraded relative to 
those assigned to the visible wavelengths. 

The uncertainty propagation resulted in lower uncertainties for the 
more spectrally expansive Λ780

320 algorithm compared with the Λ670
412 al

gorithm for non-oligotrophic targets in part because of the flattened 
exponential slope (i.e., a less negative B coefficient) for the Λ780

320 algo
rithm, which resulted from the increased dynamic range of the more 
spectrally separated end-member ratio. If the uncertainty propagation 
were performed for the algorithms fit to the OCEAN dataset, in which 
the Λ670

412 algorithm B coefficients were less negative than for those fit to 

the GLOBC dataset (possibly because of the narrower aCDOM(440) range 
in the OCEAN dataset), the uncertainty for the Λ670

412 algorithm would 
decrease. The model uncertainties obtained for the Λ670

412 algorithm, 
however, were likely underestimated because the differences in the Λ670

412 

algorithm B coefficients between the datasets were greater than the B 
coefficient uncertainties determined by bootstrapping. As described in 
Sect. 3.2, this discrepancy is perhaps due to log-space nonlinearities in 
the VIS algorithmic relationships (Fig. 4) combined with different ranges 
in aCDOM(440) between the in situ datasets. 

4. Discussion 

4.1. Consistency of EMA with the case-1 parameterizations 

A band-ratio algorithmic approach in which spectrally separated 
Kd(λ) or [LW(λ)]N end-member pairs are related to aCDOM(440) was 
evaluated using synthetic bio-optical datasets derived from case-1 pa
rameterizations. EMA algorithms based on ratios of UV-NIR and VIS data 
products indicated that case-1 parameterizations produced similar 
algorithmic relationships as those derived using a global in situ dataset 
of in-water measurements within a Chl a range relevant to case-1 pa
rameterizations. Kd(λ) EMA algorithm residuals were within the vari
ability due to a global range in S for UV-NIR—but not VIS—band ratios, 
and the UV-NIR Kd(λ) relationship was fit using a linear model while the 
VIS Kd(λ) relationship was nonlinear. 

Considering band ratios of Eq. (3) helps to illustrate the importance 
of spectral range by separating the effects of various optically relevant 
constituents within each of the UV, VIS, and NIR domains. For example, 
if a case-1 condition is considered in which Kd(λ) is approximately 
proportional to the total absorption coefficient (e.g., sun at zenith with a 
≫ bb), the greatest spectral dependency in a UV-NIR Kd(λ) band ratio is 
due to CDOM, i.e., aCDOM(780) ≪ aCDOM(320), and an approximately 
linear relationship emerges between the Eq. (3) ratio of Kd(λ) end- 
members and aCDOM(440). If the same logic is applied to a VIS Kd(λ) 
band ratio, the absorption contribution by phytoplankton increases 
(relative to that of CDOM), contributing nonlinear spectral de
pendencies (e.g., Bricaud et al., 1995). This logic is supported by the 
linear and nonlinear (power-law) algorithms shown in Fig. 2. A similar 
result is indicated for the [LW(λ)]N algorithms by the similarity of the B 
coefficients between the in situ datasets for the Λ780

320 algorithms, 
compared with the B coefficients that differ by more than the fitting 
uncertainties for the Λ670

412 algorithms. Although not evaluated herein, 
the differences in B coefficients for the Λ670

412 algorithms (Table 1) may be 
due in part to log-space nonlinearities in the relationship between the 
VIS [LW(λ)]N ratios and aCDOM(440). 

