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ABSTRACT
Optimizing a system’s resilience can be challenging, espe-

cially when it involves considering both the inherent resilience of
a robust design and the active resilience of a health management
system to a set of computationally-expensive hazard simulations.
While prior work has developed specialized architectures to ef-
fectively and efficiently solve combined design and resilience op-
timization problems, the comparison of these architectures has
been limited to a single case study. To further study resilience
optimization formulations, this work develops a problem reposi-
tory which includes previously-developed resilience optimization
problems and additional problems presented in this work: a no-
tional system resilience model, a pandemic response model, and
a cooling tank hazard prevention model. This work then uses
models in the repository at large to understand the character-
istics of resilience optimization problems and study the appli-
cability of optimization architectures and decomposition strate-
gies. Based on the comparisons in the repository, applying an
optimization architecture effectively requires understanding the
alignment and coupling relationships between the design and re-
silience models, as well as the efficiency characteristics of the
algorithms. While alignment determines the necessity of a sur-
rogate of resilience cost in the upper-level design problem, cou-
pling determines the overall applicability of a sequential, alter-
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nating, or bilevel structure. Additionally, the application of de-
composition strategies is dependent on there being limited inter-
actions between variable sets, which often does not hold when a
resilience policy is parameterized in terms of actions to take in
hazardous model states rather than specific given scenarios.

1 INTRODUCTION
There is an increasing interest in incorporating resilience in

the design of complex engineered systems to minimize the im-
pact of hazards which may inevitably occur during the opera-
tion of the system [1, 2]. Resilience characterizes the system’s
dynamic hazard response, which can be defined in terms of re-
sistance, absorption, restoration, and recovery [3], the system’s
ability to prevent and mitigate hazards [4], or system-specific
measures [5–7]. To account for these resilience attributes while
designing a system, many decision frameworks, including value
modelling [8, 9], multiobjective decision analysis [10, 11], and
expected cost modelling [12–14], have been developed to enable
one to trade the resilience of a given concept with other design
considerations, such as performance and efficiency.

Using these decision-making frameworks, mathematical op-
timization techniques can be used to automatically explore the
design space and find the set of variables which optimally bal-
ances design, operational, and resilience costs. General re-
silience optimization formulations have presented it as a sequen-
tial problem: first allocating resilience to subsystems and then
optimizing the reliability and health management of those sys-
tems to achieve the required resilience [15, 16]. More recent
work has formulated a two-stage optimization problem in which
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the system’s control response is optimized before and after a set
of hazards occur [17].

However, applications of resilience optimization often use
approaches and architectures more specific to the problem than
these general formulations. The most often-used architecture
is the two-stage optimization approach, which has origins in
stochastic programming [18–20] and is generally used for the
resilient design of infrastructure networks while accounting for
post-disaster reconfiguration and planning [21–23]. Bilevel ap-
proaches, which have their origin in the optimal solution of com-
petitive games [24, 25] analogous to the resilience optimization
problem [26], have also been used in the design of power sta-
tions [27], service centers [28], and solution of energy allocation
problems [29], when the resilience system response over a set
of scenarios must be specified up-front. Resilience optimization
is additionally often used to design prognostics and health man-
agement systems using different architectures, including the in-
tegrated optimization of health management, system design, and
mission [30], power plant condenser parameter and maintenance
policy design [31], and sensor network design [32–34].

However, despite these many frameworks and applications,
there has been less study into how characteristics of the resilience
optimization problem formulation impact the development of so-
lution strategy and/or choice of optimization architecture. In the
broader field of optimization and multidisciplinary design opti-
mization [35], the formulation of test problems has been key to
developing [36] and studying the effectiveness of optimization
algorithms [37, 38] and architectures [39–41]. Thus, there is an
opportunity develop example resilience optimization problems to
compare, study, and better understand optimization approaches.

In prior work, the authors identified the integrated optimiza-
tion of design, operations, and contingency management as a
type of codesign problem and used an integrated drone design
architecture, mission, and flight resilience model to compare all-
in-one, sequential, and bilevel architectures for resilience opti-
mization [42]. While this comparison constituted a first step
into understanding the comparative advantages of resilience op-
timization approaches, it was limited because it only considered
a narrow set of architectures on a single problem, which limited
its ability to inform general recommendations about the applica-
bility of approaches to new problems.

1.1 Contribution
To resolve these limitations, this work develops a reposi-

tory of resilience optimization problems and uses it to demon-
strate and compare optimization approaches. To advance this
goal, this work collects and categorizes previously-developed re-
silience optimization and presents three additional problems:

1. a notional resilience model in which a system’s fault recov-
ery is optimized with its operational profile,

2. a pandemic response model in which response thresholds are

optimized to minimize infections and economic burden, and
3. a cooling tank model where design buffer and reconfigura-

tion are optimized for performance and fault mitigation.

Taking insights from the optimization of these problems and the
previously-developed models in the repository, this work then
develops an overall understanding of the applicability of opti-
mization architectures and decomposition strategies to resilience
optimization problems. To contextualize this work, Section 2
describes the general resilience optimization problem and opti-
mization architectures used in this work. Section 3 then describes
the repository, along with the three newly-developed problems.
Overall insights gained in the development of the repository are
then outlined in Section 4, with conclusions in Section 5.

