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Abstract  67 

Smallholder farmers struggle to achieve food security in many countries of sub-68 

Saharan Africa (SSA). It is urgently required to find appropriate practices for enhancing crop 69 

production while avoiding large increases in greenhouse gas (GHG) emissions in SSA. This 70 

review aims to identify common smallholder farming practices for enhancing crop production, 71 

to assess how these affect GHG emissions and to identify strategies that not only enhance 72 

crop production but also mitigate GHG emissions in SSA. To increase crop production and 73 

ensure food security, smallholder farmers usually expand agricultural land, develop water 74 

harvesting and irrigation techniques and increase cropping intensity and fertilizer use. These 75 

practices may result in changing carbon stocks and GHG emissions, potentially creating 76 

trade-offs between food security and GHG mitigation. Agricultural land expansion at the 77 

expense of forests is the most dominant source of GHG emissions in SSA. While water 78 

harvesting and irrigation can increase soil organic carbon, they can trigger GHG emissions. 79 

Increasing cropping intensity can enhance the decomposition of soil organic matter, thus 80 

releasing carbon dioxide. Increasing nitrogen fertilizer use can enhance soil organic carbon, 81 

but also leads to increasing nitrous oxide emissions. An integrated land, water and nutrient 82 

management strategy is necessary to enhance crop production and mitigate GHG emissions. 83 

Among the most relevant strategies found, agroforesty practices in degraded and marginal 84 

lands could replace expanding agricultural croplands. In addition, water management, via 85 

adequate rainwater harvesting and irrigation techniques, together with appropriate nutrient 86 

management should be considered. Therefore, a land-water-nutrient nexus (LWNN) approach 87 

will enable an integrated and sustainable solution to increasing crop production and 88 

mitigating GHG emissions. Various technical, economic and policy barriers hinder 89 

implementing the LWNN approach on the ground, but these may be overcome through 90 
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developing appropriate technologies, disseminating them through farmer to farmer 91 

approaches and developing specific policies to address smallholder land tenure issues and 92 

motivate long-term investment.   93 

 94 

Keywords: Sub-Saharan Africa; Smallholder farming systems; Crop production; Greenhouse 95 

gas emission; Agricultural land, Water harvesting, Irrigation, Cropping intensity, Fertilizer  96 
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1 Introduction 97 

 Agriculture in sub-Saharan Africa (SSA) plays an important role in livelihood and 98 

economic growth through employing 51.6% of the population and generating 20.5% of the 99 

gross domestic product (GDP) of these countries (in 2016) (The Global Economy 2019). 100 

Agricultural production systems in SSA are largely based on smallholder farming systems, 101 

which are defined by farms covering an area of ≤ 2 ha (Lowder et al. 2016; Fig. 1). Recent 102 

estimates suggest the presence of approximately 33 million smallholder farms in SSA (IFC 103 

2013), which contribute up to 90% of the agricultural production in some SSA countries 104 

(Wiggins 2009).  105 

 Currently, consumption of self-produced food crops only covers 20% of the food 106 

need of SSA households (Frelat et al. 2016). Thus, food security remains difficult to achieve 107 

among smallholder farmers and they face a large number of challenges (van Ittersum et al. 108 

2016; Tilman et al. 2011). First, the agricultural sector is underdeveloped and is characterized 109 

by over-reliance on primary agriculture, minimal use of external farm inputs, significant pre- 110 

and post-harvest food crop loss and minimal value addition and product differentiation 111 

(Assefa et al. 2020; van Ittersum et al. 2016; Tilman et al. 2011). All lead to low crop 112 

productivity (Singh et al. 2020; Assefa et al. 2020; Frelat et al. 2016; Fig. 2). Second, water 113 

availability is highly affected by droughts in the context of regional and global climate 114 

variability and change (Misra 2014). Third, severe degradation of agricultural soils negatively 115 

affects crop yield (Tittonell and Giller 2013). Fourth, SSA’s population is predicted to grow 116 

from 1.02 billion in 2017 to 1.4 billion by 2030 and to 2.17 billion by 2050 (United Nations 117 

Population Division 2017). Given population expansion, food demand in SSA will 118 

substantially increase; while cereal demands will most likely triple, current levels of cereal 119 

consumption already depend on substantial imports (van Ittersum et al. 2016).  120 
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 In addition, growing concern exists that ongoing practices for increasing crop yield 121 

in SSA may cause increasing greenhouse gas (GHG) emissions and further contribute to 122 

global climate change (Leitner et al. 2020; van Loon et al. 2019; FAO 2018; Tongwane and 123 

Moeletsi 2018). Agricultural land expansion at the expense of forests is expected to continue 124 

(Hertel et al. 2016; Lambin and Meyfroidt 2011). Deforestation for agricultural land 125 

expansion is a substantial source of GHG emissions (Grewer et al. 2018; Wanyama et al. 126 

2018; Kim and Kirschbaum 2015) and agricultural intensification tends to increase GHG 127 

emissions (Grewer et al. 2018; Kim et al. 2013). These increases can be particularly relevant 128 

when inappropriate agricultural practices, such as severe soil disturbance or excessive 129 

nitrogen (N) fertilizer use, are adopted (Grewer et al. 2018; Kim et al. 2013). Although 130 

emissions of the GHG nitrous oxide (N2O), per unit area, may be low due to the small 131 

amount of N fertilizer applied by most African smallholders (Kim et al. 2016 c), N2O 132 

emissions per unit of agricultural production (e.g., yield-scaled N2O emissions; Kim and 133 

Giltrap 2017; Sainju 2016) may be high due to low productivity (Pelster et al. 2017; Seebauer 134 

2014; Kimaro et al. 2006). Overall, agricultural GHG emissions in SSA increased by 1.2 - 4.7% 135 

annually between 1994 and 2014 (Tongwane and Moeletsi 2018), while global agricultural 136 

GHG emissions increased by 1.1% annually between 2000 and 2010 (Tubiello et al. 2013). 137 

To sustainably improve agricultural production in SSA, efforts are needed to identify and 138 

implement measures, which can enhance crop yields while avoiding large increases in GHG 139 

emissions (Leitner et al. 2020; van Loon et al. 2019; FAO 2018; Tongwane and Moeletsi 140 

2018).  141 

 To enhance crop yields, smallholder farmers in SSA generally adopt a single 142 

approach rather than an integration of multiple approaches (Thierfelder et al. 2017; Sheahan 143 

and Barrett 2017). However, to enhance crop yield and GHG mitigation simultaneously in 144 
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smallholder crop farming, it is necessary to comprehensively consider different approaches 145 

(Sheahan and Barrett 2017; Zougmoré et al. 2014; Branca et al. 2013), since adopting a single 146 

approach cannot properly manage the complexity of crop production and GHG mitigation 147 

challenges. The adoption of different approaches can create positive synergetic effects 148 

beyond the additive effect of each approach (Sanz-Cobena et al. 2017; Zougmoré et al. 2014; 149 

Branca et al. 2013). Even so, due to the lack of on-site data, further efforts including research 150 

and field demonstrations identifying optimal combinations of different approaches are 151 

urgently needed (Sheahan and Barrett 2017; Thierfelder et al. 2017; Zougmoré et al. 2014; 152 

