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SUMMARY  
The Global Climate Observing System (GCOS) included soil moisture in the list of Essential 

Climate Variables (ECVs) to express its important role in Earth’s water, energy and carbon cycle. 

Soil moisture has a major impact on agriculture, land surface hydrology, weather, and climate 

forecasting. This document is a community-based effort to provide recommendations on good 

practices for the validation of global to regional soil moisture products.  

Definitions are given and metrics to adequately describe the quality of soil moisture products are 

presented. Spaceborne active and passive microwave sensors are listed with their characteristics, 

and the typical soil moisture retrieval methods are explained, including dielectric mixing models 

and optical methods. Spatial scaling, root zone soil moisture estimation, and operational 

implementations are addressed, as these issues continue to gain more and more importance. 

Standard and advanced in situ measurement techniques are described as well as sensor 

calibration, spatial representativity, sampling strategies, and the benefit of airborne campaigns. 

The community has agreed upon the utilization of the International Soil Moisture Network (ISMN) 

as the main online repository for in situ soil moisture measurements. Different validation methods 

such as ground-based validation, satellite product intercomparison, and time series analyses are 

presented. We provide strategies to evaluate the long-term quality of soil moisture products, and 

give advice on how to handle typical temporal and spatial-scale mismatches and how to effectively 

report validation results. Moreover, the benefit of blind tests is discussed to gain objective 

validation results. 

We encourage data providers, scientists and practitioners to use this Soil Moisture Product 

Validation Good Practices Protocol to provide, analyze, and improve high quality Earth 

Observation results. 
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1 INTRODUCTION 

1.1 Importance of soil moisture 
The role of soil moisture in the water, energy and carbon cycle of the Earth cannot be understated. 

Soil moisture has a major impact on agriculture, land surface hydrology, weather and climate 

forecasting. Soil moisture is responsible for the partitioning of solar energy into latent and sensible 

heat flux at the Earth’s surface, which is a key element of the energy cycle. Soil moisture also 

partitions precipitation into soil water, ground water, and surface runoff. Thus, land surface 

hydrology is critically concerned with monitoring and modeling surface soil moisture as it 

influences infiltration and therefore land surface runoff (Figure 1). Soil moisture is a primary 

concern for agriculture where it is a necessary element for growth and also the mechanism for 

movement of nutrients towards crops, impacting yield and productivity. Weather and climate 

forecasting can see great advances in skill with the incorporation of soil moisture state into models. 

 

Figure 1: Earth's water cycle. Credit: ESA 

Remote sensing of soil moisture is challenging, as the soil matrix masks the presence of water in 

many wavelengths. A few techniques have been developed, however, using thermal, microwave, 

visible/near-infrared frequencies as well as gravity anomalies to characterize and understand 

subsurface water status. This protocol will focus on the first three, as these tend to respond to the 

near surface soil moisture (soil surface to vadose zone) and not on groundwater status.  

The maturity of soil moisture as an observable from space has motivated the Global Climate 

Observing System (GCOS) to include soil moisture in the list of 50 Essential Climate Variables 

(ECVs) to support the work of the United Nations Framework Convention on Climate Change 

(UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) (Dorigo et al., 2015). 

1.2 The role of CEOS WGCV 
The Committee on Earth Observation Satellites (CEOS) has the goal of ensuring international 

coordination of civil space-based Earth observation programs, promoting exchange of data to 

optimize societal benefit and to inform decision making for securing a prosperous and sustainable 
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future for humankind. The mission of the Working Group on Calibration and Validation (WGCV) is 

to ensure the accuracy and quality of Earth observation data and products and to provide a forum 

for the exchange of knowledge regarding calibration and validation science. For soil moisture, 

calibration refers to the quantitative assessment and definition of a system response to known 

inputs. This can include radiometric responses to land surface, ocean, and sky conditions. 

Validation is the independent assessment of the quality of the data product derived from the 

system outputs with regard to known values of soil moisture collected by following an established 

protocol and standard. The subgroup on Land Product Validation (LPV) focuses on a number of 

land surface parameters and each has the following three goals: 

1. Development of protocols for the validation of satellite-derived products and defining 

guidelines for reporting results, 

2. Coordination and implementation of global validation activities, and 

3. Provision of the interface between the community, CEOS, and other international 

structures. 

The Soil Moisture Subgroup has been a thriving community with international cooperation related 

to validation activities and collaboration between remote sensing scientists and validation 

scientists. As an outcome, Gruber et al. (2020) recently published an important milestone about 

good practices guidelines for the validation of global coarse-scale satellite soil moisture products, 

which is a basis for many sections in this document. Community activities have progressed to the 

stage where a documentation of good practices is now possible. This document is to serve as the 

protocol of good practices of the community for the validation of remotely sensed satellite-based 

soil moisture estimates.  

1.3 Soil moisture requirements 
Determination of soil moisture requirements for various remote sensing platforms is a result of a 

combination of science and application requirements and platform capabilities. As missions have 

evolved, resolution and accuracy have improved. Table 1 lists the product traits and accuracy 

requirements of global soil moisture products. 

Table 1: Examples of soil moisture product traits and requirements.  

Mission Time Frame Repeat 

Cycle 

Wavelength Product 

Resolutions 

(grid 

posting) 

Sensor 

Resolution  

Accuracy 

Requirement 

AMSR-E, 

AMSR2 

2002-2011 

2012-present 

2-3 days C, X 25 km ~40 km 

(-3dB 

footprint) 

0.05 m3/m3 

SMOS 2009-present 2-3 days L 15 km ~40 km 

(-3dB 

0.04 m3/m3 
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footprint) 

ASCAT 2007-present ~daily 

(since 

Metop-C) 

C 12.5 km ~25 km * 

SMAP 2015-present 2-3 days L 9 km/36 km ~40 km 

(-3dB 

footprint) 

0.04 m3/m3 

Aquarius 2011-2015 7 days L ~100 km ~100 km 

(-3dB 

footprint) 

* 

* indicates no official requirement for the soil moisture product. For ASCAT H-SAF defined an accuracy 

requirement in terms of the SNR: threshold 0 dB, target 3 dB and optimum 6 dB. 

Soil moisture product requirements strongly depend on the target application. The Global 

Observing System for Climate (GCOS) has established the measurement uncertainty for soil 

moisture as 0.04 m3/m3 and a long-term decadal stability criterion of 0.1 m3/m3/a (GCOS-200, 

2016). This determination was a result of a survey of the community and consideration of different 

requirements for decision-making and monitoring activities. Satellite missions use this requirement 

as a baseline, but also incorporate instrument capabilities and land surface parameters such as 

vegetation biomass to establish their own requirements. 

1.4 Rationale for requirements for climate applications 
There are a variety of ways to represent soil moisture, saturation, and matrix potential. The 

interchange between the different variables often depends on the local land surface 

characteristics. This makes large scale monitoring and interpretation difficult without consideration 

of a multitude of other parameters. Therefore, a singular baseline variable, volumetric soil 

moisture, has been established as the reference point. Long-term soil moisture quantification is 

required for monitoring and trend analysis related to hydrology and agriculture. Without an 

understanding of the climatic norms, it is difficult to put climate trends into perspective. High spatial 

resolution as well as high temporal resolution are necessary as these are the scales of soil 

moisture and precipitation activity within a heterogeneous landscape. 

1.5 Supporting standardization programs 
When Earth Observation (EO) products are to be used for societal benefit, they need to be 

associated with a quality metric. The fundamental principle of the Quality Assurance Framework 

for Earth Observation (QA4EO) - "that all EO data and derived products have associated with 

them a documented and fully traceable quality indicator (QI)" - addresses this core requirement 

and is universally applicable to all disciplines (Group on Earth Observation, 2010). QA4EO seeks 

to ensure this requirement is implemented in a harmonious and consistent manner throughout all 
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EO communities to the benefit of all stakeholders. The main principle is that data and derived 

products shall have associated with them a fully traceable indicator of their quality: 

 A quality indicator shall provide sufficient information to allow all users to readily evaluate 

the “fitness for purpose” of the data or derived product, 

 And traceability means that a quality indicator shall be based on a documented and 

quantifiable assessment of evidence demonstrating the level of traceability to 

internationally agreed upon reference standards. 

Specific for soil moisture, the Quality Assurance for Soil Moisture (QA4SM, 

https://qa4sm.eodc.eu/) service has been established, which provides the user with an easy-to-

use interface for comparing satellite soil moisture data against land surface models and in situ 

data stored in the International Soil Moisture Network (ISMN). The overall aim is to bring together 

methodologies and protocols used for the validation and quality control of soil moisture data 

products and provide users with traceable validation results. This includes the soil moisture good 

practices document at hand as well as the publication by Gruber et al. (2020). 

1.6 Goal of this document 
The goal of this document is to identify and promote good practices for the validation of global 

(and regional) satellite soil moisture products. The document specifically addresses uncertainty 

assessment against reference data sets. The latter should be traceable to in situ measurements 

of known accuracy, and the assessments should be augmented with metrics of precision derived 

from ensembles of the products themselves. The development of validation protocols is also 

related to the GCOS Action Items T15-T18 to make available global soil moisture products and a 

reference data repository (GCOS-200, 2016). 

2 DEFINITIONS 

2.1 Definition of soil moisture 
Soil moisture (or soil water content) may be expressed on a gravimetric (𝜃𝑚) or volumetric (𝜃𝑣) 

basis and represents the amount of water present in the soil at a given matric potential. The matric 

potential (𝜓𝑚) is synonymous with the combined capillary and adsorptive surface forces that hold 

water within the solid soil matrix and are uniquely related to soil moisture under hydrostatic 

conditions. The highly nonlinear relationship between soil moisture and 𝜓𝑚 is termed soil water 

characteristic and exhibits a very distinctive shape for each individual soil.  

Gravimetric soil moisture 𝜃𝑚 [kg*kg-1], which can be directly determined by oven-drying a wet bulk 

soil sample at 105°C, is defined as the ratio of the mass of water within the soil sample to the 

mass of the oven-dry solid material. Volumetric soil moisture 𝜃𝑣 [m3*m-3], defined as the volume 

of water within a given soil volume, may be expressed in terms of: 

𝜃𝑣 = 𝜃𝑚 (
𝜌𝑏

𝜌𝑤
) (1) 

where 𝜌𝑏 is the dry bulk density [kg*m-3] of the soil, and 𝜌𝑤 is the density of water [kg*m-3]. 

Saturated water content 𝜃𝑠 exists when all pores are filled with water. In some instances, it is 

advantageous to express soil moisture in terms of relative saturation, 𝑆𝑒 = 𝜃𝑣/𝜃𝑠, which is the 

volumetric soil moisture normalized to 𝜃𝑠 (i.e. the pore volume). In theory, 𝑆𝑒 ranges from zero, 

https://qa4sm.eodc.eu/
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when the soil is completely dry, to 1, when all soil pores are completely filled with water. In practice, 

however, it is not possible to attain completely dry or completely saturated conditions. There is 

always a residual moisture content 𝜃𝑟 present under dry conditions, and it is also virtually 

impossible to completely de-air soil as air bubbles remain entrapped in dead-end pores and 

cavitation nuclei are held tightly in crevices of rough particle surfaces. To account for 𝜃𝑟, 𝑆𝑒 is 

commonly defined as: 

𝑆𝑒 =
𝜃𝑣 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟

 (2) 

𝑆𝑒 ranges from 0 to 1, regardless of soil texture (for further information see Babaeian et al., 2019).  

2.2 Definitions of associated physical parameters 
The spectral signature of a material is defined in the solar-reflective region by its reflectance as a 

function of wavelength, measured at an appropriate spectral resolution. In other spectral regions, 

signatures of interest are temperature and emissivity (TIR, passive microwave) and surface 

roughness (radar) (Schowengerdt, 2007). 

2.2.1 Brightness temperature 

In passive microwave radiometry, the brightness temperature (TB) is a common measurement that 

describes the amount of natural microwave radiation or thermal emission by man-made and 

natural media. The intensity of this radiation (for natural media) depends on the dielectric 

properties and temperature of the media. Because of its insensitivity to cloud cover and solar 

illumination, low frequency TB observations can provide all-weather as well as day-and-night 

remote sensing capability. For the last few decades, TB observations by Earth-orbiting radiometers 

have successfully enabled frequent, global estimation of many important variables for remote 

sensing of the land, ocean, atmosphere, and cryosphere. 

Passive microwave remote sensing of soil moisture is a prime illustration of how TB observations 

can be used to infer the amount of water in soils in terrestrial hydrological science and applications. 

At low frequencies, wet soils (e.g., those with ~40% water by volume) and dry soils (e.g., those 

with ~5% water by volume) exhibit a large contrast in dielectric constant (real part of dielectric 

constant of ~80 for wet soils vs. ~3.5 for dry soils). According to electromagnetic theory, this 

twenty-fold difference in soil dielectric constant between wet and dry soils translates to a large TB 

dynamic range (~90 K for bare soils with a smooth surface at a temperature of 300 K, for example). 

Given the typical radiometric uncertainty of ~1 K or better for modern-day radiometers, this 90 K 

TB dynamic range between wet and dry soils provides a very favorable signal-to-noise ratio (SNR) 

for accurate estimation of soil moisture. 

However, there are many factors that can degrade this TB SNR for soil moisture remote sensing. 

For example, surface roughness introduces additional microwave emission not contributed by soil 

moisture. Without correction and isolation of the microwave emission caused by surface 

roughness, soil surface roughness would lead to an overestimation of soil moisture (i.e., higher 

estimated soil moisture than reality). Aboveground vegetation, on the other hand, poses another 

confounding factor in that it produces its own microwave emission and also attenuates microwave 

emission from the soils underneath through scattering and absorption within the vegetation 

canopy. Left unaccounted for, vegetation would lead to an underestimation of soil moisture (i.e., 

lower estimated soil moisture than reality). Depending on the sensing frequencies, 
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upwelling/downwelling atmospheric radiation and ionospheric effects (e.g. Faraday rotation) would 

also reduce the available TB SNR, leading to further degradation in soil moisture retrieval accuracy. 

Despite the potential uncertainties and degradation in SNR caused by these confounding factors, 

some of their impacts can be more readily mitigated with TB observations acquired at lower 

frequencies such as L-band (1.4 GHz) than, for example, at C-band (6.9 GHz) or X-band (10.7 

GHz). At L-band frequencies, the impacts of surface roughness, low-to-moderate vegetation (up 

to at least 5 kg/m2 of vegetation water content), atmospheric attenuation, and ionospheric effects 

are either more easily correctable or far less dominant than the emission signal due to soil 

moisture. Given these benefits and its status as a protected frequency band allocated for Earth 

remote sensing by international agreements, L-band is considered the most suitable frequency 

range for soil moisture remote sensing, and has been used by soil moisture missions in the past 

decade (e.g., Aquarius, SMOS, and SMAP). State-of-the-art L-band soil moisture retrieval 

algorithms from some of these missions have been validated to demonstrate a retrieval accuracy 

of the unbiased RMSD of less than 0.04 m3/m3 and a correlation of greater than 0.80 from 

multiyear in situ ground truth comparisons. 

The future of L-band radiometry for soil moisture remote sensing hinges on the continued usability 

of its allotted frequency spectrum, which in turn calls for self-enforcement on responsible spectrum 

usage among nations. Although the threat of radio frequency interference from ground-based 

ubiquitous communications infrastructures on protected spectra contamination is real, the 

capability for timely monitoring and reporting of unintentional man-made emission sources is 

essential as a preemptive measure to maintaining the science enabled by observations acquired 

in this segment of the electromagnetic spectrum. 

2.2.2 Backscatter 

In radar-based remote sensing systems, targets scatter a part of the electromagnetic waves 

transmitted by a monostatic active microwave sensor back to the receiver part of the sensor. 

Radar cross section, expressed in m2, is used as a measure to characterize the power scattered 

by the target into a given direction. It is normalized so that it is independent of the level of the 

incident wave. The backscattering coefficient σ0 is used to characterize the backscatter properties 

of a surface type target. It is defined as the scattering cross section per surface area (unit is m2/m2), 

and it depends on radar observation parameters such as the frequency, the polarization, and the 

incidence angle, and surface parameters including the roughness of the surface and dielectric 

properties of the target. 

2.2.3 Reflectance and radiance 

The process of reflection of solar radiation from the Earth’s surface is quantified by reflectance 

(ρ), which is defined as the ratio of the reflected radiant flux to incident radiant energy under 

specified conditions of irradiation. Spectral reflectance is defined as: 

𝜌(𝜆) =
𝑃𝜆

𝑃𝑂𝜆
 (3) 

where 𝑃𝜆 is the spectral concentration of the radiant power reflected by the medium and 𝑃𝑂𝜆 is 

the spectral concentration of radiant power incident on the medium (Choudhury, 2014). 

Spectral radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, 

per unit solid angle per unit projected area. It is the directional quantification of energy Le,Ω,ν of a 
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surface per unit frequency or wavelength and is measured by watts per steradian per square meter 

per hertz [W⋅sr− 1⋅m− 2⋅Hz− 1]. Radiance is used to characterize diffuse emission and reflection of 

electromagnetic radiation. Sometimes spectral radiance is also confusingly called "spectral 

intensity" (Schowengerdt, 2007).  

2.3 Definition of spatial, temporal and geometrical aspects 
As soil moisture is very heterogeneous in space and time (Vereecken et al., 2014) special care is 

needed to describe this variability by remote or in situ observations. The difference in scale 

between point in situ measurements and coarse satellite data retrievals requires a scale change 

during validation. Western and Bloschl (1999) and Bloschl and Sivapalan (1995) stated that each 

observation type consists of a scale triplet, consisting of spacing, extent, and support (Figure 2). 

All three components of the scale triplet are needed to uniquely specify the space dimensions of 

a measurement.  

 

 

Figure 2: The scale triplet (spacing, extent, and support, Western and Blöschl, 1999). 

2.3.1 Spacing  

Spacing refers to the distance between samples. For in situ networks, spacing is the distance 

between its different locations. However, for remote sensing products, it is not that obvious, as the 

spacing between individual raw measurements can be different from the spacing of a gridded 

product. Also, the often synonymously used term spatial resolution is not unique. For microwave 

measurements, spacing indicates the distance between the individual footprints. However, for 

gridded products, the term posting was established to clarify that a certain product has been 

posted on a discrete grid, which is not necessarily its original frame and often implies that some 

resampling of the raw data has occurred. Using the SMAP 9 km product as an example, 9 km is 

the posting of the final product grid after an optimal interpolation, but it is not the spatial resolution 

or the spacing of the raw data. The spacing of the SMAP radiometer footprints is ~40 km, which 

is quite different from the 9 km posting. 

2.3.2 Extent scale 

Extent scale refers to the overall coverage of the measurements. For spaceborne records it could 

refer to the swath during a satellite overpass, but also to the total coverage of a mission, i.e. global 

in terms of near-polar orbiting satellites (e.g., ~85°N to 85°S, typical for soil moisture) and the 

world “disc” of geostationary satellites (see also new mission concepts such as CIMR, section 

3.5.12). 
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2.3.3 Support scale 

Support scale refers to the integration volume or area of an observation. E.g., for in situ TDR 

measurements, it is just a few cm3 of a soil, whereas for microwave observations it refers to the 

antenna footprint characteristics. A radiometer footprint is defined by the angular region over which 

the antenna power pattern is less than 3 dB down from its value at the beam center. It depends 

on the angular width of the antenna main lobe, frequency, size of antenna, distance to the surface, 

incidence angle, and processing techniques. For instance, the SMAP radiometer orbits at 685 km 

above Earth’s surface and has a 6 m diameter reflector antenna that provides a real aperture 

support scale around 40 km on the surface. On the other hand, SMOS employs synthetic aperture 

radiometers where the data processing involves inverting the visibility measurements. Its native 

support scale is also in the similar spatial scale of ~40 km. In the case of coherent sensing systems 

such as radars, the support scale could be improved substantially by synthesizing the aperture 

along the orbit of the satellite. A support scale of tens of meters could be reached at the expense 

of speckle noise.  

In theory, the support scale does not only refer to two dimensional information, but also to the third 

dimension of a measurement volume or sensing depth. Here, in regard to soil moisture and 

especially in microwave remote sensing, the vertical penetration depth is of very high importance 

for the interpretation of soil moisture measurements and is therefore discussed in a separate 

section (2.3.5). 

2.3.4 Temporal representation 

The scale triplet mentioned above can be interpreted in both the spatial and temporal domains. 

However, in situ measurements and EO data are acquired in specific time intervals. Most of polar 

orbiting sun-synchronous satellites have ascending and descending nodes where their orbits 

cross the Equator either northbound (ascending node) or southbound (descending node), 

resulting in morning and evening observations. For example, both SMOS and SMAP have 6 a.m./6 

p.m. sun-synchronous orbits, although their orbits criss-cross: SMOS has a 6 am ascending node 

while SMAP has a 6 am descending node. Retrieval of soil moisture has tended to focus on the 

brightness temperatures from 6 a.m. overpasses since thermal equilibrium and reduced 

temperature gradient conditions in near surface soil layers and vegetation is conducive to less 

sub-pixel heterogeneity and greatly simplifies the retrieval process at that time of day; however, 

experience with both SMOS and SMAP has led to soil moisture retrievals at 6 p.m. with only a 

small decrease in retrieval accuracy. Due to their large instrument swath (~1000 km), both SMOS 

and SMAP are able to provide global coverage of the Earth in 3 days at the Equator and in ~2 

days at higher latitudes using just the 6 a.m. retrievals, and 1-2 days using both 6 a.m. and 6 p.m. 

retrievals.  

2.3.5 Penetration depth 

All natural materials have a complex dielectric constant 휀 = 휀′ − 𝑗휀′′. In general, the dielectric 

constant of a soil volume depends on several factors such as soil moisture content, bulk density, 

texture, temperature, and salinity. Among these quantities, soil moisture is a key factor affecting 

the dielectric constant. The complex dielectric constant also slowly varies with respect to the 

measurement frequency used. The imaginary part of the dielectric constant corresponds to the 

ability of the medium to absorb the wave where the medium converts wave energy into heat due 

to the conduction. 

Penetration depth corresponds to the depth at which the power of a propagating wave decreases 

by a factor of 𝑒−1  ≈  0.37. This distance describes how deep an electromagnetic wave can 
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penetrate into the soil. A convenient way of expressing the penetration depth for low-loss media 

(휀′′ ≪ 휀′) is 

𝛿𝑝 =
𝜆√휀′

2Π휀′′
 

(4) 

where 𝜆 is the free-space wavelength. The penetration depth varies linearly with wavelength. For 

example, a P-band signal (~80 cm wavelength) penetrates to a deeper depth than L-band (~21 

cm wavelength), but the exact depth is variable depending on the composition of the soil and the 

moisture content. The contributing depth of P-band can be down to a depth of ~20 cm. 

2.4 Definition of validation metrics 
The deviation of a single measurement (estimate) from the true value of the quantity being 

measured (estimated), which is always unknown, is described by the term error. The term 

uncertainty refers to the probability distribution underlying an error, which is the actual quantity of 

interest for validation (Gruber et al., 2020). In contrast, the terms trueness, precision, and accuracy 

are popular antonyms for systematic errors, random errors, and the combined systematic plus 

random errors, respectively (Gruber et al., 2020; JCGM, 2008) (JCGM, 2012). 

Satellite soil moisture retrievals are subject to errors from a variety of sources (Gruber et al., 2020). 

The error distribution can vary in space and time. It is often more convenient to summarize the 

multi-dimensional error distribution using a single number, termed a ‘validation metric’. Since 

validation metrics necessarily do not contain all information in the error distribution, no single 

validation metric is capable of fully describing the error distribution. It is, therefore, recommended 

to estimate several complementary validation metrics. For details about the theoretical 

background and a review of state-of-the-art methodologies for estimating errors in soil moisture 

data sets, see Gruber et al. (2020). A conventional error model for soil moisture observations is: 

𝜃 = 𝛼 + 𝛽𝜃 + 휀𝜃 (5) 

where 𝜃 is the true soil moisture, 𝜃 is the estimated soil moisture, 𝛼 is a constant additive bias, 𝛽is 

a constant multiplicative bias and 휀 is a zero mean random variable. Under this model, errors are 

either ‘systematic’ (𝛼, 𝛽) or ‘random’ (휀𝜃). While none of the following sections require the 

assumption that 휀 is Gaussian, it can be both a useful and reasonable simplification to make. A 

Gaussian random variable is defined exactly by its first two moments, i.e., its mean and variance. 

Other distributions have non-zero higher-order moments. However, in practice, it can be difficult 

to estimate higher-order moments from finite samples due to rapidly increasing sampling error 

with increasing order of moments. This means that, for standard applications and sample sizes, 

estimates of higher-order moments are often statistically indistinguishable from zero; in this case, 

the error distribution is statistically indistinguishable from Gaussian. 

In this section, four common validation metrics are discussed. First, the root mean squared 

difference (RMSD) and unbiased RMSD (ubRMSD) are introduced, which, under the right 

assumptions, can be interpreted as estimates of the standard deviation of 휀𝜃. Second, the mean 

bias (B) is introduced, which, under the right assumptions, can be interpreted as an estimate of 𝛼. 

Then, the Pearson correlation coefficient (𝑟) is discussed, which can be interpreted as a 

normalized estimate of 𝛽. Also triple collocation (TC) metrics are discussed. These resemble the 
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ubRMSD and 𝑟, but need three data sets for their estimation, neither of which is required to be 

free of random errors in order to estimate the standard deviation of 휀𝜃 (Gruber et al., 2016; McColl 

et al., 2014; Stoffelen, 1998; Yilmaz and Crow, 2014). Additionally, TC analysis enables estimation 

of the signal-to-noise ratio (SNR) of a data set. The SNR is closely related to 𝑟, which can also be 

interpreted as a normalized (between -1 and 1) representation of the SNR (Gruber et al., 2016). 

Together, these metrics fully characterize the error distribution as formulated in equation (5). Note 

that the given metrics can still be used when listed assumptions are not met; however, in these 

cases, they do not reduce to their simplified interpretations. Finally, temporal stability analyses 

and validation of downscaled products is discussed. Details about the additional metrics of 

temporal autocorrelation can be found in Rebel et al. (2012), Raoult et al. (2018), and Piles et al. 

(2018). 

2.4.1 Root Mean Squared Difference 

The root mean squared difference (RMSD) is defined as 

𝑅𝑀𝑆𝐷 =  √𝐸((𝜃 − 𝜃)2) (6) 

where 𝐸(∙) is the expectation operator, which in practice is estimated as either the temporal or 

spatial mean (Entekhabi et al., 2010). For the case where 𝜃 is an unbiased estimate of 𝜃 (i.e, 𝛼 =

0 and 𝛽 = 1) and 휀𝜃 is a Gaussian random variable with mean zero, the RMSD is exactly 

equivalent to the standard deviation of 휀𝜃. 