Compared to the Kd(λ) algorithms, the [LW(λ)]N algorithms are more 
sensitive to differences in brightness, as well as to technological limi
tations of in-water measurements used herein (i.e., no Lu observations 
within the upper 0.3 m of the water column). Variability in target 
brightness (e.g., due to particle loading) increases uncertainty of the 
[LW(λ)]N EMA relative to the Kd(λ) EMA, but an [LW(λ)]N algorithmic 
approach is useful because [LW(λ)]N is derived directly from remote 
measurements, whereas Kd(λ) derivations are spectrally incomplete (Lee 
et al., 2013), despite ongoing improvements, e.g., Cao et al. (2014). An 
alternate approach of estimating Kd(λ) from above-water measurements 
and then deriving aCDOM(440) was also considered, wherein a neural 
network dataset of synthetic Kd(λ) products (NNet) was derived from 
NOMAD above-water measurements, based on Jamet et al. (2012). 
Comparison of the EMA algorithm using the NNet Kd(λ) data products 
with the EMA algorithm using the original [LW(λ)]N data products is 
shown in Fig. 7. The neural network solution indicated close agreement 
between NNet and MSyn, but RMSD increased and R2 decreased for the 
EMA algorithm that used the NNet Kd(λ) data products compared with 
the EMA algorithm that used the original, above-water data products. 

Fig. 6. The Λ780
320 EMA algorithm applied to C-AERO measurements obtained at 

LSA and under clear-sky conditions at the following sites: (a) SFBD with larger 
San Pablo Bay on the left and smaller Grizzly Bay on the right (the 2 m 
bathymetric contour for San Pablo Bay is shown as a dashed gray line); (b) LT; 
and (c) MB. 
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4.2. Performance of EMA algorithms 

Three sets of [LW(λ)]N EMA algorithms were derived using the 
OCEAN, GLOBC, and NOMAD datasets, which contained coincident 
aCDOM(440) and [LW(λ)]N in situ observations. For all datasets, the dy
namic range in Λλ1

λ2 
increased with increasing spectral separation be

tween wavelength pairs, which increased the sensitivity and robustness 
of the algorithmic approach. Scalar coefficients (A) were in general 
similar between the OCEAN and GLOBC datasets for the Λ780

320, Λ670
412, and 

Λ555
443 algorithm pairs. Exponential coefficients (B) obtained for VIS 

wavelength pairs were variable between datasets, with the GLOBC 
dataset consistently deriving more negative (steeper in log-log space) B 
values than the OCEAN dataset, which in turn produced more negative B 
values than the NOMAD dataset. The differences in coefficients were in 
some instances greater than the coefficient uncertainties derived by 
bootstrapping, indicating that model uncertainties were under
estimated. The in-water datasets may have contained measurement or 
processing differences, or differences in aCDOM(440) range and distri
bution may have caused differences in curve fitting. It is possible that the 
[LW(λ)]N EMA relationships for the VIS wavelength pairs would be more 
accurately modeled with a polynomial function, which was not evalu
ated herein, but which is similar to the Kd(λ) EMA perspective, in which 
the VIS algorithm required a higher-order relationship (power-law) than 
the UV-NIR algorithm (linear), shown in Fig. 2. Nonuniform sampling 
within the OCEAN dataset across the full range in aCDOM(440) also 
modified the curve fitting compared to the GLOBC dataset, but was 
corrected by thinning the OCEAN dataset to produce a consistent log- 
scale distribution of observations. 

The [LW(λ)]N EMA algorithms fit to the OCEAN dataset were 
compared with existing aCDOM(440) algorithms using the GLOBC data
set, which contained an approximately equal number of observations 
from inland, coastal, and oceanic waters. Across the full GLOBC range in 
aCDOM(440) values (0.001–2.305 m− 1), the Λ780

320 EMA algorithm pro
duced the highest PWINS and the lowest RMSD, with RMSD corre
sponding to 7.0%, 9.5%, 12.3%, and 13.5% of the range in aCDOM(440) 
for the Λ780

320, Λ670
412, GSM and QAA algorithms, respectively. The RMSD 

values obtained by validation on the GLOBC dataset but without the 
more attenuating observations, i.e., excluding observations wherein 
Kd(λ) > 10 m− 1, were shown in Houskeeper, 2020, which indicated that 
the result for the VIS Λ670

412 algorithm was consistent with that reported by 
Mannino et al. (2014) within coastal waters of the eastern United States. 