Branca et al. 2013). 153 

 This review aims 1) to identify the current status and future potentials of smallholder 154 

farming practices for enhancing crop production, 2) to assess how these practices can affect 155 

GHG emissions, 3) to identify management practices that can both enhance crop yield and 156 

mitigate GHG emissions and 4) to assess the main barriers to their implementation and 157 

propose potential solutions in smallholder crop farming systems in SSA. 158 

 159 

2 Common practices for increasing crop production of smallholder farms in SSA 160 

 Smallholder farmers adopt various practices to increase crop production in SSA. For 161 

this review, we selected the most adopted practices by smallholder farmers throughout SSA, 162 

of which the magnitudes of adoption were also relatively well quantified: 1) land 163 

management, exemplified by the expansion of agricultural lands and the increase of cropping 164 

intensity; 2) water management, exemplified by the development of water harvesting and 165 

irrigation techniques; and 3) nutrition management, exemplified by the increase of fertilizer 166 

use. Current status and future potential of these practices are discussed below. 167 

 168 
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2.1 Expansion of agricultural lands and increase of cropping intensity 169 

 Expanding agricultural lands is one of the most common land management practices 170 

to increase crop production in smallholder crop farming in SSA (Nakawuka et al. 2018; 171 

Droppelmann et al. 2017; Heady 2015). Agricultural lands in SSA have increased from 86.9 × 172 

107 in 1993 to 92.0 × 107 ha in 2009 with an average increase rate of 3.2 × 106 ha per year 173 

(FAOSTAT 2019). Mainly natural lands, such as forests, savannahs and wetlands, have been 174 

converted to agricultural lands (Gibbs et al. 2010; Brink and Eva 2009; DeFries et al. 2010). 175 

In SSA, natural forest decreased from 65.4 × 107 in 1993 to 59.9 × 107 ha in 2009 with an 176 

average deforestation rate of 3.4 × 106 ha per year (FAOSTAT 2019). While overall 177 

agricultural lands have increased in SSA, in most of the land-constrained countries, such as 178 

Ethiopia, Kenya and Malawi, the farm size of most smallholder farms has been gradually 179 

shrinking. Average farm sizes have been reduced by 30–40% since the 1970s, mainly due to 180 

rapidly increasing populations (Jayne et al. 2014; Headey and Jayne 2014). Expansion of 181 

agricultural lands will likely continue in SSA to meet growing food demand (Molotoks et al. 182 

2018; Hertel et al. 2016; OECD/FAO 2015). Alexandratos and Bruinsma (2012) projected 183 

that the area used for crop production in Africa will increase to 266 × 106 ha in 2030 and 291 184 

× 106 ha in 2050. Previous studies have shown substantial potential to expand agricultural 185 

land in wet savannahs, shrublands and sparse woodlands in SSA (Chamberlin et al. 2014; 186 

Alexandratos and Bruinsma 2012; Deininger and Byerlee 2011). However, it was found that 187 

many countries in SSA have limited potential for agricultural land expansion while avoiding 188 

deforestation (Jayne et al. 2014; Chamberlin et al. 2014; Deininger et al. 2011). Except for a 189 

few countries, such as the Democratic Republic of Congo and Angola, most countries in SSA 190 

have less than 6% (0.4 to 5.9%) of non-forested unutilized land available (Jayne et al. 2014). 191 

Chamberlin et al. (2014) estimated that potentially expandable cropland for smallholder 192 
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farms is only 80 × 106 ha in SSA if forest conversion is to be avoided.  193 

 Intensification has been adopted to enhance crop production in SSA (van Ittersum et 194 

al. 2016; Headey and Jayne 2014; Mueller et al. 2012), most notably by increasing cropping 195 

intensity−the number of crops grown per a year on the same field (Headey and Jayne 2014). 196 

As population pressures cause a gradual shrinking of farm sizes over time (Jayne et al. 2014; 197 

Headey and Jayne 2014), smallholder farmers have been practicing cultivating their fields 198 

continuously, shortening fallow periods between individual cropping periods and changing 199 

the traditional crop types to high-value mono-species cash crops (Kim et al. 2016 b; Jayne et 200 

al. 2014; Headey and Jayne 2014). Cropping intensity in SSA increased 10.6% and 25.4% in 201 

low and high population density countries, respectively, in the period 1977-2007 (Headey and 202 

Jayne 2014).  203 

 204 

2.2 Development of rainwater harvesting and irrigation  205 

 Since more than 90% of cultivated land in SSA is rainfed, crop production in arid, 206 

semi-arid and sub-humid areas in SSA is at risk from highly variable rainfall, frequent 207 

droughts and low water productivity (Karpouzoglou and Barron 2014; Misra 2014). 208 

Rainwater harvesting technologies such as pitting, contouring, terracing, open ponds, and 209 

cisterns have been used to enhance crop production in certain regions of SSA (Leal Filho and 210 

Trincheria Gomez 2018; Karpouzoglou and Barron 2014; Dlie et al. 2013; Biazin et al. 2012). 211 

These technologies have been advanced as essential to achieving water availability and crop 212 

production in these areas (Taffere et al. 2016; Rockström et al. 2010). Indigenous rainwater 213 

harvesting techniques (e.g. spate irrigation) or those modified from traditional techniques are 214 

more common and widely accepted by smallholder farmers compared to introduced ones 215 
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(Biazin et al. 2012; Mbilinyi et al. 2005). Studies on the economic costs and benefits of 216 

rainwater harvesting found significant profits in Ethiopia (Hagos et al. 2012), Tanzania 217 

(Senkondo et al. 2004), Kenya (Ngigi et al. 2005) and Burkina Faso (Fox et al. 2005). Due to 218 

substantial rain and currently underexploited surface and ground water resources, great 219 

potential exists for expanding rainwater harvesting in SSA (Altchenko and Villholth 2015; 220 

Cassman and Grassini 2013; Pavelic et al. 2013). In Ethiopia, Kenya, Uganda and Tanzania, 221 

rainwater harvesting potential was estimated at over 10,000 to 25,000 m3 rainwater person-1 222 

(Mati et al. 2006). 223 

 Irrigation holds the potential to improve crop production and mitigate the impacts of 224 

climate stress associated with drought and extreme heat in SSA (Burney et al. 2013). 225 

Irrigation has gradually been expanded in SSA (Altchenko and Villholth 2015; Sheahan and 226 

Barrett 2014; You et al. 2011). The average rate of expansion of irrigated area over the past 227 

30 years is 2.3% in SSA (You et al. 2011), where the area currently equipped for irrigation is 228 

estimated to be slightly more than 13 × 106 ha, making up 6% of the total cultivated area 229 

(Cassman and Grassini 2013; You et al. 2011). Around 0.2 to 3.5% of smallholder farms in 230 

Ethiopia, Malawi, Niger, Nigeria, Tanzania and Uganda can access irrigation (Sheahan and 231 

Barrett 2014). Despite low irrigation development, irrigated agriculture accounts for nearly 232 