2.4.2 Unbiased Root Mean Squared Difference 

The unbiased root mean square difference (ubRMSD) (Entekhabi et al., 2010) is defined as 

𝑢𝑏𝑅𝑀𝑆𝐷 =  √𝐸(((𝜃 − 𝐸(𝜃)) − (𝜃 − 𝐸(𝜃)))2). 
(7) 

Compared to the RMSD, the ubRMSD can be interpreted as the standard deviation of 휀 under a 

less restrictive set of assumptions: specifically, it does not require that 𝛼 = 0. This can be easily 

extended to the case where there is a seasonally-varying contribution to the error. 

2.4.3 Mean Bias 

The mean bias is defined as 

𝐵 =  𝐸(𝜃 − 𝜃) 
(8) 

Under the assumption that 𝛽 = 1, 𝐵 is exactly equivalent to 𝛼. A bias can potentially be removed 

by rescaling (Koster et al., 2009; Reichle and Koster, 2004), although caution should be exercised 

in doing this (Gruber et al., 2016; Yilmaz and Crow, 2013); see next section. 

2.4.4 Pearson correlation coefficient 

For the error model given in equation (5), ordinary least squares regression can be used to 

estimate 𝛽. However, it is more common in the literature to report a standardized quantity, that is 

related to 𝛽: the Pearson correlation coefficient, 𝑟, which is given by 
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𝑟 =
𝐸((�̂�−𝐸(�̂�))(𝜃−𝐸(𝜃)))

√𝐸((�̂�−𝐸(�̂�))
2

)√𝐸((𝜃−𝐸(𝜃))
2

)

. (9) 

It is related to 𝛽 by the relation 

𝛽 =  𝑟
√𝐸((�̂�−𝐸(�̂�))

2
)

√𝐸((𝜃−𝐸(𝜃))
2

)

. 

(10) 

The main advantage of reporting r over 𝛽 is that it is a normalized quantity: 𝑟 takes values between 

-1 and 1, with a positive slope indicating 𝛽 > 0, and vice versa. The larger the absolute magnitude 

of 𝑟, the larger the signal-to-noise ratio (Gruber et al., 2016; McColl et al., 2014). 

2.4.5 Triple collocation metrics 

Triple Collocation (TC) metrics require three data sets for their estimation. For defining the metrics 

we will use the subscripts 𝑥, 𝑦 and 𝑧 to refer to these data sets, and 𝜎 to refer to the covariance 

between data sets. The key advantage of TC is that -- provided its underlying assumptions are 

met -- it allows for unbiased error metrics to be estimated in the typical case where a 

representation of the true geophysical variable (𝜃) is unavailable. These underlying assumptions 

require that observations x,y and z are: (i) linearly related to true soil moisture via Eq. 5, and (ii) 

contain errors that are mutually independent -- both with regards to each other (i.e., mutual 

independence) and to true values of the geophysical variable (i.e., error orthogonality). 

2.4.5.1 Unbiased Root Mean Squared Difference 

Using TC, the root mean squared difference (ubRMSD) of 𝑥 can be obtained from 

𝑢𝑏𝑅𝑀𝑆𝐷𝑥 = √𝜎𝑥𝑥 −
𝜎𝑥𝑦𝜎𝑥𝑧

𝜎𝑦𝑧
. 

(11) 

If the assumptions of orthogonality and zero error cross-correlation are met, then 𝑢𝑏𝑅𝑀𝑆𝐷𝑥 is a 

consistent estimator for the temporal standard deviation of errors in x (Gruber et al., 2016). 

2.4.5.2 Correlation against the unknown truth 

Likewise, TC allows for the robust estimation of the linear correlation between x and the unknown 

truth 𝜃 as (McColl et al., 2014) 

𝑟𝑥 = √
𝜎𝑥𝑦𝜎𝑥𝑧

𝜎𝑥𝑥𝜎𝑦𝑧
. 

(12) 

Unlike the direct sampling of a Pearson correlation coefficient between 𝑥 and 𝑦 (or 𝑧), 𝑟𝑥 is – if 

assumptions are met – not impacted by the presence of random error in 𝑦 or 𝑧.  

2.4.5.3 (Logarithmic) signal-to-noise ratio 

TC analysis also allows us to estimate the SNR (Gruber et al., 2016) directly as 
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𝑆𝑁𝑅𝑥 =  −10 𝑙𝑜𝑔 (
𝜎𝑥𝑥𝜎𝑦𝑧

𝜎𝑥𝑦𝜎𝑥𝑧
− 1). 

(13) 

Notice in the above equation that the SNR is estimated in decibel (dB) units, i.e. linearized for 

easier visualization and interpretation (0 dB means that the signal variance equals the noise 

variance and every plus/minus 3 dB corresponds to a doubling/halving of the SNR).  

2.4.6 Stability 

Stability is defined in various ways by different organizations. The definition adopted by LPV of 

JCGM (2008) refers to stability as the property of a measuring instrument whereby its metrological 

properties (i.e. calibration and uncertainties) remain constant in time. The GCOS requirements 

(WMO, 2016) refer to stability as the extent to which the systematic uncertainty of the 

measurement changes over time. With the differences in these definitions, in addition to the 

challenges related to assessing the accuracy of satellite derived products (described in other 

sections), the definition of a method for monitoring stability becomes difficult. 

Stability may be thought of as the extent to which the uncertainty of measurement remains 

constant with time. Here, we would refer to the maximum acceptable change in systematic error, 

usually per decade. 

This is in line with second order stationarity, where seasonal cycles were excluded. The properties 

of stationary time series do not depend on the time at which the series is observed. If a trend is 

observed, the time series is not stationary.  

2.4.7 Temporal stability analysis 

Different from the product stability in the section before is the method named Temporal Stability 

Analysis (TSA), which was initially proposed by Vachaud et al. (1985) as a means to assess the 

time invariant distribution of soil moisture. At the heart of TSA is the mean relative difference 

(MRD), which is defined as: 

𝛿�̅� =
1

𝑛
∑

(𝑆𝑖,𝑗−𝑆𝑗̅̅̅)

𝑆𝑗̅̅̅
𝑛
𝑖=1   (14) 

where 𝑆𝑖,𝑗 is the soil moisture at time 𝑖 at location 𝑗 and is the average across locations 𝑗 at time 

𝑖. This results in a set of mean relative differences detailing the comparison of a location or soil 

moisture data point to the overall average of soil moisture in the domain of study.  

The variance of the MRD is defined as: 

𝜎(𝛿)𝑗
2 =

1

𝑛−1
∑ (

𝑆𝑖,𝑗−𝑆𝑗̅̅̅

𝑆𝑗̅̅̅
− 𝛿�̅�)

2
𝑛
𝑖=1   

(15) 

and the RMSD of the relative differences is defined as: 

𝑅𝑀𝑆𝐷𝑗 = (𝛿𝑗
2̅̅ ̅ + 𝜎(𝛿)𝑗

2)
1/2

. 
(16) 

The RMSD is the quantification in a single metric for the overall best sampling location within a 

set of field sites or network. 
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It is often observed that soil moisture patterns are repetitive and controlled by a variety of factors 

including soil texture, slope, aspect, hydraulic conductivity, etc. More simply described, there are 

persistent wet and dry regions within a given area, and these patterns can be used to determine 

more efficient means of measuring the characteristics of the soil moisture field. It is not necessary 

to have hundreds of soil moisture measurements to estimate with high confidence what is the soil 

moisture average, which is useful for soil moisture validation. TSA is a common technique for 

demonstrating the validity of an in situ soil moisture network to estimate field, watershed, or 

regional scale soil moisture.  

Since the introduction of TSA, many studies have demonstrated the efficiency that this analysis 

can introduce into a cal/val program, including Martinez-Fernandez and Ceballos (2003), Cosh et 

al. (2008), and Molero et al. (2018). TSA is beneficial for network management and quality control 

as well as establishing confidence in the representativeness of a validation data set for remote 

sensing comparisons. It is often difficult to deploy a great quantity of resources for the life of a 

remote sensing platform, but by short-term intensive periods of observation in relation to a long-

term network of stations, it is possible to develop a robust and high quality validation data set for 

comparisons on a multi-year timescale. 

2.4.8 Performance Metrics for Soil Moisture Downscaling 

Typical validation activities are focusing on the error metrics for validating time series (including 

also spatial representativity, spatial resampling etc.). The question of whether the spatial patterns 

are adequately represented is often not addressed. Many downscaling techniques have been 

developed (see section 3.5.9), and papers are published where the downscaling result is validated 

with time series metrics of just a few stations. To really validate the spatial improvement, the spatial 

correlations should be calculated at each point in time, resulting in a time series of 𝑟 (Montzka et 

al., 2018), or summarized as boxplots as in Kolassa et al. (2017a).  

To be more comprehensive, Merlin et al. (2015) proposed a new performance metric named 

𝐺𝐷𝑂𝑊𝑁 to quantitatively assess with a single value the overall gain achieved at high resolution 

(subscript 𝐻𝑅) with respect to the low resolution (subscript 𝐿𝑅). Especially, the sign of 𝐺𝐷𝑂𝑊𝑁 

(positive in the case of effective disaggregation and negative in the opposite case) is independent 

of the uncertainties in the low-resolution observation and of the representativeness of localized in 

situ measurements at the target downscaling resolution. 𝐺𝐷𝑂𝑊𝑁 is defined as: 

𝐺𝐷𝑂𝑊𝑁 = (𝐺𝐸𝐹𝐹𝐼 + 𝐺𝑃𝑅𝐸𝐶 + 𝐺𝐴𝐶𝐶𝑈)/3. (17) 

𝐺𝐸𝐹𝐹𝐼 is the disaggregation (efficiency) gain on the bias in the slope of the linear fit relative to the 

non-disaggregation case: 

𝐺𝐸𝐹𝐹𝐼 =
|1 − 𝑆𝐿𝑅| − |1 − 𝑆𝐻𝑅|

|1 − 𝑆𝐿𝑅| + |1 − 𝑆𝐻𝑅|
 

(18) 

with 𝑆𝐻𝑅 and 𝑆𝐿𝑅 being the slope of the linear regression between soil moisture retrievals and in 

situ measurements at high and low resolution, respectively (𝑆𝐻𝑅 = 𝑟𝐻𝑅(𝜎𝐻𝑅/𝜎𝐼𝑆) and 𝑆𝐿𝑅 =

𝑟𝐿𝑅(𝜎𝐿𝑅/𝜎𝐼𝑆), where 𝜎𝐼𝑆 is the standard deviation of in situ soil moisture).  



29 

 

𝐺𝑃𝑅𝐸𝐶 is the disaggregation (precision) gain on time series correlation relative to the non-

disaggregation case: 

𝐺𝑃𝑅𝐸𝐶 =
|1 − 𝑟𝐿𝑅| − |1 − 𝑟𝐻𝑅|

|1 − 𝑟𝐿𝑅| + |1 − 𝑟𝐻𝑅|
 

(19) 

with 𝑟𝐻𝑅 and 𝑟𝐿𝑅 being the time series correlation computed at high and low resolution, respectively 

(Eq. (9)). 𝐺𝑃𝑅𝐸𝐶 can be interpreted as characterizing the precision of the disaggregation method 

to be evaluated.  

𝐺𝐴𝐶𝐶𝑈 is the disaggregation (accuracy) gain on the mean bias relative to the non-downscaled case: 

𝐺𝐴𝐶𝐶𝑈 =
|𝐵𝐿𝑅| − |𝐵𝐻𝑅|

|𝐵𝐿𝑅| + |𝐵𝐻𝑅|
 

(20) 

with 𝐵𝐻𝑅 and 𝐵𝐿𝑅 being the mean bias computed at high and low resolution in Eq. (8), respectively. 

𝐺𝐴𝐶𝐶𝑈 can be interpreted as characterizing the accuracy of the disaggregation method. For further 

details see Merlin et al. (2015), an application can be found, e.g., in Piles et al. (2016). 

3 GENERAL CONSIDERATIONS FOR SPACEBORNE SOIL MOISTURE 

PRODUCTS 

3.1 Dielectric mixing models 
The microwave region of the electromagnetic spectrum has shown immense potential in accurate 

and efficient measurement of soil moisture using both the space-borne sensor and point-based in 

situ techniques (Engman and Chauhan, 1995; Njoku and Entekhabi, 1996). Soil moisture 

estimation techniques rely on the electrical properties of soil such as its dielectric constant, for 

which there is a significant difference between dry soil (~3.5) and pure water (~80) at microwave 

frequencies (Schmugge et al., 1992). The following sections will further discuss different aspects 

involved in soil moisture modeling using radiometer measurements, as well as a review of some 

of the most widely used dielectric mixing models for SM estimation using L-band measurements. 

A microwave radiometer measures the thermal emission from the Earth's surface, which at 

microwave frequencies is the product of the soil temperature and surface emissivity commonly 

known as the brightness temperature (TB). This brightness temperature is used as input in soil 

moisture retrieval algorithms to estimate surface soil moisture content. Mladenova et al. (2014) 

explains that the overall process of SM retrieval using passive microwave approaches basically 

involves two major stages. Stage I entails modeling the thermal emission from the Earth's surface 

using radiative transfer theory, while in Stage II, a soil-water dielectric mixing model is applied for 

SM estimation. A third important component, the Fresnel equations, combines the two stages. 

However, the accuracy of the retrieval process depends largely on selection of optimal 

parameters, among which dielectric mixing models are a very important consideration (Bolten et 

al., 2003; Merlin et al., 2008; Panciera et al., 2008; Piles et al., 2011). 

A dielectric mixing model is an essential part of soil moisture retrieval using remote sensing data 

(Mironov et al., 2004). The mixing model is employed to calculate the complex permittivity of a dry 

and wet soil-water mixture as a function of various soil and sensor properties such as soil texture, 
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temperature, salinity, free and bound water permittivity, and frequency. Figure 3 shows the 

relationship between permittivity and soil moisture for five different soil texture classes. The 

technical literature domain cites a number of soil dielectric models such as Wensink, Knoll, 

Heimovaara, Curtis, Nguyen, Halllikainen, Wang and Schmugge, Dobson, and Mironov. Dielectric 

models are widely grouped as 1) phenomenological (Cole-Cole model (Cole and Cole, 1941), 

Debye relaxation model (Debye, 1929)), 2) volumetric (Complex Refractive Index, CRI model 

(Birchak et al., 1974), Maxwell De Loor model (Loor, 1968)), 3) empirical (Wang and Schmugge, 

1980), 4) semi-empirical model (Dobson et al., 1985; Mironov et al., 2004; Park et al., 2019), and 

5) volumetric model based on the input data requirement (Srivastava et al., 2015; van Dam et al., 

2005). 

 

Figure 3: Dielectric constant for five soil textures at 1.4 GHz (Hallikainen et al., 1985). 

Phenomenological models such as the Cole-Cole and Debye relaxation models allow calculation 

of complex dielectric properties of a soil- water mixture at specified frequencies by relating the 

characteristic relaxation time period to the frequency dependent behavior of the materials, such 

as the induced polarization effect as a function of frequency. Due to complex calculation and 

recalibration for specific materials, these models are not widely used and are only documented in 

a limited number of studies. Volumetric dielectric models estimate the dielectric behavior of soil 

based on relative amounts of soil constituents. These models require solid matter proportion, pore 

space, and volumetric water content as input parameters for the retrieval process. Empirical 

models use the mathematical relationship between the dielectric properties and soil medium 

characteristics such as volumetric water content and bulk or apparent relative permittivity for 

calculation of dielectric properties. Data for these models were initially generated using time 

domain reflectometry (TDR) probes for different soil types. Artificial Neural Networks (ANN) are 

the latest addition in this category and are widely applicable by providing an alternative means for 
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describing the relationship between the soil moisture and the relative permittivity of the soil water 

mixture. Semi-empirical models fuse the empirical and volumetric models, and are currently 

considered some of the most advanced and accurate ones in estimating the complex dielectric 

constant of soils. Semi empirical models such as the Mironov and Dobson models use site-specific 

results from the volumetric models, pre-calibrated for specific combinations of soil types, to 

calculate the complex frequency dependent characteristics of soil dielectric constants. These 

models take the percentage of sand and clay particles, volumetric water content, bulk density, soil 

physical temperature, and the relative fraction of bound and free water as input parameters to 

outline the behavior of the real and imaginary parts of the soil dielectric constant. A brief review of 

the most popular models for L-band soil moisture retrieval are presented below, namely the 

Halllikainen, Wang and Schmugge, Dobson, and Mironov models. Results from a case study 

assessing the comparative performance of these models are also briefly described.  

3.1.1 Soil Water Dielectric Mixing Models: Wang and Schmugge 

Wang and Schmugge (1980) proposed an empirical dielectric mixing model that outlined the 

influence of soil texture on the complex soil water dielectric constant. This model was based on 

the variation of soil dielectric properties with soil moisture content depending on different soil 

types. The Wang and Schmugge model calculates the dielectric constant of the soil from the 

known dielectric constants or refraction indices of air, water and ice and the volume fraction of 

each constituent. The development of this model followed two approaches: the first approach was 

to deal with the resultant dielectric mixing of the soil-water mixture represented in terms of the 

constituent materials, while the second approach accounted for the refractive index of the mixed 

constituents to get the resultant refractive index of the soil-water mixture. The proposed model 

took into account the property of the initially absorbed water molecule below the transition point of 

soil moisture, which was found to be strongly correlated with the soil wilting point and ultimately to 

the soil texture. Thus, this model offered a unique possibility to quantify the dielectric constant 

according to the soil type, unlike the other previous models which only considered soil as a mixture 

of two constituents (dry soil or rock and pure water). Wang and Schmugge used data sets derived 

from previous experiments to study the dielectric behavior of the constituents of the soil-water 

mixture at 1.4 and 5 GHz over a wide range of soil moisture from 0.0-0.5 m3/m3.  

As explained earlier, the first approach accounts for the direct mixing of the dielectric constants of 

the constituents as  
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where 𝑃 is the porosity of the dry soil, and 휀𝑎, 휀𝑤, 휀𝑟, and 휀𝑖 in sequential order are the dielectric 

constants of air, water, rock, and ice. 휀𝑥 is the dielectric constant for the initially absorbed water, 

and 𝛾 is the parameter chosen to best fit Equations (22) and (24) to the experimental data. At low 

frequencies for the dielectric constant of the imaginary part, the total dielectric loss adding the 

conductivity loss is represented as 

"""

at    (25) 

=  60"   (26) 
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where 휀𝑡
′′ is the total dielectric losses, 𝜎 is the ionic conductivity [mhos/cm], 𝜆 is the wavelength 

[cm], 휀′′ is the imaginary part of dielectric constant, and 𝛼 is a fitting parameter. In the second 

approach, the mixing is represented as the refractive indices of the air, water, rock and ice, and 

휀𝑎, 휀𝑤, 휀𝑟, and 휀𝑖 are replaced by the refractive indices in the above Equations (21) to (24). 

3.1.2 Soil Water Dielectric Mixing Models: Hallikainen 

Hallikainen et al. (1985) in the first set of two experiments introduced an empirical dielectric mixing 

model to estimate the dielectric constant of the soil-water mixture more precisely and accurately 

over a broad frequency range between 1-18 GHz for different soil types based on specified soil 

physical characteristics. The microwave dielectric constant of the soil in this model was 

represented as a function of soil moisture content, physical temperature, and soil texture 

composition. Several experiments were conducted to derive the dielectric constant of five different 

types of soil at room temperature and at frequencies between 1.4-18 GHz using a waveguide 

technique (for 1.4 GHz and 4-6 GHz) and free space transmission technique (for 4-18 GHz in 2 

GHz increments). The dielectric constant for each frequency was represented using polynomial 

expressions dependent on volumetric soil moisture content and sand and clay percentage 

separately for the real and imaginary part of the dielectric constant. This model introduced the 

concept of free and bound water presence in the soil- water system, with dielectric constant as a 

function of 1) frequency, temperature and salinity, 2) total volumetric soil moisture content, 3) 

relative fraction of bound and free water which is related to the soil surface area per unit volume, 

4) bulk density of the soil, 5) shape of the soil particles, and 6) shape of the water inclusions. 

To represent the real 휀′ and imaginary 휀′′ part of the dielectric constant as a function of volumetric 

water content 𝑚𝑣 and the percentage of sand 𝑆 and clay 𝐶, the general form of the expression 

can be represented as 

2
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Important inferences of these experimental measurements were: 
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1) the dielectric constant of the soil-water mixture is a function of volumetric water content 𝑚𝑣 

and soil texture composition.  

2) the dielectric constant of dry soil is independent of texture and frequency under controlled 

density effects.  

3) the frequency behavior of 휀′ for wet soil and water was found to be similar and only reduced 

in magnitude between 1.4 to 18 GHz.  

4) for 휀′′, the minimum value was found between 2-4 GHz due to salinity effects while the 

maximum value was obtained at frequencies near 17 GHz due to the relaxation of water 

at normal room temperature.  

5) Both 휀′ and 휀′′ were found to decrease with a decrease in temperature below 0°C.  

3.1.3 Soil Water Dielectric Mixing Models: Dobson 

The Dobson model (Dobson et al., 1985) was proposed in a second series of experiments studying 

the behavior of microwave dielectric properties of wet soil as a function of soil moisture and soil 

textural composition in 1985. The main objective behind developing this model was the failure of 

the Wang and Schmugge model in efficiently predicting the behavior of 휀′′ and conductivity losses 

based on soil type and water content.  

The Dobson model is a semi-empirical dielectric mixing model based on the refractive index 

requiring easily available information about soil physical parameters such as volumetric soil 

moisture content (𝑚𝑣), bulk density (𝜌𝑏), and sand (𝑆) and clay (𝐶) fraction. An empirical model 

proposed by Birchak et al. (1974) based on refractive volumetric mixing was used to understand 

the responses of dielectric properties to these soil physical parameters and to address the first 

proposed objective. The expressions representing the Birchak model are given by 

  i

i

im V  (29) 

where α is a constant shape factor; when α=0.5, Eq. (29) describes refractive mixing and when 

applied to moist soil can be represented as  

  bwbwfwfwsass VVVV   (30) 

The subscripts 𝑠, 𝑎, 𝑓𝑤 and 𝑏𝑤 refer to the soil solids, air, free water, and bound water, 

respectively. 

Due to the value of the complex dielectric constant of bound water not being well-known and to 

avoid lengthy calculations for the volume fraction, the following approximation is made in Eq. (30) 

and is represented as 

  bwbwfwfwfwv VVm   (31) 

where the value of the empirical constant 𝛽 depends on the texture composition of the soil. For a 

given soil with bulk density (𝜌𝑏), specific density (𝜌𝑠), and volumetric soil moisture content (𝑚𝑣), 

the final expression for the semi-empirical model is  
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3.1.4 Soil Water Dielectric Mixing Models: Mironov 

In 2004, Mironov et al. (2004) introduced a generalized refractive dielectric mixing model 

(GRMDM) applicable over a wide range of soil moisture, texture, mineral content and frequency. 

The model presented was a modified version of a previous refractive mixing dielectric model 

(RMDM) (Birchak et al., 1974) considering soil as a biphasic system. It also introduced the concept 

of intrinsic bound soil water (BSW) and free-soil water (FSW) and the complex dielectric constant 

(CDC) for both the constituents obtained through the straight-line fitting method. The CDC is 

derived through the measured soil complex refractive index (CRI) mathematically obtained as the 

square root of CDC and as a function of soil moisture. In the modified RMDM, the CDC is 

considered as a function of both soil moisture and frequency. Expressions representing the 

GRMDM can be written in the following set of equations. 

According to the RMDM, the CRI of moist soil can be calculated by mixing the CRIs of the separate 

constituents of the soil as weighted by their partial volumetric contents 

i

i

iW   (33) 

where 휀 is the soil CDC, and 𝑊𝑖  and 휀𝑖  are the volume fraction and CDC of the 𝑖th soil component 

such as mineral solids, air, and soil water (salinity). Considering soil as a three-component system, 

Eq. (33) can be modified as 

WWW waamms    (34) 

Where subscripts 𝑠, 𝑚, 𝑎 and 𝑤 refer to the bulk moist soil, mineral particles, air, and water, 

respectively. Subscript 𝑤 is omitted when applied to the volumetric soil moisture as 

WWw   (35) 

and, 

WWW ma  1  (36) 

and since 휀𝑎 = 1, Eq. (36) can be rewritten as 

Wwds )1(    (37) 

where 휀𝑑 is the CDC of the absolutely dry soil and can be determined by the dielectric constant of 

soil solids and bulk density as 
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where 휀𝑚 is the CDC of the dry soil and 𝑊𝑚 is the volume fraction of solids in a dry soil which is 

obtained through 𝑊𝑚 = 𝜌𝑑/𝜌𝑚, where 𝜌𝑑  and 𝜌𝑚 are the bulk and specific density of the dry soil, 

respectively. 

The CRI, 𝑛∗ = √휀, can be expressed in terms of the refractive index (RI) 𝑛 and the normalized 

attenuation coefficient (NAC) which is considered as a proportion of the standard attenuation 

coefficient to the free space propagation coefficient, 𝑘, as 

jknn    (39) 

where 𝑗 is an imaginary unit. The RI and NAC can be derived from two expressions simplifying 

Eq. (37) as 

Wnnn wds )1(   (40) 

and  

Wkkk wds   (41) 

If the RI and NAC are known, the respective value of dielectric constant 휀’ and loss factor 휀” can 

be calculated as 

22' kn   (42) 

and 
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The inverse transformation of the above equation is 
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3.1.5 A comparative performance analysis of soil dielectric mixing models: case studies 

This section reports some of the previous experiments performed with the above mentioned soil 

dielectric mixing models using L-band radiometer measurements, and highlights the performances 

of these models in soil moisture retrievals at various reported sites. 

To assess global soil moisture patterns observed by spaceborne microwave radiometers and 

scatterometers under different vegetation conditions at selected experimental sites across the 

USA, Spain, Australia, France, West Africa, and Ukraine, de de Jeu et al. (2008) used the Wang 

and Schmugge dielectric model to describe the behavior of dielectric properties of soil-water 

mixtures for different soil textures (sand, loam, and clay). Results of this study showed good 

performance of the model in retrieving surface soil moisture and a linear relationship between the 

soil dielectric constant and soil moisture content. However, a non-linear relationship was observed 

at low moisture content. The reason given for this nonlinearity was the formation of a strong bond 

between the soil particle surface and the thin water film surrounding it under water deficit 

conditions. 

To test the efficiency and performance of the Hallikainen mixing model, Hallikainen et al. (1986) 

conducted a comparative analysis of dielectric measurements from the model at nine frequency 

intervals between 3-18 GHz and at 37 GHz using the free-space transmission technique against 

the Polder-Van Santen model. Both models were found to satisfactorily describe the dielectric 

behavior of snow and wet soils.  

