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Abstract

Deconvolution of aeroacoustic data acquired with microphone phased arrays is a computationally-challenging

task for distributed sources with arbitrary coherence. A new technique for performing such deconvolution

is proposed. This technique relies on analysis of the array data in the wavenumber-frequency domain,

allowing for fast convolution and reduced storage requirements when compared to traditional coherent

deconvolution. A positive semidefinite constraint for the iterative deconvolution procedure is implemented

and shows improved behavior in terms of quantifiable convergence metrics when compared to a standalone

covariance inequality constraint. A series of simulations validates the method’s ability to resolve coherence

and phase angle relationships between partially-coherent sources, as well as determines convergence criteria

for deconvolution analysis. Simulations for point sources near the microphone phased array show potential

for handling such data in the wavenumber-frequency domain. In particular, a physics-based integration

boundary calculation is described, and can successfully isolate sources and track the appropriate integration

bounds with and without the presence of flow. Magnitude and phase relationships between multiple sources

are successfully extracted. Limitations of the deconvolution technique are determined from the simulations,

particularly in the context of a simulated acoustic field in a closed test section wind tunnel with strong

boundary layer contamination. A final application to a trailing edge noise experiment conducted in an

open-jet wind tunnel matches best estimates of acoustic levels from traditional calculation methods and

qualitatively assesses the coherence characteristics of the trailing edge noise source.
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kx, ky, kz, kξ, kη wavenumber vector components and two-dimensional conjugates, m−1

x, y, z, ξ, η spatial dimensions and two-dimensional conjugates, m

r, θ, φ spherical coordinates (radius, inclination angle, azimuth angle), deg

t time, s

Symbols

a relaxation parameter

A system matrix

B, C, D matrices used in iteration stability analysis

c0 isentropic speed of sound, m/s

e (kx, ky) row vector of wavenumber transform terms

E expected value operation

ê unit vector component

f temporal frequency, Hz

G cross-spectral matrix, Pa2

I matrix index

I identity matrix

J matrix index

j imaginary unit

kmax,() maximum considered wavenumber in a given dimension, m−1

kmin,() minimum considered wavenumber in a given dimension, m−1

k0 acoustic wavenumber based on frequency and speed of sound, k0 = f/c0, m−1

`() ()-norm of a vector

M Mach number

N total number of microphones in an array

ng total number of grid points in a beam map

nk,() number of grid points in a given dimension in the wavenumber domain

ns,() number of grid points in a given dimension required for linear convolution

p column vector of measured pressures, Pa

p (x, y) sampled pressure field on an array face, Pa

pm pressure sampled at microphone m for a given narrowband frequency, Pa

p̃ (kx, ky) wavenumber transform of sampled pressure field, Pa

P (x, y, ξ, η) measured spatial pressure covariance, Pa2

P̃ (kx, ky, kξ, kη) measured wavenumber-frequency covariance, Pa2
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q (x, y) true pressure field on array face, Pa

q̃ (kx, ky) wavenumber transform of true pressure field, Pa

Q̃ (kx, ky, kξ, kη) wavenumber-frequency covariance of true pressure field, Pa2

Q̂ forward spatial Fourier transform of Q̃, Pa2

Q Covariance matrix form of Q̃

rσ matrix spectral radius

R̃ (kx, ky, kξ, kη) convolution of Q̃ with S̃, Pa2

R̂ forward spatial Fourier transform of R̃, Pa2

Rn real number set in n dimensions

s (x, y) spatial array sampling function

s̃ (kx, ky) wavenumber transform of array sampling function

S̃ (kx, ky, kξ, kη) wavenumber-frequency covariance array sampling function

Ŝ forward spatial Fourier transform of S̃

T time series block length used in ensemble-averaging, s

U moving medium mean velocity (signed), m/s

u normalized `2 algorithm residual

v normalized `1 change in solution

~v arbitrary velocity vector, m/s

w 3-dB beamwidth of array sampling function in the wavenumber domain, m−1

x column vector of sources

y column vector of observations

∆k() grid point spacing in a given dimension in the wavenumber domain, m−1

δ (~x− ~xm) Dirac delta function

γ2 coherence-squared function

λ eigenvalue

Ψ wavenumber filter weighting function

Subscripts and Superscripts

()g group velocity vector term

()p phase velocity vector term

()H Hermitian transpose

()(i) current iteration number

()∗ complex conjugate

()′ shifted coordinate
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1. Introduction1

In aeroacoustic wind tunnel testing, the limitations of conventional beamforming with microphone phased2

arrays impede the ability to extract quantitative information from beam maps. Simple integration tech-3

niques can be used to provide approximate field values, but in general the inverse problem of beam map4

deconvolution must be solved to extract quantitative information from array data [1]. Many frequency-5

domain deconvolution algorithms exist for incoherent source fields, for example DAMAS [1], DAMAS2 [2],6

SC-DAMAS [3], and CLEAN-SC [4]. However, when a source field contains regions of coherence, there are7

fewer algorithm selections. Methods such as MACS are computationally reasonable but assume a sparse8

source field [5]. Similarly, LORE is a quick algorithm but only solves for a subset of the scan grid [6].9

DAMAS-C has the potential to evaluate coherent sources over the entire source region of interest, but10

application is computationally challenging even for small source regions [7]. Generalized inverse methods11

involving either eigenvalue subsets of the measured cross-spectral matrix (CSM) [8] or the entire CSM of12

an array data set [9] may resolve distributed, partially-coherent source fields, but the range of applicability13

and limitations of these methods have yet to be completely addressed.14

In microphone phased array analysis, deconvolution is the constrained inverse of the linear convolution15

of an array’s sampling response with the true source field of interest. When an array is steered to a set of16

discrete scan locations, the array output can be stored in a vector of observations y. These observations17

can be modeled as a vector of source variances x multiplied by the matrix A containing the response18

characteristics. Assuming the observations are uncontaminated by measurement noise, this is simply19

y = Ax. (1)20

Deconvolution inverts this system to solve for x. For many problems of interest, A is nearly singular so direct21

inversion is infeasible. Algorithms such as DAMAS and DAMAS2 handle the solution process iteratively22

through a Gauss-Seidel or Jacobi procedure, respectively, where x ≥ 0 is enforced between iterations under23

the assumption of incoherence between sources. DAMAS2 applies a shift-invariance assumption, tantamount24

to assuming that the source field consists of plane waves. This allows the use of a Fourier-based technique25

to perform a fast convolution of x with A rather than the full matrix-vector multiplication [2]. Individual26

iterations of DAMAS2 are significantly faster than DAMAS for a given problem, but depending on the27

validity of the shift-invariance assumption and desired convergence criteria, more iterations of DAMAS228

may be required and accuracy may be limited. A smoothing filter may be used with DAMAS2 to improve29

conditioning and accelerate convergence.30

Deconvolution assuming arbitrary coherence, where elements of x may be statistically related to each31

other, is also modeled by Eq. (1). In this case, x and y include not only the source and observation32
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variances of grid points but also the covariances between grid points. A must then account for the influence33

of all source variances and covariances on a given observation variance or covariance. Constraints on these34

additional elements may be defined by a covariance inequality [10] rather than a positivity constraint,35

although an alternative which shows improved behavior is proposed in this work. In general the terms of x are36

complex. Unfortunately, when allowing for arbitrary coherence the computational scaling of deconvolution37

becomes problematic. If a scan grid of interest has ng grid points, x and y each have n2g elements and38

A has n4g elements. For example, a 20 × 20 beam map has ng = 400 grid points. This means x and y39

each have n2g = 1.6 × 105 elements to account for all possible variance and covariance terms, meaning A40

has n4g = 2.56 × 1010, or 25.6 billion, elements. Conjugate-symmetry reduces the number of independent41

covariance terms by a factor of two, but the scaling remains. To compute the covariance relationships42

between every pairing of grid points in the beam map, A must be treated as, in general, a non-sparse matrix43

(although many terms may be orders of magnitude smaller than the maximum matrix element). While a44

matrix of this size is possible to generate and store, it does not lend itself to efficient computation, and the45

scaling problem excludes analysis of larger grids. In-situ recalculation of the terms of A has been successfully46

applied, though the full calculation is expensive [11].47

To make the evaluation of Ax more tractable for this form of deconvolution, it would be helpful to48

define the problem such that every element of A does not need to be simultaneously computed and stored.49

Additionally, a fast convolution technique similar to that used by DAMAS2 is desired. A formulation of50

the coherent deconvolution process which accomplishes these objectives is presented here. A shift-invariance51

assumption, where the element of A relating a given element of y to an element of x is dependent only on the52

separation of the two points in the analysis domain, is applied to the coherent problem. Shift-invariance has53

previously been applied to the DAMAS-C problem in the spatial domain [11]. It is done here by analyzing54

the array data in the wavenumber-frequency domain.55

Analysis of array data in the wavenumber-frequency domain can be a powerful tool. An acoustic field56

from an arbitrary source can be expressed as the inverse transform of a plane wave expansion, or wavenumber-57

frequency representation, of the field [12]. It must be used with care, as both the approximation of the field58

by a discrete set of wavenumber vector components and the sampling limitations of a finite aperture, finite59

element count, non-uniformly spaced array not located in the near field of a source impede quantitative60

reconstruction of a general field. However, it allows the separation of supersonic (radiating) and subsonic61