38% of the economic value of all agricultural output (Svendsen et al. 2009). A field survey of 233 

1554 smallholder farmers in nine SSA countries showed that gravity-flow, manual-lift and 234 

motor-pump irrigation increased the value of agricultural production per farmland size as 235 

well as per family worker compared to rain-fed-only farms (Shah et al. 2013).  236 

 There is substantial potential for further irrigation development and expansion in 237 

SSA (Cassman and Grassini 2013; You et al. 2011). In SSA, average annual renewable 238 

groundwater availability for irrigation ranges from 692 to 1644 km3; therefore, the total area 239 
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of irrigable cropland with renewable groundwater includes between 20.5 to 48.6% of the 240 

continent’s cropland (Altchenko and Villholth 2015). Xie et al. (2014) revealed a large 241 

potential for profitable smallholder irrigation expansion in SSA, with irrigation technologies 242 

benefiting between 113 and 369 × 106 rural people in the region by generating net revenues 243 

of US $14–22 billion yr−1 (Xie et al. 2014). Improving rainwater harvesting and irrigation 244 

development in SSA will contribute to enhancing crop production in smallholder households. 245 

 246 

2.3 Increase of fertilizer use 247 

 Research demonstrated that the amount of fertilizer application in SSA was very low 248 

compared to other regions (Fig. 3). Mean N application rates in SSA were 16 kg N ha–1 in 249 

2009 compared to 169.1 kg N ha–1 in the United States in the same year (Lassaletta et al. 250 

2014). The low fertilizer use in SSA has been attributed to low financial capacity of farmers, 251 

low availability of input products in local markets, unfavorable fertilizer/crop-price ratios 252 

(Duflo et al. 2008; Croppendstedt et al. 2003) and low response rates of crops to fertilizer 253 

inputs (Roobroeck et al. 2020; Ichami et al. 2019; Riesgo et al. 2016). Some governments in 254 

SSA have introduced fertilizer subsidy programs to increase crop productivity (Koussoubé 255 

and Nauges 2017; Jayne et al. 2013). Ten African governments spend roughly US$1 billion 256 

annually on fertilizer subsidy programs (Jayne and Rashid 2014). Recent studies found that 257 

synthetic fertilizer use among smallholders is far more widespread than commonly assumed 258 

(Sheahan and Barrett 2017). Over 75% of all cultivating households in Malawi, 50% in 259 

Ethiopia and around 40% in Nigeria use synthetic fertilizer in some amount in the main 260 

growing season (Sheahan and Barrett 2017). Maize fields receive more synthetic fertilizer 261 

than non-maize-dominated plots (Sheahan and Barrett 2017). Increasing use of synthetic 262 

fertilizer is predicted in SSA (Ten Berge et al. 2019; Zhang et al. 2015; Tenkorang and 263 
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Lowenberg-DeBoer 2009). The annual growth rate of synthetic fertilizer demand (2015-2020) 264 

in SSA is predicted to be 3.1, 1.8 and 1.3 times higher than the global average for N, 265 

phosphate (P2O5) and potash (K2O) fertilizers, respectively (FAO 2017; Fig. 4). Similarly, N 266 

fertilizer use is expected to increase from 0.9 Mt in 2015 to 1.2 Mt in 2030 in SSA 267 

(Tenkorang and Lowenberg-DeBoer 2009).    268 

 269 

3 Impact of the smallholder farming practices on GHG emissions 270 

 Increasing crop production in SSA is an urgent and indubitable necessity. Finding 271 

approaches to attaining sustainable crop production requires an understanding of the 272 

environmental implications of different pathways of agricultural growth. Here we assess the 273 

changes in GHG emissions associated with the management practices detailed in section 2.  274 

 275 

3.1 Expansion of agricultural lands and increase of cropping intensity 276 

The conversion of natural forest to agricultural land and increasing cropping intensity 277 

affect carbon (C) budgets (Kim and Kirschbaum 2015) due to loss of C stored in standing 278 

woody biomass (Pearson et al. 2017) and degraded SOC (Wei et al. 2014; Murty et al. 2002). 279 

The changes in SOC and C in vegetation biomass driven by conversion of natural forest to 280 

agricultural land are directly related to changes in the CO2 budget, since any loss of biosphere 281 

C stocks increases atmospheric CO2 (Kim and Kirschbaum 2015). Intensive soil disturbance 282 

caused by increasing cropping intensity can enhance the loss of SOC through decomposition 283 

of soil organic matter (Kim et al. 2016 a; Jayne et al. 2014; Headey and Jayne 2014), 284 

resulting in CO2 emissions. 285 

 The conversion of natural forest to agricultural land and increasing cropping intensity 286 
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also affect fluxes of other GHGs such as methane (CH4) and N2O (Tate 2015; Kim and 287 

Kirschbaum 2015; van Lent et al. 2015). In a global meta-analysis, Kim and Kirschbaum 288 

(2015) found that the conversion of forest to cropland increased net soil CH4 emissions. This 289 

has been associated with changes in the composition (Singh et al. 2007, 2009) and abundance 290 

(Menyailo et al. 2008) of the methanotroph communities driven by changed soil properties 291 

such as soil moisture, N status, and pH (Tate 2015; Levine et al. 2011). Global meta-analyses 292 

found that the conversion of forest to agricultural lands tended to increase soil N2O emissions 293 

(Kim and Kirschbaum 2015; van Lent et al. 2015). In general, the effect of the conversion on 294 

N2O emissions is related to the increase of N input, changed water-filled pore space, changed 295 

soil management and microclimatic conditions (Wanyama et al. 2018; van Lent et al. 2015; 296 

Smith 2010). Effects of conversion of natural forest to agriculture on soil GHG emissions 297 

have been observed in SSA (Wanyama et al. 2018; Gütlein et al. 2018; Mapanda et al. 2012). 298 

In Zimbabwe, clearing and converting woodlands to crop lands increased soil emissions of 299 

CO2, CH4 and N2O (Mapanda et al. 2012). In Kenya, converted crop lands receiving N input 300 

emitted higher N2O emissions than natural forest (Wanyama et al. 2018).  301 

 Overall, conversion from natural forest to crop lands is recognized as the largest 302 

source of GHG emissions in SSA, resulting in the release of 0.16 × 109 Mg C yr−1 between 303 

1990 and 2009 (Valentini et al. 2014) or a total of 84.2 × 109 Mg CO2 eq between 1765 and 304 

2005 [emission of 7.3 ± 0.6 Mg CO2 eq per a converted cropland (ha) per a year; Kim and 305 

Kirschbaum 2015]. These emissions contribute to 14.7% of global land use change GHG 306 

emissions (Li et al. 2017). Assuming that agricultural expansion will continue to be 307 

associated with deforestation, Molotoks et al. (2018) projected that 11.48 × 109 Mg C will be 308 

lost in SSA due to agricultural expansion during 2010 to 2050 (loss of average 0.29 × 109 Mg 309 

C yr−1). Results overwhelmingly suggest that expanding agricultural lands to enhance crop 310 
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production can result in loss of carbon stocks and increasing GHG emissions in SSA. 311 