In a first evaluation study of the comparative performance of the Dobson and Mironov models 

using SMOS measurements and the L-Band Microwave Emission of Biosphere (L-MEB) model in 

2015, Mialon et al. (2015) retrieved soil moisture values using these data sets and tested them 

against in situ soil moisture measurements for some selected SMOS validation sites located in 

various climatic regions. Results of this study showed better performance for the Mironov model 

over the Dobson model in retrieving soil moisture at a global scale. 

In an experiment to analyze the performance of these soil dielectric mixing models in soil moisture 

retrievals using the combined radar/radiometer (ComRAD) ground-based L-band simulator for the 

SMAP mission and single-channel algorithm at H-polarization (SCA-H) version of the tau omega 

model, Srivastava et al. (2015) conducted a field experiment during summer 2012 over corn fields 

at United States Department of Agriculture (USDA) test site using ComRAD measurements and 

in situ soil moisture and theta probe sensors. Parameters such as brightness temperature (TB) at 

horizontal (H) and vertical (V) polarization measured by ComRAD, soil temperature, and 

Vegetation Water Content (VWC) were used to retrieve soil moisture using SCA-H and various 

dielectric mixing models -- Mironov, Dobson, Wang and Schmugge, and Hallikainen. Results 

obtained were compared using the highest performance statistics combination in terms of high 

correlation (𝑟), low RMSD, and lowest bias scores. The study showed best performance by the 

Mironov dielectric model (𝑟=0.79; RMSD=0.04 m3/m3; bias=0.01), followed by the Dobson model 

(𝑟=0.76; RMSD=0.04 m3/m3; bias=-0.01), Wang and Schmugge (𝑟=0.79; RMSD=0.04 m3/m3; 

bias=0.02), and Hallikainen model (𝑟=0.76; RMSD=0.06 m3/m3; bias=0.04), suggesting a marginal 

advantage of the Mironov dielectric model for soil moisture retrieval using passive microwave 

measurements.  

Accurate and efficient retrieval of soil moisture using remote sensing data depends largely on 

careful selection of retrieval parameters such as which soil dielectric mixing model to use. 

Dielectric mixing models calculate the complex permittivity of the dry and wet soil-water mixture 
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as a function of various soil and sensor properties such as soil texture, temperature, salinity, free 

and bound water permittivity, and microwave frequency. A number of mixing models have been 

developed, but several experiments show that the Mironov model, followed by the Dobson, Wang 

and Schmugge, and Hallikainen models, are the most efficient ones for soil moisture retrieval 

using L-band measurements. Recently, a dielectric mixing model accounting for organic matter in 

mineral soils has been developed (Park et al., 2019) which could extend the range of validity of 

the dielectric models used to higher organic soils. 

3.2 Soil moisture retrieval from brightness temperature 
As noted in section 2.2.1, soil moisture retrieval from brightness temperature (TB) primarily benefits 

from the high sensitivity of TB in response to soil moisture change. For example, TB from bare soils 

with a smooth surface could exhibit a change of ~90 K between dry soil (~5% water by volume) 

and wet soil (~40% water by volume) conditions. With a typical radiometric uncertainty of < 1 K in 

modern radiometers, the resulting large signal-to-noise ratio allows for accurate estimation of soil 

moisture. 

 

Figure 4: Contributions to the top-of-atmosphere brightness temperature (Kerr et al., 2010a). 

The zeroth order radiative transfer model (a.k.a. the "tau-omega" model) is a common forward 

model that relates soil moisture to TB observations (Mo et al., 1982). Over the last few decades, 

its usefulness has been demonstrated at various spatial scales based on agreement between in 

situ ground truth and ground-based, airborne and spaceborne TB observations. Besides its 

relatively good accuracy, the model is also relatively straightforward to deploy over large spatial 

scales due to its modest parameterization requirements. The model provides an end-to-end 

physics-based description of how the impact of soil moisture on soil dielectric properties affects 

the TB from soils as well as the TB interaction between soils and vegetation through scattering and 
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absorption (Figure 4). Operationally, a full formulation of the model often requires additional 

ancillary data to provide TB correction before soil moisture retrieval is attempted. Common 

ancillary data include (1) land/water mask to correct for TB contamination due to water near 

coastlines or open-water bodies, (2) vegetation indices such as LAI or NDVI to correct for TB 

scattering, absorption and emission by vegetation, (3) surface roughness and soil temperature for 

surface emissivity estimation, and (4) soil texture as inputs to soil dielectric models (O'Neill et al., 

2015). 

Radiometer-based or passive soil moisture retrieval begins with solving for the estimated soil 

moisture from the tau-omega model with actual TB observations and prior information from the 

ancillary data listed above as constraints. The retrieval process is often of an iterative numerical 

nature, in that an initial numerical guess is used as a "seed" to search for an estimated soil 

moisture that predicts the actual TB observations according to the model either analytically as with 

single-channel TB observations or in a least-squared sense as with multi-channel TB observations, 

which would involve concurrent observations at multiple observation angles, frequency channels, 

and/or polarization planes. Both single-channel and multi-channel soil moisture retrieval 

algorithms have been extensively studied in field experiments and tested with airborne TB 

observations in field campaigns or spaceborne TB observations by Earth-orbiting radiometers such 

as Aqua/AMSR-E, GCOM-W/AMSR2, Aquarius/SAC-D SMOS and SMAP. State-of-the-art L-

band soil moisture retrieval algorithms from some of these missions have been validated using in 

situ ground truth to demonstrate a retrieval accuracy of an unbiased RMSD of less than 0.04 m3/m3 

and a correlation of greater than 0.80. 

Earlier field campaigns had established that TB observations acquired at L-band (1.4 GHz) exhibit 

greater sensitivity to soil moisture variability compared with those acquired at higher frequencies 

such as C-band (6.9 GHz) or X-band (10.7 GHz) (Wang et al., 1990). During the last decade, 

technological and engineering advances have matured to a point where the construction of large 

and lightweight antennas for L-band has become practical, leading to a series of L-band 

radiometer instruments (e.g. Aquarius/SAC-D, SMOS, and SMAP) that provide TB observations 

useful for frequent and global remote sensing of soil moisture from space. 

Pioneer work showed the possibility to retrieve simultaneously soil moisture and vegetation 

opacity (2-Parameter retrievals) from multi-angular passive microwave measurements (Wigneron 

et al., 1995). This step was key as it avoided the complex step of estimating vegetation effects 

externally from ancillary data. Moreover, vegetation opacity was potentially a very interesting index 

to monitor the dynamics of vegetation (Wigneron et al., 2017). The soil moisture retrieval algorithm 

for the SMOS satellite was based on this principle (Wigneron et al., 2000). However, the multi-

angular characteristics need to be considered for the parameterization of both soil and vegetation 

(Wigneron et al., 2017; Wigneron et al., 2007; Wigneron et al., 2004). Multi-angular signatures of 

rough soils were investigated based on both experimental (Wigneron et al., 2011; Wigneron et al., 

2017) and simulated data (Lawrence et al., 2013) and led to the development of simple and 

accurate modelling based on the H-Q-N approach after Wang and Choudhury (1981), where the 

rough-surface reflectivity is a function of the specular reflectivity of a smooth surface and the 

roughness parameters H (intensity of the roughness effects), Q (polarization mixing parameter), 

and N (parameter to better account for multi-angular and dual-polarization measurements). In 

addition, vegetation may present strong anisotropy which may affect the multi-angular and dual-

polarization signatures of vegetation-covered areas. For instance, the effects of vegetation 

anisotropy on optical depth with respect to incidence angle and polarization were found to be very 
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significant for crop types with a vertical (stem-dominated) structure. The opacity of a well-

developed wheat canopy was found to be three times higher at V- than at H-polarization (0.3 vs 

0.1) (Wigneron et al., 2004). To account for these effects, in the SMOS retrieval vegetation opacity 

is expressed as a function of the opacity at nadir, where also the intensity of opacity change related 

to the incidence angle is implemented (Wigneron et al., 2004). 

3.3 Soil moisture retrieval from backscatter 
For active microwave remote sensing of soil moisture, the intensity and phase of a reflected 

microwave signal are input to radar-based soil moisture retrieval algorithms. The ratio of the 

transmitted and reflected intensity, radar backscattering coefficient (𝜎0), is also referred to as 

‘normalized radar cross section (NRCS)’ and ‘normalized bistatic RCS (NBRCS)’ in the 

backscattering and bistatic directions, respectively. 𝜎0 is usually given in decibel units (dB) with 

minus tens of dB for NRCS to plus tens of dB for NBRCS, subject to mono- or bistatic acquisition 

scenarios, the local incidence and scattering angles, peak power transmit, transmit/receive 

polarizations, and finally the properties of the media under investigation. 

Satellites operating at X-, C-, S-, and L-bands have been used with center frequencies at ~10, 

5.4, 3.2, and 1.3 GHz, respectively. Observation of dynamic range indicates that 𝜎0 tends to be 

most sensitive to the changes in vegetation, then to soil surface roughness, and lastly to soil 

moisture (as an example of dynamic range at L-band, 10 dB for vegetation (Fig 5 (McNairn et al., 

2015)), 7 dB for roughness, and 4 dB for soil moisture (Fig. 4 (Kim et al., 2012)). Consequently, 

how well the effects of vegetation and roughness are accounted for by correction or signal 

decomposition (Jagdhuber et al., 2014), and the validation of the correction or decomposition, are 

as important as soil moisture validation itself. Issues associated with validating soil moisture 

retrieved by radar backscattering coefficients are discussed below. 

3.3.1 State-of-the-art algorithms (regarding spaceborne SAR data) 

The first group of algorithms do not employ/use electromagnetic scattering models for soil 

moisture retrieval. Semi-empirical (Burgin and van Zyl, 2016) or machine learning methods 

(Paloscia et al., 2013; Pasolli et al., 2015) are trained using existing data sets, and may need 

additional adaptation for global application. Change detection concepts estimate temporal 

variations in soil moisture by assuming that vegetation is static over the monitoring period 

(Ouellette et al., 2017) or by developing a data-driven correction of the vegetation 

effect/influence/bias (Bauer-Marschallinger et al., 2019). The former algorithm, assuming static 

vegetation, experiences a challenge when plants grow rapidly and the monitoring period extends 

towards months; and the latter algorithm, using data-driven correction methods, limits the spatial 

resolution to ~1 km at present. 

The second group of algorithms incorporates a scattering model for forward modelling and 

inversion purposes. One of the most widely used semi-physical models is the Water Cloud Model 

(Attema and Ulaby, 1978) that has calibration coefficients for each scattering mechanism (Bousbih 

et al., 2017; McNairn et al., 2012). The model lacks a double-bounce component and it tends to 

be site-specific due to the tuning coefficients. Simplified physical scattering models were 

developed and inverted (Kim et al., 2017). However, developing a physical model for each plant 

type is a challenge. Lastly, polarimetric decomposition techniques (Jagdhuber et al., 2014) allow 

extraction of the surface scattering component, followed by direct inversion of soil moisture. The 

limitations of this approach are the efficacy/quality of removing the effect of vegetation and 

roughness, as well as the need for fully polarimetric observations which places requirements on 
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sensor acquisition configuration and constrains the data refresh rate. This summary does not 

include the current progress being made with Global Navigation Satellite System and 

Reflectometry (GNSS-R) data, airborne studies (e.g. P-band), and Interferometric Synthetic 

Aperture Radar (InSAR) approaches. 

3.3.2 Product (soil moisture) accuracy goal 

A major driver of radar soil moisture retrieval is the accuracy required by the application under 

consideration and the technical capability of retrieval by sensor and algorithms. For agricultural 

applications, the distinction of five wetness states over a 25% soil moisture dynamic range would 

require a sensitivity of at least 0.05 m3/m3 (RMSD). From the technical maturity perspective, 0.06 

m3/m3 ubRMSD has routinely been achieved. 

3.3.3 Acquisition mode (mono-/bi-static) and local incidence angle 

Most current spaceborne radars operate in the monostatic backscattering mode. Moreover, the 

incidence angles of conventional synthetic aperture radar (SAR) and scatterometer sensors range 

between 20° to 60°. As signal strength varies with incidence angle and acquisition mode, the 

retrievals need to account for the respective angle and cannot directly be transferred to other 

acquisition modes. 

3.3.4 Spatial resolution 

The most important merit of spaceborne radar for global soil moisture retrieval is spatial resolution. 

Resolution varies from ~10 m (single-look of a SAR) to ~30 km (real aperture scatterometer). A 

SAR single-look scene is prone to large speckle noise. To reduce the speckle down to ~0.7 dB 

(desired to distinguish ~ 5 levels of wetness using ~ 4 dB dynamic range at L-band, Fig. 4 (Kim et 

al., 2012)), about 40 single-looks have to be averaged spatially, resulting in ~70 m spatial 

resolution. The resolution of spaceborne bistatic instruments varies depending on the flatness of 

the soil surface from ~0.7 km (first Fresnel zone) to 25 km (Ruf et al., 2018). 

3.3.5 Number of in situ stations 

The analysis by Famiglietti et al. (2008) suggests that at least three in situ soil moisture readings 

are necessary to validate at 0.06 m3/m3 RMSD accuracy at 800 m spatial resolution. This 

recommendation applies to homogeneous conditions of soil roughness and texture, terrain slope, 

and vegetation within the resolution cell. For coarser resolutions and more heterogeneous 

conditions, more stations are necessary. 

3.3.6 Radiometric resolution 

The radiometric resolution highly depends on the capability of the sensor to send, receive and 

amplify the signal in the best way for soil moisture sensing. Most currently operating radar sensors 

have a radiometric resolution between 0.3–1.0 dB after calibration (0.3 dB for co-polarization, 

SMAP (West, 2015)). For soil moisture sensing and especially global validation, it is beneficial to 

include regions with different radiometric signal characteristics (representative range of spatial 

heterogeneity in terms of land cover and soil diversity), considering that 𝜎0 change due to soil 

moisture is only in the range of a few dB (e.g., ~4 dB Fig. 4 (Kim et al., 2012)). 

3.3.7 Overpass time 

The radar-based soil moisture retrieval does not require the physical temperature of soil and 

vegetation unlike the radiometer-based inversion/retrieval. Therefore, overpass time is not an 

issue from this perspective. However, Faraday rotation becomes strong at L-band in the afternoon 

near the Equator. The L-band Soil Moisture Active Passive (SMAP) mission used a numerical 
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model for the ionospheric electron content, which provided sufficient information to correct the 

rotational effect (West, 2015). 

3.3.8 Frequency and duration of temporal sampling 

The desired interval for revisit depends on the subsequent usage of the soil moisture information. 

Major application areas are meteorology, hydrology, and agriculture. For non-irrigating agricultural 

purposes, rainfall frequency and plant growth primarily determine the revisit interval requirement. 

In India and US cropland rain-fed regions, it rains between 20 to 40 days a year (Sun et al., 2006), 

which translates into an 18- to 9-day interval between rain events assuming a temporally even 

distribution. Meteorological (e.g. storms) and hydrological (e.g. floods) applications require about 

3-day revisit (Entekhabi et al., 2010), while plants may grow rapidly within 10 days, requiring a 

minimum revisit of ~ 6 days (McNairn et al., 2015). One hydrological cycle is typically one calendar 

year, while the crop growth season tends to be 3-4 months at the shortest: these intervals 

determine the duration for soil moisture observation for agricultural and meteorological 

applications. 

3.3.9 Ancillary information (vegetation, roughness, terrain slope) 

The successful retrieval of soil moisture requires rigorous correction, separation or cancellation of 

the strong effects on radar backscatter by vegetation, surface roughness, and terrain slope. 

Vegetation effects are corrected using concurrent radar data or ancillary information (Attema and 

Ulaby, 1978; Bauer-Marschallinger et al., 2019; Bousbih et al., 2017; Kim et al., 2017), or are 

assumed to be static and cancelled in retrievals based on time-series (Burgin and van Zyl, 2016; 

Ouellette et al., 2017). Polarimetric decomposition techniques extract smooth surface scattering 

by removing the other components (vegetation & surface roughness) (Jagdhuber et al., 2014). 

Surface roughness has also been estimated (Kim et al., 2017) or assumed static (Bauer-

Marschallinger et al., 2019; Burgin and van Zyl, 2016; Ouellette et al., 2017). Accordingly, 

recording such information at the validation sites is very helpful to understand, evaluate and 

improve the validity of the retrieved surface soil moisture. 

3.4 Soil moisture retrieval by optical methods 
Use of optical remote sensing in surface soil moisture (SSM) retrievals started in the mid 1970's 

(Johannsen, 1970). The available methods can be largely divided into the following groups: (1) 

single spectral analysis methods, (2) vegetation index based methods, (3) thermal infrared based 

methods, and (4) synergistic methods.  

3.4.1 Single Spectral Analysis methods 

Using laboratory based measurements, Angstrom (1925) was the first who demonstrated a 

decrease in reflectance as soil moisture increases. Jackson et al. (1976) in an early experimental 

study reported albedos of all dry soils to be two times higher than those of wet soils of the same 

soil types, with the exception of some sandy soils. Since then, various studies have also reported 

empirical relationships between single-channel reflectance and SSM (Dalal and Henry, 1986; 

Ishida et al., 1991). Such methods have generally reported reasonable SSM prediction for specific 

soil samples and experimental site conditions. Nonetheless, those methods provide only a poor 

indication of SSM because of the large variability in spectral characteristics of a soil, which is 

affected by parameters such as organic carbon, soil texture and type, topography and surface 

roughness. The impact of these factors can lead to strong deviations when applied outside the 

local calibration conditions (Wang and Qu, 2009). 
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Apart from empirical models, relationships between SSM and surface reflectance have been 

established using physically based models. For example, Lobell and Asner (2002) proposed a 

physical model and showed an exponential relationship between soil reflectance and SSM on the 

basis of an analysis of four different soils at various moisture contents. Their model was expressed 

as:  

 
(46) 

where 𝑅𝑑𝑟𝑦 is the dry soil reflectance, 𝑐 is a variable used to characterize the change rate induced 

by SM, 𝑠 refers to the soil saturation, and 𝑓 to the saturation rate.  

However, even if these empirically-based approaches have generally been proven adequate for 

estimating SSM under conditions close to those used for calibration, serious issues frequently 

emerge when they are applied outside these conditions as the spectral characteristic of soil is 

affected by various soil attributes (such as soil moisture, organic matter, soil type) that can vary 

significantly (Soriano-Disla et al., 2014). One of the most widely used techniques is based on 

computing the relative reflectance that is then linked to surface soil moisture. This technique, using 

only one wavelength, aims to reduce the soil type effect by normalizing the reflectance by that 

observed under dry conditions over the same soil. A different approach exploits the change of 

reflectance sensitivity to moisture as a function of the wavelength for minimizing the effect of 

confounding factors, using derivatives of either reflectance or absorbance. Such methods reduce 

the effects of these confounding factors assuming that they are either constant or vary linearly 

with the wavelength over the limited spectral domain considered (Petropoulos et al., 2018). 

3.4.2 Vegetation Index Based methods 

In vegetation index based methods, the underlying principle is to develop an empirical spectral 

vegetation index to estimate the degree of vegetation moisture stress, which can be used for 

indirect estimates of soil moisture (Martinez-Fernandez et al., 2016). An example of a widely used 

vegetation index linked to estimating SSM is the so-called normalized difference water index 

(NDWI) proposed by Gao (1996). NDWI exploits spectral information acquired in the near infrared 

(NIR), 0.86 µm, and the short wave infrared (SWIR), 1.24 µm, because this part of the 

electromagnetic spectrum is sensitive to SSM content, and this index is also insensitive to the 

atmospheric conditions. The NDWI is defined as: 

 

(47) 

where 𝜌 is the reflectance.  

Wang et al. (2008) suggested using the normalized multi-band drought index (NMDI), which is 

essentially a modified version of the NDWI offering an improved sensitivity to drought monitoring. 

The NMDI uses the NIR as the base and the difference between two SWIR bands to detect soil 

and vegetation water content. NMDI is defined as:  

  

(48) 
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Recent studies have focused on exploring the use of hyperspectral sensors in SSM retrieval. 

Although hyperspectral data have generally shown promising results in SSM retrievals (Dematte 

et al., 2006; Heusinkueld et al., 2008), their usefulness needs to be further explored. Overall, it is 

generally accepted that even to date, techniques utilizing reflected spectral information from only 

the reflective part of electromagnetic radiation are not capable of accurately measuring SSM. This 

is because there are too many noise factors (e.g., organic matter, roughness, texture, plant cover), 

which eventually make the exploitation of such techniques impractical and non-viable (Moran et 

al., 2004).  

Indeed, even today a limited body of literature exists on the exploitation of VIS, NIR, SWIR and/or 

hyperspectral remote sensing observations on the retrieval of SSM due partly to the fact that soil 

reflectance measurements are strongly affected by the soil composition, physical structure, and 

observation conditions. Because of these limitations, efforts to directly relate soil reflectance to 

moisture have achieved success only when models are fitted to specific soil types in the absence 

of vegetation cover (Muller and Decamps, 2001). Nevertheless, one of the key advantages of 

reflectance-based methods is the maturity of optical remote sensing technology. In addition, such 

methods provide estimates of SSM at high spatiotemporal resolutions, as optical sensing systems 

that have generally high spatial resolution.  

3.4.3 TIR-based Methods  

Thermal infrared methods use thermal inertia, a parameter describing the ability of soil to resist 

temperature change (Cheng et al., 2006) to estimate SSM. Generally, thermal inertia estimation 

requires information on the soil heat capacity and on soil thermal conductivity, and can be 

computed as follows:  

 
(49) 

where 𝜆 is the soil thermal conductivity, 𝜌 is the soil bulk density, and 𝐶 is the soil heat capacity. 

An increase in SSM results in an increase of the thermal inertia, thus reducing the diurnal 

amplitude variations of the land surface temperature.  

Surface temperature is primarily dependent upon the thermal inertia of the soil, while the latter is 

dependent upon both the thermal conductivity and the heat capacity of the soil water content 

(Olsen et al., 2013). Consequently, a measurement of the amplitude of the diurnal temperature 

change allows development of a relationship between the temperature change and soil moisture. 

A number of studies have been proposed for this purpose. For example, (Ma and Xue, 1990) 

proposed the following relationship between thermal inertia and soil moisture:  

 

(50) 

where 𝑑𝑠 is the soil density, 𝑑 is the water density, and 𝑤 is the weight percentage of soil moisture. 

However, the association between diurnal temperature and soil moisture is dependent on soil type 

and is limited to bare soil conditions to a large degree (Vandegriend et al., 1985). Therefore, 

generally it cannot be applied for large-scale soil moisture monitoring. Various (mainly empirical) 
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methods for mapping soil moisture over a given area have been suggested based on correlations 

of SSM with radiometric satellite measurements in both visible and thermal bands (Friedl and 

Davis, 1994; Price, 1990). However, such methods are accompanied by all the limitations of 

empirically-derived methodologies discussed earlier as well (e.g., lack of transferability to other 

regions, fine-tuning, weakness to describe physical processes, etc.). On the other hand, these 

approaches can provide estimates of SSM at high spatial resolution using mature technology in 

terms of sensor technology.  

3.4.4 Synergistic Methods  

Since the early 1980’s, several studies have documented the presence of a triangular (or 

trapezoidal) shape when remotely sensed surface temperature (𝑇𝑠) and vegetation index (𝑉𝐼) 

measurements taken from heterogeneous areas are plotted in two-dimensional feature space, 

forming a 𝑇𝑠/𝑉𝐼 scatterplot (Petropoulos et al., 2009; Price, 1990). Many of these studies have 

focused on analyzing the biophysical properties encapsulated in the 𝑇𝑠/𝑉𝐼 pixel envelope, and in 

associating these and the estimation of SSM as well as of other parameters that characterize land 

surface interactions. In brief, if an image is cloud free and masked for water bodies, per pixel-level 

values of 𝑇𝑠 and 𝑉𝐼 collected from any satellite imagery usually form a triangular (or trapezoidal) 

shape in the 𝑇𝑠/𝑉𝐼 feature space, as shown in Figure 5.  

 

 
Figure 5: Key descriptors and physical interpretations of the 𝑇𝑠/𝑉𝐼 feature space “scatterplot” (adopted from 

Petropoulos et al. 2009). 

Each yellow circle represents the measurements for a single pixel. Figure 5 shows the 𝑇𝑠/𝑉𝐼 pixel 

envelope captured by each satellite scene. The triangular (or trapezoid) feature space is formed 

by the variability of 𝑇𝑠 and its relation to vegetation with soil water content variations. The right-

hand side border of the triangle (or trapezoid) (the so-called “dry edge” or “warm edge”) shown in 

Figure 5 is defined by the locus of points of highest temperature. This locus, however, contains 

points with differing amounts of bare soil and vegetation and represents limited SSM. Likewise, 

the wet edge at the left hand border corresponds to low temperature pixels with maximum surface 

soil water content. Points within the triangular space correspond to pixels with varying vegetation 

index (i.e., fractional vegetation cover, 𝐹𝑟) and surface soil water content, between those with bare 
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soil and those with dense vegetation. The relatively narrow vertex of the triangular envelope 

expresses the comparatively lesser sensitivity of leaf (i.e. vegetation) temperature to changes in 

soil water content, while the much wider base indicates that surface soil temperature is much more 

influenced by such changes.  

The potential of relating SSM with a 𝑉𝐼 and 𝑇𝑠 has been thoroughly scrutinized since the early 

1980’s. Carlson et al. (1981) were the first who found the existence of a marked relation in a 𝑇𝑠/𝑉𝐼 

scatterplot between soil moisture, evapotranspiration and vegetation cover (for a review see 

Petropoulos et al., 2009; Petropoulos et al., 2013).  

Various studies have been conducted attempting to relate the satellite-derived 𝑇𝑠/𝑉𝐼 feature space 

to drought conditions, and thus indirectly to SSM distribution. A large number of those studies 

have as their basis the estimation of spectral indices which allows combining information from 

both the reflected and TIR parts of electromagnetic radiation (Carlson and Petropoulos, 2019; 

Ghulam et al., 2007; Sandholt et al., 2002; Wan et al., 2004). A different group of approaches to 

the estimation of surface soil moisture content from 𝑇𝑠/𝑉𝐼 feature space measurements has been 

based on the coupling of these data with a Soil Vegetation Atmosphere Transfer (SVAT) model. 