2 BACKGROUND
To understand the resilience optimization problem and the

strategies used in the optimization problem repository, this sec-
tion presents the general formulation of the resilience optimiza-
tion problem used throughout the repository (Section 2.1) and
optimization architectures and decomposition structures used in
the repository (Section 2.2).

2.1 Resilience Optimization
Previously-presented cost formulations of the resilience op-

timization problem balance the cost of hazardous scenarios
against the design and operational costs (e.g., manufacturing and
performance). This enables one to find the variable values which
simultaneously minimize the impact of hazards as it effects the
overall merit of the design. This problem may be stated:

minx CD/O(x)+CR(x) (1)

where CR = ∑
s∈S

n∗ rs ∗Cs(x)

where x is the design vector, CD/O is the cost of design and/or
operations, and CR is the cost of hazards, which is taken as an
expectation over the set of scenarios S, where rs is the rate of
the scenario, Cs is the cost of the scenario, and n is the life of
the system. Depending on the intent of the problem formula-
tion, the design vector x in the resilience optimization problem
can take different forms. To distinguish these formulations, con-
sider that the design vector x may be made up of two compo-
nents: xD/O, the design and operational variables which define
the inherent resilience of the system (e.g., design buffer), and
xR, the resilience variables which define the actions the system
takes over the set of hazardous scenarios–the active resilience of
the system. There are thus three types of resilience optimization
problems, as shown in Figure 1: Resilience-based Design Op-
timization (RDO), Resilience Policy Optimization (RPO), and
Integrated Resilience Optimization (IRO).

In RDO, the design and operations of the system xD/O are
optimized as decision variables, resulting in a design and/or mis-
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FIGURE 1. RESILIENCE OPTIMIZATION FORMULATIONS
sion profile which is inherently resilient to faults (see: [32–34,
43]). In RPO, the resilience variables xR are optimized as deci-
sion variables, resulting in an optimal contingency management
policy over the set of resilience scenarios for a given system
design (see: [44–47]). In IRO, the design/operational variables
xD/O and resilience variables xR are optimized together, resulting
in an optimally-resilient set of design/operational and resilience
variables [42]. Because of the interacting design and operational
models, dedicated optimization architectures are most often used
in IRO formulations (e.g., [15, 42]), while RPO and RDO prob-
lems are typically solved in a single-level.

2.2 Integrated Resilience Optimization Architectures
In the Integrated Resilience Optimization formulation of

the resilience-based design problem previously presented in
Ref. [42], the design/operational variables and resilience vari-
ables are optimized over a set of fault scenarios quantified in a
single cost function. In a generic form, this may be stated:

minxD/O,xR CD/O(xD/O)+CR(xD/O,xR) (2)

where CR = ∑
s∈S

n∗ rs ∗Cs(xD/O,xR)

s.t. gD/O(xD/O)≤ 0,gR(xD/O,xR)≤ 0

hD/O(xD/O) = 0,hR(xD/O,xR) = 0

where CD/O, hD/O, and gD/O are design and operational cost ob-
jectives and constraints (the result of the design cost model at
design variables xD/O) and CR, hR, and gR are the resilience cost
model in terms of the design/operational variables and resilience
variables xR. While the design and operational cost models may
be of arbitrary form, the resilience cost model is given as the ex-
pected cost of the set of scenarios S with cost Cs and per-use rate
rs over the number of uses of the system n (n and rs may also
be given as functions of design, operational, and resilience vari-
ables if needed). Typically, the equality constraints h represent
simulations, which may not be given directly to the algorithm
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0.) Optimization 
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3.)
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FIGURE 2. ALL-IN-ONE OPTIMIZATION ARCHITECTURE
and are instead considered a part of the model. In this case, the
design vector x is broken into two sets–the optimized decision
variables x and corresponding response variables y which result
from a simulation at h(x). This problem then has the form:

minxD/O,xR CD/O(xD/O,yD/O)+CR(xD/O,xR,yD/O,yR)) (3)

where CR = ∑
s∈S

n∗ rs ∗Cs(xD/O,xR,yD/O,yR)

s.t. gD/O(xD/O,yD/O)≤ 0,gR(xD/O,xR,yD/O,yR)≤ 0

where xD/O, xR,yD/O, yR are the decision variables and corre-
sponding response variables of the design/operational and re-
silience models. This formulation corresponds to the all-in-one
architecture in Figure 2 where the design/operational variables
and resilience variables are optimized in a single problem.

2.2.1 Bilevel Architecture In the bilevel architecture, a
“lower level” optimization of the resilience variables is nested
inside an “upper level” optimization of the the design and opera-
tional variables, as shown in Figure 3. In this structure, the upper
level problem has the form:

minxD/O CD/O(xD/O,yD/O)+C∗R(xD/O,yD/O)) (4)

s.t. gD/O(xD/O,yD/O)≤ 0,g∗R(xD/O,yD/O)≤ 0

where C∗R(xD/O) and g∗R(xD/O) are the optimal (or best) re-
sponses from the lower-level resilience optimization, which itself
has the form:

minxR CR = ∑
s∈S

n∗ rs ∗Cs(xD/O,xR,yD/O,yR) (5)

s.t. gR(xD/O,xR,yD/O,yR)≤ 0

where xD/O and yD/O are the design/operational variables from
the upper level used as inputs for the lower-level optimization.