 312 

3.2 Development of rainwater harvesting and irrigation  313 

 Rainwater harvesting and irrigation can affect SOC. Increased water supply through 314 

water harvesting and irrigation can result in an increased crop biomass and consequently 315 

higher input of organic matter into soils through litter and fine root exudates and further 316 

decomposition, thus resulting in an increase of SOC (Qiu et al. 2018; Trost et al. 2013; 317 

Kochsiek et al. 2009). On the other hand, water harvesting and irrigation can enhance 318 

microbial activity, resulting in enhanced degradation of SOC (Trost et al. 2013). A global 319 

review by Trost et al. (2013) found that irrigating cropping soils increased soil C stocks by 320 

90–500% in desert climates and 11–35% in semi-arid climates, with the greatest gains in 321 

environments with low initial soil carbon, low precipitation and sparse vegetation. But in 322 

soils with high initial SOC content, the enhancement of microbial activity can outweigh any 323 

increases in biogenic carbon inputs, resulting in the lowering of SOC content (Kochsiek et al. 324 

2009; Jabro et al. 2008; Liu et al. 2008).  325 

 Irrigation can also affect other processes leading to GHG emissions from agricultural 326 

soils. The effects of irrigation on microbial activity and soil physical properties (e.g. soil 327 

moisture, temperature, aeration and oxidation status) can affect methanogenesis, methane 328 

oxidation, nitrification, denitrification and other microbial processes involved in regulating 329 

CH4 and N2O emissions (Trost et al. 2013; Kim et al. 2012; Kessavalou et al. 1998). Some 330 

studies found that, especially at high availability of N, certain types of irrigation strategies 331 

could enhance the rate of soil microbial processes leading to the production of N2O emissions 332 

following water application (Cayuela et al. 2017; Trost et al. 2014; Aguilera et al. 2013). An 333 

abrupt increase of soil moisture in dry soil conditions caused by precipitation or irrigation 334 
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(often called rewetting) can also affect GHG emissions. This effect was already reported by 335 

Birch (1958) and updated by other authors (Congreves et al. 2018; Kim et al. 2012). Increases 336 

in CO2 and N2O fluxes following rewetting of dry soils have been observed in multiple 337 

terrestrial ecosystems and various land-use types including crop land (Guardia et al. 2017; 338 

Sánchez-Martín et al. 2012). Increased CO2 (up to 9000%) and N2O fluxes (up to 80,000%) 339 

within 6 to 24 hours after rewetting has been well reported (Kim et al. 2012). These results 340 

suggest that soil rewetting caused by irrigation can abruptly increase soil CO2 and N2O 341 

emissions under conditions when soils are permitted to dry. However, some studies found no 342 

significant effect of irrigation on N2O emissions (Trost et al. 2016; Trost et al. 2014c). The 343 

existence of only limited field data from SSA prevents general conclusions on the effect of 344 

expanding rainwater harvesting and irrigation on the amount of GHG emissions (Trost et al. 345 

2013).  346 

 347 

3.3 Increase of fertilizer use 348 

 Increasing N fertilizer use can affect soil C and GHG emissions. In comparison to 349 

unfertilized agricultural fields, increased use of N fertilizer can result in higher plant 350 

productivity and increased organic matter input to soil through roots, exudates and crop 351 

residues, resulting in enhanced soil carbon sequestration (Peng et al. 2017; Han et al. 2016; 352 

Yue et al. 2016). Indeed, a global meta-analysis by Han et al. (2016) found that N fertilizer 353 

application increased SOC (10 to 15.4 % or 0.9 to 1.7 C g kg−1) in agricultural fields 354 

compared to unfertilized agricultural fields. Increasing N fertilizer use can also increase N2O 355 

emissions. Assuming that N fertilizer use will increase from 0.9 × 106 Mg in 2015 to 1.2 × 356 

106 Mg in 2030 in SSA (Tenkorang and Lowenberg-DeBoer 2009) and the IPCC default N2O 357 

emission factor (EF) of 1.0 % (IPCC 2006) is applicable in SSA, 78.6 × 106 Mg CO2 eq 358 
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would be produced from 2015 to 2030 in SSA. Closing maize yield gaps by 75% through 359 

increasing N fertilizer application in SSA will increase N2O emissions from currently 255 to 360 

1755 Gg N2O‒N year‒1 (increase of 589 %) (Leitner et al. 2020). 361 

Initial models of the relationship between N inputs and N2O emissions assumed that 362 

N2O emissions were a linear function of N input rate (Dobbie et al. 1999; Bouwman 1996). 363 

However, in the last ten years growing evidence suggests that N2O emissions often increases 364 

as an exponential function of N input rate (Bell et al. 2016; Shcherbak et al. 2014; Kim et al. 365 

2013; Hoben et al. 2011), though the relationship is not found universally (Shcherbak et al. 366 

2014). In an exponential response, emissions increase more rapidly once N addition rates 367 

exceed the ability of plants and microbes to immobilize it (e.g., >100 kg N ha−1; Bouwman et 368 

al. 2002). The resulting soil N surplus is available as a substrate for additional N2O 369 

production (Kim et al. 2013). A study from western Kenya found an exponential relationship 370 

between N input and N2O emissions, with the largest increase in N2O emissions occurring 371 

when N inputs increased from 100 to150 kg N ha–1 (Hickman et al. 2015). In addition, low or 372 

non- responsive rates of crop productivity to N fertilizer inputs have been reported across 373 

SSA, ranging from 11 to 69% of cases in individual farms or field trials (Roobroeck et al. 374 

2020; Ichami et al. 2019; Shehu et al. 2018; Riesgo et al. 2016). In soils that exhibit low 375 

fertilizer responses, increasing N fertilizer use may result in soil N surplus and additional 376 

N2O production in some regions. The results suggest that increasing N fertilizer use in SSA 377 

should be carefully monitored and managed to avoid its excessive use, especially in 378 

intensively cultivated cash crop farming (e.g., sugar cane or bioenergy feedstock cultivation). 379 

Abruptly increasing N2O emissions driven by increasing N fertilizer use in SSA will 380 

otherwise be a great concern in managing GHG emissions in SSA in the near future. 381 
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 382 

4 Strategies to enhance crop production and GHG mitigation in smallholder farming 383 

systems in SSA 384 

 An urgent challenge in SSA is to enhance crop production while avoiding large 385 

increases in GHG emissions from cropping systems (Leitner et al. 2020; van Loon et al. 2019; 386 

Tongwane and Moeletsi 2018). As potential solutions, approaches based on land, water and 387 

nutrient management and a land-water-nutrient nexus (LWNN) are presented and discussed 388 

below.  389 

 390 

4.1 Land: Improving and utilizing degraded land 391 

 The ongoing expansion of agricultural land for enhancing crop production results in 392 

deforestation, habitat degradation and GHG emissions (van Loon et al. 2019; Valentini et al. 393 