Within the clear-water fraction, aCDOM(440) ≤ 0.1 m− 1, the perfor
mance metrics for all algorithms were similar, and their rankings varied 
by the statistical tests considered. For example, RMSD was lower but 
RMSLD was higher for the Λ780

320 algorithm in the clear-water fraction. 
Uncertainty may have been elevated for the Λ780

320 algorithm within the 
clearest waters by the difficulty of deriving [LW(780)]N, e.g., compared 
to [LW(670)]N or Kd(780), from an in-water profiler in clear waters due 
to the strong attenuation scale for long wavelengths plus Lu(z,λ) mea
surement limitations. For each of the in situ datasets used, the shallowest 
Lu(z,λ) observations were obtained at least 0.3 m from the surface, 
which limited the signal available in highly attenuating water bodies. 
The recent development of a Compact-Hybridspectral Radiometer (C- 
HyR), which combines microradiometer instruments with a spectro
graph aperture separated from the top of a C-OPS backplane by a rigid, 
radiance collector assembly (Hooker et al., 2018a), enables 

Fig. 7. Algorithm intercomparisons as follows: (a) 
NOMAD dataset shown in red for the Λ670

412 products, 
with the PSyn synthetic case-1 dataset overlaid in 
solid gray, the Λ670

412 EMA algorithm fit to the OCEAN 
dataset overlaid in dashed black, and a least absolute 
deviation power-law fit of the NOMAD data in solid 
black; (b) NNet dataset shown in red for synthetic 
Kd(412)/Kd(670) products, with the MSyn synthetic 
case-1 dataset overlaid in solid gray and a least ab
solute deviation power-law fit of the NNet data in 
solid black; (c) Validation results from the NOMAD 
Λ670

412 EMA with a one-to-one line indicated in solid 
black; and (d) Validation results from the NNet 
Kd(412)/Kd(670) EMA with a one-to-one line indi
cated in solid black. R2 is derived for all panels using 
log10-transformed values. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.)   
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measurement of Lu(z,λ) starting just below the sea surface. In addition, 
new technology to increase the sensitivity of radiometers measuring 
AOPs has been developed wherein so-called hybridnamic micro
radiometers provide 14 decades of dynamic range (Hooker et al., 
2018a). Both of these new technologies expand the vertical sampling 
interval within attenuating water bodies, thereby improving measure
ment of Lu(z,λ). 

For higher aCDOM(440) waters (>0.1 m− 1), RMSD values for the Λ780
320 

and Λ670
412 EMA algorithms were more improved relative to GSM and 

QAA, with RMSD of 12.6% and 17.2% derived for the Λ780
320 and Λ670

412 

algorithms, respectively, and 22.6% and 24.5% for the GSM and QAA 

algorithms, respectively. The statistics obtained for GSM in the high 
aCDOM(440) portion also benefited from the removal of 10 (5.1%) 
divergent solutions. Overall, the EMA approach was most useful relative 
to the GSM and QAA algorithms in the coastal and inland waters portion 
of the dataset or when the dynamic range of water bodies was expanded. 

Validation results understate the usefulness of GSM and QAA, which 
derive other relevant bio-optical parameters, such as phytoplankton 
absorption and particle backscattering, for which EMA has not yet been 
applied. For deriving aCDOM(440) across a global range of water bodies, 
the GSM and QAA methods generated large positive residuals (in addi
tion to the GSM producing failed or nonphysical retrievals), indicating 

Fig. 8. The relative percent uncertainty from the 
western U.S. portion of the GLOBC dataset (positive 
indicates overestimation) as a function of aCDOM 
spectral slope as follows: (a) Kd(320)/Kd(780) EMA 
using a linear fit described in Hooker et al. (2020); 
(b) Kd(412)/Kd(670) EMA using a least absolute de
viation power-law fit; (c) Λ780