In this method, the estimated soil water content is obtained from a parameter called the ‘moisture 

availability (𝑀0)’, a parameter loosely equated with the fraction of field capacity for the SSM. In the 

beginning of the 1990’s, Carlson et al. proposed a method that provided estimates of surface 

energy fluxes and SSM over partially vegetated canopies with the help of a boundary layer model 

(BML) and two image products: the 𝑇𝑠/𝑁𝐷𝑉𝐼 scatterplot and the “arch” diagram (Coakley and 

Bretherton, 1982). The two diagrams were used to identify the asymptotic limits of the sunlit leaf 

and the sunlit bare soil temperature and also to qualitatively assess the level of noise produced 

by small variations in soil moisture and leaf shading. The SVAT was used to estimate soil surface 

and root zone water contents, given the asymptotic vegetation and bare soil temperatures, derived 

from the aforementioned diagrams. Based on this study, Gillies and Carlson (1995) introduced a 

new method for the retrieval of spatially distributed maps of 𝑀0. The outputs from a SVAT model 

were coupled with the 𝑇𝑠 and 𝑉𝐼 (here the 𝐹𝑟 was used as the latter is a physical quantity in terms 

of a SVAT model contrary to the NDVI) EO data via empirically-derived correlations developed 

between the relevant input (e.g. 𝐹𝑟, 𝑀0) and output (e.g. LE, 𝑇𝑠) parameters of the physically-

derived model, parameterized for the time of satellite overpass. These correlations were then used 

with the EO values of, for example, 𝐹𝑟 and 𝑇𝑠 to retrieve 𝑀0 at each image pixel as follows:  

 
       (51) 

where *𝑁𝐷𝑉𝐼 and *𝐿𝑆𝑇 can be obtained by using the following relations (52) and (53): 

 
 (52) 

 
    (53) 

where, 𝐿𝑆𝑇 and 𝑁𝐷𝑉𝐼 are observed surface temperature and the Normalized Difference 

Vegetation Index used in the triangle model respectively, and the subscripts 𝑜 and 𝑠 stand for bare 

soil and dense vegetation, respectively. This method’s accuracy in retrieving 𝑀0 was evaluated by 
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different investigators suggesting a promising ability of this technique (Capehart and Carlson, 

1997; Carlson, 2007; Gillies et al., 1997; Petropoulos et al., 2016; Wang et al., 2007). Variants of 

this method have also been proposed for downscaling SSM operational products at higher spatial 

resolutions (Piles et al., 2016; Piles et al., 2014). 

All in all, the key advantages of the methods that utilize the synergy between optical and TIR EO 

data help in development of SSM algorithms and provide missing data in real time (namely a 

vegetation index and surface temperature). In addition, these techniques incorporate all the 

advantages of both the optical and TIR methods previously reviewed (i.e., they provide fine spatial 

and temporal resolution for SSM estimation, and they employ the use of mature technology with 

broad knowledge, data easily accessible from operational satellites, long historical data). Also, 

many of these techniques are able to provide relatively satisfactory estimates of SSM over partially 

or fully-vegetated regions, conditions which limit the performance of other techniques for 

estimating soil moisture (e.g., when MW data are used, as will be discussed next). Other key 

advantages of the 𝑇𝑠/𝑉𝐼 methods with respect to SSM estimation generally include their ability to 

be largely independent of ancillary surface and atmospheric information and their ability to better 

deal with land surface heterogeneity. In addition, many of the aforementioned synergistic methods 

require for their practical implementation a full spatial coverage or at least a very wide range of 

both VI and surface moisture within the study region, a condition that in general cannot be satisfied 

over large homogeneous areas. In our view, these are some of the main reasons that justify the 

continuous interest of the scientific community in these methods to date (Petropoulos et al., 2015). 

3.5 Current and upcoming satellite-based soil moisture products 
In this section currently operating systems as well as planned missions including sensor-specific 

soil moisture retrieval methods/characteristics are discussed. 

3.5.1 Metop Advanced Scatterometer (ASCAT) 

The Advanced Scatterometer (ASCAT) is part of the payload of the series of Metop satellites and 

represents a real aperture radar system operating in C-band using a vertical signal polarization 

(VV) (Gelsthorpe et al., 2000). The instrument has been operating in space more than 14 years, 

starting with the launch of Metop-A on 19 October 2006. The two following satellites, Metop-B 

(launched on 17 September 2012) and Metop-C (launched 7 November 2018), have succeeded, 

at six year intervals, to ensure a continuity of services provided by Metop. The three satellites 

share the same polar orbit (817 km orbit height, 29-day repeat cycle) with an 

ascending/descending node at 9:30 p.m./a.m. local solar time. The series of Metop satellites will 

operate in unison as long as Metop-A will be available, presumably until 2022.  

ASCAT measures the normalized radar cross section (NRCS), or radar backscatter, which is the 

ratio of the received backscattered energy to that of an isotropic surface scatterer as given by the 

two-way radar equation. The instrument consists of two sets of three fan-beam antennas arranged 

in azimuth at ±45°, 90°, and 135° and ±45° broadside. The incidence angles of the two antennas 

perpendicular to the flight direction range between 25-53°, whereas the other four antennas range 

between 33-64° (Figa-Saldana et al., 2002). As a result, the measurement geometry produces 

two 550 km wide swaths located approximately 360 km to the left and right of the satellite ground 

track (Figure 6). Each point of the Earth’s surface that falls within one of the two swaths will be 

seen by all three antennas, and a so-called backscatter "triplet" (Fore, Mid and Aft beam) can be 

observed. ASCAT works in two different modes: measurement and calibration. The calibration 

mode is used during external calibration campaigns when the platform passes over three different 

ground transponders located in central Turkey (Wilson et al., 2010). 
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Despite the fact that initially no operational services were foreseen over land, ASCAT has been 

utilized to develop a global near real-time soil moisture processing and dissemination service 

(Wagner et al., 2013). Much of this success is owed to its predecessor instrument, the C-band 

scatterometer (ESCAT) on-board the European satellites ERS-1 (1991-2000) and ERS-2 (1995-

2011), which was originally used to study backscatter and soil moisture changes (Wagner et al., 

1999c). A physically-based semi-empirical change detection algorithm has been developed by 

Vienna University of Technology (TU Wien) to estimate surface soil moisture (Wagner et al., 

1999a; Wagner et al., 1999b). The similar sensor design of ESCAT and ASCAT allowed a direct 

transition of the same retrieval approach (Bartalis et al., 2007; Naeimi et al., 2009). 

 

Figure 6: The ASCAT observation strategy with two 550 km-wide swaths. Credit: ESA/EUMETSAT. 

The TU Wien soil moisture retrieval exploits the multi-incidence angle measurement capability of 

the fan-beam scatterometer. Backscatter observations are interpolated to a common reference 

incidence angle of 40° based on an empirical description of the incidence angle behavior (Wagner 

et al., 1999b). A second order Taylor polynomial is used to model the relationship between 

backscatter and incidence angle (Hahn et al., 2017). Temporal variations in this relationship are 

due to changes in the dominant scattering mechanism over time. Vegetation dynamics and soil 

state can have distinct scattering characteristics and define whether the signal contribution from 

the soil to the overall backscatter is more important than the signal contribution from the vegetation 

canopy, or vice versa (Vreugdenhil et al., 2016; Wagner et al., 2013). Considering that those two 

physical effects are able to cancel each other out at distinct incidence angles means that the 

backscatter signal becomes stable compensating for changes in vegetation dynamics. However, 

the exact incidence angle is a function of the soil moisture content because of its dependency on 

the strength of the attenuation of the soil contribution. This notion has led to the so-called "cross-

over angle concept", which defines two distinct incidence angles for dry (25°) and wet (40°) soil. 

The dry and wet backscatter references are estimated at these two incidence angles and enable 

correction for static and seasonal vegetation effects. Finally, surface soil moisture content is 
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computed by scaling the incidence-angle-normalized backscatter between the dry and wet 

backscatter references, which leads to a value between 0 (completely dry) and 1 (saturated) 

representing the quantity degree of saturation. By knowing the amount of soil porosity (m3m-3) it 

is also possible to convert degree of saturation into volumetric soil moisture content (m3m-3) 

(Wagner et al., 2013). 

ASCAT surface soil moisture products are developed and distributed in the framework of the 

"EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water 

Management (H SAF)" project. Near real-time (NRT) and Climate Data Record (CDR) products 

are based on the TU Wien soil moisture retrieval and serve the different needs of the user 

communities. While NRT soil moisture products are most current and rely on pre-computed model 

parameters, the CDR soil moisture products are required to ensure long-term consistency and are 

based on the most recent version of model parameters. The ASCAT soil moisture products are 

validated at regular intervals using in situ reference data, and are intercompared with other 

remotely sensed soil moisture products as well as land surface models (Brocca et al., 2011; Qiu 

et al., 2013; Wagner et al., 2013). 

It is planned to extend the series of C-band scatterometers with the EUMETSAT Polar System 

Second Generation (EPS-SG) programme in the near future. The space segment will consist of a 

constellation of two satellites (Sat-A and Sat-B) developed by ESA, whereas the ground segment 

will be developed and maintained by EUMETSAT. Sat-B will carry a scatterometer (SCA) 

operating at 5.355 GHz. It is expected that three pairs of satellites will ensure a total mission 

duration of 21 years starting in 2022 (Lin et al., 2017). The combination of C-band scatterometer 

observations between ESCAT, ASCAT and SCA will create a surface soil moisture data record 

covering more than 40 years into the future. 

3.5.2 Soil Moisture and Ocean Salinity (SMOS) 

SMOS was launched in November 2009 (Kerr et al., 2010b; Kerr et al., 2001) and was designed 

to acquire L-band measurements globally over all surfaces of the Earth (land, ocean, and 

cryosphere alike). In contrast to Aquarius and SMAP, the antenna technology chosen for SMOS 

was – for the first time in space – a two-dimensional interferometer radiometer, composed of a Y-

shape antenna of 8 m in diameter mounted on a central platform, the hub (Figure 7). The antenna 

arms and the hub host 69 individual receivers, evenly distributed, as well as three noise injection 

radiometers used to calibrate the signal from a known source. The interferometry technology used 

by SMOS has been developed for radio astronomy and provides the opportunity to measure at a 

spatial resolution suitable for the global measurements required while saving on antenna mass 

and volume. Interferometry is used to address the constraint (in space) that the antenna size is 

proportional to the wavelength and the spatial resolution achieved, hence L-band synthetic 

aperture and interferometric processing are advantageous for space applications addressing the 

Earth’s global water cycle. SMOS measures the brightness temperature (TB) emitted from the 

Earth at L-band at 1.4 GHz over a range of incidence angles (0 to 55º) across a swath of 

approximately 1000 km with a spatial resolution of 27 to 55 km and a revisit time of 1-3 days. 

SMOS has the functionality to provide measurements in full polarization, and continues in 

operation today.  

SMOS Level 1 data products consist of brightness temperatures available in near-real time (NRT), 

i.e., ~3 hours from acquisition of the measurement on orbit. Level 2 data products are retrieved 

soil moisture vegetation opacity and sea surface salinity, available approximately 6-8 hours after 

sensing. A Level 2 soil moisture product based on a neural network approach is also available in 
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near-real time (Rodriguez-Fernandez et al., 2015; Rodriguez-Fernandez et al., 2017). Higher-level 

products for both soil moisture and sea surface salinity are available from national data processing 

centers in France (CATDS Centre Aval de traitement des Données SMOS) and Spain (CP34). 

They include Root zone soil moisture and drought index, high resolution soil moisture products (1 

km), freeze thaw at high latitudes, and surface water fraction, An assessment of the mission’s 

performance can be found in (Kerr et al., 2016). 

SMOS was the first one of three instruments launched into orbit with the aim of producing global 

maps of sea surface salinity and soil moisture using the 1400-1427 MHz protected band: SMOS, 

Aquarius, and SMAP. Although this frequency band is allocated to passive measurements only, 

RFI (Radio-Frequency Interference) is present in the data of all three missions. Despite active 

emissions in the protected band being illegal, RFI is globally present. The SMOS team put in place 

several strategies to improve and mitigate the RFI situation, with substantial improvement in some 

areas (Oliva et al., 2016). 

 
Figure 7: Artist’s depiction of the SMOS satellite. Credit: CNES, ESA. 

In addition, also alternative products are available. E.g., SMOS-IC (SMOS INRAE-CESBIO 

product) is a recent and alternative SMOS product of surface soil moisture and vegetation optical 

depth at L-band (L-VOD). The product development was coordinated by INRAE Bordeaux, and 

the first version was developed in collaboration with CESBIO and KU LEUVEN (Fernandez-Moran 

et al., 2017a; Fernandez-Moran et al., 2017b). SMOS-IC corresponds to the SMOS "original 

algorithm" i.e. the two parameter inversion of the L-MEB model (Wigneron et al., 2007) that was 

proposed in the SMOS project submitted to ESA and was already described in Wigneron et al. 

(2000) and Wigneron et al. (2017). SMOS-IC is an alternative product to the official Level 2 (Kerr 

et al., 2012) and Level 3 SMOS (Kerr et al., 2016) products with the following characteristics: 

 Most importantly, it is independent of modelled soil moisture data and vegetation optical 

indices (LAI, NDVI). This independence makes it robust in evaluations/applications for both 

soil moisture and L-VOD by avoiding circularity. 
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 It is based on a much simpler algorithm by deleting complex corrections, whose full evaluation 

is very difficult and which may lead to add more noise than improvement (corrections can be 

very tricky as the SMOS footprint changes from one day to the other and for each multi-angular 

observation). 

 It considers the pixel as homogeneous, consistent with SMAP, ASCAT and AMSR2, and thus 

avoids the use of a decision tree which may create discontinuities in the global soil moisture 

map. 

SMOS-IC provides global gridded (EASE grid 2) daily soil moisture (m3m-3) and VOD in NetCDF 

format with a ~25 km cylindrical projection (ascending and descending overpasses at 0600 a.m. 

and 0.600 p.m. Local Solar Time, respectively). The first version V105 (processed in late 2017) is 

available as a scientific product at CATDS. A more recent version was based on a first order model 

(2-Stream instead of the “tau-omega”, (Li et al., 2020)) and the most recent version is a multi-orbit 

product. It is available at https://ib.remote-sensing.inrae.fr/. 

Many recent inter-comparison studies with SMAP, ASCAT, AMSR2, etc. showed that the IC 

product compares very well with the other microwave products for both soil moisture (Al-Yaari et 

al., 2019; Dong et al., 2020; Kim et al., 2020; Ma et al., 2019; Quets et al., 2019; Sadeghi et al., 

2020) and L-VOD (Rodriguez-Fernandez et al., 2018). Besides soil moisture, the SMOS-IC L-

VOD vegetation index was found to well represent the above-ground vegetation biomass (Brandt 

et al., 2018b) and SMOS-IC has been recently used in several applications for monitoring the 

water and carbon cycles in the tropical, temperate and boreal regions (Al-Yaari et al., 2020; Bastos 

et al., 2020; Bastos et al., 2018; Brandt et al., 2019; Brandt et al., 2018a; Tagesson et al., 2020; 

Tong et al., 2020; Wigneron et al., 2020). 

3.5.3 Soil Moisture Active Passive (SMAP) 

NASA launched the Soil Moisture Active Passive (SMAP) mission on January 31, 2015 (Entekhabi 

et al., 2010; Entekhabi et al., 2014). The satellite started to deliver science data products on March 

31, 2015. NASA developed the mission as a Tier 1 recommendation of the 2007 National 

Academy of Sciences Earth Science Decadal Survey (National Research Council, 2007). The 

mission built on the heritage of the canceled NASA ESSP mission called Hydros (Entekhabi et al., 

2004). The concept is based on a single large (6 m diameter) conically scanning antenna, through 

which both an L-band radiometer and radar make measurements. At an incidence angle of 40°, 

the resolution of the radiometer and the radar (in a scatterometer operation) is about 40 km (Figure 

8). The radar was designed for synthetic aperture processing with single look resolution of 250 m 

x 400 m and multi-look resolution of 1 km. On July 7, 2015, the radar ceased operations abruptly, 

but the radiometer continues nominal operations.  

The SMAP mission provides a suite of science data products including Level 1 products for 

brightness temperature and backscatter, Level 2 and Level 3 products for soil moisture and 

freeze/thaw state, and Level 4 data assimilation products for surface and root zone soil moisture 

(Reichle et al., 2019) and carbon flux (Jones et al., 2017). SMAP data are also used for routine 

generation of sea surface salinity. Originally, SMAP generated soil moisture products separately 

from its radiometer (high accuracy, coarse spatial resolution) (Chan et al., 2016) and radar 

(reduced accuracy, high spatial resolution) (Kim et al., 2017) and also produced an active-passive 

product that combined the radiometer and radar measurements for a moderate resolution soil 

moisture retrieval with enhanced accuracy (Das et al., 2018). After the radar failure, the mission 

reassessed its data product suite and started to produce the radiometer product on a finer 9 km 

grid using an optimal interpolation technique (Chan et al., 2018). The mission also decided to 
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collaborate with the Copernicus/ESA Sentinel-1 mission and started to generate a combined high-

resolution product using the SMAP L-band radiometer and the Sentinel-1 C-band backscatter data 

(Das et al., 2019). 

 

Figure 8: Artist’s depiction of the SMAP satellite. Credit: NASA. 

The SMAP radiometer-based products include different soil moisture retrievals using three 

different algorithms. The baseline algorithm uses the single channel algorithm based on the 

vertically polarized brightness temperature (SCA-V) (O’Neill et al., 2018). The two additional 

algorithms use (1) the SCA based on the horizontally polarized TB, and (2) both TB polarizations 

in a modified dual channel algorithm (MDCA). The MDCA algorithm retrieves vegetation opacity 

in addition to soil moisture. 

For determining the accuracy and improving the performance of its soil moisture products, the 

SMAP mission developed a calibration and validation plan, which employs a suite of 

complementary methodologies to achieve a robust global assessment (Jackson et al., 2014). 

These methodologies include the utilization of core validation sites (Colliander et al., 2017b), 

sparse networks (Chen et al., 2017), other satellite data products (Burgin et al., 2017; Chan et al., 

2018), model-based data products (Pan et al., 2016), and field campaigns (Colliander et al., 

2017a; Colliander et al., 2019; Ye et al., 2019). Several other initiatives have also investigated the 

performance of the SMAP soil moisture products (Chen et al., 2018b; Zhang et al., 2019) and their 

utility for various applications (Bolten and Crow, 2012). 
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3.5.4 Advanced Microwave Scanning Radiometer (AMSR2) 

The second Advanced Microwave Scanning Radiometer (AMSR2) is a multi-frequency scanning 

radiometer onboard the Global Change Observation Mission – Water Satellite 1 (GCOM-W1), 

which was developed by JAXA in collaboration with NASA (Figure 9). AMSR2 has a sun-

synchronous orbit as part of the "A-train" satellite constellation and is a follow-up of the Advanced 

Microwave Scanning Radiometer for EOS (AMSR-E) onboard the AQUA satellite mission, which 

was active until October 2011. 

 

Figure 9: Artist’s depiction of the GCOM-W satellite. Credit: JAXA. 

The AMSR2 instrument measures in 14 channels, ranging from 6.9 to 89.0 GHz in both vertical 

and horizontal polarization, of which 6.9, 7.3 (C-band) and 10.7 (X-band) are most used for soil 

moisture retrievals. With a 1450 km swath width, a revisit time of less than 3 days is achieved 

globally.  

Currently, there are two operational AMSR2-based soil moisture products available, first the JAXA 

Soil Moisture Content product (JAXA, 2013) and secondly, soil moisture retrievals using the Land 

Parameter Retrieval Model (LPRM) (de Jeu et al., 2017; Owe et al., 2008).  

With (including AMSR-E) an historic database back to 2002, AMSR2 plays an important part in 

the development of long term climate data records (e.g. see section 3.5.8). The follow-up mission 

to AMSR2 is expected to be launched in 2022. 

3.5.5  The Argentine Microwaves Observation Satellite 1 (SAOCOM 1) 

The SAOCOM 1 Mission is a constellation of two identical L-band SAR satellites whose main 

objective is to produce a soil moisture map over the Argentinian Pampa region. The Level 1 

products are single look complex images, detected image (amplitude slant range), geocoded 

ellipsoid corrected, geocoded terrain corrected, interferogram and co-registered stack of images. 

Level 2 products include classification maps and soil moisture maps. Acquisition modes are Strip 

Map and TopSAR, all available in single, dual or quadpol mode.  
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The SAOCOM acquisition strategy is flexible, consisting in part of a fixed integrated mission 

acquisition strategy but also allowing acquisition requests and reprocessing of products by users. 

The repeat cycle of one satellite is 16 days, 8 days with 2 satellites. The noise level is better than 

-30 dB for all beams. Resolution for the soil moisture map depends on the acquisition mode: Strip 

Map, TopSAR narrow or TopSAR wide.  

Calibration and validation of the soil moisture map is based on two different aspects. A core site 

provided with a dense network of sensors and where multiple field campaigns are done will allow 

for comparison with ground truth and will determine the accuracy of the soil moisture map. 

Extension over the whole region will use other sources (using the Triple Collocation technique, for 

example), and dedicated campaigns and analyses will be also performed as needed.  

3.5.6 Sentinel-1 

The launch of the Sentinel-1 (S-1) European Radar Observatory has opened new perspectives to 

SAR-derived SSM products and stimulated a large research effort to develop SSM products at 

high-resolution. S-1 consists of two satellites (S-1A & B) with a C-band SAR system aboard, 

characterized by frequent revisit, large geographical coverage, and a sustained observation 

strategy for the next decades (Torres et al., 2012). 

 

Figure 10: Artist’s depiction of the Sentinel-1 satellite. Credit: Copernicus. 

Overland, the main S-1 acquisition mode is the Interferometric Wide (IW) swath, which operates 

in dual-polarization (VV & VH) and uses the Terrain Observation by Progressive Scan (TopSAR) 

acquisition mode to feature a total swath of 250 km, with a spatial resolution of 5 m by 20 m (single 

look) (De Zan and Guarnieri, 2006). Although the S-1 duty cycle (i.e., 25 min per orbit) can in 

principle provide a complete global earth coverage every 6 days, several operational constraints 

(ESA, 2018) have led to an observation strategy that, overland, enables an exact revisit of 12 days 

at the global level and of 6 days over Europe in both ascending and descending orbits (Figure 10). 

Two main broad classes of SSM retrieval algorithms using S-1 data can be identified. The first 

one encompasses those schemes based on S-1 data only (S-1-alone), whereas the second one 
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comprises methods requiring multiple satellite (S-1-combination) data to implement either data 

fusion (e.g., S-1 and Sentinel-2 and/or Landsat) or downscaling algorithms (e.g., S-1 and SMAP 

or SMOS). 

An example of an algorithm falling in the first class is the one developed by the Technical 

University of Wien (TU Wien) (Bauer-Marschallinger et al., 2019; Hornacek et al., 2012) and 

implemented as a pre-operational product in the EU Copernicus Land Services. A second example 

has been developed and implemented as a prototype at the Mediterranean scale by the National 

Council of Research (CNR, Italy), in the context of an ESA feasibility study. Both algorithms apply 

an incoherent change detection approach and provide an output at ~1 km resolution. However, 

while the TU Wien approach requires very long time series to estimate extreme wetness conditions 

and therefore may be referred to as long term change detection (LTCD), the CNR approach 

exploits the approximation that between two subsequent S-1 observations only SSM may change, 

whereas all the other surface parameters affecting the radar backscatter (e.g., vegetation layer, 

soil roughness) can be approximated as constant (Balenzano et al., 2011). In this respect, the 

CNR approach is referred to as a short term change detection (STCD) approach. Moreover, the 

TU Wien algorithm is a snapshot approach, which inverts single date S-1 VV acquisitions into a 

single date wetness index that subsequently can be transformed into SSM levels using porosity 

maps (Bauer-Marschallinger et al., 2019). Conversely, the CNR scheme transforms time-series of 

SAR VV & VH observations into time-series of SSM maps (Balenzano et al., 2011). 

In the second class (i.e., S-1-combination), a large number of retrieval algorithms combining 

microwave S-1 and optical Sentinel-2 (S-2) and/or Landsat data have been proposed over the last 

few years (Alexakis et al., 2017; Attarzadeh et al., 2018; Bao et al., 2018; El Hajj et al., 2017; Gao 

et al., 2017; Paloscia et al., 2013; Pierdicca et al., 2014; Pulvirenti et al., 2018). Most of these 

algorithms invert a theoretical/semi-empirical backscattering model using spectral information 

(such as NDVI) to constrain the retrieval and, hence, improve the robustness and the geometric 

resolution of the SSM estimate, where the latter can be up to ~0.1 km. 

A great deal of work has also been carried out to integrate S-1 data and passive microwave 

observations at low resolution to improve the geometric resolution of the SSM estimates (Eweys 

et al., 2017; He et al., 2018; Lievens et al., 2017; Santi et al., 2018). In particular, after the failure 

of the L-band radar aboard the SMAP satellite, an important effort has been dedicated to adapt 

the original active and passive SMAP merging algorithm (Das et al., 2011; Das et al., 2014) to the 

case of Sentinel-1 and SMAP combination in order to produce SSM maps at 3 km and 1 km 

resolution (Das et al., 2019). 

Such a large variety of retrieval approaches has, for the first time, the potential to produce SSM 

maps at high resolution (e.g., 0.1 km – 3.0 km) and at local, regional and continental scale with a 

temporal resolution ranging between ~3 and 12 days (depending on the geographic location and 

the implemented approach). Besides, the recent launch of the first satellite of the SAOCOM 

mission and that of Canada’s Radarsat Constellation mission will boost the availability of SSM 

products at high spatial and temporal resolution. 

Many applications, such as applied hydrology, agriculture, disaster prevention, and numerical 

weather prediction, are expected to have a beneficial impact from the use of high-resolution SSM 

products. Nevertheless, a crucial issue is to be able to assess the accuracy and consistency of 

the various SSM products and monitor their evolution. Validation is important to provide feedback 

about the various retrieval approaches and stimulate the adoption of the best solutions. In this 
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respect, it is important to adopt a community-agreed validation strategy tailored to high-resolution 

SAR SSM products. At the same time, it is vital to understand the needs and requirements of the 

scientific and economic communities that are interested in exploiting satellite high-resolution SSM. 

3.5.7 Advanced Land Observing Satellite 2 (ALOS-2) 

JAXA’s ALOS-2 satellite carrying aboard the Phased Array type L-band Synthetic Aperture Radar 

2 (PALSAR-2) instrument, successor to ALOS/PALSAR (2006-2011), was launched in May 2014 

and began routine operation in November 2014 (Figure 11). With respect to soil moisture 

estimation, among the main advancements in ALOS-2 are certainly its high resolution (6 m) quad-

polarization mode as well as the novel dual-polarization ScanSAR (50 m) mode, which, for the 

first time, allowed application of partial polarimetric decomposition-based vegetation corrections 

on a 350 km wide-swath SAR image. In terms of technology, the ALOS-2 is arguably the state-of-

the-art radar sensor in orbit with the highest potential for accurate high resolution (sub-field scale) 

soil moisture estimation. Apart from the penetration capabilities through vegetation at the 1257.5 

MHz center frequency and various polarimetric observation modes, PALSAR-2 has the maximum 

possible spatial resolution for a L-band EO system (85 MHz bandwidth), a nominal revisit time of 

only 14 days, and a very good Noise Equivalent Sigma Naught (NES0) of <-28 dB. Another 

advantage is the sun-synchronous high-noon orbit which virtually eliminates the disturbing 

influences of dew on crops and other vegetation in soil moisture retrievals. However, it might be 

fair to say that, due to JAXA’s basic observation scenario which significantly reduces the effective 

temporal resolution in large parts of the globe plus the restrictive data distribution policy, ALOS-2 

probably has never gained the attention in the soil moisture remote sensing community that it 

deserves. 