2014; Gibbs et al. 2010). Smallholder farmers in SSA have limited potential for agricultural 394 

land expansion (Jayne et al. 2014; Chamberlin et al. 2014; Deininger et al. 2011). Instead of 395 

converting natural land to agricultural lands, it may be sensible to consider restoring, 396 

improving and utilizing degraded lands such as abandoned and/or unfertile agricultural land 397 

and marginal areas (Foley et al. 2011; Lal 2006). Available estimates suggest that there are 398 

494 × 106 ha of human-induced degraded areas in SSA (Bai et al. 2008). About 40% of 399 

grasslands and 12% of croplands have been affected by land degradation in SSA (Le et al. 400 

2016), which may be attributed to various factors including deforestation, expanded 401 

agricultural lands in environmentally sensitive areas, low nutrient additions, acidification and 402 

improper soil management (CGIAR 2017, Nkonya et al. 2016; Le et al. 2014). The annual 403 

costs of land degradation in 2007 were estimated to be US$ 58 billion, which was about 7% 404 

of the region’s GDP (Nkonya et al. 2016). In contrast, it has been estimated that the benefits 405 

of restoring degraded lands in SSA would outweigh the costs by a factor of 7 (ELD Initiative 406 
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2015; ELD Initiative and UNEP 2015). Land degradation is expected to increase further in 407 

SSA due to expansion of agricultural lands and increase of cropping intensity (Nkonya et al. 408 

2016; Gnacadja and Wiese 2016; Le et al. 2014).  409 

 One solution to restore, improve and utilize degraded lands in relatively mesic 410 

ecosystems is to practice agroforestry (Nkonya et al. 2016). Agroforestry can be defined as 411 

any practice to purposefully grow trees together with crops and/or animals for a variety of 412 

benefits and services (Whitney et al. 2018; Jose et al. 2012; Nair et al. 2010). Similarly, 413 

another meta-analysis of 94 studies in SSA found that agroforestry increased maize yields by 414 

0.7–2.5 Mg ha-1 (or 89–318%) compared to monocropping systems (Sileshi et al. 2008). 415 

Another meta-analysis of SSA studies (Kuyah et al. 2019) found that agroforestry increased 416 

crop yields in 77 and 68% of all trials conducted on farms and research stations, respectively. 417 

In addition to the direct benefits of food production, agroforestry can provide ecosystem 418 

services such as improving soil fertility, enhancing carbon sequestration and mitigating GHG 419 

emissions (Muchane et al. 2020; Smith et al. 2019; Corbeels et al. 2019; Kim et al. 2016 a). A 420 

recent global meta-analysis found that soil N stocks under agroforestry were 46 % higher 421 

than in monocropping (Muchane et al. 2020). Similarly, a meta-analysis of SSA studies found 422 

that agroforestry increased soil N by 20% (Kuyah et al. 2019). A review found that the 423 

absolute rate of SOC sequestration under agroforestry was up to 14 Mg C ha–1 y–1 (0 − 100 424 

cm; Corbeels et al. 2019). Agroforestry may sequester carbon at an equivalent of 27.2 ± 13.5 425 

Mg CO2 eq ha–1 y–1 during the early growth stage (up to an average age of 14 years; Kim et al. 426 

2016 a). Assuming 20% of the degraded areas in SSA (494 × 106 ha; Bai et al. 2008) could 427 

feasibly be converted to agroforestry (Kim et al. 2016 a), estimates suggest that doing so 428 

could potentially sequester carbon equivalent to 2.7 × 109 Mg CO2 eq y–1, which is 7.7 times 429 

larger than annual GHG emissions caused by recent agricultural expansion (0.35 × 109 Mg 430 
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CO2 eq yr−1; Kim and Kirschbaum 2015). Although uncertainty remains in these estimates, 431 

the results suggest that converting degraded land to agroforestry could contribute to 432 

enhancing soil fertility and crop production and mitigating GHG emissions in SSA. In 433 

addition, improving soil fertility and crop productivity of degraded lands through agroforestry 434 

could reduce the need to convert additional natural land to agricultural lands, consequently 435 

reducing GHG emissions associated with land-use change (van Loon et al. 2019; Branca et al. 436 

2013). 437 

 438 

4.2 Water: Appropriate rainwater harvesting, irrigation techniques and water 439 

management 440 

 The potential for rainwater harvesting and irrigation development in SSA is 441 

substantial. Further expansion of rainwater harvesting and irrigation with low cost and 442 

appropriate technologies can contribute to enhancing crop production in smallholder farms 443 

(Rosa et al. 2020; Leal Filho and Trincheria Gomez 2018; Nakawuka et al. 2018). Evidence 444 

from semi-arid environments also suggests that application of appropriate irrigation systems 445 

may have some potential to mitigate GHG emissions (Deng et al. 2018; Sanz-Cobena et al. 446 

2017; Cayuela et al. 2017) following two different approaches reviewed below: I. 447 

Appropriate rainwater harvesting and irrigation techniques and II. Water management in 448 

paddy soils.  449 

 450 

4.2.1 Appropriate rainwater harvesting and irrigation techniques 451 

Different types of rainwater harvesting and irrigation technologies have been 452 

developed and applied in SSA (Altchenko and Villholth 2015; Karpouzoglou and Barron 453 
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2014; Dlie et al. 2013). Results from cropping systems in other regions may be useful to 454 

understand the potential effect of these practices on GHG emissions in SSA. Research carried 455 

out under semiarid conditions in Mediterranean cropping systems suggests that drip irrigation 456 

(both surface and subsurface) can increase the potential to maintain crop yields in the context 457 

of frequent droughts and subsequent water scarcity (Deng et al. 2018; Sanz-Cobena et al. 458 

2017; Aguilera et al. 2013). Although N2O emission factors in drip-irrigated systems (0.51± 459 

0.26%) were higher than those from rain-fed soils (0.27±0.21%) in Mediterranean 460 

ecosystems, drip-irrigated systems have on average 44% lower N2O emissions than sprinkler 461 

systems (Cayuela et al. 2017). Drip-irrigation combined with optimized fertilization (i.e. 462 

fertigation) also showed a reduction of up to 50% of direct N2O emissions compared to 463 

sprinkler systems with non-optimal fertilization rates (Sanz-Cobena et al. 2017). The results 464 

suggest that the development of rainwater harvesting (Rosa et al. 2020) and low-cost drip and 465 

other irrigation technologies (Kahimba et al. 2015) may provide an opportunity for 466 

smallholders in SSA to boost crop yield with relatively small additional costs. Although N2O 467 

emissions could increase by a factor of two or more compared to rain-fed Mediterannean 468 

systems, the overall emissions per unit area—and especially per unit production—appear 469 

likely to remain low in the context of global agriculture. Larger-scale investments in water 470 

harvesting and irrigation infrastructure will be important for increasing crop production and 471 

limiting C losses - or even facilitating C gains - in agricultural soils. To avoid large indirect 472 