320 EMA fit to the OCEAN 
dataset; (d) Λ670

412 EMA fit to the OCEAN dataset; (e) 
GSM with positive failed retrievals shown as open 
circles at the top of the y-axis; and (f) QAA with the 
median derived aCDOM slope shown as a black dia
mond on the x-axis. Data points with RMSLD below 
0.25 are shown in black, and all others are shown in 
red. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web 
version of this article.)   
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that internal algorithm parameterizations, which were selected for 
oceanic or coastal waters, were not consistent across a global range in 
aCDOM(440) and generally led to overestimation of aCDOM(440). The 
updates to the GSM and QAA models based on Matsuoka et al. (2013) 
and Dong et al. (2013), respectively, which allowed for the separation of 
detrital and dissolved organic matter contributions, improved algorithm 
performance in nonoceanic waters. For example, if the detrital contri
butions were not accounted for in oceanic waters, the RMSLD for the 
GSM and QAA algorithms would increase within the high aCDOM(440) 
fraction (>0.1 m− 1) of waters from 0.278 to 0.376 and from 0.236 to 
0.379, respectively. 

Additional regionalized improvements to the GSM and QAA algo
rithms have been proposed, but testing each of these approaches was not 
the focus of this study, which evaluated a global, rather than regional, 
algorithmic perspective. A globally consistent set of bio-optical param
eters that could be used to extend GSM and QAA across the data range 
shown herein is unlikely to exist due to variability in the spectral slopes 
of dissolved and detrital signals, the specific absorption spectra of 
phytoplankton, and other natural sources of variability across global 
water bodies, e.g., Bricaud et al. (2012). Methods to estimate parameters 
including the spectral slope of aCDM(440) or aCDOM(440), however, are 
presented in Matsuoka et al. (2013) and Dong et al. (2013), respectively, 
which may improve the applicability of the GSM and QAA algorithms 
across a greater range of water bodies. The empirical relationship be
tween absorption by non-algal particles and backscattering by particles 
implemented herein for the GSM algorithms was derived from Arctic 
waters (Matsuoka et al., 2007), but it did not result in strong bias in the 
GSM estimation of aCDOM(440) across global water types. The validation 
results presented herein also suggest that the quality of aCDOM is not a 
primary source of algorithm uncertainty, because no correlation was 
found between the spectral slope S of aCDOM and the algorithm residuals, 
as shown in Fig. 8 using the western U.S. portion of the GLOBC dataset, 
which was processed by a single laboratory and encompassed the full 
range in aCDOM(440) and S. 

Results from nonconservative waters suggested that the global Λ780
320 

EMA algorithmic approach is applicable to harbors, river mouths, and 
refilled or flooded lakes and rivers, based on RMSLD within that re
ported for the validation with the GLOBC dataset. Other water bodies 
including HABs and drought-stricken lakes are potential candidates for 
developing regionally tuned Λ780

320 algorithmic approaches. Waters with 
high resuspension showed decreased correlation between aCDOM(440) 
and Λ780

320, consistent with expectations based on the sensitivity of above- 
water methods to differences in target brightness. In keeping with the 
case-1 versus case-2 perspective for oceanic ecosystems, the conserva
tive versus nonconservative classifications provided a logical partition 
for algorithm development within inland waters, in which potentially 
problematic water bodies could be individually assessed for agreement 
with a global approach or else evaluated for regional tuning. 