2.2.2 Alternating Architecture In an alternating archi-
tecture, the “upper-level” and “lower-level” optimization of de-
sign/operational and resilience variables are conducted itera-
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FIGURE 3. BILEVEL OPTIMIZATION ARCHITECTURE
tively one after another until each set of variables stops improv-
ing, as shown in Figure 4. This architecture was taken from the
study of codesign architectures (where it is also referred to as
the iterated sequential method) [48, 49]. In this formulation, the
upper-level design optimization problem has the form:

minxD/O CD/O(xD/O,yD/O)+CR(xD/O,yD/O)) (6)

s.t. gD/O(xD/O,yD/O)≤ 0,gR(xD/O,yD/O,x∗−1
R ,y∗−1

R )≤ 0

where x∗−1
R and y∗−1

R are the optimal variables from the previous
iteration of the lower level resilience optimization. This lower-
level resilience optimization problem in turn has the form:

minxR CR = ∑
s∈S

n∗ rs ∗Cs(x∗−1
D/O,xR,y∗−1

D/O,yR) (7)

s.t. gR(x∗−1
D/O,xR,y∗−1

D/O,yR)≤ 0

where x∗−1
D/O and y∗−1

D/O are the optimal variables from the upper-
level design/operational optimization. These optimization prob-
lems are each run iteratively until either there is a lack of im-
provement in the overall solution after both problems are solved,
or some other exit condition is met (e.g., number of iterations,
tolerances on variables, etc.). As shown in 4, the upper-level
resilience model may be considered an optional part of the archi-
tecture (the effect of which is explored here), as can the iteration
between upper and lower-level models (in which it is a sequential
architecture, which was previously explored in Ref. [42] without
an upper-level resilience cost).

2.2.3 Decomposition Structures Because of the compu-
tational cost and potentially large dimensionality of the lower-
level problem, it can be helpful to decompose it into problems
which can be solved independently. In two-stage approaches,
(e.g. [17]), the resilience optimization is decomposed to each
scenario independently, because the variables optimized are how
the system responds to each situation individually (rather than
in aggregate). Previous work explored the ability to decompose
the resilience optimization to independent sets of scenarios [42],

a decomposition which can also be performed over design vari-
ables, as long as they can also mapped to fault scenarios [50].
While these approaches are not explored in the new problems
presented in this paper, they are reflected in the repository (see
Table 1) and will be discussed in Section 4.

3 Problem Repository
As shown in Table 1, the resilience optimization problem

repository contains a number of different formulations of prob-
lems and corresponding solution strategies. In general, the prob-
lems explored thus far have been of low dimensionality for ease
of comparison. The problem set covers both multilevel In-
tegrated Resilience Optimization problems (Notional Example,
cooling Tank, Drone models) as well as single-level Resilience-
based Design Optimization (EPS model) and Resilience Policy
Optimization (Pandemic Management and Monopropellant Sys-
tem models) formulations. It additionally covers the exploration
of AAO, Bilevel, Alternating, and Sequential optimization archi-
tectures as well as monolithic and by-scenario set decomposi-
tion strategies (although not a two-stage/by-scenario example).
Of the problems in Table 1, the Drone, EPS, and Monopro-
pellant system design problem have been described in previous
work (Refs. [13, 42, 50], respectively). While these problems
involved optimizing discrete variables using relatively simple
search strategies (e.g. exhaustive search), the examples added in
this work include continuous and discrete problems which must
be searched with more sophisticated approaches.

The following subsections describe these three new prob-
lems, which are used in the repository to study the character-
istics of resilience optimization problems and compare the ef-
fectiveness of given solution strategies. Section 3.1 describes a
notional resilience optimization problem in which the problem
is specified in a few simple equations and six decision variables,
to illustrate considerations in continuous nonlinear programming
formulations. Section 3.2 describes a pandemic management
and response optimization problem which provides an intuitive
demonstration of the optimization of the complex post-hazard
dynamics involved in resilience. Section 3.3 then describes the
optimization of a cooling tank system, which illustrates consid-
erations in problems where the design model is a continuous-
variable problem while the resilience level is a discrete-variable
problem. Further information is available in the repository it-
self [53].