(evanescent) components projected on an array face [13], giving the potential to separate acoustic and62

hydrodynamic waves in subsonic flows.63

In this work, the general problem of a transformation of an arbitrary-coherence pressure field to the64

wavenumber-frequency domain is addressed Section 2. Implementation details such as algorithm structure65

and constraints, updated from previous work, are addressed in Section 3 along with potential methods for66

accelerating convergence. Section 4 presents two applications which are representative of possible aeroa-67
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coustic wind tunnel tests. The first is simulated data in a closed test section. The second is experimental68

data in an open-jet facility. The summary and conclusions follow in Section 5. The appendices contain a69

detailed simulated data study of the algorithm performance to determine its characteristics and limitations,70

in addition to detailing some data analysis techniques to assess use for non-planar acoustic wave fields.71

2. Formulation72

The wavenumber-frequency deconvolution problem is desired in a functionally-equivalent form of Eq. (1),73

where y is the wavenumber transform of the observed array data for a given narrowband frequency and A74

contains the model of the array sampling function. The desired form must include and account for both the75

variances of the individual wavenumber components and the covariances between wavenumber components76

of the wavenumber-frequency spectrum. The wavenumber domain array sampling function can be obtained77

from the physical space sampling function, which can be constructed in terms of sampling theory. This is78

done by modeling the array measurement process as the multiplication of the true pressure field in space by79

a distribution of delta functions corresponding to microphone locations in the array [14]. This multiplication80

in the spatial domain becomes an equivalent convolution in the Fourier transform of the spatial domain, or81

the wavenumber domain.82

The sampling function applied to the pressure field on a planar array face defined at z = 0 is given by83

s (x, y) =

N∑
m=1

δ (x− xm, y − ym) . (2)84

The sampled, temporally-Fourier transformed narrowband pressure field (frequency-dependence suppressed85

in the notation) is then given by86

p (x, y) = s (x, y) q (x, y)87

=

N∑
m=1

pmδ (x− xm, y − ym) . (3)88

The 2-D spatial Fourier transforms of these quantities are thus89

s̃ (kx, ky) =

∫∫
R2
s (x, y) e j2π(kxx+kyy) dxdy =

1

N

N∑
m=1

e j2π(kxxm+kyym) (4)90

and91

p̃ (kx, ky) =

∫∫
R2
p (x, y) e j2π(kxx+kyy) dxdy =

1

N

N∑
m=1

pme
j2π(kxxm+kyym) (5)92

=

∫∫
R2
s̃
(
kx − k′x, ky − k′y

)
q̃
(
k′x, k

′
y

)
dk′x dk′y,93

where the normalization by N is included such that a unit-magnitude plane wave in physical space has unit94

magnitude in its peak wavenumber domain representation. Note that no kz transform is performed as all95
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microphones are assumed co-planar, common for many aeroacoustic wind tunnel tests, so no z-information96

is available. This is effectively evaluating the projection of a wave front propagating over the array face.97

Note that the following conventions are used in this work. The +1 sign in the complex exponential of98

the wavenumber transform is selected based on the assumption that temporal transforms have a −1 sign,99

following convention [15]. Also, spatial Fourier transforms in this work are scaled using wavenumbers of100

inverse length, rather than radians per unit length.101

Eq. (5) is a formulation of the basic wavenumber pressure sampling problem for a deterministic fluctu-102

ating pressure field, or for a single block of data from a stochastic one. However, to properly handle the103

stochastic nature of typical pressure fields in aeroacoustics, auto- and cross-power spectral densities are used104

to represent the ensemble-average characteristics of the field. A CSM for a given narrowband frequency105

contains the variances and covariances, or elements of auto- and cross-spectral densities scaled by the nar-106

rowband bin width, of the array microphone measurements. The (one-sided) CSM is ensemble-averaged107

across many blocks of data and is represented by108

G =
2

T 2E
[
ppH

]
=


E [p (x1, y1) p∗ (x1, y1)] . . . E [p (x1, y1) p∗ (xN , yN )]

...
. . .

...

E [p (xN , yN ) p∗ (x1, y1)] . . . E [p (xN , yN ) p∗ (xN , yN )]

 . (6)109

For a planar array, the CSM contains 4-D spatial covariance information,110

P (x, y, ξ, η) =
2

T 2E [p (x, y) p∗ (ξ, η)] . (7)111

An equivalent covariance relationship in the wavenumber-frequency domain is desired. This would take112

the form of113

P̃ (kx, ky, kξ, kη) =
2

T 2E [p̃ (kx, ky) p̃∗ (kξ, kη)] (8)114

and can be computed by substituting the first line of Eq. (5) into Eq. (8), giving115

P̃ (kx, ky, kξ, kη) =
2

T 2E [p̃ (kx, ky) p̃∗ (kξ, kη)]116

=
2

T 2E

[
1

N

N∑
n=1

pne
j2π(kxxn+kyyn)

1

N

N∑
m=1

p∗me
−j2π(kξξm+kηηm)

]
(9)117

=
1

N2

N∑
n=1

N∑
m=1

2

T 2E [pnp
∗
m] e j2π(kxxn+kyyn)e−j2π(kξξm+kηηm).118

When kξ = kx and kη = ky, Eq. (9) reduces to the wavenumber variance. This expression of the wavenumber119

variance matches Eq. 12 given by Capon [16] for uniform element weighting. The full equation, as a 4-D120

covariance relationship of 2-D wavenumber-frequency information, captures any coherence relationships121

between regions in the wavenumber domain. The term E [pnp
∗
m] in Eq. (9) is an entry in the CSM . Thus,122

in linear algebra terms, the double-summation can be re-expressed as123

P̃ (kx, ky, kξ, kη) =
1

N2 e (kx, ky) GeH (kξ, kη) , (10)124
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with row vector e (kx, ky) given by125

e (kx, ky) =
[
e j2π(kxx1+kyy1) e j2π(kxx2+kyy2) . . . e j2π(kxxN+kyyN )

]
. (11)126

Similarly, the wavenumber covariance sampling function can be constructed as127

S̃ (kx, ky, kξ, kη) =
1

N2 e (kx, ky)


1 . . . 1
...

. . .
...

1 . . . 1

 eH (kξ, kη) . (12)128

Note that when diagonal removal [17] is applied, where m = n terms of the CSM are neglected, the129

normalization should change from N2 to N2 −N to maintain unit response.130

A 4-D convolution statement equivalent to the second line of Eq. (5) can be constructed by substituting131

the second line of Eq. (5) into Eq. (8),132

P̃ (kx, ky, kξ, kη) =
2

T 2E [p̃ (kx, ky) p̃∗ (kξ, kη)]133

=
2

T 2E

[∫∫
R2
s̃
(
kx − k′x, ky − k′y

)
q̃
(
k′x, k

′
y

)
dk′x dk′y×134 ∫∫

R2
s̃∗
(
kξ − k′ξ, kη − k′η

)
q̃∗
(
k′ξ, k

′
η

)
dk′ξ dk′η

]
(13)135

=

∫∫
R2

∫∫
R2
s̃
(
kx − k′x, ky − k′y

)
s̃∗
(
kξ − k′ξ, kη − k′η

)
×136

2

T 2E
[
q̃
(
k′x, k

′
y

)
q̃∗
(
k′ξ, k

′
η

)]
dk′x dk′y dk′ξ dk′η137

=

∫∫∫∫
R4

S̃
(
kx − k′x, ky − k′y, kξ − k′ξ, kη − k′η

)
Q̃
(
k′x, k

′
y, k
′
ξ, k
′
η

)
dk′x dk′y dk′ξ dk′η.138

This statement allows for a shift-invariant model of A in Eq. (1). When P̃ is constructed on a discrete grid,139

it can be stored in the observation vector y. The source field Q̃ becomes the solution vector x, and the140

problem of interest is to find the source field which best fits the data in the observation vector, obeying the141

given constraints and avoiding explicit computation or storage of A.142

3. Implementation143

To solve this problem, P̃ and S̃ are first constructed for a discrete set of coordinates in the wavenumber144

domain. The coordinates are equally-spaced within a given dimension. Each coordinate set spans k() =145 [
kmin,() : ∆k() : kmax,()

]
for a total grid size of nk,x × nk,y × nk,ξ × nk,η. Note that the notation nk,x146

indicates the number of points in the kx dimension, and is used similarly for other dimensions. For a proper147

covariance analysis, the kξ grid must match the kx grid and the kη grid must match the ky grid, as these148

are conjugate pairings. This leads to a covariance matrix of size (nk,x × nk,y)× (nk,ξ × nk,η). The selection149

of the parameters kmin,(), kmax,(), ∆k() and nk,() is discussed subsequently and is dependent on the array,150

the problem of interest, and available computational resources.151
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An iterative solution of Eq. (1) can take the form of152

x(i+1) = x(i) +
1

a

(
y −Ax(i)