The Λ780
320 and Λ670

412 algorithms were applied to airborne [LW(λ)]N 
observations of three environments, which spanned over an order of 
magnitude in aCDOM(440). Unbiased percent differences at each site 
were 23.3%, 24.5%, and 11.9% for the Λ780

320 algorithm and 25.8%, 
34.2%, and 25.7% for the Λ670

412 algorithm at LT, MB, and SFBD, 
respectively. Increased uncertainty for the Λ780

320 algorithm at LT was 
anticipated because of low signal at [LW(780)]N and because RMSLD for 
the Λ780

320 algorithm was greatest in the clearest water fraction of the 
GLOBC validation comparison (Sect. 3.3). Results from MB may have 
been impacted by the difficulty of matching up in situ observations from 
a wharf (MB) compared to a small vessel (LT and SFBD). Caution is 
warranted for interpreting the airborne validation results shown herein 
due to the limited number of available matchups. Comparing the match- 
up results with the uncertainty propagation derived from spectrally 
dependent radiometric uncertainties, however, may provide verification 
in that the results agree as follows: performance was increased for the 
more spectrally separated (Λ780

320) pair within the brighter (SFBD) target 
(due to the expanded dynamic range of the end-member ratio), while 

performance was similar between the Λ780
320 and Λ670

412 pairs within the 
darker target (LT), likely due to greater signal in [LW(412)]N and 
[LW(670)]N compared with [LW(320)]N and [LW(780)]N. 

Previous work subsequent to Hooker et al. (2013) has indicated that 
the inclusion of longer wavelengths (i.e., above 600 nm) in aCDOM(440) 
algorithms improves aCDOM(440) observations in complex inland or 
freshwater environments by helping to separate the effects of detrital 
particles (Zhu et al., 2014), which is in agreement with the findings 
herein, as well as those of Mannino et al. (2014). Other studies have 
suggested that aCDOM(440) algorithm performance may decrease with 
the addition of information from short wavelengths (i.e., 412 and 443 
nm) due to variability in phytoplankton absorption, decreasing radio
metric sensitivity, and increasing difficulty of atmospheric correction for 
data products at shorter wavelengths (e.g., Kutser et al., 2005; Menken 
et al., 2006; Brezonik et al., 2015). Results discussed herein are not in 
opposition with these findings because the extension to UV wavelengths 
is anticipated to mitigate the relative importance of phytoplankton 
pigmentation, and because satellite radiometric capabilities and accu
racy of atmospheric correction were not evaluated herein. However, this 
work indicates that provided accurate radiometry of end-member 
wavelengths, increasing the spectral separation within aCDOM(440) al
gorithms improves the robustness of remote aCDOM(440) observations 
across a global diversity of water types. Presently, existing airborne 
capabilities enable high signal-to-noise retrievals at relevant end- 
member wavelengths (Kudela et al., 2019) to enable remote sensing of 
aCDOM(440) from airborne platforms based on the ratios of UV and NIR 
spectral end-members evaluated herein. 

5. Conclusion 

A band-ratio EMA algorithmic approach—in which spectrally sepa
rated end-member pairs, either [LW(λ)]N or Kd(λ), are related to 
aCDOM(440)—was shown to agree with case-1 relationships as well as to 
predict aCDOM(440) with comparable log-scale statistics across more 
than three decades of aCDOM(440) dynamic range (0.001–2.305 m− 1), 
including within oceanic, coastal, and inland conservative water bodies. 
Greater spectral separation of the Λλ1

λ2 
waveband pairs increased the 

dynamic range expressed as a function of aCDOM(440), which improved 
sensitivity and flattened the exponential slope of the Λ780

320 algorithm 
relative to the Λ670

412 algorithm, therefore lowering the model uncertainty 
contribution of the Λ780

320 algorithm in the uncertainty propagation 
analysis. The performance of the Λ780

320 and Λ670
412 EMA algorithms was 

greatest relative to the GSM and QAA in the higher aCDOM(440) partition 
(>0.1 m− 1) of the global conservative waters dataset, a range generally 
associated with case-2 or inland waters. For the nonconservative GLOBN 
dataset, the Λ780

320 EMA algorithm produced statistics for harbors, refilled 
or flooded lakes and rivers, and river mouths that were similar to those 
produced for the conservative GLOBC dataset. 