3.1 Notional System
To tractably demonstrate the use of optimization architec-

tures in continuous-variable problems, a notional example was
developed which formulates the resilience optimization problem
in a simple set of equations. This problem has the resilience
curve shown in Figure 5. As shown, the system has a nominal
performance xp, which then, because of a hazardous event, drops
by an amount xa given by the slack in the system xs. This con-
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FIGURE 4. ALTERNATING AND SEQUENTIAL RESILIENCE OPTIMIZATION ARCHITECTURES AND VARIANTS

Problem Des. Vars Res. Vars Architecture Decomposition Algorithms Used Model Type Sim. Framework

Notional Example 4 (C) 2 (C) AAO, Bilevel, Alt. (both) Monolithic Trust-Region Equations Stand-alone

Pandemic Management N/A 6 (C) AAO Monolithic Differential Evolution Dynamic Stand-alone

Cooling Tank 2 (C) 54 (D) Bilevel, Alt. (with CR) Monolithic Powell’s (D)/EA (R) Dynamic fmdtools [51]

Drone 3 (D) 2 (D) AAO, Bilevel, Seq. (no CR) Monolithic,
Scenario-Set

Exhaustive Search Dynamic fmdtools [51]

EPS 14 N/A AAO Scenario-Set Line search Static IBFM [52]

Monopropellant System N/A 12 (D) AAO Monolithic EA Static IBFM [52]

TABLE 1. OVERVIEW OF OPTIMIZATION REPOSITORY PROBLEMS

Time

xa

xb xc

xs

xp

FIGURE 5. NOTIONAL SYSTEM UNDER THE GIVEN FAULT
tinues for the time xb until the system recovers, which takes time
xc. Cost functions and and constraints were constructed to form

the optimization problem shown below:

minx f (x) =CD(xp,xa,xr,xs)+CR(xr,xa,xb,xc) (8)

s.t.CD =−a
√

xa +0.1+b
√

xs +0.1+ c/
√

xr

CR =xr ∗n∗ (d ∗ xa ∗ (xb + xc/2)+ e/xc + f/xb)

hD1 =xp− (xs + xa) = 0

gD2 =
(xp−1)2

c
− xr < 0

where 100 > xp > 0,2 > xa > 0,100 > xr > 10−10,
2 > xs > 0,100 > xb > 0,100 > xc > 0

and [a,b,c,n,d,e, f ] = [1e6,5e5,100,1e5,50,50,20]

where xr is the rate of the fault, and a, b, c, d, e, f , and n are all
problem constants. In this problem, the system produces revenue
from performing xs operations subject to a hazards and xa oper-
ations not subject to hazards, and is also subject to the costs of
maintaining a reliable system. The constraint hD1 relates slack,
performance, and the drop in performance due to the fault while
gD2 specifies a peak performance level, which bounds reliability.
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3.1.1 Optimization This problem is a nonlinear program-
ming problem, which can be solved using any number of NLP
methods. In this work, this problem is solved using Python’s
trust-region algorithm in the SciPy package (see: [54]) using all-
in-one, bilevel, alternating, and sequential architectures. While a
full description of the implementation is out of the scope of this
section, it is important to know that the bilevel method was run
for 50 upper-level iterations with 20 corresponding lower-level
iterations (since other convergence criteria were not met dur-
ing optimization at either level) and the alternating approaches
were set to terminate when the improvement between upper and
lower-level optimizations was below a tolerance of ftol = 104.
The starting point used was x = [1,0.5,10−4,0.5,1,1]. Figure 6
shows the progression of the alternating, all-in-one, and alternat-
ing architectures through the search space. As shown, while both
the all-in-one and alternating (with CR) architectures complete
the optimization in reasonable computational time, the bilevel
approach takes an order of magnitude longer to approach the
same solution while the alternating approach with out the re-
silience cost is ineffective at optimizing upper and lower-level
costs. These results are also reflected in the final results com-
parison in Table 2, which additionally shows the performance of
sequential architectures with and without the resilience cost CR
in the upper level. As shown, the sequential architecture with the
resilience cost in the upper level performs nearly as well as the
all-in-one strategy, however removing the resilience cost from
the upper level makes the architecture ineffective.

The comparative performance of these architectures can be
explained by the characteristics of the problem and optimization
methods. Because the design and resilience optimization prob-
lems are only loosely coupled (resilience variables do not signif-
icantly impact the upper-level cost), the sequential and alternat-
ing approach performs nearly as well as a monolithic approach in
terms of solution found and computational time. However, this
is only the case when the resilience cost is included in the upper-

TABLE 2. NOTIONAL EXAMPLE OPTIMIZATION RESULTS
Architecture xp xa xr xs xb xc f ∗ time

All-in-One 1.5 1.1 0.0022 0.41 0.62 10 -1.3e+06 0.96

Bilevel 1.5 0.8 0.0024 0.7 0.71 10 -1.2e+06 17

Alt. (No CR) 1e+02 80 1e+02 20 0.071 10 4.1e+11 0.79

Alternating 1.5 1.1 0.0022 0.41 0.62 10 -1.3e+06 1.6

Sequential 1.3 0.78 0.00083 0.51 0.72 10 -1.2e+06 0.5

Seq. (No CR) 1e+02 80 1e+02 20 0.071 10 4.1e+11 0.35
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FIGURE 7. SIR MODEL SIMULATION COMPARISON
level model, which is consistent with Ref. [42]. Additionally,
in this approach the bilevel structure performs poorly for a few
reasons: First, establishing a gradient in the upper level is unnec-
essarily costly because each point evaluated to find the gradient
using the finite difference method in the algorithm corresponds
to a full optimization of the lower-level; second, the problem is
difficult to solve in the upper level because of the constraints,
meaning many of the iterations used solving the lower-level op-
timization are wasted because they are unrelated to establishing
feasibility in the upper-level. As a result, the bilevel architecture,
which must perform lower-level optimizations for each upper-
level design point, proceeds inefficiently.