)
, (14)153

where a is a relaxation parameter discussed further below. This is the Richardson iteration method, which154

for unconstrained applications has linear convergence dependent on the condition number of A. However,155

constraints are enforced after every iteration, which complicates the convergence behavior. The general156

constraints from DAMAS-C [7] were considered with the initial exploration of this research [18]. With157

these, a real non-negative constraint is applied to variance terms, or terms where (kξ, kη) = (kx, ky),158

Re
{
Q̃ (kx, ky, kx, ky)

}
≥ 0 (15)159

Im
{
Q̃ (kx, ky, kx, ky)

}
= 0.160

The quantities q̃ (kx, ky) and q̃ (kξ, kη) are complex random variables. As such, when (kξ, kη) 6= (kx, ky)161

their covariance, Q̃ (kx, ky, kξ, kη), must obey the Cauchy-Schwarz inequality from probability theory and162

must follow appropriate conjugate behavior,163 ∣∣∣Q̃ (kx, ky, kξ, kη)
∣∣∣2 ≤ Q̃ (kx, ky, kx, ky) Q̃ (kξ, kη, kξ, kη) (16)164

Q̃ (kx, ky, kξ, kη) = Q̃∗ (kξ, kη, kx, ky) .165

After each iteration, variance constraints are applied first to provide updated bounds for covariance con-166

straints.167

These constraints were found to be functional for the problems of interest. However, certain mixed-168

coherence simulations in subsequent research showed results which were extremely sensitive to grid spacing169

and source layout. Additionally, iteration-to-iteration solution change and residual calculations showed a170

high degree of irregularity for some test cases, and for these cases convergence could only be assessed by171

knowing the correct solution or by applying some qualitative assessment of the problem. Both issues were172

traced to the covariance constraint being insufficient. While it could alter the magnitude of the covariance173

terms, the original constraint did nothing for the phase. One potential alternative constraint set to enforce174

is that, when expressed as a covariance matrix, Q̃ must be positive semidefinite. Q̃ can be expressed as a175

covariance matrix by reshaping it from a 4-D array of size nk,x×nk,y×nk,ξ×nk,η to a 2-D array (Q) of size176

(nk,x × nk,y)× (nk,ξ × nk,η) with variance terms on the diagonal and covariance terms on the off-diagonal.177

Computationally, the ordering of the elements can be set such that this reshaping does not involve altering178

the memory address of any elements of Q̃ and the expense is minimal. This requires the ordering of x and179

y to match the ordering of ξ and η. After each iteration of the algorithm, the new estimate of Q may180

not be positive semidefinite, so enforcing a positive semidefinite solution after each iteration is an alternate181

constraint. Methods exist for finding the nearest positive semidefinite matrix, in terms of Frobenius norm,182

to an arbitrary matrix [19]. Straightforward MATLAB implementations of such methods exist, and one is183
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used in this work [20]. This constraint has previously been applied to the coherent deconvolution problem,184

although the current positive semidefinite calculation method differs [5, 11].185

Direct use of this updated constraint proved to find solutions that had a very low Frobenius norm in186

terms of the residual of Eq. (14). However, these solutions were in general too distributed and failed to187

adequately localize isolated plane waves in simple simulations. A hybrid approach, determined by testing188

various combinations of the old and new constraints on the cases from the initial research, was developed.189

For this hybrid approach, after each iteration of the solver from Eq. (14), the variance constraint from190

Eq. (15) is applied. The variances from this update are considered the iteration’s best estimate of the191

source variances. The covariance matrix is then contracted to exclude zero-variance rows and columns. The192

nearest positive semidefinite matrix to this contracted covariance matrix is computed. This nearest positive193

semidefinite matrix is considered the best estimate of the coherence relationships between the various non-194

zero sources. It will in general have variances that differ from those determined by the variance constraint195

application. This output matrix is thus rescaled to recover the original variances while maintaining coherence196

relationships (as described further in the algorithm block), and then re-expanded to incorporate the zero-197

variance rows and columns from the full covariance matrix. The solution procedure is given as pseudocode198

in Algorithm 1.199

No argument is made in this work that this method is the optimum way to solve this problem, or that the200

updated constraints are the most appropriate. However, note that the updated technique is applied because201

it properly recovers exact solutions for some test cases with simulated data and shows improved handling of202

some mixed-coherence test cases when compared to the previous constraint set. Perhaps more importantly,203

the updated constraints used in the technique appear to stabilize the iteration-to-iteration solution change204

and residuals sufficiently that convergence metrics can be assessed.205

3.1. Linear convolution206

For linear convolution, Q̃ must be zero-padded and S̃ must be constructed on the larger, padded grid207

scale. If this is not done, sources within the bounds of Q̃ may have a significant wrap-around influence on208

the solution procedure, depending on the particular sidelobe distribution of S̃. Here, the total grid size of209

ns,x×ns,y×ns,ξ×ns,η contains nearly 16 times the number of elements of the baseline grid, as the minimum210

padding for linear convolution in each dimension is ns,() = 2nk,() − 1. Q̃ must be padded to this size prior211

to transformation, and the appropriate subset of grid points selected in the P̃ − R̃ step of the algorithm.212

Additional points and/or padding may be used depending on the optimum performance of a given FFT213

library and system memory limitations.214

The increased computational burden of transforming zero-padded arrays may be partially-mitigated by215

exploiting the separability of the multi-dimensional FFT in conjunction with zero-padding requirements [21].216

For example, if a 2-D grid of size nk,x×nk,y is to undergo a 2D FFT for use with linear convolution, it must217
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Algorithm 1: Wavenumber-frequency deconvolution algorithm

Input: P̃ (4-D array of size nk,x × nk,y × nk,ξ × nk,η), S̃ (4-D array of size ns,x × ns,y × ns,ξ × ns,η).

See Section 3.1 for sizing of S̃. Specification of the discretization of the wavenumber domain

is discussed in Section 3.5. S̃ should be shifted such that the element corresponding to

kx = ky = kξ = kη = 0 is the first element of the array for proper FFT-based convolution.

Output: Q̃ (4-D array of size nk,x × nk,y × nk,ξ × nk,η). The discretization and range of the

wavenumber domain in Q̃ matches that in P̃ . Note that as the system of equations to be

solved is ill-conditioned and the equivalent A associated with S̃ usually rank-deficient, Q̃ is

not expected to be unique. It is simply a constrained solution which attempts to minimize

the residual u given in Eq. (26).

begin

1 Forward transform S̃ with a 4-D Fourier transform, Ŝ = FFT4
[
S̃
]
.

2 Compute a =
λA,max

2 + ε, where ε is a small value to ensure a >
λA,max

2 . See Section 3.2.

3 Initialize all elements of solution array, Q̃(0) = 0.

4 Initialize normalized residual and solution change, u(0) = v(0) = 1, as defined in Section 3.3.

5 while Convergence criterion involving u and/or v is unmet (see simulated data discussion)

6 Forward transform Q̃(i), Q̂(i) = FFT4
[
Q̃(i)

]
. Follow the zero-padding requirements addressed

in Section 3.1 to ensure linear convolution.

7 Compute the element-wise product of arrays Ŝ and Q̂(i), R̂(i) = Ŝ · Q̂(i).

8 Inverse transform R̂(i) to R̃(i), R̃(i) = IFFT4
[
R̂(i)

]
. Discard the padded elements of R̃(i).

9 Update the solution estimate, Q̃(i+1) = 1
a

(
P̃ − R̃(i)

)
.

10 Reshape Q̃(i+1) to Q(i+1).

11 Enforce positivity on the diagonal of Q(i+1) by setting negative values to zero.

12 Contract Q(i+1) by deleting rows and columns with zero variance on the diagonal.

13 Store the diagonal of Q(i+1).

14 Update Q
(i+1)
psd as the nearest positive semidefinite matrix to Q(i+1).

15 Re-scale Q
(i+1)
psd based on the diagonal of Q(i+1). This is done by multiplying the matrix

elements by the ratio of the products of the appropriate square roots of the diagonal elements

before and after the positive semidefinite calculation. For example,

Q
(i+1)
psd (I, J) = Q

(i+1)
psd (I, J)×

√
Q(i+1)(I, I)×Q(i+1)(J, J)/

√
Q

(i+1)
psd (I, I)×Q

(i+1)
psd (J, J).

16 Expand Q
(i+1)
psd to the original size of Q(i+1) by adding rows and columns of zeros at the

appropriate indices deleted in the contraction process.