Airborne remote sensing matchups indicated that the Λ780
320 algorithm 

satisfied 25% uncertainty (UPD) in coastal and inland waters spanning 
an order of magnitude in aCDOM(440). From an airborne remote-sensing 
perspective, the EMA approach evaluated here also confers multiple 
practical advantages for inland waters. First, inland waters are overall 
more optically diverse than oceanic waters, and EMA does not require 
internal bio-optical parameterizations to specific, conservative water 
bodies. Second, inland waters contain a greater range in aCDOM(440) 
than oceanic waters (LT to SFBD spans over an order of magnitude), and 
EMA maintained stable log-scale uncertainty across a global range in 
aCDOM(440) for the conservative waters considered in this analysis. 
Third, many inland waters require increased spatial resolution of remote 
sensors because of their smaller areas and greater adjacency effects. 
Sensors with high spatial resolution often sacrifice spectral resolution, 
which is needed for more complex inversion methods but not for two- 
band algorithms such as EMA. Fourth, inland waters are frequently 
shallow, and bottom effects are problematic for central (VIS) 
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wavelengths. Λ780
320 is relatively insensitive to bottom effects (as is Λ670

412 

within moderately turbid waters) due to the high attenuation of light by 
water at UV and NIR wavelengths. 

Finally, the robustness of EMA across more than three decades of 
dynamic range in aCDOM(440) suggests that algorithms based on widely 
separated wavelengths, or end members, are less sensitive to variations 
in optical complexity than algorithms which utilize the central, VIS 
wavelengths. Future work to improve an understanding of EMA may 
influence the technological goals for remote sensing of optically com
plex inland water systems, for example by emphasizing the quality of 
retrievals at end-member wavebands. Advancing the airborne perspec
tive presented here to an ocean color capability (Appendix A) would 
require parallel efforts to improve detector technology as well as at
mospheric correction, without preconceived brightness approximations 
(e.g., no black-pixel assumptions) in order to preserve the relevant UV 
and NIR information. 

Funding 

This work was supported by the NASA C-HARRIER campaign (grant 
number NNX17AK89G), as well as by the California State Water 

Resources Control Board (grant number A17-0553). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We are grateful for contributions to this work from (in alphabetical 
order) Jim Brown (University of Miami), Liane Guild (NASA Ames), 
Randall Lind (Biospherical Instruments Inc.), Atsushi Matsuoka (Uni
versity of New Hampshire), John Morrow (Biospherical Instruments 
Inc.), Kendra Negrey (University of California Santa Cruz), Koji Suzuki 
(Hokkaido University) and Youhei Yamashita (Hokkaido University). 
Useful feedback on this manuscript was provided by Meredith 
McPherson (University of California Santa Cruz), and John Ryan 
(Monterey Bay Aquarium Research Institute). Finally, this manuscript 
was greatly improved by feedback provided from three reviewers.  

Appendix A. Additional power-law coefficients derived from in situ datasets 

Table A.3 
The power-law coefficients derived from in situ datasets.  

λ Pair Fit N R2 um(A) 
[m− 1] 