3.2 Pandemic Management Problem
While the notional example in Section 3.1 captures the idea

of resilience optimization in a tractable model, the representation
of failure and recovery dynamics is very simple. Often, rather
than having an analytic model of failure dynamics, one has a
set of differential equations which must be simulated over time.
This section better illustrates the optimization of these dynam-
ics by considering a pandemic management problem where the
underlying model is a set of simulated differential equations for
susceptible, infected, and recovered populations. In this prob-
lem, there are actions public health officials can take to manage

6



0.0 0.5 1.0 1.5
Computational Time (s)

4.2

4.4

4.6

4.8

Be
st

 S
ol

ut
io

n
1e7

FIGURE 8. OPTIMIZATION OF PANDEMIC RESPONSE
the impacts of a pandemic–minimizing the number of infections
while minimizing the impact to the economy. This can be formu-
lated as an optimization problem where the goals are to minimize
the total cost of the pandemic due to infections, preventative mea-
sures, and increased treatment measures. The cost function and
constraints are as follows:

minx f (x) =CR(a,n,v,m,α, IR) (9)
s.t. x ∈ [xmin,xmax]

where a, n, v, m, α , and IR are the variables of the problem x with
descriptions and bounds provided in Table 3. This objective is
quantified in a context of a SIR model, which models the number
of Susceptible (S), Infected (I), and Recovered (R) for a given
population size (N), as a function of average contact rate (A) and
recovery rate (b):

dS
dt

=
−ASI

N
−V,

dI
dt

=
ASI
N
− cI

b
,

dR
dt

=
cI
b
+V (10)

Two policies are embedded in this model. The first policy, pol-
icy 1, is that if the proportion of infected people is larger than
a given threshold value α , the contact rate is dropped to A = a
and V uninfected people are provided with a vaccine (otherwise
V = 0). The second policy, policy 2, is that if infection rate is
larger than a threshold value IR, the recovery rate is increased by
adding additional medical staff c (otherwise c=1). The resulting
resilience cost function is:

CR = I ∗ cI +(A1−a)∗N ∗ tPL1 ∗ cPL1 + tPL2 ∗CPL2 (11)

where I is the total number of infections over the simulation, cI
is the cost of infections (100000), A1 is the initial contact rate
(0.2), a is the contact rate under policy 1, N is the population
(1000), tPL1 is the time over which policy 1 is taken, CPL1 is the
per-person cost for policy 1 (10000), tPL2 is the time over which
policy 2 is taken, and CPL2 is the cost of taking policy 2 (10000).

TABLE 3. PANDEMIC PROBLEM OPTIMAL PARAMETERS.
Variable Description Range x∗

a policy1 contact rate [0 - 0.2] 0.06

n medical staff per timestep [1 - 5] 1

V vaccine per timestep [8 - 10] 9.4

m default medical staff [8 - 10] 8

α policy 1 threshold [0, 200] 8.6

IR policy2 threshold [-0,500] 17.9

C total cost N/A 42∗106

3.2.1 Optimization While the variables of this problem are
continuous, the fact that the policies in the model are triggered
conditionally makes the problem discontinuous and piece-wise-
flat, making it difficult to get gradient information. As a result, it
cannot be solved using a gradient-based or direct search method.
SciPy’s differential evolution method (see: [54]) is thus used to
explore the design space and find the optimal solution. The pro-
gression of this method is shown in Figure 8, with final results
shown in Table 3. As shown, these variables, with a low contact
rate in policy 1 (0.06) and a low threshold for policy 1 (8.6%–
essentially the starting condition for the pandemic) reflect an
aggressive suppression-based response to the pandemic, result-
ing in the improved pandemic response shown in Figure 7. As
shown, this response results in shorter-duration pandemic with
fewer infections than taking no response.

This formulation was solely focused on optimizing the fail-
ure response of the progression of a single scenario. While many
methods were tried on this problem (trust-region, SQSLP, Pow-
ell, etc.), only the differential evolution algorithm was able to
effectively optimize the function, because of the discontinuous
nature of the variables. Another property of the differential evo-
lution algorithm is its ability to parallelize the optimization of the
model. Future work should develop an integrated resilience opti-
mization formulation of this problem (with a design/operational
level) to investigate how parallelism affects the ability of opti-
mization architectures to effectively solve the problem at both
levels.