17 Reshape Q
(i+1)
psd to Q̃(i+1). Compute u(i) from Eq. (26) and v(i) from Eq. (27).
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be zero-padded to a grid of size ns,x × ns,y, which has nearly four times as many elements. However, the218

2-D transform can be decomposed into a 1-D FFT operating on the first dimension, followed by a 1-D FFT219

operating on the second dimension. When the first of the FFTs operates on the padded ns,x×ns,y grid, half220

of the grid has all zeros in the transform dimension, and thus both the input and output are zero. The 1-D221

FFT can be skipped on these grid points, so only nk,y 1-D FFTs of length ns,x are performed on the first222

dimension. The second dimension still requires ns,x 1-D FFTs of length ns,y. This computation scheme can223

be extended to 4-dimensional padded transforms and shows significant reduction in computational overhead.224

3.2. Relaxation parameter225

The relaxation parameter a is a critical component of the algorithm as the iterative update diverges226

without it. With DAMAS2 as an example fast-convolution technique, this parameter is specified as the227

sum of the absolute value of the 2-D array response within the baseline grid domain. Extended to this 4-D228

problem, it is computed by229

a =

kmax,x∑
kx=kmin,x

kmax,y∑
ky=kmin,y

kmax,ξ∑
kξ=kmin,ξ

kmax,η∑
kη=kmin,η

∣∣∣S̃ (kx, ky, kξ, kη)
∣∣∣ . (17)230

This value is effectively the maximum column sum of absolute values of the A representation of S̃ in Eq. (14),231

which corresponds to the matrix norm ||A||1 = max
J

(nk,x×nk,y)2∑
I=1

|A(I, J)| [22]. As the spectral radius of a232

square matrix rσ must be less than or equal to its operator norms, using this norm as a relaxation parameter233

is a conservative way to stabilize the solution procedure. It should be noted that stabilization does not234

guarantee convergence, as seen with simulated data in subsequent sections.235

A smaller value of a which leads to larger solution steps and maintains stability may be derived, following236

the method presented by Atkinson [22]. Eq. (1) can be restructured by splitting A,237

A = B−C, (18)238

and rewriting Eq. (1) as239

Bx = y + Cx. (19)240

The iterative method is thus given as241

Bx(i+1) = y + Cx(i). (20)242

Matrix D can be defined as243

D = B−1C. (21)244

The stability criterion for the (unconstrained) iteration method is then given as245

rσ (D) < 1. (22)246
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With some rearrangement, Eq. (14) yields B = aI and C = aI −A. This gives D = I − 1
aA. As the247

eigenvalues of the identity matrix are unity and all vectors are its eigenvectors, this yields248

λD = 1− λA
a
. (23)249

Since rσ (D) is the magnitude of the largest eigenvalue of D,250

|λD|max =

∣∣∣∣1− λA
a

∣∣∣∣
max

< 1. (24)251

For this to hold, A must be positive semidefinite and252

λA,max
2

< a, (25)253

so the minimum relaxation parameter is simply half of the spectral radius, or largest eigenvalue, of A. Note254

that there is no expectation that A must be positive semidefinite. In the authors’ experience, the matrix255

was always positive semidefinite when diagonal removal was not applied to the data. Diagonal removal was256

found to lead to A having negative eigenvalues for certain combinations of grid spans and densities. In these257

circumstances, testing verified that no value of a prevented the solution procedure from diverging. As such,258

the grid range and density was modified until the resultant A was positive semidefinite.259

This relaxation parameter calculation may appear problematic at first as the goal of this method is to260

avoid computing and storing matrices of size A. However, there are methods such as the implicitly-restarted261

Arnoldi Method [23] for computing the largest eigenvalue of A using a function call which evaluates the262

matrix vector product Ax for a given input vector x, rather than using A itself. The value of a computed263

by this method for the problems considered in this study is often orders of magnitude smaller than that264

given by Eq. (17) for the modeled arrays and grids. With this value the solution method is stable for the265

cases considered. When A is no longer positive semidefinite, the technique will diverge and the wavenumber266

extent and resolution of the grid should be reconsidered. To re-iterate, this is the stability criterion for267

the unconstrained formulation of Eq. (14), and does not account for the positive variance and positive268

semidefinite constraints applied to Q.269

3.3. Residuals and precision270

Two quantities are tracked and stored for every iteration in this work. The first is the residual or relative271

error between the source estimate convolved with the array response and the wavenumber-transformed array272

data. This is expressed as the ratio of `2 vector norms,273

u(i) =

∣∣∣∣∣∣P̃ − R̃(i)
∣∣∣∣∣∣
2∣∣∣∣∣∣P̃ ∣∣∣∣∣∣

2

, (26)274
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where the arrays P̃ and R̃(i) are reshaped to column vectors for the calculation. The second is the scaled275

change in solution from one iteration to the next, expressed as the ratio of `1 vector norms,276

v(i) =
a
∣∣∣∣∣∣Q̃(i+1) − Q̃(i)

∣∣∣∣∣∣
1∣∣∣∣∣∣P̃ ∣∣∣∣∣∣

1

. (27)277

Both quantities are scaled such that, neglecting the application of constraints, they are unity for i = 0. This278

is done with v by including the relaxation parameter a in the numerator. The behavior of each is considered279

on a case-by-case basis with simulated data in an attempt to determine convergence criteria.280

In the initial version of this work, it was determined that single-precision floating point analysis was281

sufficient for data analysis. Subsequent analysis showed that this was generally the case with the initially-282

selected constraints. However, the calculation of the nearest positive semidefinite matrix involves matrix283

decompositions which show more sensitivity to the precision of the calculations. While some test cases still284

performed as expected with the updated constraints for single-precision analysis, convergence became more285

difficult to track with others. As such, it is recommended that this algorithm be used with double-precision286

analysis whenever possible, and all presented results are computed using double-precision.287

3.4. Additional topics from preliminary work288

Two topics from the preliminary version of this work are not included in the current discussion [18].289

The first of these was a multiscale approach to determine an improved estimate of Q̃(0). The multiscale290

approach involved constructing low-resolution grids with large ∆k() values, solving for Q̃(0) on these grids,291

and then upscaling the results to a more refined grid. This upscaling approach showed promise with specific292

problems, but the results were highly-dependent on the interpolation scheme used and the particular problem293

of interest. No general approach was determined in subsequent research, and so the method is excluded294

from the current report.295

The second topic was a wavenumber-domain integration technique used in an attempt to more accurately296

capture the effects of sources located between grid points. Upon further simplification, this technique297

reduced to applying a sinc-function window to the microphone array data, weighted by both the spatial298

and conjugate-spatial dimensions. Subsequent investigation showed the benefits of this particular weighting299

to be questionable at best. While spatial weighting of microphone array data is common in aeroacoustic300

analysis [24], sinc functions are rarely used and investigation of an optimum spatial window is beyond the301

scope of this work.302

3.5. Comments on scaling303

The computational savings of this algorithm in terms of floating point operations is significant. For the304

matrix-vector multiply solution of Eq. (14), each forward multiplication of A (assuming nk,x = nk,y) has305
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computational complexity of O(n8k,x). Conversely, the Fourier transform convolution has a computational306

complexity of O(n4k,x log nk,x), where the specifics of the scaling are partially-dependent on the zero-padding307

scheme used in Section 3.1. The application of the positive semidefinite constraint involves a singular value308

decomposition of the matrix form of Q̃ which has a complexity of O(n6k,x). This becomes the most expensive309

part of the algorithm in terms of scaling. However, it is partially mitigated by the contraction process where310

only non-zero variance rows and columns of the covariance matrix are retained.311

Memory scaling must also be considered. While this algorithm bypasses explicit storage of A, which312

would have a size of (nk,x × nk,y × nk,ξ × nk,η)
2
, problem size can still be an issue. Specifically, the scaling313

associated with 4-D data and zero-padding is non-trivial. As an example, consider the case of a square grid314

where nk,() = 25, empty parentheses meaning the grid assignment applies to all dimensions. Each array315

must be padded to ns,() = 49 and each contains 5.76 million elements. While this has moderate storage316

requirements, 92.2 MB for double-precision complex, it is still a significant amount of data to handle with317

an algorithm which may require many iterations. Hardware-tuned FFT algorithms [25] can help mitigate318

this expense, but the cost of a given problem size is still a driving concern.319

Previous research [1] indicates that in deconvolution the grid spacing should be between approximately320

5% and 20% of the sampling pattern’s 3-dB main lobe width. In the wavenumber-frequency domain, this321

sets an effective maximum value for ∆k() for a given array. The wavenumber bounds of interest are highly322

problem-dependent. In the case of plane waves arriving from a limited cone of directions, kmin,() and kmax,()323

can simply be selected to properly encompass the appropriate region within the wavenumber-frequency324

domain. However, for a general problem in a quiescent medium where no information is known about the325

acoustic field, the bounds will need to meet the acoustic wavenumber, 2πf/c0 (rad/m) or f/c0 (m−1) to326

encapsulate every potential direction of arrival. Convection effects would offset this region, demanding that327

the modified acoustic radiation ellipse be encompassed instead. Extending kmin,() and kmax,() beyond the328

acoustic wavenumber to evaluate subsonic hydrodynamic contamination also extends the grid size.329

These requirements, combined with the aforementioned scaling issue, may currently limit the method’s330

usage to either problems with limited direction of arrival or low frequencies, depending on an array’s main331

lobe width. For example, the 0.74 m aperture outer array used at the University of Florida Aeroacoustic332