um(B) Dataset 

[LW(340)]N/[LW(780)]N y = 0.432x− 0.586 112 0.80 0.086 0.067 OCEAN 
(x = Λ780

340) y = 0.394x− 0.589 562 0.87 0.019 0.028 GLOBC 

[LW(395)]N/[LW(710)]N y = 0.237x− 0.689 112 0.89 0.022 0.049 OCEAN 
(x = Λ710

395) y = 0.244x− 0.679 605 0.92 0.010 0.025 GLOBC 

[LW(412)]N/[LW(710)]N y = 0.343x− 0.717 112 0.87 0.038 0.049 OCEAN 
(x = Λ710

412) y = 0.359x− 0.719 606 0.90 0.016 0.026 GLOBC  

Appendix B. Sampling and processing parameters for the OCEAN dataset 

The original legacy datasets (Table B.4) were reprocessed using PROSIT and an EMA perspective, wherein all wavelengths spanning 320 to 780 nm 
produced data products within the upper 1 m of the water column while respecting the requirements for planar geometry and high vertical sampling 
resolution, i.e., low descent velocity. These requirements resulted in an approximately 15% reduction in the number of stations with EMA data 
products. The general sampling requirement was to obtain three optical casts in quick succession at each station. As a result, the removed stations 
equate to approximately 44% of the original optical casts. To keep self-shading perturbations to a correctable minimum, the C-OPS profiler equipped 
with the C-PrOPS accessory was deployed with the requisite solar geometry by positioning the Lu aperture towards the Sun and into the principal plane 
by using differential thrust. For all other profilers, the Lu aperture was correctly positioned using a combination of ship and manual maneuvers with 
subsequent dissipation time included prior to profiling for any induced turbulence.  

Table B.4 
Sampling and processing parameters for the OCEAN dataset, as follows: the number of stations for the original (NO

S ) and reprocessed (NR
S) datasets; the number of 

optical casts for the original (NO
C) and reprocessed (NR

C) datasets; the average bottom depth (z2) for the extrapolation interval; plus the average vertical tilt (ϕ) and 
average descent velocity (v) of the profiler in the extrapolation interval. If ϕ ≤ 5◦ and v ≤ 0.15 m s− 1, the VSR is 1 cm or less, which ensures the efficacy of deriving data 
products using an EMA perspective.  

Principal Sampling Region NO
S NR

S NO
C NR

C z2 
[m] 

ϕ 
[∘] 

v 
[m s− 1] 

Tropical Pacific Ocean 27 19 39 32 0.80 3.1 0.14 
Southern (Indian) Ocean 11 10 37 14 0.76 2.9 0.12 
Mid-Atlantic Bight (MAB) 53 43 222 131 0.72 1.4 0.11 
Gulf of Maine and MAB 96 87 309 163 0.67 1.0 0.09 

Combined 187 159 606 340 0.71 1.4 0.10   
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Appendix C. Glossary  

aCDOM(440) Absorption coefficient of CDOM at 440 nm 
aCDM(440) Absorption coefficient of CDOM and detritus at 440 nm 
a(λ) Total spectral absorption coefficient 
bb(λ) Total spectral backscattering coefficient 
C-AERO Compact-Airborne Environmental Radiometers for Oceanography 
C-OPS Compact-Optical Profiling System 
C-PrOPS Compact-Propulsion Option for Profiling Systems 
CDOM Colored dissolved organic matter 
Chl a Chlorophyll a 
CIRPAS Center for Interdisciplinary Remotely Piloted Aircraft Studies 
Do(λ) Downwelling Distribution Function 
Es(λ) Global solar irradiance 
EMA End-member analysis 
GSM Garver-Siegel-Maritorena algorithm (Maritorena et al., 2002) 
IOP Inherent Optical Property 
Kd(λ) Diffuse attenuation coefficient for spectral downward irradiance 
Li(λ) Indirect (sky) radiance 
LT(λ) Total radiance from the water surface 
Lu(z,λ) Upwelling radiance 
LW(λ) Water-leaving radiance 
[LW(λ)]N Normalized water-leaving radiance 
Λλ1

λ2  
The ratio [LW(λ1)]N/[LW(λ2)]N 

LSA Lowest Safe Altitude 
LT Lake Tahoe, California, USA 
MB Monterey Bay, California, USA 
NIR Near-infrared 
NOMAD NASA bio-Optical Marine Algorithm Dataset 
S Spectral slope of CDOM 
SFBD San Francisco Bay Delta, California, USA 
SWIR Short-wave infrared 
QAA Quasi-Analytical-Algorithm (Lee et al., 2002) 
UV Ultra-violet 
VIS Visible 
VSR Vertical Sampling Resolution  
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