3.3 Cooling Tank Problem
To illustrate resilience optimization considerations in prob-

lems where the upper level is continuous and lower-level is com-
binatorial, this case study focuses on the optimization of a cool-
ing tank system shown in Figure 9 along with its fault behaviors
under a leak. The purpose of this system is to keep an exter-
nal heat source from overheating. The level of the tank provides
a coolant to absorb and transfer heat, an outflow valve lets out
warm coolant, and an inflow valve which brings in cold coolant.
This system is subject to faults, such as the shown leak fault, in
which the tank drains due to the loss of coolant. In this situa-
tion, no action may be taken to mitigate the fault from outside
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FIGURE 9. TANK SYSTEM UNDER LEAK FAULT
the system until t = 20, meaning the system must be designed in
such a way to be optimally resilient in this window. To optimize
the resilience of this system, the size of the tank xT and the size
of the valve inlet xI are the design variables while the response
signals to reconfigure the input valve xip and output valve xip
are the resilience variables. The contingency management input
states are~z = [i, t,o], where i is a given state in the input valve
(leak, blockage, or nominal), t is the level of the tank (low, high,
or nominal), and o is the state of the output valve (leak, blockage,
or nominal). The resulting optimization problem is:

minx f (x) =CD(xT ,xI)+CR(xip,xop) (12)

s.t.CD =1000(xT −10)2 +1000(xT −10)+10000x2
I

CR =∑
s∈S

n∗ rs ∗Cs(xip,xop)

gR = ∑
f∈N

f ≤ 0

where xT ∈ (10−100),xI ∈ (0−1),
xip,z ∈ [−1,0,1],xop,z ∈ [−1,0,1]

where CD(xT ,xI) is the design cost of both implementation
and efficiency (which increases quadratically with buffer size)
CR(xip,xop) is the resilience cost which is taken over the set of
fault simulations, and gR is the (resilience-level) constraint de-
termining whether the given set of variables results in a nominal
mission profile in the nominal scenario. The scenario costs take

TABLE 4. TANK PROBLEM FAULT SCENARIOS.
Scenario Rate Cost Expected Cost

Import Coolant Leak 1.7e-06 2.1e+06 3.5e+05

Import Coolant Blockage 1.7e-06 2.1e+06 3.5e+05

Store Coolant Leak 1.7e-06 1e+06 1.7e+05

Export Coolant Leak 1.7e-06 1e+06 1.7e+05

Export Coolant Blockage 1.7e-06 1e+05 1.7e+04

TABLE 5. TANK DESIGN PROBLEM VARIABLES
Variable Values Description

xT (10 - 100) Tank Buffer Size

xI (0 - 1) Input Valve Margin

xip,z [-1,0,1] Input Valve Turn in state j

xop,z [-1,0,1] Output Valve Turn in state j

the form:

Cs =
te

∑
t=0

104 ∗1l(t)−xT>0 +106 ∗1l(t)≤0

+105
1b(t)≤0 +100(1iv(t)6=0 +1ov(t)6=0)

where l(t) is the level of coolant in the tank, b(t) is the amount of
useful unspent buffer coolant in the tank, and ov(t) and iv(t) are
the policy used by the input and output valves. As shown, the pri-
mary failure costs result from the tank overfilling, emptying, and
no longer having enough buffer coolant to cool the heat source.
The valve policy costs are used to discourage unnecessary usage
of valve reconfiguration in cases where it is not needed, such as
in policy states that are not entered in the simulations in the set of
considered scenarios. These costs are summed over the number
of timesteps in the simulation where the condition is present to
account for the increased risk from greater time exposure result-
ing from each condition. Five scenarios are included in the set of
scenarios S in the resilience model, which constitute blockages
and leaks in each system, as shown in Table 4, along with their
rates and costs (assuming no mitigation).

3.3.1 Optimization This problem is difficult to solve be-
cause of the high resilience model dimensionality (54 variables)
and the mix of variable types (continuous in the design model
and discrete in the resilience model). Additionally, because vari-
ables are state-based (and not scenario-based), some variables
may be coupled (e.g., raising a level when it is too low may
cause the level to become too high, resulting in a new set of ac-
tions). Thus, this work uses a custom evolutionary algorithm in
a monolithic resilience model to generate and refine solutions.
This makes it difficult to solve design and resilience models in
tandem, since the result of the lower-level optimization may not
necessarily be continuous (or “act” like a continuous function to
an upper-level solver). To solve this problem, the design model
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in this work is searched using Powell’s method in SciPy [54],
a gradient-free direct search method which iteratively performs
line-searches along the feasible directions of the search space de-
termined first by the coordinate directions of the space and then
by the results of previous searches.

The alternating architecture and bilevel architectures were
implemented on this problem using a population size of 50 and
a number of iterations of 20 in the alternating architecture and a
population size of 10 and number of iterations of 20 in the bilevel
architecture. Both strategies used a seeding method in the evo-
lutionary algorithm which enabled the best populations found at
the end of each lower-level optimization to be saved and carried
over to the next optimization. The progression of these algo-
rithms through the search space is shown in Figure 10. As shown,
the alternating architecture very quickly reaches a plateau where
each individual optimization does not improve the design signif-
icantly, while the bilevel architecture searches the space more ef-
fectively, ultimately converging to a lower-cost design, as shown
Table 6. As shown, the alternating architecture converges to a
tank size of 20, the size which by design mitigates leak faults
by making it impossible for the tank to drain completely, while
the bilevel architecture converges to a tank size of 18, using pipe
buffer and a corresponding lower-level resilience policy to make
up the difference for the extra 2 time-steps. This difference in
performance and in design found (and corresponding policy) be-
tween the architectures is a result of the coupling relationship
between the upper and lower-level problems. That is, the pipe
buffer has no intrinsic value outside its ability to be leveraged by
a lower-level policy, which must be optimized in the lower-level
to be effective. This is why the alternating structure reduces pipe
margin to 0 while the bilevel has a pipe margin of 1 which it
leverages with a corresponding optimized resilience policy.