GHG emissions associated with irrigation infrastructure and pumping, the location of water 473 

bodies and connection with cropping systems, soil characteristics and landscape morphology 474 

should be taken into account for development of rainwater harvesting and irrigation 475 

technologies.  476 

Significant decreases in crop yields have been reported in semi-arid conditions when 477 
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irrigation is suppressed (e.g. Wriedt et al. 2009; Liu 2009). For instance, in Europe, large 478 

negative impacts on crop yields are expected as water deficit increases (from 4 to 66% 479 

decrease for 50 and 150 mm of water deficit, respectively). In cases of no irrigation, 480 

compared to an optimum water supply, fall in crop yield could be higher than 80% (Wriedt et 481 

al. 2009). In SSA, as crop yields are often damaged by rainfall scarcity and droughts 482 

(Karpouzoglou and Barron 2014; Misra 2014), the effect of irrigation on crop yields is 483 

expected to be substantial (Altchenko and Villholth 2015; Cassman and Grassini 2013; You et 484 

al. 2011). Therefore, although certain irrigation systems could enhance GHG emissions due 485 

to increased rates in GHG production processes mainly associated to rewetting events (e.g. 486 

sprinkler irrigation), the expected growth in crop yields could lead to an overall decrease in 487 

yield-scaled GHG emissions. 488 

 489 

4.2.2 Water management in paddy systems 490 

Rice is cultivated in 40 countries in SSA on nearly 10 million ha (Zenna et al. 2017). 491 

Rice is also the fastest growing food staple in SSA and the second major source of human 492 

calories consumption on the continent (Seck et al. 2012). Water table management in rice 493 

paddies may provide great GHG mitigation potential in SSA. Studies have found that water 494 

management practices such as flooding, intermittent drainage, midseason drainage and 495 

alternate wetting and drying treatment were important factors for rice yield and GHG 496 

emissions in paddy fields (Jiang et al. 2019; Meijide et al. 2017; Linquist et al. 2015). For 497 

instance, mid-season drainage of the water table of a rice paddy in Northern Italy resulted in 498 

lower water use and reduced CH4 emissions with slightly increased N2O fluxes (Meijide et al. 499 

2017). Alternate wetting and drying treatments relative to the flooded control treatment in 500 

paddies in Arkansas, USA reduced yields by <1-13%, but global warming potential (GWP of 501 
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CH4 and N2O emissions) was also reduced by 45-90% (Linquist et al. 2015). In central Japan, 502 

compound treatment with a combination of flooding, midseason drainage and intermittent 503 

drainage treatments produced higher rice grain yield and lower total GHG emissions 504 

compared to continuous flooding or intermittent drainage treatment (Kudo et al. 2014). Other 505 

studies carried out in SSA have shown that improved water management increased rice yields 506 

(e.g., Materu et al. 2018; Mati et al. 2011; Balasubramanian et al. 2007). The reason of 507 

observed higher yields under certain water management practices was attributed to various 508 

mechanisms including altered hormonal levels in rice plants, greater root biomass in deeper 509 

soil and higher root oxidation activity, an enhancement in carbon remobilization from 510 

vegetative tissues to kernels, and reduction of N loss through nitrification and denitrification 511 

in the early vegetative growth stages (Yang et al. 2017; Wang et al. 2016; Chu et al. 2015). 512 

However, a study from rice farms in India suggested that N2O emissions from Indian rice 513 

paddies under intermittent flooding might be 30-45 times higher than under continuous 514 

flooding due to increased denitrification (Kritee et al. 2018). More studies, combining both 515 

GHG and yield measurements, are required, but it appears that careful optimized water 516 

management might increase agricultural yields while reducing GHG emissions in SSA 517 

paddies, particularly under climate change scenarios (van Oort et al. 2017).  518 

 519 

4.3 Nutrient: Improved soil fertility management with combined conventional-520 

conservation agriculture (CCCA) practices 521 

  Nutrient management should consider two different aspects simultaneously. On the 522 

one hand, increasing N fertilizer use is required for resolving problems of depleted soil 523 

fertility, low N fertilization levels and thus low crop productivity in most smallholders of 524 

SSA (van Loon et al. 2019; Ten Berge et al. 2019; Zhang et al. 2015). On the other hand, 525 
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abruptly increasing N2O emissions driven by increasing N fertilizer use in SSA could create 526 

new challenges for managing GHG emissions in the near future (Leitner et al. 2020; 527 

Tongwane and Moeletsi 2018). Combined practices of conservation agriculture with 528 

conventional agriculture (hereafter combined conventional and conservation agriculture; 529 

CCCA) can provide an appropriate solution for nutrient management. Studies assessing GHG 530 

mitigation potentials of CCCA (Table 1) have shown the advantage of combining the high 531 

crop yield rate of conventional agriculture with the sustainable soil management of 532 

conservation agriculture (Gram et al. 2020; Droppelmann et al. 2017; Wu and Ma 2015). 533 

Some global meta-analyses reported GHG mitigation potentials of CCCA (Graham et al. 534 

2017; Charles et al. 2017; Han et al. 2016; Sainju 2016). Nitrous oxide EF of the combined 535 

application of composts and synthetic fertilizers (0.37 %) and crop residues and fertilizers 536 

(0.59 %) were lower than N2O EF of the sole application of synthetic fertilizers (1.34 %) and 537 

the IPCC default N2O EF of 1% for synthetic fertilizers (Charles et al. 2017). Inorganic 538 

fertilizers with straw application and inorganic fertilizers with manure application increased 539 

topsoil organic carbon by 2.0 g kg−1 (19.5%) and 3.5 g kg−1 (36.2%), respectively (Han et al. 540 

2016). In a separate meta-analysis, GHG intensity (net global warming potential per unit crop 541 

yield) was found to be 70 to 87% lower under the improved combined management that 542 

included no-till, crop rotation/perennial crop and reduced N rate than under traditional 543 

management such as conventional till, monocropping/annual crop and recommended N rate 544 

(Sainju 2016). Studies comparing GHG emissions in conventional practices and CCCA in 545 

SSA (Kurgat et al. 2018; Kimaro et al. 2016; Nyamadzawo et al. 2014 a, b) demonstrated that 546 

yield-scaled N2O emissions were 19 to 88% lower in CCCA practices compared to 547 

conventional practices (Table 1). In Mali, pearl millet (Pennisetum glaucum) fields treated 548 

with both manure and inorganic fertilizer urea emitted significantly less N2O than plots 549 
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receiving only urea fertilizer (Dick et al. 2008). The lower N2O emissions in soils amended 550 

with manure were attributed to the initial slow release and immobilization of mineral N and 551 

the consequently diminished pool of N available to be lost as N2O (Nyamadzawo et al. 2014a, 552 

b; Mapanda et al. 2011; Dick et al. 2008). The results suggest that CCCA has a greater 553 

potential to increase soil fertility while avoiding abruptly increasing N2O emissions driven by 554 

increasing N fertilizer use. In addition, improving soil fertility through CCCA could lead to a 555 

consequent increase of crop productivity and decrease of the need to convert additional land 556 

to agriculture, thereby reducing associated GHG emissions (van Loon et al. 2019; Branca et 557 

al. 2013). 558 

 559 

 560 

4.4 Land-Water-Nutrient Nexus (LWNN) approach 561 

 To achieve the goal of enhancing crop production while avoiding abruptly increasing 562 