 

Figure 11: Artist’s depiction of the ALOS-2 satellite. Credit: JAXA. 

3.5.8 Combined products 

3.5.8.1 ESA Climate Change Initiative (CCI) 

Although data products derived from single missions or instruments are valuable resources for 

most applications, they are generally too short to monitor climate variability and change (Dorigo 
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et al., 2015). For this purpose, Climate Data Records (CDRs) spanning 30 years or more are 

typically recommended (GCOS-200, 2016). To fulfill this requirement, since 2011, ESA’s Climate 

Change Initiative (ESA CCI) has supported the development and production of harmonized long-

term soil moisture products from multiple active and passive microwave sensors (http://www.esa-

soilmoisture-cci.org). Since its first release in 2012, several versions of the ESA CCI soil moisture 

product have been released, each version containing either algorithmic improvements, the 

integration of new sensors, or a temporal extension of the climate data records. The latest version 

(v047) integrates soil moisture retrievals from 11 different microwave sensors and covers the 

period November 1978 to end of 2019 at a spatial sampling of 0.25° and a temporal sampling of 

1 day (Figure 12). Extensive reviews of the evolution of the ESA CCI Soil Moisture climate data 

records and their underlying merging methodology are given in Dorigo et al. (2017) and Gruber et 

al. (2019). 

 

Figure 12: ESA CCI soil moisture v04.7 product utilizes 4 active and 7 passive microwave sensors. Credit: ESA CCI 
Soil Moisture Project Team. 

In short, the ESA CCI SM approach consists of a statistical merging of Level 2 (i.e. in swath 

geometry) single-sensor soil moisture products into a harmonized record by synergistically 

combining the strengths of the individual products (Liu et al., 2012; Liu et al., 2011b; Wagner et 

al., 2012). The Level 2 products are either available through data providers (e.g. Metop ASCAT 

soil moisture from H SAF) or produced within ESA CCI itself (as for the soil moisture estimates 

from microwave radiometers based on LPRM). After scaling the various Level 2 products into a 

common climatology (i.e. inter-sensor bias correction), they are merged using a weighted 

averaging. The weight attributed to each sensor corresponds to the reciprocal of the random error 

variance, which is a priori computed for each input product and multi-sensor period using the triple 

collocation analysis (Gruber et al., 2017; Gruber et al., 2016). ESA CCI produces three CDRs: 

one based on radiometer data only (PASSIVE), one based on scatterometer data only (ACTIVE), 

and one that combines radiometer and scatterometer-based Level 2 products into a COMBINED 

product. While the latter is spatially and temporally the most complete and has the smallest errors 

of the three products (Dorigo et al., 2015), its absolute values cannot be considered independent 

of the GLDAS-Noah land surface model, which is used as ancillary data during the production 

process (Dorigo et al., 2017).  

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
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In 2017, the ESA CCI methodology was transferred to the Copernicus Climate Change Service 

(C3S), where, based on near-real-time satellite data streams, global daily, 10-daily, and monthly 

products are produced with a maximum delay of 10 days after satellite overpass. Algorithmically, 

C3S is always one development cycle behind that of ESA CCI.  

While the ESA CCI methodology has proved its worth for the production of CDRs from a wide 

variety of sensors with different specifications and periods covered, valuable alternative 

approaches exist to combine more uniform (in terms of measurement principle or frequency, or 

period covered) multi-sensor data into combined data sets of shorter time spans. Most of these 

alternative approaches apply a machine learning framework to a combination of Level 1 data sets 

(brightness temperature or backscatter values) (Kolassa et al., 2017a; Rodriguez-Fernandez et 

al., 2016; Santi et al., 2018). Also, the assimilation of various Level 1 or Level 2 (soil moisture) 

products into a land surface or hydrological model is used to combine the observations of multiple 

sensors. The advantage of this approach is that consistency is achieved between various land 

surface states and fluxes and that a model allows for propagating the surface observations to the 

root zone. On the other hand, the intervention of a model makes the resulting product less 

independent. 

3.5.8.2 NOAA Soil Moisture Products System (SMOPS)  

The NESDIS Soil Moisture Operational Products System (SMOPS) combines soil moisture 

retrievals from multiple satellite sensors to provide a global soil moisture map with high spatial 

coverage (https://www.ospo.noaa.gov/Products/land/smops). SMOPS provides a seamless soil 

moisture map over global land from six satellites, including GPM, SMAP, GCOM-W1, SMOS, 

Metop-A, and Metop-B. The global soil moisture maps are generated in daily intervals with the 

most recent 24 hours of soil moisture from multiple retrieval algorithms, and posted with a 

cylindrical projection on 0.25 x 0.25 degree grid (Figure 13). For each grid point of the map, the 

output includes soil moisture values as a percentage (vol/vol) of the surface (top 1-5 cm) soil layer 

with associated quality information and metadata. The archive period of record begins in March 

2017. The SMOPS Algorithm Theoretical Basis Document can be accessed here 

(https://www.ospo.noaa.gov/Products/land/smops/figures/SMOPS_ATBD_v4.0.pdf). 

 

Figure 13: Example of the SMOPS product. 

https://www.ospo.noaa.gov/Products/land/smops
https://www.ospo.noaa.gov/Products/land/smops/figures/SMOPS_ATBD_v4.0.pdf
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3.5.9 Downscaling methods 

Typical soil moisture products have spatial resolutions on the order of tens of kilometers, but many 

regional hydrological and agricultural applications need soil moisture information at higher spatial 

resolutions, e.g., on the order of a few kilometers or even tens of meters. A downscaling of soil 

moisture can also help to solve the problem of scale mismatch between in situ measurements and 

global soil moisture products for validation applications (Malbeteau et al., 2016). Several 

downscaling methods have been recently reviewed by Peng et al. (2017). They can be categorized 

into three major groups:  

1. satellite‐based methods, 

2. methods using geoinformation data, and  

3. model‐based methods. 

The first group uses higher resolution satellite data for disaggregation. The active-passive 

methods are driven by the SMAP concept and the launch of the Sentinel-1 satellites, so that 

downscaling by radar gains importance. Njoku et al. (2002) studied the combination of active and 

passive microwave data for soil moisture retrieval, and Das et al. (2011) improved the change 

detection algorithm that does not require previous satellite overpass observations and provides 

an absolute soil moisture rather than relative soil moisture change. Das et al. (2014) further 

improved the downscaling starting at the brightness temperature level by analyzing time series 

statistics of the radar-radiometer data relationships, which can also be forward calculated based 

on physical approaches (Jagdhuber et al., 2019). Additional methods and applications were 

published e.g. by Das et al. (2019), Piles et al. (2009), Montzka et al. (2016), and Akbar and 

Moghaddam (2015).  

Optical and thermal remote sensing data for downscaling have the advantage of providing land 

surface parameters at higher spatial resolution, but those observations can be affected by cloud 

coverage (Figure 14). Methods make use of the triangular surface temperature and vegetation 

index feature space and an empirical polynomial fitting for downscaling (Petropoulos et al., 2009; 

Piles et al., 2011). Other more physically based methods exploit the link of soil evaporation 

processes to optical and near‐surface SM data. Soil temperature, evaporative fraction, and 

evaporative efficiency were investigated as soil moisture proxies for downscaling by Merlin et al. 

(2006); Merlin et al. (2013). Also, artificial intelligence techniques including random forest, support 

vector machines, artificial neural networks, and relevance vector machines were used for 

downscaling with optical data provided by MODIS (Srivastava et al., 2013; Zhao et al., 2018).  

The second group uses geoinformation data such as topography and soil and vegetation 

characteristics for downscaling (Ranney et al., 2015; Werbylo and Niemann, 2014). These proxies 

are able to alter the soil moisture at small scale, topography by gravitational water flow, soil texture 

by infiltration and storage capacity, and vegetation by a change of the evaporation at the soil 

surface and transpiration from deeper soil layers. Montzka et al. (2018) make use of soil texture 

information at high resolution to downscale SMOS, SMAP, and ASCAT data by a prediction of the 

soil moisture standard deviation as a function of soil moisture mean curves. 
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Figure 14: A SMAP-MODIS downscaling example for the Iberian Peninsula (Zhao et al., 2018). 

The third group uses either geostatistical approaches or land surface models for downscaling 

(Peng et al., 2017). The statistical methods make use of studies that have been conducted on 

dense soil moisture observation networks or remotely sensed observations in order to describe 

the spatial statistics of the soil moisture field (Famiglietti et al., 1998; Peng et al., 2013), to relate 

the spatial variability to the spatial average (Grayson and Western, 1998), or to reveal how 

statistics change across scales (Rodriguez-Iturbe et al., 1995). This led to machine learning 

(Kaheil et al., 2008) or (multi)fractal methods (Kim and Barros, 2002; Mascaro et al., 2011). 

Involving a land surface model introduces physical process understanding into the downscaling 

approach. The following method groups have been developed: 

 Deterministic downscaling: the optimization of hydrological or land surface model 

parameters based on the coarse‐scale observations (Ines et al., 2013; Shin and Mohanty, 

2013), 

 Statistical downscaling: downscaling based on regressions (Koster et al., 2009; Verhoest 

et al., 2015), and 

 Data assimilation: assimilating coarse‐scale observations into land surface models, often 

by Bayesian methods like the Kalman Filter (Naz et al., 2019; Sahoo et al., 2013). 
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3.5.10 Root zone soil moisture products 

Knowledge of the moisture content in the top ~100 cm of the soil, defined here as “root-zone” soil 

moisture, is key to monitoring and predicting agricultural yield, carbon storage and the risk for 

natural hazards such as floods, droughts, landslides and wildfires (Entekhabi et al., 2010). 

However, satellite observations of microwave radiation in the X-, C- and L-band frequency ranges 

are at best sensitive to moisture in the upper few centimeters of the soil (see section 2.3.5). While 

lower-frequency P-band microwave radiation is sensitive to soil moisture down to ~20 cm depth 

(Crow et al., 2018), spaceborne P-band measurements are not currently available. Finally, the 

Gravity Recovery and Climate Experiment (GRACE) mission observes anomalies of total 

terrestrial water storage, including the entire soil moisture profile, but only at ~300 km, monthly 

resolution. Estimating root-zone soil moisture from GRACE requires partitioning of the total water 

storage into its components (Girotto et al., 2019; Zaitchik et al., 2008). 

Various methods have been employed to derive root-zone soil moisture estimates from satellite-

based surface soil moisture information, ranging from exponential time series smoothing (Albergel 

et al., 2008) to the assimilation of satellite observations into land surface models (De Lannoy and 

Reichle, 2016). Data assimilation enables a physically-based interpolation between and 

extrapolation beyond the satellite observations, using ancillary information about surface 

meteorological forcing and land surface conditions, such as vegetation and soil properties. The 

assimilation system thereby produces gapless estimates of land surface conditions, including 

surface and root-zone soil moisture, that are consistent with the assimilated satellite observations 

(Mo et al., 2011; Munoz-Sabater et al., 2007). More specifically, the surface layer information 

observed by the satellite sensor is propagated into deeper soil layers based on (i) the soil water 

and energy process dynamics encapsulated in the land model structure and parameters, and (ii) 

the modeled error covariance between moisture in the surface and deeper soil layers. A number 

of soil moisture data assimilation approaches have been explored in the past, including filtering 

(Plaza et al., 2012; Reichle et al., 2002; Sabater et al., 2007) and smoothing (Dunne and 

Entekhabi, 2006; Reichle et al., 2001) techniques, assimilating active or passive soil moisture 

retrievals (Draper et al., 2012; Kolassa et al., 2017b), or directly assimilating backscatter and/or 

radiance measurements (De Lannoy and Reichle, 2016; Han et al., 2013; Lievens et al., 2017; 

Munoz-Sabater, 2015; Rains et al., 2017).  

An example of an operational assimilation-based data set is the SMAP Level-4 Soil Moisture 

(L4_SM) product, which provides global, 9 km resolution, 3-hourly estimates of surface (0-5 cm) 

and root-zone (0-100 cm) soil moisture with a mean latency of ~2.5 days (Reichle et al., 2017a; 

Reichle et al., 2017b), see Figure 15. The underlying L4_SM algorithm assimilates 36 km SMAP 

Level-1 brightness temperature (TB) observations into the Catchment Land Surface Model (Koster 

et al., 2000) using a spatially distributed ensemble Kalman filter. An L-band microwave radiative 

transfer model is used to diagnose TB estimates at the 36 km satellite resolution from the simulated 

soil moisture and temperature (De Lannoy et al., 2013), and the differences between the SMAP 

TB observations and the corresponding TB simulations are then utilized to update the modeled 9 

km surface and root-zone soil moisture and surface soil temperature. The model error covariance 

estimates required for this analysis are diagnosed from a 24 member ensemble of Catchment 

model simulations. The resulting L4_SM soil moisture estimates have been validated using in situ 

measurements from SMAP core validation sites (Colliander et al., 2017b), yielding an average 

unbiased RMSD of 0.039 m3 m-3 for surface and 0.026 m3 m-3 for root-zone soil moisture for 

Version 4 of the L4_SM product (Reichle et al., 2019). Moreover, the L4_SM estimates were 

shown to outperform model-only soil moisture estimates. 
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Figure 15: Surface and root zone soil moisture from the SMAP Level-4 soil moisture product for an example pixel 
(Reichle et al., 2019). 

3.5.11 Operational utilization of soil moisture products 

ASCAT soil water index has been assimilated operationally at the UK Met Office since 2010 

(Dharssi et al., 2011) and at the European Center for Medium Range Weather Forecasts 

(ECMWF) since 2012 (de Rosnay et al., 2013). The first global product of consistent surface and 

root zone soil moisture available in NRT for the NWP, climate, and hydrological communities was 

the SM-DAS-2 product. SM-DAS-2 is the EUMETSAT Hydrology-SAF root zone soil moisture 

index product, retrieved by scatterometer assimilation in the ECMWF Land Data Assimilation 

System. It has been operationally produced in Near Real Time since 1 January 2012.  

SMOS SM has also been assimilated operationally at ECMWF since cycle 46r1, which entered in 

operations in June 2019. The SM data set assimilated at ECMWF has been developed specifically 

following the methodology discussed in Rodriguez-Fernandez et al. (2019a), which is similar to 

that used for the ESA SMOS Near-Real-Time SM product discussed in section 3.5.2. However, in 

the case of the DA-specific NRT, the neural networks were trained on ECMWF soil moisture fields. 

The operational data assimilation approach and the first results, which show that SMOS NN data 

assimilation slightly improves the two-meter air temperature forecast in the short range at regional 

scale, are discussed in Rodriguez-Fernandez et al., (2019). The assimilation of SMOS SM is      

also in development at the UK Met Office while other operational centers such as Environment 

Canada are developing the assimilation of SMOS and SMAP brightness temperatures for their 

soil moisture analysis (Carrera et al., 2015). 
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SMOS surface soil moisture estimates are also assimilated to correct model-based soil moisture 

predictions for the impact of rainfall forcing errors by the International Production Assessment 

Division within the Foreign Agricultural Service at the United States Department of Agriculture. 

The SMOS retrievals are assimilated into a modified Palmer two-layer soil moisture model by 

using an Ensemble Kalman filter approach using the framework that was previously developed for 

AMSR-E (Bolten et al., 2010) for food security applications (Mladenova et al., 2019). SMOS SM 

is also used operationally by Agriculture Canada to monitor agricultural risk. Regarding food 

security and plague management, a SMOS product has been downscaled to 1 km (Escorihuela et 

al., 2018) for use by national locust centers and by the Desert Locust Information Service (DLIS) 

in the United Nations Food and Agriculture Organization (FAO).  

3.5.12  Future missions and products 

3.5.12.1 The NASA-ISRO SAR (NISAR) Mission 

The NISAR mission is a multidisciplinary radar mission to make integrated global measurements 

to understand the causes and consequences of land surface changes for integration into Earth 

system models (NASA, 2018). The level 1 products consist of range-doppler single looks of 

complex-number radar returns, polarimetric covariance, interferogram, and unwrapped 

interferogram. The level 2 products include geocoded single look complex images, geocoded 

unwrapped interferogram, and geocoded polarimetric covariance matrix (GCOV). Existing soil 

moisture retrieval algorithms utilize backscattering or bistatic intensity values (such as HH, VV, 

HV) and polarimetric covariance, which are the components of GCOV. 

As of September 2019, only HH and HV are planned for acquisition globally by NISAR. Full-

polarization GCOV will be obtained over India. Global mapping of multi-polarization (HH, VV, HV, 

VH) is envisioned but not confirmed. The repeat cycle is 12 days. Although there is a possibility 

for combining ascending and descending observations to achieve a 6-day revisit, the ascending 

and descending orbits may not offer the same polarization and spatial resolution. The spatial 

resolution of GCOV will be 7 m in azimuth, and TBD (to be determined) in range direction (from 

20 m to 80 m). To reduce speckle noise to the same level as the calibration uncertainty of 0.7 dB, 

about 36 single looks need to be spatially averaged, which will result in roughly 150 m spatial 

resolution with the 80 m single look resolution. The radar-only algorithms are aiming at 200 m 

resolution soil moisture products, while active-passive algorithms using the radiometer data from 

SMAP or SMOS target 500 m resolution soil moisture retrieval. The noise level is -23 dB, meaning 

that most of the vegetated surfaces will not be impacted by noise. However, copol data over a 

desert, for example, as well as crosspol data over larger regions, may not be distinguishable      

from noise. 

3.5.12.2 Advanced Land Observing Satellite-4 (ALOS-4) 

Currently under final production at the Mitsubishi Electric Corp., the ALOS-4 spacecraft carrying 

PALSAR-3 is programmed for launch in March 2021. Using digital beamforming and phase 

spoiling techniques, the next generation L-band SAR will be capable of high resolution (3 m) 

Stripmap mode imaging with remarkable 200 km swath width. The improved dual-pol ScanSAR 

mode will enable imaging a 700 km swath at 25 m spatial resolution. Moreover, a much-improved 

downlink speed of 3.6 Gbps will allow more frequent acquisitions in the 6 m quad-polarization 

mode (100 km swath). ALOS-4 will fly in the same sun-synchronous high-noon orbit (14 days 

revisit time) as its predecessor ALOS-2. However, due to the improved specifications, ALOS-4 

can image every part of the earth at 3 m resolution 20 times per year (as compared to 4 times per 
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year with ALOS-2). As it is expected that ALOS-2 can operate well until 2024, the two satellites 

simultaneously in orbit will provide unseen opportunities for advances in soil moisture related 

research including the first spaceborne polarimetric SAR interferometry (PolInSAR) applications.  

3.5.12.3 The Copernicus Imaging Microwave Radiometer (CIMR) Mission 

The CIMR mission is a high priority candidate mission within the European Copernicus Expansion 

program. CIMR is a global multi-frequency (L, C, X, Ka/Ku-bands) imaging microwave radiometer 

designed to observe the ocean and sea ice with a focus on the Arctic environment (Kilic et al., 

2018). Beyond the provision of key polar ocean, ice and snow parameters with an increased 

accuracy and/or spatial resolution, the CIMR mission is also of high interest for land applications. 

The envisaged long-term commitment of the CIMR mission will significantly enhance and allow 

the extension of soil moisture climate data records based on microwave space observations (e.g. 

the ESA CCI Soil Moisture (Dorigo et al., 2017)).  

Over land, the multi-frequency capability of CIMR enables sensing from up to more than half a 

century in length, which are crucial for monitoring water reservoirs and the impact of climate 

change and anthropogenic forcing on natural and agricultural ecosystems.  

 
Figure 16: Frequency channels and their targeted spatial resolutions of the CIMR mission candidate 

(https://doi.org/10.6084/m9.figshare.7177730.v7). 

Advanced multifrequency soil moisture algorithms need to be designed to exploit the CIMR L, C, 

and X-band frequency ensemble for a better characterization of vegetation properties, 

electromagnectic soil surface roughness, and soil-plant interactions in the inversion process. 

Information on effective temperature and terrestrial surface water extent, required in soil moisture 

retrieval, is provided by higher frequencies (Ku and Ka bands). Beyond soil moisture, multiple 

channels can potentially be used to infer information on moisture status in different plant 

components (Baur et al., 2019). While the native spatial resolution of CIMR (~60 km) will be 

coarser at L-band than SMOS and SMAP, it will be higher (~15 km) at C- and X-bands than 

AMSR2, and its conical scan leads to a high degree of oversampling in the across-scan and flight 

directions, allowing for gridded products at higher postings (Figure 16). With a temporal revisit of 
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1.5 days and its multi-frequency and multi-resolution capabilities, CIMR enables the provision of 

key land products for monitoring the water in soils and vegetation, allowing major advances in 

understanding water movement across the soil- vegetation continuum as well as ecosystem 

responses to water stress. 

Figure 16 illustrates the frequency channels of the candidate Copernicus Imaging Microwave 

Radiometer (CIMR) mission, and their targeted spatial resolutions. CIMR is also compared to two 

other similar Passive Microwave Radiometers (PMR): the Japanese AMSR2 in orbit since 2012, 

and the MWI to fly on-board the European EPS-SG satellites starting in ~2023 (MWI-SG). Also, 

the resolution of the planned L-band channel is compared to NASA SMAP and ESA SMOS 

3.5.12.4 The Terrestrial Water Resources Satellite (TWRS) 

The TWRS mission is currently in Phase C at China National Space Administration (CNSA). Two 

possible new opportunities are being considered by China, including the Water Cycle Observation 

Mission (WCOM) (Shi et al., 2014) and the TWRS (Zhao et al., 2020). Unlike the SMOS and 

SMAP, the WCOM and TWRS are both based on the one-dimensional (1-D) synthetic aperture 

technology, which can reduce the complexity as compared to a two-dimensional (2-D) radiometer 

of SMOS. It can also avoid the risk of large antenna rotating (SMAP) to obtain high resolution 

observations in the cross-track direction. Except the 1-D radiometer at L-band, a synthetic 

aperture radar at L-band is designed to share the reflector antenna. The WCOM concept carries 

a multi-frequency radiometer achieving spatial resolutions of 50 km (L-band), 30 km (S-band) and 

15 km (C-band) 

3.5.12.5 The Soil Moisture and Ocean Salinity - High Resolution (SMOS-HR) Mission 

If existing L-band radiometers (SMOS and SMAP) satisfy many of the current needs, they 

nevertheless need to be replaced as both systems are beyond their expected life times. A recent 

requirement study performed for ESA shows that to satisfy user requirements, future systems 

should have a 10 km native resolution: this is the goal of the SMOS-HR mission. Two options are 

being studied for the antenna layout, a square and a cross with 12 m sides or arms, respectively, 

both carrying about 230 antennas. While the square is slightly better in radiometric performance, 

the cross is slightly lighter but much simpler and much less risky (Figure 17). SMOS-HR presents 

several additional improvements with respect to SMOS such as simultaneous full-polarization 

acquisitions and multi-bit quantization, ensuring a similar radiometric resolution to that of SMOS 

in spite of the increased size of the array. The position of the individual antennas has been 

optimized following a patented design that reduces the aliasing of the reconstructed images while 

allowing to increase the distance between antennas, which can be larger than those of SMOS. 

Efficient RFI filtering will be implemented at different stages of the processing chain before and 

after correlation of the signals. SMOS-HR will measure L-band brightness temperatures for a wide 

range of incidence angles (~0º-50º), which will allow for simultaneous retrieval of SM and 

Vegetation Optical Depth (VOD). Of course, a native resolution of 10 km will still be coarse for a 

number of applications in agriculture and hydrology, and downscaling strategies merging SMOS-

HR with higher resolution data have to be implemented. However, the quality of the downscaled 

products improves as the native resolution of the passive radiometer increases (Rodriguez-

Fernandez et al., 2019b). 

In summary, the overall specifications of SMOS-HR are: a native spatial resolution of around 10 

km (3 dB beam width), with a 3-day revisit (6 am and 6 pm overpass times), a sensitivity at least 
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equivalent to SMOS, and multangular acquisitions between at minima 20 and 40° incidence angle 

of fully polarized brightness temperatures. 

 
Figure 17: A concept for the SMOS HR sensor configuration. 

The phase 0 of SMOS–HR has been carried out by CNES with Airbus Space and Defense (ADS) 

and the phase A study is being initiated. The instrument is very largely based on SMOS heritage, 

and should the cross layout be selected, no major problem has been identified. Pending funding 

availability, SMOS–HR could be ready for launch by 2027. 

4 GENERAL CONSIDERATIONS FOR IN SITU REFERENCES 

4.1 The International Soil Moisture Network (ISMN) 
For more than 10 years, the International Soil Moisture Network (ISMN; 

https://ismn.geo.tuwien.ac.at/) has been an operational data hosting facility providing access to 

fiducial reference measurements from stations around the globe (Dorigo et al., 2011). The data 

available for download from the ISMN are collected from a large variety of networks and data 

providers, then harmonized and subjected to several quality checks (Dorigo et al., 2013) before 

being stored in a central database. Currently, more than 2500 stations from 60 different networks 

are contained in the ISMN, see Figure 18.  

Due to the wide variety of networks contributing to the ISMN, the data sets offered are very 

heterogeneous in terms of measurement techniques, quality, and spatial and vertical 

representativeness (Gruber et al., 2013). Recently, even citizen-based observations from low-cost 

sensors were added to the databases. For such a diversity of data, more advanced quality 

assurance methods are needed to allow users to select only data sets and stations that are 

compliant with predefined international quality standards and fulfill the requirements on spatial 

representativeness, land cover, spatial distribution etc. that are needed for validating a specific 

product.  
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Figure 18: Currently available stations from sparse networks hosted by the ISMN (from 
https://www.geo.tuwien.ac.at/insitu/data_viewer and Gruber et al. (2020)). Colors represent different station hosting 

networks. 

The entire ISMN database is currently integrated in the Vienna University of Technology’s Quality 

Assurance for Soil Moisture (QA4SM) validation tool to allow for transparent and reproducible soil 

moisture product validations and intercomparisons (see https://qa4sm.eodc.eu). 

The ESA-funded ISMN is commonly accepted by the community as a single repository where all 

fiducial reference measurements can be stored. The LPV subgroup recommends support to 

secure a long-term operation. Critical to the success of endeavors such as ISMN is the 

collaboration of the contributing networks and the appropriate recognition of the network 

contributions to the Cal/Val process. ISMN does not financially support in situ networks. 

4.2 Spatial representativity of soil moisture monitoring networks 

4.2.1 Horizontal representativity 

An often-asked question is how representative a soil moisture station is of the surrounding region. 