4 Discussion
The problems in this repository demonstrate how solving re-

silience optimization problems requires structuring the optimiza-

TABLE 6. TANK PROBLEM PERFORMANCE COMPARISON
Approach x∗t x∗l f ∗ Time (s)

Bilevel 18 1 2.8e+05 4e+02

Alternating (with CR) 20 3.4e-08 4.5e+05 1.3e+02
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FIGURE 12. DECOMPOSITION APPROACH APPLICABILITY
tion architecture to most efficiently optimize the system, which
is important because of the the large comparative simulation time
of the resilience model: Unless there is a complex interfacing de-
sign optimization problem, the resilience optimization is likely
the primary driver of computational expense in resilience opti-
mization because of the many dynamical simulations needed to
quantify the appropriate metrics. This is especially true as the
resilience model becomes more elaborate and the problem more
complex, since the computational cost increases by O(E ∗T ∗S),
where E is the number of equations in the resilience model, T
is the number of time-steps, and S is the number of scenarios.
While computational expense can also be reduced in the model,
appropriate optimization architectures enable quicker and more
effective solution without sacrificing model fidelity. As was illus-
trated in the notional example and tank problem presented here
(and the drone model presented in previous work), the choice and
development of optimization architecture can influence the effec-
tiveness of the overall approach. This difference in effectiveness
in part depends on the alignment and coupling of the upper and
lower-level problems, as summarized in Figure 11. Alignment
refers to whether the upper-level and lower-level objectives op-

pose, support, or are invariant to each other (i.e. if ˆdCD
dxD
≈ d̂C

dxD

where dC
dxD

= dCD
dxD

+ dCR
dxD

). When the upper and lower-level prob-
lems are not aligned (which constitutes all problems where there
is a trade-off between design cost and resilience), the resilience
model (or a surrogate) must be included in alternating and se-
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quential architectures for them to perform adequately. Coupling,
on the other hand, refers to the degree to which upper-level vari-
ables are constrained with lower-level variables. In an uncou-
pled situation, the lower-level optimization is merely a refine-
ment of the upper-level optimization, meaning there is a direct
path from [x∗D,x

0
R] to [x∗D,x

∗
R] justifying a sequential architec-

ture. In a loosely-coupled situation, the optimal choice of design
variables x∗D may depend on the choice of resilience variables,
however, the choices do not directly depend on each other (i.e.,
Eq. 13 holds) which justifies an alternating approach. Finally, in
a fully-coupled situation where Eq. 13 does not hold, the design
and resilience variables must be jointly explored, which requires
a bilevel or all-at-once approach.

C(x+δx)≈C(x+δxD)+C(x+δxR)−C(x) (13)

The optimization method used can additionally affect the effi-
ciency and effectiveness of a given architecture. In the exhaus-
tive search used in the Drone model in Ref. [42], for example, the
bilevel architecture was able to reduce (some) computational cost
by reducing the number of iterations by reducing the space of the
search and enabling a lower-level decomposition strategy. How-
ever, as shown in the notional example presented here, the large
number of lower-level optimizations necessary to approximate a
gradient in the upper-level problem can increase the computa-
tional cost by orders of magnitude when using a gradient-based
solver. Thus, to perform efficiently, the choice of architecture
must be connected to the solution strategy–whether it be because
an architecture is inherently quicker with a given strategy, or be-
cause upper and lower-level problems require different methods
to solve efficiently.

Finally, several of the problems in the repository (Drone,
EPS, Monopropellant system) use a decomposition strategy to
reduce the dimensionality of the problem and number of re-
silience simulations needed. However, these decomposition
strategies can only be used when different variables or sets of
variables are uncoupled, as shown in Figure 12. While prob-
lem formulations where features or control policies which map
to specific failure scenarios lend themselves to decomposition
strategies, formulations where the actions of a resilience policy
is optimized over interacting states do not. Thus, while decompo-
sition can increase the efficiency of a given strategy, the problem
must be formulated appropriately for them to be effective.

5 CONCLUSIONS
Effective application of resilience optimization methods re-

quires knowledge of the underlying optimization problem for-
mulation. Because resilience optimization problems can be for-
mulated in a number of different ways, characterizing the effec-
tiveness of given methods requires considering the performance
of these methods over the range of possible formulations. This
work studied previously-developed resilience optimization prob-

lems along with three new problems formulated in this work,
which lead to insights about the applicability of optimization
approaches. First, the ability for optimization architectures to
optimize effectively depends on the alignment and coupling of
the design and resilience problems. Second, the performance
of bilevel approaches vary widely based on the algorithms used
at each level, since they can enable different solution strategies
at each level but also require a full optimization of the lower-
level at each upper-level design point. Finally, while decompo-
sition strategies can lower solution time, they only apply when
variables can be mapped to independent scenarios and scenario-
sets–when the resilience variables interact with each other (e.g.,
through model states), a monolithic strategy is needed.