Flow Facility (UFAFF) [26] has a 3-dB main lobe width of 1.47 m−1 in the wavenumber domain. This333

is computed by evaluating the wavenumber transform of the microphone locations to generate the array’s334

wavenumber response on a high-resolution wavenumber grid. The lobe width is extracted from this grid.335

The array can adequately capture the entire acoustic radiation circle with a ∆k() of 20% of the sampling336

pattern’s 3-dB main lobe width at f = 1 kHz and c0 = 343 m/s with nk,() = 21. An individual transform of337

a grid required for this scale is reasonably quick, and thus can be considered for analysis. Higher frequencies338

can become an issue, as acoustic wavenumber scales linearly with frequency. To maintain a given ∆k(), this339

means that nk,() must also scale linearly with frequency, so the overall problem scales as the fourth power340
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of frequency. Under some circumstances in this work, the spacing recommendation is relaxed to spacings341

up to 50% of the 3-dB width to allow more rapid assessment of simple cases. The most refined grids have342

spacings of 25% of the 3-dB width.343

4. Application344

Usage of the deconvolution technique is now presented. A detailed study using simulated data has been345

conducted. The majority of these results are presented in Appendix A. Key discussion points from the346

appendix are:347

1. accounting for coherence in the deconvolution process adds unnecessary computational burden for348

incoherent problems,349

2. diagonal removal improves the convergence rate of the method for this array layout and the selected350

grids of interest,351

3. accounting for coherence in the deconvolution process can extract the correct magnitude, phase, and352

coherence relationship of partially-coherent plane waves,353

4. a reasonable convergence metric is a two order-of-magnitude reduction in v after it begins exhibiting354

a power law relationship with u,355

5. offsetting ideal plane waves between wavenumber grid points can lead to a situation with no feasible356

convergence behavior,357

6. isolated point sources show reasonable behavior with deconvolution whether or not coherence is allowed358

in the processing,359

7. determining the solid angle of the source observed by the array provides a reasonable boundary for360

source level integration, and361

8. accounting for coherence in the deconvolution process and using the defined integration boundary can362

extract good estimates of individual levels, coherence, and phase relationships between ideally-coherent363

point sources (a synthetic data set representing a source and its image).364

Two more applications are treated in the main body of this work. Both are considered representative365

of aeroacoustic wind tunnel measurements. The first is a simulated data set representing a source and366

its image in a subsonic flow, contaminated by a strong turbulent boundary layer. Array data analysis in367

the wavenumber-frequency domain has potential use in closed-walled wind tunnel test sections with flow368

[27], so such a simulation is of interest. The second is a real data set from an open-jet wind tunnel test369

in which trailing edge noise was measured as generated by a NACA 0012 airfoil. Both data sets use the370

microphone layout of the outer UFAFF array [26] mentioned in Section 3.5. As stated there, the array has371

a 3-dB beamwidth in the wavenumber domain of w = 1.47 m−1. Both data sets are evaluated at a temporal372

frequency of f = 2 kHz.373
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4.1. Simulated data: point source with a reflection in flow374

A mean flow of Mach number M = 0.3 is modeled as passing over the array face in the negative x-375

direction. The source and its image are treated as displacement point sources in a uniform mean flow [28].376

The source strength is scaled to have a true level of 100 dB at the array center. The image level at the array377

center is 97.0 dB. The sum level at the array center is 102.8 dB, as the phase angle between the image and378

source is 72.8◦ with the in-flow source and propagation models.379

The Corcos boundary layer cross-spectrum is selected for the turbulent boundary layer model [29]. Based380

on existing work the eddy convection velocity is chosen to be 63% of the free-stream Mach number for 2 kHz381

[27], with the appropriate coefficients from the Corcos decaying exponentials determined from this choice.382

The boundary layer fluctuations are simulated to have a level of 120 dB on the array face, so the acoustic383

measurement is modeled as experiencing contamination from hydrodynamic pressure fluctuations nearly an384

order of magnitude greater than the acoustic signal. A separate CSM of the Corcos boundary layer is385

generated and summed with the acoustic source and image CSM , so the hydrodynamic data are modeled386

as perfectly incoherent with the acoustic data. The resultant variance as a function of wavenumber is shown387

in Fig. 1. The Corcos boundary layer manifests as the strong structure in the extreme negative kx portion388

of the plot. For the selected transform sign convention, waves travel in the direction of the sign of their389

wavenumber vector components.390

The transform grid for this case is sized to nk,x = 116 and nk,y = 37, with ns,x = 231 and ns,y = 75.391

The resultant relaxation parameter is a = 1.10×104. This sizing captures the full acoustic radiation region,392

as well as the energetic regime of the Corcos boundary layer model. The acoustic radiation boundary is393

plotted as in Appendix A. The boundary is calculated using the method described in Appendix C. The394

plot shows that a wavenumber transform of the data successfully separates hydrodynamic fluctuations from395

acoustic signals, even when the boundary layer fluctuations are significantly stronger than the acoustic396

signals. However, it appears sidelobes of the Corcos boundary layer are present in the acoustic region and397

overlay the acoustic signals. The reader is reminded that diagonal removal is applied in this procedure, so398

all of the turbulent boundary layer contamination in the wavenumber domain occurs due to the correlation399

of boundary layer fluctuations between pairs of microphones.400

Deconvolution results using both the proposed coherent method and incoherent equivalent are shown in401

Fig. 2. As discussed in more detail in Appendix A, the incoherent equivalent neglects covariance between402

wavenumbers and only applies the positivity constraint. This is similar to a more conventional deconvolution403

scheme. Convergence of the coherent method occurs after approximately 4.61×103 iterations. Here, v drops404

below 10−13 with a corresponding value of u = 1.10 × 10−12 in Fig. 3a. The incoherent method has more405

difficulty with this particular case, taking 50 million iterations to approach a value of v = 3.18×10−16. The406

corresponding u for the incoherent method is 3.08× 10−2. The source distributions appear similar, though407

not identical to, those for the source and image deconvolution without flow shown in Appendix A. The408
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Figure 1. Transform variance of the simulation of the point source with reflection combination in-flow, M = 0.3 in the negative

x-direction.

coherent method appears to preserve the overall shape of the source and image wavenumber distributions,409

although some structure of the source region manifests outside of the integration bounds. The acoustic region410

of the incoherent method appears similar to that of the incoherent method without flow. The hydrodynamic411

region, however, appears as a large set of discrete waves as opposed to the continuous distribution expected412

from the model. The coherent method maintains the expected continuous distribution.413

The integration metrics for this case are the same as those used for the deconvolution of the source414

and image simulation without flow from Appendix A. Levels are plotted as a function of solution change in415

Fig. 3b. The source level converges to 94.6 dB, over 5 dB below the true level of 100 dB at the array center.416

The image level converges to 92.3 dB, nearly 5 dB below the true level of 97.0 dB at the array center. The417

combined level is calculated as 97.1 dB, over 5 dB below the array center level of 102.8 dB. The overall418

agreement with the array center microphone is significantly worse for this case than seen with the no-flow419

simulation. Visually the integration bounds still appear to fully-encapsulate the source and image regions,420

so level underprediction does not appear to be due to boundary definition problems. The poor signal-421

to-noise ratio between the acoustic and hydrodynamic signals appears to drive the deconvolution process422

towards a low residual solution with underpredicted acoustic levels. This is reinforced when evaluating the423

coherence-squared function between the sources in Fig. 3c. The coherence-squared should be unity. Instead424

it reaches a final value of 0.26. Significant amounts of power incoherent between the acoustic source and its425

image are present in the source and image regions. Interestingly, the phase relationship plotted in Fig. 3d426

recovers a phase angle of 74.6◦, which is close to the array center value of 72.8◦. While the levels of coherent427

power between the source and image are incorrect, the calculated phase relationship between the sources428

still appears to track well with the array center phase relationship. It should be noted, however, that429

direct calculation of coherence-squared and phase angle from the pre-deconvolution transform data (without430
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Figure 2. Variances from deconvolution of point source with reflection in-flow using ∆k() = w/4 spacing grid for both coherent

and incoherent methods.
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diagonal removal) yields γ2 = 0.18 and 70.2◦, so the overall change from naive estimates for these quantities431

is small. As with the simulated data sets in Appendix A, integrated quantities appear converged when v432

has reduced by two orders of magnitude after beginning a power law relationship with u. This occurs at433

v = 10−6.434

Integrated metrics for the incoherent solution are also computed (though not plotted). The source level435

is 99.2 dB. The image level is 98.1 dB. The combined level is 101.7 dB. All of these values are significantly436

closer to the array center values than the coherent deconvolution equivalents. The combined level likely437

performs well because the array center phase angle of 72.8◦ is close to 90◦, where powers can be added438

directly without covariance information. There is insufficient information to determine why the individual439

source levels are closer for incoherent deconvolution than coherent deconvolution.440