Most sensors make measurements on the scale of centimeters, while most satellite products are 

on the scale of kilometers. Some proximal sensors such as Cosmic-ray neutron sensors do 

provide an estimate over 100s of meters, but this is still a large gap to span to satellite 

observations. Furthermore, many soil moisture stations are permanently installed in an area which 

does not represent the same surface conditions as the landscape at large. For example, with a 

few exceptions (Carman, Manitoba, Canada), stations in agricultural regions are outside of the 

managed landscape, not experiencing tillage or planting like the rest of the field. In rangeland, 

stations are frequently fenced in to keep out cattle, so the grasses grow taller within the station 

enclosures. Or in mountainous, rocky regions, the stations are installed in predominantly soil 

regions with low rock fraction, even though the landscape can have significant rock fraction.  

The scale at which soil moisture varies depends on a variety of factors including weather and 

precipitation patterns, topography, land use and land cover, soil type variation, and land 

management practices (Gaur and Mohanty, 2013). To overcome these challenges, a common 

technique is to deploy enough stations to develop a statistical confidence in the soil moisture 

estimate (Caldwell et al., 2019). Because of cost of operation and land ownership issues, this is 
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not a simple solution. A frequent approach is to conduct large scale field experimentation across 

a range of soil moisture conditions to produce an error estimate for the network at a variety of 

scales. This can lead to the development of scaling functions for converting small scale in situ 

station data into a representative remote sensing scale estimate with a quantified error 

(Coopersmith et al., 2015; Cosh et al., 2006). The SMAP Cal/Val program adopted this goal of 

validated in situ measurements to meet their mission accuracy metric of 0.04 m3/m3 ubRMSD 

(Chan et al., 2016). 

4.2.2 Vertical representativity 

Another challenging aspect of representativeness is the difference between different penetration 

depths of remote sensors and the sensing depths of most in situ networks. C and X band sensing 

depths are approximately within the top 1 cm. While it is estimated that L-band radiometry can 

penetrate down to 0-5 cm, dry soil conditions can extend the penetration depth deeper. Under 

most conditions, soil moisture retrievals from remote sensing are limited to the top 10 cm. 

Installation of sensors in the very near surface has been challenging in practice, often resulting in 

lost or unstable data because of the high temperature swings experienced in the near surface.  

Most soil moisture networks have settled on an installation depth of 5 cm for horizontally installed 

in situ sensors, which for many sensors produces an estimate of the moisture in a soil volume 

approximately 3-7 cm in depth. This depth is common among the leading national networks in the 

U.S., i.e., NOAA’s Climate Reference Network (CRN) (Diamond et al., 2013) and USDA’s Soil 

Climate Analysis Network (SCAN) (Schaefer et al., 2007). However, the Kenaston network in 

Alberta, Canada has vertically installed sensors which more completely integrate the near surface 

from 0-5 cm (Magagi et al., 2013). 

4.3 In situ soil moisture sensor technology 
There are a variety of methods which can be used for monitoring in situ soil moisture, including 

manual gravimetric sampling, neutron probes, and dielectric sensors to name a few. Newer 

technologies have also emerged, including land-based remote sensing and proximal sensors like 

the cosmic ray neutron probe. We will focus on the current dominant sensor methods which 

provide the most common basis for satellite calibration and validation. 

4.3.1 Gravimetric Methods 

The only direct measurement of soil moisture is to physically collect a soil sample and then 

determine the amount of water contained within. This method is commonly referred to as the 

thermogravimetric method, and it involves either a gravimetric or volumetric collection of soil, 

weighing the soil, drying the soil, then reweighing to determine the amount of water lost. For a 

definition of volumetric soil moisture (𝜃𝑣) and gravimetric soil moisture (𝜃𝑚) see Eqation (1). Most 

satellite missions use 𝜃𝑣 as their reference, which is measured via the thermogravimetric method, 

where soil samples are dried for at least 24 hours at 105°C. 

An associated measurement system is the lysimeter which is a column of soil that has a 

maintained structure sitting atop a weighing scale. As moisture enters or leaves the structure, the 

weight of the soil allows for the direct calculation of the gravimetric soil moisture and therefore the 

volumetric soil moisture. As the large scale deployment of lysimeters is often beyond the means 

of most soil moisture networks, this method will not be covered further. 

The thermogravimetric method is the principal means of providing a ground reference soil moisture 

during large scale field campaigns and other intensive observation periods, but the labor and time 
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involved in collecting this information is prohibitive for long term monitoring. Therefore, 

electronically based measures provide the core set of measurements via automated monitoring, 

which is more efficient and suitable for sustained validation activities over time.  

4.3.2 Time Domain Reflectometry (TDR)  

Time Domain Reflectometry (TDR) became a useful method for sensing soil volumetric water 

content (𝜃𝑣) and bulk electrical conductivity (𝜎𝑎) in the 1980s (Dalton and Vangenuchten, 1986; 

Dasberg and Dalton, 1985; Topp et al., 1980; Topp et al., 1988). Automated TDR systems were 

described by Baker and Allmaras (1990), Heimovaara and Bouten (1990), Herkelrath et al. (1991), 

and Evett et al. (1993). Commercial systems became available in the 1990s and continued to 

evolve while becoming wide spread in research and monitoring applications, thus this technology 

will be covered in more detail here. A short electronic pulse transmitted down a waveguide inserted 

in a porous media (soil). There is a correspondence between the travel time of this pulse and the 

water content of the soil via the apparent dielectric permittivity. A waveform is created from the 

sensors in the probe. From the waveform, various soil parameters can be estimated.  

 

 

Figure 19: (a) A TDR probe with three electrodes fashioned from stainless steel rods. (b) Plot of TDR instrument 
waveform (lower trace) and its first derivative (upper trace) from a probe in wet sand. Shown are the reflections 

caused by physical changes in the transmission line and tangent lines fit to determine the times at which the 
reflections occurred. (c) Different TDR probe designs used in research and monitoring (with cross section depiction 

of electromagnetic field lines) (Jones et al., 2002). 

In the conventional TDR method, a very fast rise time step (approx. 120-300 ps) voltage increase 

is generated by a TDR instrument and passed to a probe (Figure 19a) placed in the soil or other 

porous medium. The TDR probe is typically an inert assembly (it is not a sensor) with a plastic 

head from which extend electrodes (typically three, but sometimes more or only two, Figure 19c), 

typically fashioned from stainless steel rods. In conventional field installation, probes are 

connected to the instrument through a network of coaxial cables and multiplexers, to reduce costs 

by using a single TDR instrument. The TDR instrument provides the rapid voltage step and 

captures a waveform (Figure 19b) of the reflected voltage using an internal fast oscilloscope (at a 
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picosecond or GHz sampling rate). Typically, the oscilloscope can capture waveforms that 

represent all, or any part of, the transmission line (this includes connections, cables, multiplexers, 

and probes), beginning from a location that is just prior to step voltage generation. The travel time 

of the pulse in the probe electrodes embedded in the soil is represented by the waveform, which 

is interpreted graphically to determine the two-way travel time (𝑡𝑡) in the electrodes (Figure 19b). 

The value of 𝑡𝑡 is related to soil water content through equations based on Maxwell’s 

electromagnetic theory, with travel times increasing with increasing volumetric soil water content 

𝜃𝑣. The relationship between 𝑡𝑡 and 𝜃𝑣 is usually linear (see section 4.5) but may deviate due to 

water-mineral surface interactions (Jones et al., 2002). In conventional TDR applications, an 

embedded computer or microprocessor/datalogger is used to control the system and often to 

analyze the waveforms for travel time and to compute 𝜃𝑣 values. Therefore, conventional systems 

are expensive (several thousand dollars for a basic system with few probes), difficult to maintain, 

and finally not much used in practical agricultural and environmental monitoring. 

High speed (GHz) electronics made available from the cellular telephone industry have made it 

possible to miniaturize the TDR instrument to a small circuit board that fits inside the head of a 

sensor. Such TDR sensors directly couple the TDR step voltage generator to the sensor 

electrodes and thus circumvent the deleterious effects of coaxial multiplexers and cables because 

these are not required. In addition, expensive TDR instruments and embedded computers 

involved in conventional TDR systems are not required. Because the TDR instrument is in the 

sensor head, the fast rise time pulse is injected directly into the electrodes with minimal loss, 

making such sensors useful in soils with larger 𝜎𝑎 and greater contents of large surface area clays 

than are feasible for conventional TDR systems (Casanova et al., 2013; Schwartz et al., 2016). 

The microprocessor in the sensor head captures the waveform data, interprets it for travel time, 

calculates the apparent permittivity (휀𝑎), applies a calibration to estimate 𝜃𝑣, calculates 𝜎𝑎 and 

records temperature from a separate sensor in the head. In normal use, sensors are used with 

dataloggers to acquire values of 휀𝑎, 𝜃𝑣, 𝜎𝑎, and temperature sent through the sensor cable as 

digital signals (SDI-12 protocol), which greatly increases the feasible length of cables. The sensors 

can also deliver TDR waveforms, which are useful for checking on sensor installation and trouble 

shooting. Such TDR sensors are becoming widely used in agricultural and environmental 

monitoring. 

4.3.2.1 Theoretical basis and calibration equations 

Except for the obvious differences discussed in the preceding paragraph, the following discussion 

is relevant to both conventional TDR systems and the new directly-coupled TDR sensors. Figure 

19b shows a waveform from a conventional TDR system that represents the transmission line in 

the coaxial cable just before the probe and the probe itself. The relative magnitude of the waveform 

represents a voltage, which is proportional to the impedance of the waveguide. When scaled 

against the magnitude of the voltage pulse supplied by the TDR circuit, the voltage values are 

known as reflection coefficients. Although earlier TDR instruments displayed the horizontal axis in 

units of length, the horizontal axis is really measured in units of time. Because the waveform 

represents the reflected pulse, the times are two-way travel times. Conventional TDR instruments 

convert the time measurement to length units by using the relative propagation velocity factor 

setting (𝑣𝑝), which is a fraction of the speed of light in a vacuum. For a given cable, the correct 

value of 𝑣𝑝 is inversely proportional to 휀𝑎 of the dielectric (insulating plastic) between the inner and 

outer conductors of the cable 
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𝑣𝑝 =
𝑣

𝑐𝑜
= (휀𝑎𝜇)−0.5 

(54) 

where 𝑣 is the propagation velocity of the pulse along the cable, 𝑐𝑜 is the speed of light in a 

vacuum, and 𝜇 is the magnetic permeability of the dielectric material.  

For a TDR probe in a soil, the dielectric between the probe rods is a complex mixture of air, water 

and soil particles that exhibits a variable apparent permittivity, which determines the pulse velocity 

along the probe electrodes (exposed rod length divided by travel time). The TDR method relies 

on interpretation of the waveform reflected from that part of the transmission line that is the probe 

(Figure 19a,b). An example of waveform interpretation shows how the two-way travel time for the 

step voltage pulse to travel along the probe rods, 𝑡𝑡 = 𝑡2 − 𝑡1, may be determined (Figure 19b). 

The value of 𝑡𝑡 is related to the propagation velocity as 

𝑡𝑡 = 2𝐿/𝑣 
(55) 

where 𝐿 is the length of the rods, and the factor 2 signifies two-way pulse travel. Combining 

Equation (54) and (55), we see that 𝑡𝑡 is related to the inverse square root of 휀𝑎. 

𝑣 =
2𝐿

𝑡𝑡
= 𝑐𝑜(휀𝑎𝜇)−0.5 

(56) 

With a permittivity of ~80, water is the largest determinant of permittivity in soils. In comparison, 

the permittivity of soil minerals varies in the range of 3 to 5; the permittivity of organic matter is 

likewise small; and the permittivity of air is unity. Because soil water is the only rapidly changing 

determinant of 휀𝑎, we can calibrate soil water content vs. measured 𝑡𝑡 or calculated 휀𝑎.  

Reflection 2 in Figure 19b can be difficult to identify (visually or by computer algorithm), so it is not 

always possible to directly determine 𝑡1. For example, in dry soils Reflection 2 may not be visible 

(see waveforms for 𝜃𝑣 < 0.1 in Figure 20b). Reflection 1 is, however, always identifiable for 

conventional TDR probes and the time that passes as the pulse travels through the plastic handle 

from reflection 1 to reflection 2, called the handle transit time (or offset), is a reasonably constant 

value, ∆𝑡0, for a particular TDR probe design and materials. TDR probes should be calibrated to 

evaluate ∆𝑡0 to facilitate evaluating 𝑡1 (Evett, 2000; Heimovaara, 1993); yielding 𝑡1 = 𝑡1𝑥 + ∆𝑡0. 

TDR probes should also be calibrated to account for small differences between the electrical 

length (𝐿𝑒) and the physical length (𝐿). Calibration of the 𝐿𝑒 and ∆𝑡0 can be accomplished by 

evaluating 𝑡1𝑥 and the second reflection 𝑡2 in air and deionized water 

𝐿𝑒 =
𝑐

2
(

𝑡2,𝑤𝑎𝑡𝑒𝑟 − 𝑡2,𝑎𝑖𝑟

휀𝑤𝑎𝑡𝑒𝑟

1
2 − 휀𝑎𝑖𝑟

1
2

) 
(57) 

∆𝑡0 = (𝑡2,𝑤𝑎𝑡𝑒𝑟 − 𝑡1𝑥) −
2𝐿𝑒 ∙ 휀𝑤𝑎𝑡𝑒𝑟

1
2

co
 (58) 

where 휀𝑎𝑖𝑟 = 1, and 휀𝑤𝑎𝑡𝑒𝑟 is the permittivity of water at the calibration temperature. Here, 𝑡1𝑥 

tends to vary slightly (~5 ps) when it is evaluated in air and water and the average of the measured 

values is used to determine ∆𝑡0. Because waveform smoothing can influence the shape of the first 

peak, the time of the transition 𝑡1𝑥 should always be evaluated with limited or no waveform 
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smoothing and the same level of smoothing for calibrations and water content evaluations 

(Schwartz et al., 2013). Calibration of direct-coupled TDR sensors is evaluated in the same 

manner above except that 𝑡1𝑥 is based on the intersection of the tangent to the maximum gradient 

of the incident step pulse and the preceding baseline (Schwartz et al., 2016). 

Rearranging Equation (56), and assuming 𝜇 = 1, one sees that 휀𝑎 may be determined for a probe 

of known length, 𝐿, by measuring 𝑡𝑡 

휀𝑎 = [𝑐0𝑡𝑡/(2𝐿)]2 
(59) 

Topp et al. (1980) found that a single polynomial function described the relationship between 𝜃𝑣 

and values of 휀𝑎 determined from Equation (59) for four mineral soils: 

𝜃𝑣 = (−530 + 292휀𝑎 − 5.5휀𝑎
2 + 0.043휀𝑎

3)/104 
(60) 

Since 1980, Topp and Reynolds (1998) and other researchers have noted that the quantity 𝑡𝑡/(2𝐿) 

in Equation (59) is quadratic and have shown that the relationship between 𝜃𝑣 and 𝑡𝑡/(2𝐿) is 

practically linear (Evett et al., 2006; Ledieu et al., 1986; Topp and Reynolds, 1998; Yu et al., 1997), 

and useful calibration equations take the form: 

𝜃𝑣 = 𝑎 + 𝑏[𝑐0𝑡𝑡/(2𝐿)] 
(61) 

For example, Topp and Reynolds (1998) linearized Equation (60) as: 

𝜃𝑣 = −0.176 + 0.115[𝑐0𝑡𝑡/(2𝐿)] 
(62) 

As a general TDR calibration for mineral soils, we recommend using the means of slope and 

intercept values for Equation (61), which are a = -0.168, b = 0.115. With these parameter values, 

Equation (61) differs from Equation (62) by 0.008 m3m-3 over the range of water contents from 

zero to 0.5 m3m-3. 

Because increasing 𝜎𝑎 causes an increase in 𝑡𝑡 (see Figure 20a,b), several authors have 

attempted to include 𝜎𝑎 in calibration equations (Wyseure et al., 1997). Evett et al. (2006) 

proposed that the loss tangent (𝜎𝑎/(2𝜋𝜔휀0) be included in a linear calibration equation of the form: 

𝜃𝑣 = 𝑎 + 𝑏[𝑐0𝑡𝑡/(2𝐿)] + 𝑐(2𝜋𝑓𝑣𝑖휀0)0.5 
(63) 

where 휀0 is the permittivity of free space, 𝜔 is replaced by 𝑓𝑣𝑖, which is the effective frequency of 

the TDR pulse at reflection 3 in Figure 19b, and the other variables are as previously defined. Both 

𝜎𝑎 and 𝑓𝑣𝑖 can be determined from the TDR waveform.  
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Figure 20: (a) Waveforms from a TDR sensor in water at several different bulk electrical conductivity (σa) values 
illustrating waveform attenuation caused by increasing values of σa. (b) Waveforms from conventional TDR probes 

at several depths in a clay loam soil with expanding lattice (2:1) clays (Evett et al., 2005). 

Several attempts have been made to interpret 휀𝑎 of soils from theoretical considerations using 

dielectric mixing models that consider the volumetric proportions of soil mineral, organic, water, 

and air constituents, as well as soil mineralogy and particle shape and packing considerations, 

see section 3.1. 

4.3.2.2 Using TDR 

For most soils, the TDR method provides water content in the range from zero to 0.5 m3m-3 with 

an accuracy of ~0.02 m3m-3 without soil-specific calibration. This includes soils with large clay 

content if that clay is kaolinitic in nature. Exceptions are soils with organic matter content >10 %, 



73 

 

appreciable content of expanding lattice clay with relatively large surface area, appreciable 

magnetite and/or hematite such that μ ≠ 1, volcanic soils (Regalado et al., 2003; Tomer et al., 

1999), and soil with appreciable 𝜎𝑎. With soil-specific calibration, accuracy (RMSD of the 

calibration) of better than 0.01 m3m-3 for a specific soil is attainable. However, the predictive 

accuracy under field conditions can vary in response to variations in soil texture, bulk density, 

apparent EC, and temperature. Repeatability is excellent, with standard deviations (SD) of 

measurement ranging from 0.0006 m3m-3 (Evett, 1998) to 0.003 m3m-3 (Herkelrath et al., 1991), 

although SD may be larger if waveforms are severely attenuated (Schwartz et al., 2014).  

Because frozen water has a relatively small permittivity (~3), data records at frozen conditions 

need to be masked before utilizing a time series for validation. 

4.3.3 Transmission Line Oscillators (TLO) and Time Domain Transmissometry (TDT) 

Like TDR, both Transmission Line Oscillators (TLO) and Time Domain Transmissometry (TDT) 

measure the travel time of an electromagnetic pulse; however, the frequency is generally lower 

(~100 MHz) and the technology less expensive. A transmission line oscillator (TLO) uses parallel 

rods to form an open-ended transmission line or a waveguide, which varies in length from 5 to 30 

cm. A square wave is transmitted along the waveguide, with its return triggering another pulse. 

This oscillation time and the attenuation of the square wave are used to infer both 𝜃𝑣 and EC 

(Caldwell et al., 2018; Campbell and Anderson, 1998). TDT is similar except the sensor forms a 

loop along a given length of a transmission line embedded in the soil (Blonquist et al., 2005). In 

either case, there is no complex waveform analysis as with TDR.       

4.3.4 Impedance Sensors 

Impedance sensors are soil probes, which use electrical impedance as the basis of their soil 

moisture estimate. Gaskin and Miller (1996) provide a description of the technique in full detail. 

The probe uses a single frequency sinusoidal oscillator to transmit down a transmission line. A 

portion of the incident signal is reflected back along the line towards the signal source. This can 

be used to estimate the magnitude of the permittivity of the media in which it is embedded. This is 

a simple, low energy measurement, so it is a cost and energy efficient option for sensor 

development; however, a specific calibration needs to be generated for each soil type in which it 

is installed.  

4.3.5 Heat pulse sensors 

The Dual Probe Heat Pulse (DPHP) sensor estimates soil moisture via soil thermal properties, 

which is a direct analog to the soil water content approach (Campbell et al., 1991). There are two 

hollow small needles, one with an electrical heater and the other with a thermistor or 

thermocouple. For measurement, the heater is turned on for a set period of time (~4-8 sec) and 

then turned off. The thermistor/thermocouple measures soil temperature each second for a longer 

period of time and the maximum temperature change is then computed and used to estimate the 

soil moisture. The advantages of this probe are that the measurement volume is quite small, often 

on the order of <10 cm3. This allows the sensor to estimate soil moisture very near to the soil 

surface. It is also capable of estimating soil moisture near obstructions such as roots or rocks.  

Heat dissipation sensors (HDS) use a similar technique but the resistor (heater) and thermocouple 

are integrated into a single needle encased in a porous ceramic matrix of known thermal 

properties, allowing the water content in the ceramic matrix to be estimated (Reece, 1996). This 

water content is in equilibrium with the soil-water potential in the soil. Thus, an HDS sensor is 
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really a matric-potential sensor (e.g., tensiometer), but it can be calibrated to measure 𝜃𝑣 and is 

used extensively at the Oklahoma Mesonet (Illston et al., 2008; Scott et al., 2013). The 229 Sensor 

(Campbell Scientific Inc., Logan, UT) is the only commercially available HDS on the market.  

4.3.6 Capacitance sensors 

Capacitance sensors are relatively inexpensive and easy to operate. The basic principle of the 

capacitance method is to incorporate the soil medium that surrounds the sensor prong as part of 

the dielectric of the sensor capacitor (Bogena et al., 2007). The relative dielectric permittivity of 

the soil is then determined by measuring the charge time from a starting voltage to a voltage with 

an applied capacitor voltage. A popular example of this sensor type is the family of capacitance 

sensors of METER Group, Inc. (e.g. EC-5, 5TE, TEROS12). 

Capacitance sensors can also be replaced in an installation tube with little disturbance (e.g. the 

EnviroSCAN sensor of Sentek Sensor Technologies). Access tube capacitance sensors consist 

of two cylindrical metal rings separated from each other by a small gap along an axis. This 

axis/spine is installed in a thin plastic (PVC) tube in the soil and the fringe of the capacitor’s field 

of influence is within the soil, so that the undisturbed soil that is in contact with the tube is constant, 

despite future capacitor replacement. These tubes are capable of going as deep as 2 meters in 

practice and can be replaced or recalibrated regularly. Because of the size of the capacitors, the 

most shallow depth to be measured is 10 cm, and the closest spacing is 10 cm within a single 

tube. More information on capacitance sensors can be found at Evett and Cepuder (2008) 

4.3.7 Emerging methods 

Novel emerging methods have been developed to i) fill the scale gap between point-scale 

measurements and coarse spaceborne soil moisture products, ii) utilize existing networks initially 

established to monitor other variables, and iii) measure soil moisture at various depths for the 

calibration and validation of P-band microwave data. Recent advances in noninvasive techniques 

allow continuous contactless and integrative measurements of soil moisture from the field to basin 

scale, e.g. cosmic-ray neutron sensing (CRNS), Global Navigation Satellite System Reflectometry 

(GNSS-R), gamma-ray monitoring, and ground penetrating radar (GPR) (Bogena et al., 2015). 

These methods may give important insights in the spatial and temporal patterns of soil moisture 

for validation. 

4.3.7.1 Cosmic-ray neutron sensing 

Cosmic-ray neutron sensing allows for the non-invasive monitoring of integral soil moisture at the 

field or small catchment scale (Zreda et al., 2008; Zreda et al., 2012). CRNS probes count 

secondary fast neutrons near the soil surface that are created by primary cosmic-ray particles in 

the atmosphere and in the soil. Hydrogen atoms in the soil, which are mainly present as water, 

moderate the secondary neutrons on the way back to the surface (Figure 21). Therefore, fewer 

neutrons escape in moist soils, whereas more neutrons are able to escape dry soil. This results 

in a negative correlation between near-surface fast neutron counts and soil water content and 

enables the use of the CRNS probe to measure soil moisture. The horizontal footprint of the CRNP 

varies from a radius of 150m to 210m depending on soil water content and atmospheric pressure 

(Köhli et al., 2015). The measurement depth is strongly dependent on soil water content (~75cm 

for dry soils and ~12cm for wet soils). A further critical point that needs to be considered is the fact 

that the neutron count rates as well as the sensing volume of the cosmic-ray probe depend on the 

total amount of hydrogen within the sensor footprint and not only on the hydrogen contained in 

soil water (Zreda et al., 2012). Additional sources of hydrogen are above- and below-ground 
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biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and 

water in the litter layer, intercepted water in the canopy, and soil organic matter. In the case that 

the amount of hydrogen within these compartments shows temporal variations, this variation has 

to be considered in order to determine soil water content dynamics using CRNS measurements 

(Bogena et al., 2013). Nevertheless, the applicability of the cosmic-ray neutron probe to measure 

soil water content has been demonstrated for several different environmental settings, including a 

coastal site in Hawaii (Desilets et al., 2010), a desert site in Arizona (Franz et al., 2013), an 

agricultural site with sandy soils near Potsdam, Germany (Rivera Villarreyes et al., 2011), and a 

low-altitude humid forested catchment in Germany (Bogena et al., 2013). A recent study 

demonstrated the potential of CRNS measurements for the validation of global soil moisture data 

products (Montzka et al., 2017). 

 

Figure 21: Cosmic neutrons interact with atmosphere, vegetation and soil. The neutrons detected by the sensor 
originate from a larger area, and are converted to an integral estimate of soil moisture. Credit: Rosolem, University of 

Bristol. 

4.3.7.2 GNSS reflectometry 

Global Navigation Satellite Systems (GNSS) were originally used for positioning and navigation. 

However, GNSS signals can also be used to infer soil moisture (Larson et al., 2008b). The retrieval 

algorithm for soil moisture from single GNSS receivers is based on the power variations of the 

GNSS signal (Larson et al., 2008a). The direct signal from the GNSS satellite and the signal 

reflected at the land surface are simultaneously received at the antenna and add up to the 

observed signal power. The simultaneous reception of the direct and reflected signals causes an 

interference pattern in the signal power due to the different travel distances from the satellite to 

the antenna (Figure 22). The amplitude and phase of the interference pattern are affected by the 

soil permittivity, which is linked to the soil moisture content (Larson et al., 2010). GNSS signals 
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comprise two L-band frequencies with wavelengths of 19.05 and 24.45 cm. For soil moisture 

estimation, both dual frequency GNSS sensors that are permanently installed in geodetic networks 

as well as lower cost sensors that receive only one frequency can be used. 

 

Figure 22: GNSS-R principle to estimate soil moisture by analyzing the signal interference (Martin et al., 2020). 

The measurement depth of GNSS reflectometry strongly depends on soil moisture. For wet soils, 

the GNSS signal is reflected within the first few millimeters below the land surface, while for dry 

soils the signal penetrates deeper into the soil and is reflected within a near-surface layer of up to 

7 cm depth. The reflections start at a distance of 70 m from the GNSS antenna and approach the 

antenna until 2 m for a satellite pass from 5° to 30° elevation. The satellite needs about one hour 

for this passage. Within this time soil moisture information is obtained over a ground track about 

70 m long and 4 m wide. The radius of the area that is scanned around a GNSS antenna varies 

from 50 m for an antenna installed at 1 m height to 330 m for an antenna installed at 20 m height. 