These insights constitute a beginning towards the charac-
terization and systematic study of resilience optimization prob-
lems and approaches. However, there are a few limitations that
deserve mentioning. The repository is limited to problems de-
veloped in the authors’ previous work, which leaves out other
problems and solution strategies (e.g. two-stage, etc.) previ-
ously presented in the literature. Future work should replicate
these problems and frameworks to perform a broader comparison
of strategies. Additionally, many formulations in this repository
are built around simulations, which make them more difficult to
leverage for the study of optimization architectures because of
computational expense. Thus, it would be helpful to formulate
more simple continuous problems to enable architecture compar-
ison, analysis of problem characteristics, and develop specialized
methods for the efficient optimization of resilience.
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“Choice of best possible metaheuristic algorithm for the
travelling salesman problem with limited computational
time: quality, uncertainty and speed”. Journal of Theoreti-
cal and Applied Computer Science, 7(1), pp. 46–55.

[39] Alexandrov, N., and Kodiyalam, S., 1998. “Initial re-
sults of an mdo method evaluation study”. In 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, p. 4884.

[40] Balling, R., and Wilkinson, C., 1997. “Execution of mul-
tidisciplinary design optimization approaches on common
test problems”. AIAA journal, 35(1), pp. 178–186.

[41] Tedford, N. P., and Martins, J. R., 2010. “Benchmarking
multidisciplinary design optimization algorithms”. Opti-
mization and Engineering, 11(1), pp. 159–183.

[42] Hulse, D., Biswas, A., Hoyle, C., Tumer, I. Y., Kulkarni,
C., and Goebel, K. Exploring architectures for integrated
resilience optimization.

[43] Maul, W. A., Kopasakis, G., Santi, L. M., Sowers, T. S., and
Chicatelli, A., 2008. “Sensor selection and optimization
for health assessment of aerospace systems”. Journal of
Aerospace Computing, Information, and Communication,

5(1), pp. 16–34.
[44] Rausch, R. T., Goebel, K. F., Eklund, N. H., and Brunell,

B. J., 2007. “Integrated in-flight fault detection and accom-
modation: A model-based study”. Journal of Engineering
for Gas Turbines and Power, 129(4), pp. 962–969.

[45] Balachandran, S., and Atkins, E., 2017. “Markov decision
process framework for flight safety assessment and man-
agement”. Journal of Guidance, Control, and Dynamics,
40(4), pp. 817–830.

[46] Müller, S., Gerndt, A., and Noll, T., 2019. “Synthe-
sizing failure detection, isolation, and recovery strategies
from nondeterministic dynamic fault trees”. Journal of
Aerospace Information Systems, 16(2), pp. 52–60.

[47] Yildiz, A., Akcal, M. U., Hostas, B., and Ure, N. K., 2019.
“Switching control architecture with parametric optimiza-
tion for aircraft upset recovery”. Journal of Guidance, Con-
trol, and Dynamics, 42(9), pp. 2055–2068.

[48] Silvas, E., Hofman, T., Murgovski, N., Etman, L. P., and
Steinbuch, M., 2016. “Review of optimization strategies
for system-level design in hybrid electric vehicles”. IEEE
Transactions on Vehicular Technology, 66(1), pp. 57–70.

[49] Allison, J. T., and Herber, D. R., 2014. “Multidisciplinary
design optimization: multidisciplinary design optimization
of dynamic engineering systems”. AIAA journal, 52(4),
pp. 691–710.

[50] Hulse, D., Hoyle, C., Tumer, I. Y., and Goebel, K.,
2019. “Decomposing incentives for early resilient design:
Method and validation”. In International Design Engineer-
ing Technical Conferences and Computers and Information
in Engineering Conference, Vol. 59193, American Society
of Mechanical Engineers, p. V02BT03A015.

[51] Hulse, D., Walsh, H., Dong, A., Hoyle, C., Tumer, I.,
Kulkarni, C., and Goebel, K., 2020. “fmdtools: A fault
propagation toolkit for resilience assessment in early de-
sign”.

[52] McIntire, M. G., Keshavarzi, E., Tumer, I. Y., and Hoyle,
C., 2016. “Functional models with inherent behavior: To-
wards a framework for safety analysis early in the design of
complex systems”. In ASME International Mechanical En-
gineering Congress and Exposition, Vol. 50657, American
Society of Mechanical Engineers, p. V011T15A035.

[53] Hulse, D., Zhang, H., and Biswas, A., 2021. “Designengr-
lab/resil opt examples”.

[54] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland,
M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al., 2020. “Scipy 1.0: fun-
damental algorithms for scientific computing in python”.
Nature methods, 17(3), pp. 261–272.

12