The coherence relationship between sources is further considered in Fig. 4. Here, the coherence-squared441

value of each grid point referenced to the closest grid point to the wavenumber corresponding to the wave442

propagating from the source to the array center microphone, kx = 1.84 m−1, is plotted. As shown, there443

is noticeable coherence between the source and the center of the turbulent boundary layer wavenumber444

distribution near kx = −31 m−1. Based on the simulation inputs (as well as the process for generating445

them), this is non-physical.446

For this simulation and many experiments, it may be safe to assume that significant wavenumber power447

outside of the acoustic radiation boundary is statistically independent from that within the radiation bound-448

ary. Here, the turbulent boundary layer passing over the array face can be assumed to have no correlation449

with the acoustic sources of interest. When this is the case, a zoning procedure similar to that used in450

DAMAS-C can be implemented [7]. For such a procedure the covariance between grid points inside the451

acoustic radiation boundary and those outside the boundary is set to zero during the constraint applica-452

tion phase of each iteration. This modified method is implemented and analyzed. Convergence occurs in453

just over 5.51 × 103 iterations, with v dropping below 10−13 and a corresponding u of 1.59 × 10−12. The454

computed source and image values do show improved agreement with the array center data, with a source455

level of 98.6 dB, image level of 95.5 dB, and combined level of 100.6 dB. However, the coherence estimate456

is only slightly better with γ2 = 0.31. The phase estimate is in worse comparison with the array center457

phase, with the computed relative angle at 81.9◦. It appears that enforcement of an additional constraint458

provides questionable added value (trading source levels for phase angle) in this case. Even for simulations,459

extracting quantitative acoustic data in the presence of strong contamination may be difficult.460

4.2. Experimental data: trailing edge noise461

This case is taken from an existing trailing edge noise data set collected in UFAFF [30]. While trailing462

edge noise data are not expected to have strong coherent features which require this algorithm, such a463

test case allows validation of the method as it ought to recover a reasonable solution. Some assessment of464
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Figure 3. Convergence behavior and metrics evaluation of the coherent solution technique for the point source with reflection

in-flow.
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Figure 4. Coherence-squared between the wavenumber bin approximately corresponding to propagation from the source to

array center, (kx, ky) = (1.84, 0) m−1, and the total deconvolution domain for the point source with reflection in-flow.

wavenumber field coherence is also possible.465

Data are acquired for a 0.3048 m chord, 0.74 m span NACA 0012 airfoil, in this case at a Mach number466

of M = 0.17 in the negative x-direction, as the x-direction of the array coordinate system points upstream.467

Additional details of the experiment can be found in the reference. A photograph of the installation is shown468

in Fig. 5, while a legend of the illustrations used in the baseline beam map at z = 1.13 m is shown in Fig. 6.469

Here, flow is from right to left. The airfoil trailing edge center span is located at (0,0,1.13) m from the array470

center. A conventional beam map of the array data at 2 kHz, using Amiet’s shear layer correction method471

[31], is shown in Fig. 7. The beam map has a 10 dB dynamic range in the plot as opposed to the 20 dB472

used throughout the rest of this work. Little appreciable flow is noticeable over the array face, as the facility473

is an open-jet wind tunnel and the array is located outside of the flow. Microphone cross-correlations are474

evaluated for any potential hydrodynamic time scales, and none are observed. As a final check, a large-scale475

incoherent transform of the data in the wavenumber domain is evaluated. No appreciable hydrodynamic476

fluctuations are observed.477

The variance of the wavenumber transform of the data is plotted in Fig. 8. As with the beam map,478

experimental data are plotted on a 10 dB scale. The main trailing edge noise source is seen in the central479

region of the acoustic radiation boundary. A secondary source at the extreme positive kx of the acoustic480

radiation region is at an angle corresponding to a signal arriving from the facility’s open-jet shear layer481

impinging on the jet collector. As mentioned previously, the transform convention used in this work means482

a wave manifesting with a positive kx wavenumber indicates it is traveling in the positive-x direction. The483

impingement line is significantly out-of-plane from the beam map in Fig. 7, so the beam map x-bounds484

would have to be expanded to capture any beamforming artifacts from this secondary source.485

The wavenumber grid has size nk,x = 41 points and nk,y = 43 points, with the convolution grid sized to486
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Figure 7. Baseline beamforming for NACA 0012 trailing edge noise experiment at 2 kHz, z = 1.13 m.

ns,x = 81 points and ns,y = 85 points and the grid density set to ∆k() = w/4. The corresponding relaxation487

parameter is a = 2.89 × 103. Note that this grid is sized well beyond the acoustic radiation domain in the488

negative-kx and positive-ky directions. This sizing was determined using trial-by-error after the initial grid489

from the simulated point source case failed to converge in the sense that u never reduced below 10−1 for490

increasing iteration count and decreasing v (no power law reduction relationship was observed). It was found491

that energetic sidelobe structures lying on the deconvolution boundary would manifest as strong false sources492

in the deconvolution procedure. Improvement in u was only achieved once the boundary was expanded such493

that the majority of each of these sidelobe structures did not lay on or just outside of the deconvolution494

boundary. While such a grid sizing rule may not be possible for every deconvolution application, it may495

provide some guidance in handling analyses which show difficulty converging in terms of u and manifest496

strong boundary sources.497

Deconvolution results are shown in Fig. 9. Convergence occurs in just over 19.9× 103 iterations, with v498

dropping below 10−12 and u = 2.21× 10−11 for the solution shown in Fig. 9a. The incoherent method takes499

significantly more iterations, nearly 600,000, before v drops below 10−12. The value of u reaches a steady500

value of 2.03× 10−1 far before this. As in other cases, the coherent method tends to show distributions of501

energy whereas the incoherent method isolates discrete plane waves. Both methods show the trailing edge502

noise source region and the shear layer impingement source. However, the coherent method shows additional503

source regions. If they are not simply deconvolution artifacts, these lower-level sources would correspond504

to some boundary layer noise from the porous sidewalls in the case of the regions offset in the ky direction,505

and some noise arriving from the test section inlet in the case of the region at kx = −3.5 m−1. The angle506

projection would suggest noise propagating from within the inlet rather than sources located on its edges507
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Figure 8. Transform variance of the NACA 0012 trailing edge noise experiment 2 kHz data.

due to flow interaction. However, insufficient data are available to draw any serious conclusions regarding508

this potential source.509

Integration bounds are again computed and plotted. As mentioned in Appendix A, the method of510

handling well-separated discrete point sources in prior cases will not work when sources are close enough511

that the computed wavenumber domains overlap. For this case, the trailing edge is modeled as a dense line512

of point sources. The acoustic propagation path from each of these point sources to the outer ring of the513

array is traced using Amiet’s method [31] and the resultant wavenumber bounds of each source computed514

using the wave angles at the outer ring. The union of the wavenumber bounds for all of the modeled515

sources is computed, and the boundary of this union region with the selected grid density expansion (see516

Appendix B) is used in the calculation of Ψ. As shown the bounds accurately capture the source region.517

As with other cases, this methodology generates bounds which appear conservative, leading to integrated518

levels which adequately capture levels but may impede source isolation.519

The convergence behavior for the algorithm evaluating u as a function of v is plotted in Fig. 10a. The520

level, computed from the aforementioned Ψ, as a function of v for the coherent deconvolution method is521

plotted in Fig. 10b. As with many of the cases in Appendix A, v reaches a value of 10−6 near where it522

experiences two orders of magnitude reduction after establishing a power law relationship with u. At this523

value, the computed level is converged to a value of 47.7 dB. This is compared to the best estimate of the524

trailing edge noise at the array face from the reference. The value is computed by the two-microphone525

dipole method and has a value of 48.0 dB. The uncertainty bounds of the two-microphone dipole method,526

[47.5 48.3] dB, are sufficiently wide that the deconvolution result is nominally within agreement. The527

incoherent deconvolution technique results in an integrated level of 48.0 dB, also in agreement with the528
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Figure 9. Variances from deconvolution of 2 kHz trailing edge noise data, ∆k() = w/4.

nominal two-microphone dipole method. As with many cases studied in Appendix A, while the incoherent529

analysis generates variance distributions which appear intuitively less sensible, it does compute reasonable530

integrated levels.531

The coherent deconvolution technique provides the ability to assess statistical relationships between532

wavenumber vectors. An example of the utility of such analysis for an airframe noise experiment is now533

given with a qualitative assessment of the coherence-squared function’s behavior. The coherence-squared534

function referenced to the wavenumber approximately going from the center of the array to the center of535

the model trailing edge, (kx, ky) = (0.37, 0) m−1, is shown in Fig. 11a. The trailing edge noise source536

shows little distributed coherence. However, one noticeable feature is that it appears to maintain coherence537

further in the streamwise kx direction than in the spanwise ky direction. This is emphasized in Fig. 11b538

where slices of the map in Fig. 11a which pass through (kx, ky) = (0.37, 0) m−1 are plotted. The width539

of the high-coherence region is greater for the ky = constant kx data than for the kx = constant ky data.540