GHG emissions in smallholder crop farming in SSA, it is strategic to implement 563 

comprehensive approaches resulting in beneficial land, water and nutrient management 564 

interactions (Sheahan and Barrett 2017; Thierfelder et al. 2017; Zougmoré et al. 2014; Branca 565 

et al. 2013). Research conducted in Kenya and Tanzania found that the combination of water 566 

harvesting techniques (ex. tie-ridges) with manure or inorganic fertilizer resulted in higher 567 

maize or cowpea yields than when these factors were applied separately (Githunguri and 568 

Esilaba 2014; Miriti et al. 2011; Itabari et al. 2004). In semi-arid West Africa, stone bunds, zaï 569 

and half-moon techniques combined with the application of organic and/or mineral fertilizers 570 

increased agricultural productivity and carbon sequestration (Zougmoré et al. 2014). 571 

Differences in the current status of land, water and nutrient depending on the climate and land 572 

use history in different regions may exist. Accordingly, different schemes are needed to deal 573 
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with each of the land, water, and nutrient components and their nexus (Fig. 5).   574 

A simplified hypothetical example of a LWNN approach would be based on applying 575 

suitable agroforestry practices combined with CCCA and appropriate rainwater harvesting 576 

and irrigation technologies in degraded lands. This approach can restore soil fertility, produce 577 

food and enhance carbon sequestration; also improving soil quality, including soil organic 578 

matter, a critical factor for increasing yield response to N input in SSA (Maman et al. 2018; 579 

Kihara et al. 2016; Jayne and Rashid 2013; Tittonell and Giller 2013). Since irrigation or 580 

CCCA practices can increase yields, this approach could also help to limit N2O emissions due 581 

to an increased plant demand and uptake for N, which would reduce its availability for 582 

conversion to N2O (Kim and Giltrap 2017). Therefore, through the LWNN approach, it may 583 

be possible to enhance crop production and GHG mitigation. 584 

 In order to evaluate co-benefits and trade-offs and identify optimized LWNN 585 

schemes, measures accounting for both crop production and GHG mitigation are necessary. 586 

In many previous studies, agricultural yield was not well accounted for in GHG budgets and 587 

mitigation strategies (Kim and Giltrap 2017; Rosenstock et al. 2013; Linquist et al. 2012). To 588 

address the issue, studies use the concept of yield-scaled GHG emissions (GHG emissions 589 

per unit agricultural yield) to account for both crop yields and GHG emissions in various 590 

regions including SSA (Ortiz-Gonzalo et al. 2017; Kim and Giltrap 2017; Sainju 2016; Kim 591 

et al. 2016 c; Kimaro et al. 2016). For instance, in maize and winter wheat (Triticum aestivum 592 

L.) fields in Zimbabwe, yield-scaled N2O emissions was used to compare the application of 593 

inorganic fertilizer (ammonium nitrate, NH4NO3-N) with manure and sole application of 594 

inorganic fertilizer (Nyamadzawo et al. 2014a). These studies suggest that yield-scaled GHG 595 

emissions may be an alternative means to account for food security and GHG mitigation 596 
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(Kim and Giltrap 2017; Sainju 2016; van Kessel et al. 2013). Therefore, instead of separately 597 

considering agricultural yield and GHG emissions, yield-scaled GHG emissions may identify 598 

optimal LWNN schemes. 599 

 600 

4. 5 Barriers and their potential solutions for enhancing crop production and GHG 601 

mitigation in smallholder farming systems in SSA 602 

 Inextricably linked, technical, economic and policy barriers to adopting integrated 603 

approaches (e.g. LWNN) for enhancing crop production and GHG mitigation may exist. 604 

From the technical perspective, the most challenging barrier for smallholder farmers may be 605 

the lack of relevant knowledge and experience in applying agroforestry (Mbow et al. 2014; 606 

Rioux 2012; Place et al. 2012), rainwater harvesting, irrigation and water management (Leal 607 

Filho and Trincheria Gomez 2018; Nakawuka et al. 2017) and soil fertility management 608 

practices (Brown et al. 2018 b; Masso et al. 2017; Vanlauwe et al. 2015). Technology transfer 609 

remains a challenge in the smallholder context. Limited institutional and human capacity or 610 

infrastructure supporting extension programs generally exist in SSA (Brown et al. 2018 a; 611 

Wheeler et al. 2017; Ajayi et al. 2009). From an economic perspective, initial financial and 612 

labor investments can be very high, representing a critical barrier to adopting new methods 613 

for smallholder farmers. Returns on investment are not immediate since trees may take years 614 

to grow and bear benefits (e.g., timber, firewood, fruit, etc.). It also takes time for farmers to 615 

realize that after adopting these new approaches, their lands demonstrate improved soil 616 

fertility, which in turn brings significant increases to yields (Place et al. 2012; Schlecht et al. 617 

2006). Investment in new technologies and capacity building are costly and need to be 618 

addressed by strong policy. From a policy perspective, land tenure questions may introduce 619 
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an additional challenge, as there may be reduced incentives for farmers to make the necessary 620 

investments in labor and finances if they cannot rely on the future returns of their investments 621 

(Higgins et al. 2018; Holden et al. 2014). The intersectional nature of integrated practices for 622 

enhancing crop production and GHG mitigation may introduce structural challenges to the 623 

development of national policies, since intersectional planning and resource sharing are very 624 

rare at the national level in SSA (Place et al. 2012). Additionally, with limited resources, 625 

governments must juggle multiple priorities including health, education, and the development 626 

of clean water and road infrastructure, which may create a particular challenge for 627 

introducing practices whose primary purpose is GHG mitigation. Furthermore, GHG 628 

mitigation strategies need to be planned by national policies in response to international 629 

commitments made by the Intergovernmental Panel on Climate Change, like the Paris 630 

Agreement (UNFCC 2015). 631 

 These challenges are far from trivial, but various efforts may improve the chance of 632 

smallholder farmers adopting the LWNN approach. Successful technologies will be those 633 

with low barriers to entry, reliable returns on investment and appropriate and appealing 634 

design and implementation. Taking advantage of locally available knowledge, experience and 635 

resources to develop appropriate technologies and disseminating new information and 636 

technologies through the farmer to farmer approach may improve rates of adoption and 637 

technology transfer (Brown et al. 2018; Kiptot and Franzel 2015; Kiptot et al. 2006). Lessons 638 

must be taken from past successes and failures to develop socioeconomic incentives for 639 

adoption and maintenance of sustainable agricultural technologies (Long et al. 2016; Arslan 640 

et al. 2014). Micro-financing tied to carbon trading schemes such as REDD+ can be used to 641 

support investment and development among smallholders (Gizachew et al. 2017; Mbow et al. 642 

2014; Minang et al. 2014). Policy for smallholder farmers to secure land tenure and 643 
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encourage long-term investment is urgently needed. 644 

