SUPPLEMENTARY MATERIAL

Tree-ring cellulose δ^{18} O records similar large-scale climate influences as precipitation δ^{18} O in the Northwest Territories of Canada

FIELD R.D.^{1,8*}; ANDREU-HAYLES L.^{2,8*}; D'ARRIGO R.D.², OELKERS R.², LUCKMAN B.H.³, MORIMOTO D.³, BOUCHER E.⁴, GENNARETTI F.⁵, HERMOSO I.⁴, LAVERGNE A.⁶, LEVESQUE M.⁷

¹NASA Goddard Institute for Space Studies, Columbia University Dept. Applied Physics and Applied Mathematics, New York, NY, U.S.A.

² Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, U.S.A.

³ Department of Geography, University of Western Ontario, London, Canada.

⁴Department of Geography, GEOTOP, University of Québec at Montréal, Canada.

⁵Institut de Recherche sur les Forêts, UQAT, Amos, Québec, J9T 2L8, Canada.

⁶Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK.

⁷Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.

⁸These authors contributed equally: Robert D. Field, Laia Andreu-Hayles

*Corresponding authors: <u>robert.field@columbia.edu</u>; <u>lah@ldeo.columbia.edu</u>.

Figure S1. Spatial field correlations between annual tree-ring δ^{18} O and GISTEMP surface temperature anomaly (top), BEST maximum surface temperature (middle), and University of Delaware (UDEL) precipitation (bottom) over land for spring (March-May, MAM, left) and summer (June-August, JJA, right), over 1938-2002. Correlations with p-values < 0.05 have been excluded. The location of the Tungsten site is shown by the small magenta box.

Figure S2. Spatial field correlations between annual tree-ring δ^{18} O and GISTEMP surface temperature anomaly (top), BEST maximum surface temperature (middle), and University of Delaware (UDEL) precipitation (bottom) over land for autumn (September-November, SON, left) and winter (December-February, DJF, right), over 1938-2002. Correlations with p-values < 0.05 have been excluded. The location of the Tungsten site is shown by the small magenta box.

Figure S3. Spatial field correlations between annual tree-ring δ^{18} O and NCEP surface temperature (T_{surf}), precipitation (Precip), moisture transport at 500 hPa (<qu,qv>), sea-level pressure (SLP), and geopotential height at 500 hPa (Z₅₀₀) for spring (March-May, MAM, left) and summer (June-August, JJA, right), over 1948-2012. Correlations with p-values < 0.05 have been excluded.

Figure S4. Spatial field correlations between annual tree-ring δ^{18} O and NCEP surface temperature (T_{surf}), precipitation (Precip), moisture transport at 500 hPa (<qu,qv>), sea-level pressure (SLP), and geopotential height at 500 hPa (Z₅₀₀) for autumn (September-November, SON, left) and winter (December-February, DJF, right), over 1948-2012. Correlations with p-values < 0.05 have been excluded.

Figure S5. Same as Figure 5 for the period 1948-2002, but replacing NCEP/NCAR reanalysis fields with those from the 20th Century Reanalysis System (Slivinksi et al., 2019).

c) corr. between 20th Cent <qu,qv> and $\delta^{18} O_{TR}$ at Tungsten

мамјја

d) corr. between 20th Cent <qu,qv> and $\delta^{18} O_{TR}$ at Tungsten

e) corr. between 20 $^{\rm th}$ Cent SLP and $\,\delta^{18}{\rm O}_{\rm TR}^{}$ at Tungsten

g) corr. between 20th Cent Z₅₀₀ and $\,\delta^{18}\mathrm{O}^{}_{\mathrm{TR}}$ at Tungsten

f) corr. between 20th Cent SLP and $\delta^{18}O_{TR}$ at Tungsten SONDJF

Figure S6. Same as Figure 5, but replacing NCEP/NCAR reanalysis fields with those from the 20th Century Reanalysis System and over the period 1900-2002 (Slivinksi et al., 2019).

0.5

-0.5

-1

) corr. between ModelE2 <qu,qv> and Precip δ^{18} O at Tungsten MAM

g) corr. between ModelE2 SLP and Precip $\delta^{\rm 18}{\rm O}$ at Tungsten MAM

i) corr. between ModelE2 $\mathbf{Z}_{\mathbf{500}}$ and Precip $\delta^{\mathbf{18}}\mathbf{O}$ at Tungsten MAM

f) corr. between ModelE2 <qu,qv> and Precip $\delta^{18} O$ at Tungsten JJA

d) corr. between ModelE2 Precip and Precip δ^{18} O at Tungsten JJA

0.5

-0.5

h) corr. between ModelE2 SLP and Precip $\delta^{18}{\rm O}$ at Tungsten JJA

Figure S7. Same as Figure 6, but for spring (March-May, MAM, left) and summer (June-August, JJA, right), over 1948-2012. Correlations with p-values < 0.05 have been excluded.

Figure S8. Same as Figure 6, for autumn (September-November, SON, left) and winter (December-February, DJF, right), over 1948-2012. Correlations with p-values < 0.05 have been excluded.