While each GPS satellite has a revisit time of one day at any antenna location, the large number 

of available satellites potentially allows for sub-daily resolution of soil moisture monitoring. In order 

to obtain absolute soil moisture values, local calibration campaigns with in situ soil moisture 

sensors are necessary for each site. Another approach is the calibration of absolute soil moisture 

by assuming that the minimum value seen in a sufficiently long GNSS time series corresponds to 

a plausible texture-dependent estimate of the residual soil moisture. The accuracy of soil moisture 

estimates from GNSS reflectometry depends on (1) the vegetation cover of the ground, (2) the 

type of the GNSS signal, (3) the sampling rate, and (4) the calibration. Rodriguez-Alvarez et al. 

(2009) showed that soil moisture derived from GNSS over bare soil agreed well with in situ data 

(RMSD of 0.03m³/m³). 

4.3.7.3 Gamma-ray monitoring 

All rocks and soils emit gamma radiation at a range of energies due to the decay of radioactive 

isotopes (40K, 238U and 232Th) and their progenies in soil (Minty, 1997). The attenuation of gamma-

rays in soil can be approximated by classical radiation intensity laws (Beamish, 2013). Since 

attenuation in water is higher than in air or solid soil particles, a negative correlation between 

measured gamma-ray intensity and soil moisture is expected. Gamma-ray intensity can be 

measured using airborne and ground-based platforms. Although the influence of soil moisture can 
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be detected by airborne surveys (Beamish, 2013), it is difficult to quantitatively determine soil 

moisture from such data because of the unknown spatial distribution of the radioactive isotopes 

that determine the background radiation intensity. Therefore, a more promising approach for soil 

moisture estimation from gamma-ray intensity is the use of permanently installed measurement 

stations that provide temporal changes in spectrometric or the total amount of gamma-ray intensity 

(Yoshioka, 1989). Here, the total amount of gamma-ray intensity is of particular interest because 

it can be measured with relatively cheap Geiger-Müller counters. 

Gamma-ray attenuation strongly decreases with increasing energy (Minty, 1997), which means 

that high-energy gamma rays travel further than low-energy gamma rays. At a high energy of 2.6 

MeV, the radius of the horizontal footprint (90% of energy) is on the order of 250 m and 

independent of soil moisture for an airborne survey at a height of 100 m (Minty, 1997). This value 

decreases with decreasing energy and also depends on the angular sensitivity of the detector. For 

gamma-ray intensity measurements near the surface, the footprint is much smaller. According to 

the approximate models used for airborne surveys, the radius of the horizontal footprint is on the 

order of several meters for a sensor height of 1 m at an energy of 2.6 MeV. However, a better 

assessment of the horizontal footprint using more advanced gamma-ray transport modeling is 

required to confirm this. The measurement depth similarly depends strongly on the gamma-ray 

energy (Loijens, 1980). At a high energy of 2.6 MeV, the measurement depth above which 90% 

of the measured gamma rays originate is 24 cm in a homogeneous dry soil with a bulk density of 

1.0 g*cm-1, and 15 cm in a dry soil with a bulk density of 1.6 g*cm-1. When these two soils are fully 

saturated, the measurement depths are reduced to 14 and 12 cm, respectively. 

The gamma-ray intensity near the soil surface does not only depend on the decay of radioactive 

isotopes in the soil. There are three main sources of additional gamma radiation: cosmic rays that 

enter and interact with the atmosphere, anthropogenic 137Cs from nuclear tests and accidents, and 

atmospheric 222Rn66. Therefore, accurate soil moisture estimates from gamma-ray 

measurements can only be obtained when all interfering time-variable, anthropogenic, and non-

terrestrial signals have been removed from the data. Loijens (1980) provided a simple calibration 

relationship between the terrestrial component of gamma-ray intensity and gravimetric soil 

moisture. In principle, a single calibration measurement of gamma-ray intensity for known moisture 

would be sufficient to parameterize this relationship. However, this has not been extensively 

validated, and there is considerable need for further studies here. 

4.3.7.4 Ground Penetrating Radar 

Ground penetrating radar (GPR) in principle records electromagnetic (EM) waves reflected from 

boundaries of subsurface materials having different dielectric properties. Within the last two 

decades GPR has matured to become one of the standard methods to investigate geological and 

pedological subsurface structures. Recently it was demonstrated that GPR is also a meaningful 

source of in situ data for low frequency SAR soil moisture studies (L-band and particularly P-band) 

(Koyama et al., 2017). Up to now, the problems arising from mismatching measurement depths 

between ground-based sensors and incoming SAR signals have been largely ignored with the use 

of TDR or Frequency Domain Reflectometry (FDR) probes being the standard approach for 

distributed in situ soil moisture measurements. Depending on the sensor type and length of the 

rods, the measurement depth usually varies between 5 cm and 15 cm. TDR-based in situ data is 

widely used for low frequency L-band to high frequency C-band and even X-band SAR data. While 

the obtained information is generally not fully suitable for high frequency SAR data due to the 

limited penetration into the soil, in some cases it might also be misleading for L-band data when 
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the soil is dry, and the penetration depth exceeds the sensor depth. However, with the advent of 

ESA’s P-band BIOMASS mission, the classical methods to determine “ground truth” soil moisture 

will become completely unsuitable. Considering the much higher penetration capabilities at P-

band, information about the vertical soil moisture distribution, rather than surface soil moisture 

information alone, becomes crucial. In particular, the knowledge of both the permittivity and depth 

of wet soil layers will be of great value for future calibration and validation studies at P-band. 

However, measuring soil moisture at various depths by means of classical methods is not feasible 

in a spatially distributed manner in coordination with satellite passes. At best, only very limited 

point information is available from continuous monitoring stations with sensors installed at several 

fixed depths.  

To overcome this problem, an improved method for fast and robust quantitative estimation of 

vertical soil moisture profiles by using GPR has been recently proposed (Koyama et al., 2017). 

Using a semi-automated data acquisition technique in combination with advanced signal 

processing, the time efficiency and accuracy of soil moisture measurements in the field were 

drastically improved. The multi-offset method, based on the common-midpoint (CMP) technique, 

allows for the acquisition of accurate quantitative vertical soil moisture profiles in only 1-2 min. The 

sensing depth and vertical resolution depend on the frequency of the GPR antennas used. Under 

typical soil conditions, the best results for low frequency SAR ground truth are obtained by using 

a ~500 MHz antenna. At this frequency, one can achieve a penetration depth of about 2 m and a 

vertical resolution that would enable the distinction 10 cm soil layers. However, the method also 

works with GPR frequencies below 100 MHz or higher than 1000 MHz. Based on comparisons 

with SAR-derived soil moisture estimates, it has been demonstrated that the GPR/CMP method 

is well suited to serve as an in situ measurement technique for SAR soil moisture studies at low 

frequencies (Koyama et al., 2017). 

4.4 Airborne validation campaigns 

4.4.1 Campaign objectives 

The design of airborne soil moisture validation and calibration campaigns needs to be guided by 

the objectives of the campaign itself. The key topics for consideration are: 

 How broad and diverse should the environmental surface conditions be? 

Homogeneous to minimize scaling issues or heterogeneous to investigate various 

conditions? 

 What is the spatial scale and time span required for repeat coverage of the experiment 

domain? 

 What kind of sensor, product level and algorithm development is the experiment 

supposed to support?  

A vast range of airborne missions have been conducted over the past decades, covering a wide 

range of conditions for the objectives above, see Table 2. While the European campaigns focused 

on a transect approach, overflying as many ground stations as possible for algorithm validation, 

the American and Australian missions mainly covered larger spatial domains more representative 

of the satellite footprint during actual satellite overpasses, or to investigate the spatial structure 

prior to satellite campaigns. Those airborne campaigns served their individual purposes, as no 

campaign can cover all aspects of complete cal/val programs.  
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Table 2: Selection of soil moisture airborne campaigns. 

Continent Campaign Campaign Full name Reference 

Europe EuroSTARRS European Campaign with the 
Salinity Temperature and 
Roughness Remote Scanner 

(Saleh et al., 2004) 

SVRC SMOS Validation Rehearsal 
Campaign 

(Delwart et al., 
2008; Juglea et al., 
2010; Montzka et 
al., 2013; Saleh et 
al., 2009a) 

CAROLS Cooperative Airborne Radiometer 
for Ocean and Land Studies 

(Zribi et al., 2011) 

TERENO Terrestrial Environmental 
Observatories 

(Hasan et al., 2014; 
Montzka et al., 
2016) 

North America SGP Southern Great Plains Experiment (Njoku et al., 2002) 

SMEX Soil Moisture Experiment (Jackson et al., 
2008; Vivoni et al., 
2008) 

SMAPVEX Soil Moisture Active Passive 
Validation Experiment 

(Colliander et al., 
2015) 

CanEx-SM10 Canadian Experiment for Soil 
Moisture in 2010 

(Magagi et al., 
2013) 

Australia NAFE National Airborne Field 
Experiment 

(Merlin et al., 2009; 
Panciera et al., 
2008; Saleh et al., 
2009b) 

AACES Australian Airborne Cal/Val 
Experiments for SMOS 

(Peischl et al., 
2012; Rudiger et 
al., 2011) 

SMAPEX Soil Moisture Active Passive 
Experiment 

(Panciera et al., 
2014; Wu et al., 
2014; Ye et al., 
2019) 

Asia HiWATER  Heihe Watershed Allied Telemetry 
Experimental Research 

(Li et al., 2013) 

 

Eventually, for the validation of satellite microwave acquisitions and soil moisture products, 

campaigns designed to cover the actual satellite footprint, or a representative fraction thereof, are 

required. Satellite products to be validated are either  
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 Level 1: brightness temperature including four Stokes parameters sensitivity to multi-

angular observation conditions of different surface properties,  

 Level 2: soil moisture products improving direct and inverse modeling and calibrating 

retrieval algorithms,  

 Level 3: user-friendly products of soil moisture and brightness temperature, and  

 Level 4: research products, particularly root-zone soil moisture, soil water index and other 

derived quantities.  

Those campaigns need to consider the representativeness of the surface conditions, in particular 

the vegetation and terrain complexity (topography), ground measurement requirements, and post-

processing needs that arise from the antenna designs and the duration of the flights. 

4.4.2 Representativeness of observed areas 

In the first instance, airborne campaigns that aim for the calibration and validation of satellite data 

should have the spatial extent of a satellite footprint (generally taken to be the 3 dB point of the 

antenna main beam) in order to capture the full spatial heterogeneity of the land surface within the 

footprint. While it would be desirable to capture the full extent, analyses suggest that acquiring 

data across 50% of the footprint may be sufficiently representative to achieve this target, which 

may be reduced further for largely homogeneous field sites, such as certain desert areas. 

Moreover, aircraft observations should be performed at different altitudes in order to optimally 

study up- and downscaling methods. In addition, it would be advantageous to have repeat 

coverage of the same areas under different soil moisture conditions (e.g. before and after rain 

events, during extensive dry-down periods, etc.). 

4.4.3 Ground measurements 

In order to ensure the accuracy of the airborne measurements, reference sites representing 

different land surface conditions need to be selected within the area of interest where soil moisture 

and temperature, surface roughness, and vegetation parameters are collected. In Figure 23 and 

Figure 24 field measurements with gravimetric and impedence methods, respectively, are shown. 

While these only represent point measurements, they still allow a reasonable qualitative validation 

and cross-check for the airborne measurements. Moreover, the data collected at those locations 

are required for the post-processing of the acquired data.  

Soil roughness deserves special attention in this context. Saleh et al. (2009a) clearly showed that 

the microwave surface roughness parameter HR (as a mean to correct for non-specular reflectivity 

of natural soils) is the most significant microwave parameter for successfully retrieving soil 

moisture over bare soil and areas covered by moderate vegetation, and ways to estimate it are 

key as such correction is site specific. Fernandez-Moran et al. (2015) carried out a detailed 

characterization campaign of in situ soil roughness measurements made for 13 dates during 2013, 

exploring soil roughness changes after major agricultural practices and rainfall events. These 

measurements were used as inputs for the intercomparison of the five L-band emissivity surface 

roughness models in Lawrence et al. (2013). Microwave surface roughness HR was also found to 

be sensitive to surface soil moisture for all land uses, with decreasing values of HR for wetter soils. 

As expected, higher differences with respect to specular surfaces were found over ploughed dry 

soils than prairies or wet soils (Saleh et al., 2009a). 
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Figure 23: Gravimetric sampling, where a surface soil core of known volume is collected at multiple depths for 
comparison to aircraft and satellite products. 

    

Figure 24: Coincident to gravimetric methods, impedence probe measurements help to improve efficiency of sampling 
on the ground. 

4.4.4 Data quality assurance 

Technical aspects of the sensor design may also require further post-processing steps. For 

instance, instruments such as the Polarimetric L-band Microwave Radiometer (PLMR, deployed 

in Europe and Australia), may be multi-beam and multi-angular instruments, which requires the 

normalization of the acquired data to a common reference angle before any upscaling of the 

airborne data to the satellite footprint. Finally, to avoid issues with instrument calibration drifts 

during extensive campaigns, regular on-ground calibrations of the microwave radiometer 

instruments using warm (ambient blackbody) and cold (sky) calibration targets are required. On-

ground calibration consists of the characterization of the calibration subsystem itself and antenna 

measurements. On-ground calibration results are required when the measured data are converted 

to the brightness temperature of the measured target. The most important on-ground 

characterization activities are antenna measurements, flat target response measurement and 

external residual correlation measurements. The flat target response is measured using a known 

uniform cold target such as open sky. During land campaigns, calibration can be carried out pre- 

or post-flight using liquid nitrogen or other means, by passing over a sizeable lake near the 

operations area. This is a common procedure which also requires water temperature (and salinity) 

transects over the lake to check for spatial gradients. If, however, there is no suitable lake nearby, 

more liquid nitrogen calibrations should be carried out (i.e., both pre- and post-sortie). Moreover, 

depending on the airborne radiometer type, after each installation, the antenna alignment has to 

be checked very carefully by doing a few wing and nose wags over water during calm conditions. 
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To be of value for cal/val activities, airborne data need to meet several requirements. This includes 

temporal coincidence with satellite observations, comparable sensor incidence angles, thorough 

sensor calibration, etc. 

As the daily airtime of airborne campaigns can extend to several hours, the airborne data may 

have to be corrected for temporal drift, in particular in the land surface temperature. As many 

campaigns are timed to coincide with the satellite morning overpasses, the warming of the land 

surface would be a recognizable artifact within the data set. However, this can be corrected 

through the continuous in situ measurement of soil temperature. 

4.5 Sensor calibration 
Electromagnetic soil moisture sensors measure the apparent dielectric permittivity of the soil, 

which needs to be converted to soil water content. The relationship between apparent dielectric 

permittivity and soil water content depends on soil properties, e.g. soil texture, organic carbon 

content, soil bulk density, and soil structure. Usually, some general calibration equations are 

provided by the manufacturer for using the sensors in mineral or organic soils. However, such 

calibration equations may result in poor measurement accuracy which can be improved with 

laboratory or field calibration (Caldwell et al., 2018; Dominguez-Nino et al., 2019). 

Alternatively, a two-step calibration procedure (Seyfried and Murdock, 2004) can be used. First, 

the relationship between sensor response and permittivity is determined for each sensor (i.e. a 

sensor-specific calibration). Second, site-specific relationships between permittivity and soil water 

content can be established with a limited number of measurements on soil samples, preferably 

using the highly accurate TDR method (soil specific calibration). For the sensor-specific 

calibration, media with well-known dielectric properties (here referred to as reference permittivity), 

such as air, 2-isopropoxyethanol (Kaatze et al., 1996) and 1,4-dioxane (Schwank et al., 2006)) 

are used to relate the sensor response to dielectric permittivity. The advantages of using this 

approach are: i) the avoidance of air gaps and density variations, ii) the possibility to separate 

sensor- and soil-specific effects, and iii) the ability to quickly calibrate multiple sensors for a wide 

range of dielectric permittivity (from ~2 to 35, given as the ratio of the permittivity of a substance 

to free space). In the second step, the dielectric permittivity is related to soil water content using 

empirical or semi-empirical models (Roth et al., 1990; Topp et al., 1980). For more accurate SM 

measurements, a site-specific calibration accounting for soil textural variation can also be 

performed on a limited number of samples (Qu et al., 2013). Moreover, for individual sensors, 

such as those installed permanently at soil moisture monitoring stations, calibrations can be 

completed by taking in situ samples to the laboratory and performing dry downs of the soil core 

while monitoring the permittivity (Burns et al., 2014). Alternatively, samples from the network 

location can be obtained periodically to develop the in situ calibration (Ojo et al., 2015). During 

experiments when numerous sites are monitored multi-site calibration approaches exist to derive 

global calibration equations and parameters that vary by soil type (Rowlandson et al., 2013; 

Rudiger et al., 2010). 

4.6 Upscaling of reference soil moisture estimates 
Upscaling of ground-based soil moisture observations to test/validate remotely sensed soil 

moisture needs deeper geophysical understanding leading to strategic sampling and/or sensor 

placement. Temporal and spatial variability are two key features to describe soil moisture behavior 

at a particular remote sensing footprint scale or study domain. Multiple studies in the past two 

decades during various remote sensing field campaigns in different hydro-climates (Crow et al., 
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2012; Das and Mohanty, 2008; Gaur and Mohanty, 2013; Gaur and Mohanty, 2016; Gaur and 

Mohanty, 2019; Jacobs et al., 2004; Jana and Mohanty, 2012a; Jana and Mohanty, 2012b; Jana 

and Mohanty, 2012c; Joshi and Mohanty, 2010; Joshi et al., 2011; Kathuria et al., 2019; Mohanty 

and Skaggs, 2001; Singh et al., 2019) have provided better insight into how geophysical controls 

contribute to soil moisture variability and their scaling behavior. At a particular point in time soil 

moisture content is influenced by: (1) the precipitation history, (2) the texture of the soil, which 

determines the water-holding capacity, (3) the slope of the land surface, which affects runoff and 

infiltration, and (4) the vegetation, aspect, and land cover, which influences evapotranspiration 

and deep percolation. In other words, the soil moisture spatio-temporal pattern reflects a conjoint 

variability of soil properties, topography, vegetation, and precipitation attributes. Soil moisture 

variability is dominated by soil properties at the field scale (e.g., of the order of meters), 

topographic features at the catchment/watershed scale, and vegetation characteristics and 

precipitation patterns at the biome to regional scale and beyond. Thus, ensemble hydrologic fluxes 

(including evapotranspiration, baseflow, infiltration, shallow groundwater recharge) within and 

across the critical zone reflect the evolution of soil moisture at a particular spatial scale (field, 

catchment, watershed, or region) and can be “effectively” represented by one or more 

linear/nonlinear hydrologic (soil/field, topography/catchment, vegetation/watershed, or 

precipitation/region) scale parameters reflecting dominant heterogeneity of the landscape. These 

findings can be used to determine sensor placement or optimum ground-based soil moisture 

sampling to confirm water balance closure, as well as physics-driven rather than random sensor 

placement. To reflect RS footprint-scale soil moisture behavior, a strategic sampling design should 

include the following:  

1) Developing a comprehensive historical regionalized soil moisture database (if) collected 

using any in situ and remote sensing platforms. 

2) Gleaning available spatial data for soil, topography, vegetation, precipitation, and other 

hydro-climatic features in the design. 

3) Conducting principal component / EOF analysis to evaluate the dominance of various 

geophysical controls across scale. 

4) Determining soil moisture spatio-temporal correlation structures at the study footprint scale 

and developing soil moisture scaling relationships based on dominant physical controls. 

5) Examining accuracy and uncertainty in scaling relationships across different space-time 

scales. 

6) Designing thematic soil moisture sampling at field/footprint, catchment, watershed, and 

regional scale. 

5 GENERAL STRATEGY FOR VALIDATION OF SOIL MOISTURE PRODUCTS 

5.1 CEOS validation stages 
The CEOS WGCV Land Product Validation (LPV) subgroup has identified five validation levels 

corresponding to increasing spatial and temporal representativeness of samples used to perform 

direct validation (Table 3). The soil moisture validation protocol includes these aspects and 

supplements them with requirements for assessing the spatial and temporal precision of individual 

products as well as a characterization of the operational implementation. 
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Table 3: Definition of CEOS validation stages. 

Stage Description 

0 No validation. Product accuracy has not been assessed. Product considered 
beta. 

1 Product accuracy is assessed from a small (typically < 30) set of locations and 
time periods by comparison with in situ or other suitable reference data. 

2 Product accuracy is estimated over a significant (typically > 30) set of locations 
and time periods by comparison with reference in situ or other suitable reference 
data. 
Spatial and temporal consistency of the product, and its consistency with similar 
products, has been evaluated over globally representative locations and time 
periods. 
Results are published in the peer-reviewed literature. 

3 Uncertainties in the product and its associated structure are well quantified over 
a significant (typically > 30) set of locations and time periods representing global 
conditions by comparison with reference in situ or other suitable reference data. 
Validation procedures follow community-agreed-upon good practices. 
Spatial and temporal consistency of the product, and its consistency with similar 
products, has been evaluated over globally representative locations and time 
periods. 
Results are published in the peer-reviewed literature. 

4 Validation results for stage 3 are systematically updated when new product 
versions are released or as the interannual time series expands. 
When appropriate for the product, uncertainties in the product are quantified 
using fiducial reference measurements over a global network of sites and time 
periods (if available). 

 

The overall aim of validation good practices is to reach validation stage 4. The LPV subgroup has 

developed a framework for product intercomparison and validation which is based on a citable 

protocol, fiducial reference data, and automated subsetting. Ideally, each of these parts will be 

integrated into an online platform where quantitative tests are run and standardized 

intercomparison and validation results reported for all products used in the validation exercise. 

The current status of      soil moisture validation is elaborated in the following section. 

5.2 Status of current validation capacity and methods 
The validation of soil moisture products is currently undertaken by data producers and 

independent parties on a regular basis. While some studies are aimed at demonstrating a product 

has reached particular requirements (for example, the GCOS requirements (WMO, 2016) or 

requirements set out by funding agencies) (Dorigo et al., 2018), others are targeted at 

consideration of whether a product is suitable for use in a particular application (Chen et al., 2018a; 

Gonzalez-Zamora et al., 2019). 

However, while such validation reports / papers are available, there are often differences between 

the methodologies and reference data used, which leads to further confusion for the users and 

inhibits their ability to exploit the data sets to their full potential (Zeng et al., 2015). In addition, the 
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results of the validation, as well as the data used in the validation, are rarely available to interested 

parties. 

The Quality Assurance for Soil Moisture (QA4SM) service (https://qa4sm.eodc.eu) is an easy-to-

use online validation portal which allows the traceable validation of satellite derived soil moisture 

products through comparison to in situ (e.g. data from the International Soil Moisture Network) 

and modeled (e.g., from ERA5/Land, GLDAS Noah) soil moisture data (Figure 25). The service 

allows users to easily select specific criteria for the comparison process including control of the 

masking applied to each data set, the metrics calculated, and so on. The validation results are 

provided as a netCDF file which includes traceability data in the global attributes as well as plots 

of each metric. All code used in the generation of the validation results is open source and the 

data sets used are freely available. 

 

Figure 25: QA4SM validation workflow. Credit: QA4SM with TU Wien GEO, AWST and EODC. 

The availability of the QA4SM service ensures the application of a coherent methodology to allow 

the provision of standardized, and above all, traceable validation results to the user community, 

thereby ensuring that validation results between studies are comparable. 

As there are a variety of applications which can make use of soil moisture data, it is necessary to 

have an accurate characterization of soil moisture against a standard or known baseline. There 

are many different metrics that one can employ for this assessment, each with advantages and 

disadvantages, but first we must focus on the methods for operating a validation program. 

5.2.1 Low level data validation 

As soil moisture is not directly measured by any satellite mission, only estimated, there is an initial 

assessment which can be made to determine if the raw data stream of the satellite instrument is 

accurate. This can be done by a variety of methods. For many soil moisture missions, the 

microwave spectrum is used and there are regions of known microwave emission, such the ocean 

or regions of ice in Antarctica. In addition, there are cold sky (space) targets which can provide a 

demonstration of instrument signal accuracy as well as determining if there is a drift or trend in the 

signal. This validation is often particular to the frequencies being used for the sensing, and the 

https://qa4sm.eodc.eu/
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metrics of this validation are often on the order of fractions of 1 K brightness temperature. This 

type of validation is more simply described as a validation of the sensor signal, whereas our 

primary concern in this document is the validation of the retrieved soil moisture estimate. 

5.2.2 Ground-based validation of soil moisture 

In situ soil moisture measurements are commonly used to assess remote sensing soil moisture 

retrievals (see Figure 26). However, it is necessary to be careful about how the comparison is 

made and, even though the reference in situ data are of good quality, it is important to realize that 

they are not ‘truth’ and also contain errors (Quets et al., 2019). 

All soil moisture sensors are not using the same technique to measure soil moisture content. 

Commonly used sensors are based on time-domain reflectivity (TDR) or capacitance probes that 

provide a measurement representative of a small sample of soil (about 400 cm3), whereas cosmic 

ray sensors for instance are sensitive to 250 m horizontally around the sensor and about 12 to 24 

cm vertically (see section 4.3.5). As remote sensing of soil moisture measurements (using active 

and passive microwave frequencies down to 1.4 GHz) are representative of a thin layer of soil 

(from 0-2 cm to 0-8 cm depending on the water content), a commonly used procedure is to install 

TDR and capacitance probes at a 5 cm depth, which is a compromise between the remote sensing 

observation depth at higher frequencies and the difficulty to install a soil moisture sensor close to 

the surface. The vast majority of surface soil moisture sensors of the ISMN database are located 

at a 5 cm depth. For the intensifying research on P-band (~430 MHz) soil moisture retrievals, with 

penetration depths of 0-10 cm to 0-20 cm in typical soils, the sensor installation depth needs to 

be accounted for. 

    

Figure 26: Two examples of in situ network locations which monitor soil moisture as well as soil temperature, and 
precipitation. Both have sensors buried in soil outside of the station footprint. 

Each soil moisture sensor has to be carefully calibrated during its installation. Gamma ray sensor 

installation is done using a detailed procedure based on gravimetric measurements to be collected 

(about 50 samples of soil in all directions around the sensor). For TDR and capacitance probes, 

similar gravimetric measurement has to be done ideally at the installation and during a wet 

situation. This soil moisture sensor calibration is recommended to check whether default 

relationships between raw measurements and soil moisture estimates (provided by the 

manufacturer) are relevant or not. 

Prior to comparison with satellite soil moisture estimates, manual and/or automated quality control 

procedures have to be done to remove spikes, temporal inhomogeneities, oscillations, and other 

artifacts commonly seen in automated measurements (Caldwell et al., 2019; De Lannoy et al., 
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2014; Entekhabi et al., 2014; Liu et al., 2011a; Reichle et al., 2017a). Furthermore, it is required 

to exclude times when the soil temperature is below 4°C or when the soil is partially or fully covered 

with snow. 