While there is insufficient evidence to accept the quantitative levels of the plotted coherence behavior as541

describing the structure of the trailing edge noise source coherence, the relationship between streamwise and542

spanwise coherence is well known and documented [32]. Even at this level of a rudimentary analysis, some543

assessment of the qualitative features of the acoustic field’s coherence is possible.544
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5. Summary and conclusions545

A deconvolution technique for a class of shift-invariant problems is derived and presented. The technique546

operates on two-dimensional microphone phased array data in the wavenumber-frequency domain and is547

designed to handle acoustic fields of arbitrary coherence structure. The deconvolution method is based on548

an iterative solver which utilizes a four-dimensional FFT to perform fast convolutions, providing improved549

scaling with problem size when compared to matrix methods. An updated constraint model is proposed and550

implemented, and an iterative relaxation parameter defined.551

The updated constraint model follows attempts at applying constraints in coherent deconvolution anal-552

ysis, but handles the diagonal terms of the covariance array differently. The model appears to provide553

improved performance when compared to a simple covariance inequality constraint. The updated constraint554

model also provides improved consistency and stability to convergence metrics. The improved stability allows555

for quantifiable convergence analysis. The relaxation parameter calculation successfully generates parame-556

ters which provide accelerated convergence when compared to previous work, while maintaining algorithm557

stability for positive semidefinite coefficient matrices. It is found that application of diagonal removal may558

lead to circumstances where the iterative solver is unstable regardless of relaxation parameter. Under these559

circumstances, the analysis grid must be re-defined.560

The coherent deconvolution technique is applied to two data sets, using tools and conclusions drawn from561

a detailed analysis of various simulated data sets. The first of these simulates a closed test section wind562

tunnel measurement, while the second uses experimental data from an open-jet wind tunnel. When the closed563

test section data suffer from strong simulated boundary layer contamination, the coherent deconvolution564

technique fails to adequately capture sensible values for metrics of interest. This is in disagreement with565

behavior seen with more simple simulated configurations. With the experimental data, the technique recovers566

the expected acoustic level at the array center. It also shows some ability to determine qualitative coherence567

characteristics of trailing edge noise. Specifically, the method shows a larger streamwise coherence scale568

than the spanwise scale, in agreement with existing published results.569

Overall, the proposed deconvolution technique is successful in analyzing many types of acoustic fields.570

The updated constraints, while not proven to be the best, provide sufficient information for tracking con-571

vergence. A new convergence criterion, where the change in solution must have a two order-of-magnitude572

reduction after entering a power law relationship with the solution residual (and the residual is decreasing),573

appears to hold for all of the analyzed acoustic fields. This criterion clearly sets where metrics of interest574

stop changing, whether or not they are strictly correct. When the criterion is not met, metrics clearly575

show the process is experiencing difficulties. The integration boundary calculations successfully extract576

source powers when data are not overly-contaminated. The presented work demonstrates the ability to577

analyze microphone phased array data in the wavenumber-frequency domain and extract both qualitative578
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and quantitative information about the acoustic field, although significant limitations are exposed in this579

study.580

One of the stronger conclusions regarding limitations is that coherent deconvolution in its current form581

may require significant investment in grid layout studies to successfully extract useful acoustic data. Some582

grid layouts can be excluded based on the array geometry and general processing parameters, once it is583

determined that A is not positive semidefinite. Others may only be found to be problematic once the584

algorithm is in use, and energetic sidelobe structures appear on the deconvolution boundary as with the585

trailing edge noise experiment data. Even with an acceptable grid, masking of acoustic sources of interest586

with strong contamination, such as that shown with the simulated data of a point source and its image587

in flow, may not show a successful recovery of acoustic parameters of interest. Even with a successful588

recovery of integrated acoustic parameters, aspects of the array design appear to occasionally manifest in589

the deconvolution results even though deconvolution is intended to remove the array design from the data.590

Finally, for acoustic fields generated by non-discrete sets of plane waves, while the center of the microphone591

phased array appears to be a reasonable reference point for evaluating magnitude and phase relationships,592

this effort does not determine whether such a reference is truly correct.593

That said, coherent deconvolution is required to assess coherence and phase relationships between sources.594

The analysis technique evaluated here provides a tool which allows for coherent deconvolution with reduced595

computation and storage requirements when compared to other methods. For several simulated data sets596

the algorithm is shown to accurately recover coherence and phase relationships.597

Several recommendations stem from this work for anyone wishing to attempt to use wavenumber-598

frequency coherent deconvolution. First, while tracking the change in solution and residual does not allow599

a user to determine the correctness of a solution, it does allow a user to determine the convergence of a600

solution. Therefore it is always worthwhile to extract these quantities during processing. Second, if at601

all possible it appears that wavenumber-frequency data processing should be considered in the design of a602

microphone phased array to be used for such. A brief evaluation of the wavenumber-frequency transform of603

the acoustic field of a nearby centered point source may reveal undesirable structures in the array sampling604

pattern which can be modified in the design process. These may come with a trade-off for more conven-605

tional array signal processing requirements, so a cost-benefit decision could be required. Finally, considering606

the physics of the acoustic propagation in defining integration boundaries is extremely valuable. When607

deconvolution is successful these physics-based boundaries allow accurate capture of magnitude and phase608

relationships between a point source and its image, even when both manifest as distributed wavenumber609

fields due to their proximity to the microphone phased array.610
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Appendix A Simulated data study675

A detailed study of the technique with various simulated data is presented. The intent of this study is to676

show the behavior of this deconvolution method for increasingly-complex acoustic fields, as well as provide677

examples as to how results might be analyzed and reduced for discussion.678

A.1 Plane wave analysis679

Sample results for simulated plane wave fields, which are identically shift-invariant, are presented first. All680

simulation results are generated by constructing a simulated CSM , transforming the data to the wavenumber681

domain, and then applying the deconvolution method. Comparison is made between the generalized coher-682

ence formulation and one which assumes incoherent-only sources and simply enforces a positivity constraint683

on computed variances. Grid scales are initially selected for rapid assessment of algorithm performance,684

rather than detailed analysis of a realistic acoustic field. The effect of diagonal removal on processing is685

addressed, but diagonal removal is incorporated in all plotted data. Fields of varying complexity are con-686

sidered. All simulations use the microphone layout of the outer UFAFF array [26] mentioned in Section 3.5.687

Details of the array can be found in the reference, but in brief the array is a 0.74 m aperture, 5-arm log688

spiral design based on the methodology of Underbrink [33] consisting of 40 total microphones. As stated689

previously, the array has a 3-dB beamwidth in the wavenumber domain of w = 1.47 m−1.690
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Figure A.1. Sampling function variances for large and small grid spacings.

The sampling function from Eq. 12 is shown for kx = kξ and ky = kη in Fig. A.1, with a grid spacing691

of ∆k() = w/2 in Fig. A.1a and ∆k() = w/20 in Fig. A.1b. Data are shown on a 20 dB color scale and692

normalized to unity gain. Decibel scales of subsequent pressure plots are normalized by 20 µPa. Note that693

as diagonal removal causes some of the computed variances from the wavenumber transform to become694

(non-physically) negative, these negative values are set to −∞ dB in all figures for plotting purposes. As695

shown, a low resolution calculation captures the major features of the array measurement but misses fine696

details. Levels of small sidelobes such as the innermost ring appear underpredicted by the low resolution697

map.698

A.2 Isolated plane wave699

The first case considered is a single, normal-incidence plane wave, corresponding to a point in wavenumber700

space with (kx, ky) = (0, 0) m−1. This case is chosen to assess algorithm characteristics with respect to some701

of the choices made in the deconvolution process. The plane wave is simulated with an amplitude of 100702

dB. The simulation parameters use the more coarse sampling grid from Fig. A.1a. The grid domain is set to703

nk,() = 7 points and ns,() = 13 points, which for the spacing of ∆k() = w/2 yields kmin,() = -2.21 m−1 and704

kmax,() = 2.21 m−1. Due to the simple nature of this case, the wavenumber-frequency data for P̃ and Q̃ are705

not plotted. The variances of P̃ appear identical to the sampling function in Fig. A.1a, albeit with a different706

peak value and a smaller grid. The deconvolved variances of Q̃ appear as a single point at (kx, ky) = (0, 0)707

m−1 with a magnitude of 100 dB, regardless of the combination of method options.708
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Table A.1 shows the relaxation parameter and convergence behavior for different combinations of config-709

urations for the solution technique for coherent and incoherent solvers. Convergence in this case is defined710

as v < 10−15, as the lowest order of magnitude all four combinations of parameters achieve. As would be711

expected, using a coherent method for an incoherent problem is an unnecessary increase in computational712

expense. For a given wavenumber domain, the relaxation parameter dramatically increases along with the713

number of iterations required for convergence.714

Notably, diagonal removal has a strong effect on the convergence behavior of the coherent method. There715

is a significant reduction in the required iteration count for convergence when applying diagonal removal.716

This reduction is accompanied by an increase in the relative error for the same convergence criterion.717

As mentioned previously, the convergence rate of the Richardson iteration method is dependent on the718

condition number of A. This is shown in Table A.1, along with the resultant relaxation parameter. For this719

grid, diagonal removal leads to a reduction in condition number and thus reduction in relaxation parameter,720

accelerating convergence. This comparison is not an attempt to show a universal benefit to diagonal removal721

as long as a positive semidefinite A can be computed. It is simply an example evaluation of the influence722

of the parameter on solver behavior. As much aeroacoustic array analysis occurs using diagonal removal to723

mitigate the influence of microphone self-noise, the remainder of the case analyses will apply the technique.724

Table A.1. Relaxation parameters, condition numbers, iterations to converge (rounded), and relative error for varying method

options for a normal-incidence plane wave with nk,() = 7 and ∆k() = w/2 grid spacing.