 645 

5 Conclusion 646 

 Smallholder farmers in SSA have commonly practiced expansion of agricultural land, 647 

increase of cropping intensity, and development of water harvesting and irrigation to enhance 648 

crop production. However, these practices may result in creating trade-offs between 649 

enhancing crop production and GHG mitigation. To enhance crop production while avoiding 650 

abruptly increasing GHG emissions, interrelated land, water, and nutrient management 651 

strategies such as those offered by the LWNN approach require consideration. While 652 

technical, economic and policy barriers may hinder implementing the LWNN approach on the 653 

ground, these may be overcome by developing appropriate technologies, disseminating 654 

information and technologies through the farmer to farmer approach, applying small spatial 655 

and long-term temporal scale trials and developing specific policies for smallholder farmers. 656 

Throughout this study, serious data gaps were identified in the effects of different land, water 657 

and nutrient management strategies on SOC and GHG emissions. The effect of rainwater 658 

harvesting and irrigation on SOC and GHG emissions has especially not been well studied 659 

and deserves further investigation. The data gaps hinder further in-depth assessments of the 660 

trade-offs between enhancing crop production and mitigating GHG emissions caused by 661 

smallholder farmers' past and future practices. Further studies are urgently needed for 662 

addressing these data gaps and developing viable options for applying the LWNN approach 663 

proposed herein. 664 

 665 
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Figure captions 1474 

Fig. 1. Agricultural production systems in sub-Saharan Africa are largely based on 1475 

smallholder farming systems. Typical example of smallholder farms with small crop fields 1476 

located nearby homesteads in western Ethiopia (photo courtesy: Dong-Gill Kim). 1477 

 1478 

Fig. 2. Changes of crop productivity in Africa, North America, Europe and China in 1961 to 1479 

2009 (Data source: FAO STAT). The crop productivity in Africa is very low compared to 1480 

other regions. 1481 

 1482 

Fig. 3. Changes of nitrogen (N) fertilizer application in Africa, North America, Europe and 1483 

China in 1961 to 2009 (Data source: FAO STAT). The amount of N fertilizer application in 1484 

Africa is very low compared to other regions. 1485 

 1486 

Fig. 4. Annual growth rate from 2015 to 2020 (determined as compound annual growth rate) 1487 

of synthetic fertilizer (nitrogen, phosphate and potash fertilizers) demand in different regions 1488 

(Data source: FAO 2017). 1489 

 1490 

Fig. 5. Land-Water-Nutrient Nexus (LWNN) approach to enhance crop yield and mitigate 1491 

greenhouse gas (GHG) emission in smallholder crop farming systems in sub-Saharan Africa. 1492 

↑: increase and ↓: decrease (Produced by authors).    1493 

  1494 
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smallholder farming systems. Typical example of smallholder farms with small crop fields 1497 

located nearby homesteads in western Ethiopia (photo courtesy: Dong-Gill Kim). 1498 
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 1500 

Fig. 2 Changes of crop productivity in Africa, North America, Europe and China in 1961 to 1501 

2009 (Data source: FAO STAT). The crop productivity in Africa is very low compared to 1502 

other regions. 1503 
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 1505 

Fig. 3 Changes of nitrogen (N) fertilizer application in Africa, North America, Europe and 1506 

China in 1961 to 2009 (Data source: FAO STAT). The amount of N fertilizer application in 1507 

Africa is very low compared to other regions. 1508 
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 1518 

Fig. 4 Annual growth rate from 2015 to 2020 (determined as compound annual growth rate) 1519 

of synthetic fertilizer (nitrogen, phosphate and potash fertilizers) demand in different regions 1520 

in 2015 to 2020 (Data source: FAO 2017). 1521 
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 1523 

 1524 

Fig. 5 Land-Water-Nutrient Nexus (LWNN) approach to enhance crop yield and mitigate 1525 

greenhouse gas (GHG) emission in smallholder crop farming systems in sub-Saharan Africa. 1526 

↑: increase and ↓: decrease (Produced by authors).   1527 
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Table 1. Summary of comparing conventional agriculture practices and combined conventional-conservation agriculture (CCCA) 1538 

practice in sub-Saharan Africa 1539 

No Country Crop type 
Conventional 

practice 
CCCA practice Effects of CCCA Reference 

1 Zimbabwe 
Maize (Zea 

mays L.) 

N fertilizer 

(NH4NO3-N; 

120 kg N ha−1) 

N fertilizer (NH4NO3-N; 60 kg N ha−1) 

& composted manure (60 kg N ha−1) 

Yield-scaled N2O emission mitigation 

(48 %) 

Mapanda et al. 

2011 

2 Zimbabwe 

Rape 

(Brassica 

napus) 

N fertilizer 

(NH4NO3-N; 

120 kg N ha−1) 

N fertilizer (NH4NO3-N; 60 kg N ha−1) 

& manure (65 kg N ha−1) 

Yield-scaled N2O emission mitigation 

(88 %) 

Nyamadzawo et al. 

2014a 

3 Zimbabwe 
Maize (Zea 

mays L.) 

N fertilizer 

(NH4NO3-N; 

120 kg N ha−1) 

N fertilizer (NH4NO3-N; 60 kg N ha−1) 

& manure (60 kg N ha−1) 

Yield-scaled N2O emission mitigation 

(19 %) 

Nyamadzawo et al. 

2014b 

4 Zimbabwe - 

N fertilizer 

(urea, 120 kg 

N ha−1) 

N fertilizer (urea, 120 kg N ha−1) & 

crop residues (Maize, 4 Mg C ha−1) 
N2O mitigation (56 %) Gentile et al. 2008 

5 Zimbabwe - 

N fertilizer 

(urea, 120 kg 

N ha−1) 

N fertilizer (urea, 120 kg N ha−1) & 

crop residues (Maize, 4 Mg C ha−1) 
N2O mitigation (49 %) Gentile et al. 2008 

6 Ghana - 

N fertilizer 

(urea, 120 kg 

N ha−1) 

N fertilizer (urea, 120 kg N ha−1) & 

crop residues (Maize, 4 Mg C ha−1) 
N2O mitigation (103 %) Gentile et al. 2008 

7 Kenya - 

N fertilizer 

(urea, 120 kg 

N ha−1) 

N fertilizer (urea, 120 kg N ha−1) & 

crop residues (Maize, 4 Mg C ha−1) 
N2O mitigation (72 %) Gentile et al. 2008 

8 Kenya Vegetables 

N fertilizer 

(diammonium 

Phosphate; 40 

kg N ha−1) 

N fertilizer (diammonium 

Phosphate; 20 kg N ha−1) & manure 

(15 kg N ha−1) 

N2O emissions intensity (N2OI) 

mitigation (50 %) 

N2O emissions economic intensity 

(N2OEI) mitigation (45 %) 

Kurgat et al. 2018 

9 Tanzania 
Maize (Zea 

mays L.) 

Conventional 

cultivation 

Reduced tillage & N fertilizer (urea, 

100 kg N ha−1) 

Yield-scaled global warming potential 

(GWP) mitigation (62 to 71 %)  
Kimaro et al. 2016 

10 Mali 
Pearl millet 

(Pennisetum 

N fertilizer 

(urea, 50 kg 

N fertilizer (urea, 50 kg ha−1) & 

manure (8000 kg dry matter ha−1) 

Yield-scaled N2O emission mitigation 

(52 %) 
Dick et al. 2008 
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