Figure 27 presents a good practices validation workflow which includes the data collocation, 

masking, decomposition into different error types, scaling to remove a potential bias, calculating 

the validation metrics and a final reporting of the results (Gruber et al., 2020). All workflow 

elements are transparent, traceable, and standardized. 

 

Figure 27: Validation good practices workflow illustration by Gruber et al. (2020). 

The question of the difference of spatial scale is a recurrent question in soil moisture assessment. 

Except for a few sites specifically designed for remote sensing cal/val procedures that contain a 

dense network of soil moisture sensors, “sparse network” measurements provide soil moisture 

estimates at a single point-scale location but over a much larger range of surface conditions and 

geographical locations. In the case of dense soil moisture measurements, the grid-cell scale 

measurements should be computed as the weighted average of the contributing sensor 

measurements using Thiessen polygons or, if available, custom upscaling functions derived from 

intensive field campaigns (Colliander et al., 2017b). For sparse network measurements (e.g., just 

one sensor located within a given 25 km grid cell), the environment adjacent to the sensor has to 

be analyzed against the considered satellite grid cell (many km in scale), particularly if the sensor 

location significantly differs from most of the surrounding grid cell. This is of particular concern for 
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locations with high leaf area index (> 5 m2m-2), as well as those with complex topography (elevation 

standard deviation greater than 71 m), and forested, wetland, or urban land cover types. 

5.2.3 Satellite product intercomparison 

With the benefit of multiple satellites measuring either the same parameter or the same 

frequencies, it is useful to perform product intercomparisons. However, such comparisons do not 

provide a true validation of the product in question, only offering insights into consistency and 

potential errors in the algorithms. The first issue is concerned with whether the measurement 

techniques are identical or fundamentally different, such as between passive and active systems. 

The second issue concerns the match between the spatial resolution, footprint, and timing of the 

measurements. It is unusual for sensors to have identical spatial footprints, so there will be 

differences in the points of reference. SMOS and SMAP are both passive L-band instruments, but 

have a fundamental difference in that SMOS is a synthetic aperture system, while SMAP is a 

spinning real aperture mesh antenna. The time of the satellite overpass can also impact aspects 

of the algorithm, such as the SMOS overpass of 6 pm/6 am local time versus the AMSR2 overpass 

of 1 am/1 pm local time. The temperature regimes at these times are significantly different, 

impacting assumptions made in the retrieval algorithms for each instrument. Other differences of 

concern are the view angles of the instruments, as well as algorithmic assumptions or ancillary 

data sets used in the processing of the signal. Burgin et al. (2017) provided a detailed comparison 

of different satellite missions, including SMAP, SMOS, ASCAT, and AMSR2, while Su et al. (2013) 

gave one of the first intercomparisons using the SMOS, ASCAT, and AMSR-E instruments. Gruber 

et al. (2020) offer a comprehensive description of a validation setup for satellite (and model) 

product intercomparisons and a discussion on where currently available satellite soil moisture 

validation literature often fails to comply with good practices recommendations. All source code is 

available at https://github.com/alexgruber/validation_good_practice. 

5.2.4 Time series intercomparisons 

A key feature of soil moisture validation is time series analysis, because soil moisture has a known 

or predictable temporal character. This means that there is temporal correlation across time for 

the variable of interest. Also, it is important to note that soil moisture is a practically bounded 

variable with a minimum value close to 0.0 m3/m3 and a maximum value dependent on the soil 

properties at saturation. This makes time series or correlation comparisons useful but limited. Soil 

moisture has seasonality in most places as well as short term responses to precipitation, and both 

provide useful insights into the performance of a satellite sensor or algorithm. Comparison to a 

baseline consistent soil moisture reference is also crucial for detecting drift in an estimate. For 

microwave sensors, this can either be accomplished with a brightness temperature target which 

has a known value, such as a cold sky look, or land surfaces of consistent value, like the Antarctic 

ice sheet. As with most validation activities, more data are better, but those data must be of high 

quality with consistent accuracy, to allow for appropriate conclusions to be drawn about a 

satellite’s performance over time.  

These four intercomparison approaches all provide their own unique perspective on the 

performance of a sensor. Currently, investment in high quality, accurate, and representative soil 

moisture information at the land surface is very low, and only a few locations are providing 

validation data for the majority of satellite missions. Therefore a thorough validation program 

should make use of several if not all of these intercomparison methods. While it is generally 

desired to reach an ubRMSD of 0.04 m3/m3 or better in retrieved soil moisture for many 

applications, the acceptable error can vary dramatically based on the land cover condition, 
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specifically vegetation density, but also surface roughness and soil texture. Direct ground-based 

validation is the primary source of validation and is considered the standard for the community. 

5.3 Validation strategy 
A  general  validation  strategy  should  be  capable  of testing  products  for  compliance  with  

GCOS requirements. A  distinction  is  made  between  the  strategy,  which  corresponds  to  the  

sampling  design,  the definition of key reference data sets and inter-comparison methods, and 

the data required to use this strategy to test if products meet either threshold or science 

requirements. Major criteria of the validation strategy has detailed in the following. 

5.3.1 Direct validation on a global basis representative of surface characteristics 

The direct validation of soil moisture from satellite platforms relies upon measurements which 

need to be traceable to some verifiable truth or reference. Most sensors installed in ground based 

networks are also estimators of soil moisture and are not making genuine “truth” measurements, 

so it must be considered that all validation metrics must be comprised of measurements which 

each have an uncertainty value less than the required error level of the remote sensing product. 

Any validation must also take into account the spatial variability and representativeness of the 

measurements being made. Upscaling of small point measurements are encouraged, but 

upscaling techniques themselves often involve assumptions that must also be verified and can 

add error. Matching up in situ measurements with satellite observations should be temporally 

coincident (within at least 1 hour). Because soil moisture can vary significantly, it is encouraged 

that validation statistics be generated on a seasonal basis. Also, because most in situ networks 

rely upon sensors with narrow temperature windows, the validation metrics should sequester 

frozen soils from the analysis. In addition, it is recommended that validation metrics be stratified 

by land classification and/or soil texture to help provide insight into the performance of the 

algorithm. 

5.3.2 Quantify the long term (interannual) stability in soil moisture products 

The accurate determination of trends in climate data is key to ensuring that climate forecasts are 

correctly interpreted (Loew et al., 2017). Therefore, it is important that observed trends can be 

attributed to the physical quantity of interest (i.e. soil moisture) and any trends due to other factors, 

for example, changes in sensors (e.g. sensor drift) are appropriately characterized and, where 

possible, removed. Trends related to these other factors can be broadly considered under the 

topic “stability”.  

One suggested approach for monitoring stability of soil moisture records is the regular comparison 

of reference data (using the methods described in other sections) against a satellite-derived 

product over small time periods, but at least on annual basis. This method allows for the changes 

in the accuracy of the product over time to be monitored. Furthermore, the trends in accuracy over 

time can be derived to provide a pseudo-measure of stability compliant with the GCOS 

requirements. However, it is recognized that such a method requires more development not only 

to fully satisfy the GCOS requirements in the separation of the random and systematic uncertainty 

components, but also to ensure that the application of the method is bringing added value to the 

data producer, e.g., by enabling them to determine if trends in a product are related to the physical 

quantity under study or are due to other factors. 

5.3.3 Spatial variability representation during validation 

The land surface characteristics which impact soil moisture estimation are numerous and 

confounding. It is necessary to consider all of the major physical properties within a validation 
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pixel, and it is also necessary to have a wide variety of validation sites to reasonably survey the 

land surface. In conjunction with deploying in situ resources in a diverse and accurate manner, it 

is also important to include other methods to ensure spatial representativeness. Land surface 

modeling at high resolution can provide a crucial insight into landscape diversity, which may not 

be obvious. With in situ resources and a remote sensing platform, it is possible to conduct triple 

collocation analysis, which will provide an assessment of the random errors associated with soil 

moisture estimates in a particular region. But this is just an estimate of the random errors, there 

are still systematic errors and biases to be concerned with. Ultimately, this is currently left to 

intensive experimentation to understand the variability across the remote sensing pixel with either 

high-resolution aircraft mapping or intensive network deployment to cover the dominant land 

covers.  

5.3.4 Handling the scale mismatch 

A challenge for the validation strategy is the typical case that validation measurements of soil 

moisture do not represent the same scale as remote sensing measurements. The typical in situ 

measurements represent a point scale compared to the remote sensing product ranging from 

hundreds of meters to tens of kilometers. The remote sensing measurements capture the average 

soil moisture within the footprint of the measurements. Therefore, the validation reference should 

measure or estimate the same scale. However, as discussed in the previous section, the point 

scale measurements do not represent the spatially averaged soil moisture that the remote sensing 

products represent because of the natural spatial variability of soil moisture.  

When it comes to using in situ measurements for the validation of soil moisture products, there 

are a few approaches that deal with this issue – each one with their pros and cons. A replication 

of point-scale measurements within the footprint to estimate the average soil moisture is the most 

straightforward one. This approach results in a potentially very accurate estimate of the soil 

moisture average provided enough replication exists within the footprint compared to the local 

variability of soil moisture (see the previous section). The drawback is the cost and complex 

logistics of operating a large number of ground soil moisture stations. 

Because of persistency in the soil moisture spatial patterns, it is possible to determine a location 

within the footprint whose soil moisture statistically compares best to the average soil moisture in 

the entire satellite footprint. In order to find this so-called temporally stable location, the footprint 

area needs to be sampled thoroughly over a range of soil moistures. Once the temporal stability 

has been established, measurements at that location can be used for validation if the uncertainties 

in the evaluation of the location were adequately small. 

Finally, there are approaches that use a combination of independent data sources at the same 

spatial scale as the remote sensing product over the location so that the representation error of 

one soil moisture measurement within a large footprint can be analyzed. This is a so-called triple-

collocation approach that statistically establishes the error structure between the data sources. 

However, the method is sensitive to correlating errors between the products.  

5.3.5 Blind tests 

When evaluating new retrieval algorithm approaches, parameterizations etc., one has to run a 

new algorithm under similar conditions to the previous one to compare results. Very often different 

approaches tend to give similar results, with no clear cut answers as to which one performs best 

(large confidence intervals, varying degrees of success depending on area, period of time etc). In 

such conditions it was found that personal bias or preconceived ideas could alter the results. For 



91 

 

instance, the same results could lead two scientists to give different opinions. If scientist A believes 

in algorithm A (and similarly scientist B in algorithm B), very often when the outcome is ambiguous 

or not a clear cut result, scientist A will select algorithm A while scientist B will select algorithm B. 

To avoid this possibility, a blind test approach was developed for SMOS. One person gathers all 

suggestions for algorithm change and improvements and implements them in a breadboard 

setting. All the possibilities are then run on a large and representative data set and provided 

“blindly” to evaluators who simply rank them. Once all is done, a meeting is organized where 

results are given together with what is behind each option to validate the final choice. 

It was found that this approach is more efficient when the different options are grouped into 

comparable subsets (for instance, dielectric constant models or surface roughness models or 

vegetation models, etc.). It was also found that if the first attempt was to be made on relevant and 

validated ground data (dense or sparse networks), it was not sufficient as most of the sites with 

long series of good quality data are mainly located in temperate agricultural areas and are not 

necessarily representative of global conditions. It was also found that spatial aspects have to be 

considered if the test / comparison is to be made complete. 

5.3.6 Reporting results of soil moisture product validation 

Product validation should be performed over large regions covering all relevant climatic and 

surface conditions, using a range of complementary metrics (see Sec. 2.4). Validation metrics 

should generally not be averaged into single effective values in order to maintain information about 

spatial error variability and its connection to land surface parameters such as vegetation (Gruber 

et al., 2020). Instead, spatial maps of validation metrics and summary statistics in the form of 

percentiles (e.g., as boxplots) should be provided. Moreover, confidence intervals around 

validation metrics should always be reported (Table 4). These can be estimated analytically for 

pairwise-metrics (see Secs. 2.4.1 - 2.4.4) or using bootstrapping for triple collocation metrics (see 

Sec. 2.4.5). Confidence intervals should be corrected for temporal auto-correlation in the data.  

Table 4: Metrics in common practices and recommended good practices. 

Quantity Current practices Good practices, add: 

Accuracy Mean temporal bias Percentiles of residuals 

Precision Standard deviation  

Uncertainty RMSD, ubRMSD, Person´s 

correlation coefficient 

Median and percentiles of 

absolute residuals, 

confidence intervals, TC 

metrics 

Stability  Mean error per decade 

Downscaling gain  For downscaled products, 

add downscaling gain 𝐺𝐷𝑂𝑊𝑁 

 

The following details related to reporting results are good practice: 

 All participants in the exercise should be declared unless products were provided blindly, 
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 Links to accessible versions of the products and reference data used during the validation 

should be provided and maintained, 

 Match-ups of product and reference soil moisture values used to derive aggregation 

statistics together with ancillary information related to location (biome type, latitude and 

longitude of the site), temporal interval and uncertainty in reference data (at least a 

reference to the protocol used to produce each reference data point) should be made 

available publicly, 

 Resulting figures should be reported within the validation document or linked 

supplementary material in addition to any other statistics, 

 Planned updates or revisions to the document (e.g. in anticipation of new reference 

datasets that may be available on a regular basis) should be identified, 

 Reporting in refereed journals is encouraged and supporting materials corresponding to 

spatial or temporal accuracy statistics should be made accessible. 

6 CONCLUSIONS 
This document provides CEOS LPV recommendations on good practices for the validation of 

surface soil moisture products derived from satellite observations. Validation efforts should include 

a full characterization and appropriate documentation of the validation data sets used, including 

uncertainty estimates of the reference soil moisture measurements to be associated with the 

accuracy of the satellite measurements (ground based retrieval method, for example). Gruber et 

al. (2020) offers an easy-to-follow protocol and source code to adequately consider these 

characteristics. Because spatial representativeness and landscape heterogeneity are challenging 

to overcome, quantitative assessment of algorithm uncertainties requires dedicated and high 

quality in situ soil moisture measurements over sites that are homogeneous at the spatial scale of 

the satellite observing system. It is recommended that only sites that are representative of the 

satellite field of view or the product resolution cell should be used for validation purposes. Four 

soil moisture validation approaches have been identified: (1) low level data validation; (2) ground-

based validation of soil moisture; (3) satellite product intercomparison; and (4) time series 

comparisons. Soil moisture validation studies should include the four different methods (when 

applicable) to get a detailed characterization of product accuracies. The four different approaches 

are complementary and provide different levels of information about the quality of the soil moisture 

estimate. The availability of in situ soil moisture resources is the foundation of a sound validation 

protocol which is constantly advancing with time. Satellite soil moisture products have reached 

CEOS Level 3 validation stage (see Table 3 for definition) with numerous in situ resources 

available to provide reference data. Recent merged products of in situ and satellite resources are 

advancing the resilience of soil moisture for various applications purposes. In development are 

standardized evaluation systems for automated and systematic assessment of new algorithms 

and products. However, we must remain vigilant to the maintenance and advancement of in situ 

resources as resolutions of satellite products improve and new questions are generated from the 

validation process. Furthermore, increasing the number and quality of in situ resources remains a 

central challenge to the soil moisture community. 



93 

 

7 APPENDIX: Manual Soil Moisture Sampling for Intensive Observation 

Periods 
This document explains the recommended methodologies for measuring soil moisture for the 

purpose of calibrating and validating a remote sensing signal at the pixel scale via intensive 

observation periods. It serves as a guideline for manual field measurements to validate remotely-

sensed soil moisture products. It is adapted from protocols from the Soil Moisture Active Passive 

Validation Experiments (see https://smap.jpl.nasa.gov/science/ 

validation/fieldcampaigns/SMAPVEX16/) and the Joint Experiment of Crop Assessment and 

Monitoring (JECAM) inter-SAR comparison initiative (see also http://jecam.org/documents/ ).  

7.1 Number of field measurements 
Determining the number of fields and samples points needed is not a simplistic exercise. It is 

important to acquire an adequate number of points (points = fields x sample points per field) to 

fulfill the error requirements of the mission. It is also important that measurements and samples 

capture the full range of vegetation and moisture conditions of a footprint or a grid cell. This 

representativeness will ensure that any algorithm/model created and inverted will produce good 

results over a range of conditions. A good knowledge about the area helps to select adequate 

sample points according to general variability statistics. 

There are three types of scales discussed herein: pixel scale, site/field scale, and sampling scale. 

Figure 28 illustrates the differences in scale. Pixel is the remote sensing pixel, commonly on the 

order of tens of km, but this is scaleable. Within each pixel there are at least 15 sites or fields. 

Within each site/field, there should be at least 15 sampling points. Within each sampling point, 

there are four replicates.  

 

  
Figure 28: Depiction of the different scales discussed in this Appendix. 

The general instructions are as follows: 

https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX16/
https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX16/
http://jecam.org/documents/
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● Because of the complexity of satellite algorithms, it is desirable to minimize the number of 

variables being evaluated at a particular pixel, and it is optimal to minimize the number of 

heterogeneous variables within a pixel. If soil texture is highly variable, it would be 

preferable to select a domain with homogeneous land cover. If land cover is 

heterogeneous, soil texture could be homogeneous. This allows for isolation of the 

sensitivity of algorithms to specific variables. Not all sites are suitable for satellite 

calibration activities. 

● The sites/fields should be easy to access with permission of the landowner.  

● Measurements should be made at the approximate time of the overpass of the satellite. 

Spatial patterns of soil moisture can change throughout a day so close temporal proximity 

is important. 

● Within a satellite footprint/pixel, there may be a variety of land cover types and it is 

necessary to sample the significant cover types separately to the extent possible. If a pixel 

has 50% forest and 50% pasture, resources should be equally dedicated to sampling both 

land covers. Characteristics necessary to consider include land use, land cover, soil type, 

topography, aspect, etc. 

● For longer-term studies, land cover changes or management should be noted for posterity. 

For agricultural fields, information such as tillage, seeding, and harvest dates should be 

recorded.  

● We would recommend selection of at least 3 sites for each significant land cover type, and 

an overall minimum of 15 sites per pixel. 

 

 

 
Figure 29: Typical forest agricultural landscape for a 25 km pixel. 
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Figure 30: Field sites across 25 km pixel with 15 sites: 6 in forest and 9 in agricultural fields to approximate 
proportions of the landscape.  

Figure 29 is an example of an approximate 25 km by 25 km domain. It is a mixture of forest (40% 

by area) and agricultural lands (60% by area). The land cover is isotropic, meaning that there is 

no trend of land cover in any particular direction. For 15 sampling locations, a reasonable 

apportionment would be 6 sites for forest and 9 sites for agricultural lands. Figure 30 shows a 

sample distribution of sites. 

7.2 Number of sample points per site 
The general goal is to gather data for at least 15 sites per pixel. If sites are far apart, it may be 

preferable to place sites of different land covers near each other to improve travel efficiency. It is 

important, however, to spread the same land cover sites across the full pixel as much as possible 

because precipitation will be one of the primary drivers of soil moisture variation. For example, if 

5 sites per land cover type are selected, collect data at 3 points at each site. 

We would recommend locating sample points at least 25 m from the edge of a field or land cover 

edge, and at least 25 m from each other. The location of each point can be pre-loaded into a GPS 

for easy navigation back to the point during each field campaign. Alternatively, point locations can 

be flagged. 

Figure 31 has two examples of a site/field. The first (Figure 31a) is a singular soil cropland field 

with low topography. The second (Figure 31b) has one soil texture and topography, but three land 

covers. Sampling is done by teams, so the flow of the sampling path is a key consideration. In 

agricultural fields, row direction is the main consideration. Fences, streams, or ditches are also 

important to consider when designing a sampling scheme. Figure 32(a & b) has corresponding 

examples of sampling sites with 16 and 15 sampling sites. These configurations should adequately 

survey the landscape and provide an estimate of the soil moisture conditions across this site.  
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Figure 31: Example of square remote sensing site with mixed land use. 

 

 
Figure 32: Example of sampling plan. 20 sampling sites are identified for sampling in approximate proportion to the 

overall land cover distribution. 

 

At each of these sampling sites, there should be some combination of physical and dielectric soil 

moisture samples taken as described below.  

7.3 Soil moisture sampling 
General guidelines for soil moisture sampling are as follows: 

1. Soil moisture varies over time. As such, soil moisture must be measured near coincident 

to the satellite overpasses. There are two possible ways to go about this. If data are being 

collected by field crews, we recommend measuring soil moisture within plus or minus two 

hours of the satellite overpass (local time). Local overpass times vary slightly but for most 

satellites these times are approximately 6 PM and 6 AM according to the descending or 

ascending orbit. As such soil moisture should be measured between 4 AM and 8 AM and 

4 PM and 8 PM. For validation of passive microwave sensors the morning overpass is to 

be preferred in order to capture soil moisture at low temperature gradients in the vegetation 

and upper soil. An alternative approach is to install temporary soil moisture stations which 

can record soil moisture at the exact time of the satellite overpass. 

(a) (b) 

(a) (b) 
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2. A coupled dielectric probe and volumetric sampling campaign is suggested for field data 

collected. If fifteen sampling points are located in a site/field, it is suggested that most of 

these sites be sampled with a dielectric probe (with four replicates at each sampling site, 

described below). In addition, four volumetric samples in the field can be collected as part 

of the calibration process for the dielectric probes, as well as providing a true ground truth 

measurement for soil moisture. 

3. Dielectric probes provide a quick and easy way to increase the amount of samples taken 

while also grounding the measurements in physical reality. Stevens Hydra Probes or Delta-

T Theta Probes are two commonly used examples, though there are other options. The 

tines on the head of the probe measure moisture at a depth of 0-5.7 cm. Information on 

these probes can be accessed at http://www.stevenswater.com/products/sensors/soil/ and 

https://www.delta-t.co.uk/product-category/soil_science/soil_moisture_sensors/. We 

highly recommend calibration of the dielectric probes. Both Stevens and Delta-T provide 

general calibration equations to convert measured dielectric to volumetric soil moisture. 

However, site specific calibration equations may improve the accuracy of moisture 

measurements. 

4. In tandem with calibrated dielectric probes, soil moisture can be measured 

thermogravimetrically by collecting soil cores of known volume. Gravimetric sampling is a 

lower cost option, but can be more time consuming to collect in the field and process in 

the lab (weighing and drying). The volume of each core is needed to convert the 

gravimetric sample to volumetric soil moisture. It is common to take a core to a depth of 0-

5 cm for calibration of L-band instruments. 

 

Specific instructions for soil moisture sampling using dielectric probes are as follows: 

1. Take four replicate measurements at each sample point. If row structure exists, take one 

measure on the top, downslope, bottom and up-slope. If no structure exists, take one 

measure in the plant row (between plants) and three measurements in between plant rows.  

2. Always insert the probe perpendicular to the soil surface. Make sure that the probe is in 

complete contact with the soil (i.e. no air gaps/stones between the bottom of the head of 

the probe, and the soil). Samplers must take care not to push the soil moisture probe too 

hard against the soil as it may cause compaction, especially if the soil is loose. Tines must 

be cleaned thoroughly after each measurement before re-inserting to take a new 

measurement. 

3. Although both the Stevens and Delta-T probes are used with data loggers, we recommend 

also manually recording the measured volumetric soil moisture including time and GPS 

position on data sheets to avoid any loss that could occur when downloading data from 

the loggers. 

 

Specific instructions for soil moisture sampling using volumetric soil cores are as follows: 

1. Select a location with a flat soil surface in a position that represents the majority of the soil 

surface. For instance, if there is a row structure, the ¼ or ¾ location between the crop rows 

should be selected. Push the aluminum soil core vertically into the soil until fully inserted. 

Gently remove the core by inserting a trowel underneath to loosen the soil. Once removed, 

trim the soil sample on both ends to ensure the exact volume of soil has been removed. If 

new cores are being used at each site, the entire core (with soil still intact) can then be 

placed into a dry paper bag. If soil cores are being reused, remove all soil from inside the 
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core using a spatula. Place the core in a paper bag while the soil is being removed as this 

approach will avoid any loss of soil while cleaning out the core. Place the paper bag in a 

sealed plastic bag. The plastic bag ensures minimal moisture loss until samples can be 

weighed. If a soil can is being used, a funnel can be used to capture the soil from the core 

and get it into the can. The can should have a firm closure. Rubber bands/tape can be 

used to provide extra security if needed. 

2. Once at your lab, the weight of the wet soil sample must be recorded. We recommend 

placing the entire sample (paper bag + soil + plastic bag) on the scale. The average weight 

of the paper and plastic bags will need to be recorded in order to subtract this weight from 

the total wet weight of the soil sample -- the determination of the average bag weights can 

be done prior to the start of the field experiment. Once weighed, remove the plastic bag. 

Place the paper bag in a soil drying oven for at least 22 h at 105 °C. Then remove the dry 

sample and record its weight. The sample is then dried for another 12 h and re-weighed. 

If the dry weight has not changed after the 12 h, the sample is now completely dry. If the 

weight has changed after the 12 h, place the sample back in the oven until re-weighing 

establishes that the dry weight is no longer changing within 0.1% of the total weight of the 

sample. If soil cans are used, the lid should be removed and placed under the can. 

3. The gravimetric moisture content is determined for each individual sample as the mass of 

water divided by the mass of oven-dry soil. The bulk density of each individual sample is 

determined as the oven-dry mass of soil divided by the soil core volume. The average bulk 

density is multiplied by the gravimetric moisture content of each individual sample to 

calculate the volumetric moisture content of each core sample. 

7.4 Soil core sampling for calibration of soil dielectric probes 
We recommend conducting this calibration exercise during field campaigns. In this case, take four 

soil cores per field, per day, per campaign. If time does not permit, collection of soil cores to 

calibrate these instruments can occur before or after the field campaign. In any case, make sure 

that calibration samples are taken over a full range of moisture conditions (from dry to wet). This 

will ensure the development of a robust calibration curve. The instructions are as follows: 

1. Push the core into the soil as described before at the down or up slope. Leave the core 

inserted. 

2. Take three dielectric probe readings around each soil core sampling location, within about 

10 cm of the soil core along the same position in any slope. The probe should not come 

into contact or be too close to the core as it may be metal and conductive. 

3. Remove the soil core as described before. Process the gravimetric sample at the lab as 

described before. The volumetric soil moisture content for each core sample is used with 

the adjacent dielectric probe readings to create a calibration function. Volumetric soil 

moisture is a linear function of the square root of the real dielectric permittivity, see 

Equation after Rowlandson et al. (2013): 

𝜃𝑣 = 𝑎(휀)0.5 + 𝑏 (64) 

where 𝜃𝑣 is volumetric soil moisture and 휀 is soil dielectric permittivity. The coefficients 𝑎 

and 𝑏 are computed by minimizing the RMSDs between the measured and estimated 

volumetric water content. 
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