Coherent Method Incoherent Method

No Diagonal a = 35.1; cond(A) = 4.93× 103 a = 2.00; cond(A) = 16.0

Removal 23,500 iterations; u(i) = 4.02× 10−14 262 iterations; u(i) = 2.60× 10−15

Diagonal a = 32.4; cond(A) = 4.21× 103 a = 1.58; cond(A) = 10.0

Removal 10,800 iterations; u(i) = 1.16× 10−13 204 iterations; u(i) = 2.85× 10−15

A.3 Partially-coherent discrete plane waves725

A line of three plane waves of varying relative phase and coherence is simulated. The waves have a spacing726

of w/2 in the wavenumber domain. They lie along the kx axis, with all ky = 0. The covariance array of the727

simulated plane waves is given in terms of their kx and kξ values in Table A.2. This covariance definition728

corresponds to each wave having a coherence-squared value of γ2 = 1/2 with respect to its immediate729

neighbor, and the end waves having coherence-squared values of γ2 = 1/4 with respect to each other. The730

waves have a π/4 phase lag with respect to their immediate neighbors, running left-to-right along the kx731

axis. The central wave has a variance level of 100 dB, while the leftmost wave has a variance level of 94.0732

dB and the rightmost wave has a variance level of 88.0 dB. This simulation encapsulates a wave field where733
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one plane wave is dominant, all waves are partially-coherent with respect to each other, and adjacent waves734

are within a fraction of a beamwidth of each other. Plots of the variance from the initial wavenumber735

transform of the data, P̃ from Eq. (10), are shown in Fig. A.2 with grid spacings of w/2 (Fig. A.2a) and736

w/20 (Fig. A.2b).737

Table A.2. Covariance relationships between plane waves simulated along the kx axis.
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Figure A.2. Wavenumber transform variances computed for adjacent, partially-coherent plane waves for coarse and fine grid

spacings.

A.3.1 Baseline grid738

The initial grid is constructed with ∆k() = w/2, nk,x = 7, and nk,y = 5. This coarse grid completely739

captures the energetic region of Fig. A.2a and colocates grid points with true source wavenumbers. For740

linear convolution, ns,x = 13 and ns,y = 9 giving a = 23.4 for the coherent solver. The coarse grid size is741

selected for rapid assessment of algorithm characteristics for this type of problem.742

Deconvolution results using both the proposed coherent method and incoherent equivalent are shown in743
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Fig. A.3, where convergence is again defined as v < 10−15. Visually, the results appear similar. The coherent744

method in Fig. A.3a captures all three source variances correctly. However, the incoherent method in745

Fig. A.3b overestimates the center source at 101.6 dB, the left source at 96.1 dB, and slightly underestimates746

the right source at 87.9 dB.747

An integrated level metric is defined as the sum of Q̃. For the incoherent method, this is simply the sum748

of the wavenumber variances of interest. For the coherent method, it is the sum of the entire covariance749

array within the wavenumber bounds of interest. This is equivalent to inverse-transforming the covariance750

wavenumber data back to the spatial domain at a coordinate of (x, y, ξ, η) = (0, 0, 0, 0), and thus should be751

compared to the acoustic variance level at the array center. The true level at the array center is 103.1 dB. The752

integrated level of the coherent solution matches this to printed precision, and has a relative error (computed753

with the pressure-squared data) of 1.94× 10−15. The integrated level of the incoherent solution is 102.9 dB,754

with a relative error of −4.75× 10−2. On a decibel scale the difference is minor, but the integrated relative755

error difference is significant. Similarly, the solution relative error for the coherent method at convergence756

is u = 2.46× 10−13, while for the incoherent method it is u = 2.02× 10−2.757
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Figure A.3. Variances from deconvolution of partially-coherent plane wave simulation using baseline w/2 spacing grid with

both coherent and incoherent methods.

The improvement in error characteristics does carry significant extra cost, as seen with the broadside758

isolated wave case. Here, the incoherent method reaches convergence in 211 iterations. The coherent method759

takes just under 8.29×105 iterations. This definition of numeric convergence, based on these first two cases,760

is expected to scale such that reaching a stopping criterion of v < 10−15 may be an impractical objective761

for many problems of interest. As such, the characteristics of several metrics calculated from the coherent762

deconvolution results are considered as functions of v to assess valid stopping criteria. These four metrics763

35



are:764

1. u,765

2. the integrated level relative error defined previously,766

3. the `2 normalized error of the magnitudes of the wavenumber covariance matrix, and767

4. the `2 normalized error of the phases of the wavenumber covariance matrix.768

Since the wavenumbers of the input plane waves are known for this case, the normalized error calculations769

for the magnitude and phase only include grid points corresponding to the input plane waves, and only for770

the lower-triangular components of the covariance matrix as magnitudes are symmetric about the diagonal771

and phases exactly cancel.772

The overall convergence behavior of the algorithm is shown in Fig. A.4a for both u and v. Both quantities773

experience an extremely steep roll-off initially, followed by a long period of logarithmic reduction. While774

there is an offset between the two, for the most part they trend together. Note that both quantities continue775

to reduce in magnitude after the pre-selected convergence criterion is first met. Metrics of interest as a776

function of v are shown in Fig. A.4b. For this case, u and the integrated level error trend together for much777

of the plot range, while the magnitude and phase errors trend together. Notably, all errors scale poorly778

with v for v > 10−6, prior to the logarithmic roll-off regime of the plot. The integrated level error actually779

increases slightly for 10−5 > v > 10−6. This behavior, along with the high error levels of all tracked metrics,780

would suggest that v = 10−6 is an insufficient convergence criterion for this case. The phase error appears to781

be the most strict error metric to consider, and it has a value of just above 1% for v = 10−7
(
u = 2.5× 10−5

)
782

and just above 0.1% for v = 10−8
(
u = 2.5× 10−6

)
. Depending on the desired level of phase accuracy, this783

would suggest using either v = 10−7 or v = 10−8 as a convergence criterion for this case. These criteria are784

met at approximately 1.07× 105 iterations and 1.97× 105 iterations, respectively, requiring roughly 1/8 to785

1/4 as many iterations as the initial convergence criterion of v = 10−15.786

A.3.2 Refined grid787

The initial grid is refined to determine the deconvolution method’s ability to separate discrete plane788

waves within a fraction of a beamwidth of each other. On the previous grid, the input plane waves occupied789

adjacent grid points. The refined grid is constructed with ∆kx = w/4, nk,x = 13, so the true solution will790

have zero-variance grid points between the input plane waves. As the problem is defined and known to have791

sources only existing along the kx axis, no ky refinement is performed. The ability of the deconvolution792

method to handle different grid spacings in the kx and ky directions is utilized. For linear convolution, the793

updated grid size is ns,x = 25, and the relaxation parameter becomes a = 87.3 for the coherent solver.794

Deconvolution results using both the proposed coherent method and incoherent equivalent are shown in795

Fig. A.5, where convergence is still defined as v < 10−15. Unlike the baseline grid, the results for the coherent796
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Figure A.4. Convergence behavior and metrics comparison of the coherent solution technique for the baseline grid of the

partially-coherent plane wave simulation.

method in Fig. A.5a differ significantly from those for the incoherent method in Fig. A.5b. The coherent797

method captures the correct source levels and locations. The incoherent method slightly underpredicts the798

level of the plane wave at (kx, ky) = (0, 0) as 99.2 dB rather than 100 dB. The incoherent method also799

locates false plane waves at kx = ±w/4 and off the kx axis at (kx, ky) = (3w/4, w/2), and underpredicts the800

left plane wave at 91.4 dB while completely missing the plane wave on the right.801

The integrated level metric is computed. As the source characteristics are unchanged, the level at the802

array center is still 103.1 dB. As with the previous grid, the integrated level of the coherent solution matches803

the array center level to printed precision, with a relative error of −2.37×10−15. The integrated level of the804

incoherent solution is 102.9 dB, as it was for the baseline grid. The relative error is slightly higher with a805

value of −5.56×10−2. The solution relative error for the coherent method at convergence is u = 3.98×10−12,806

while that for the incoherent method at convergence is u = 8.19× 10−3.807

Solutions on this grid are significantly more expensive to compute than on the previous grid. The808

incoherent method reaches convergence in 1.64 × 104 iterations. The coherent method takes just over809

1.69×108 iterations. Overall convergence behavior is plotted in Fig. A.6a. It appears that while the method810

can successfully separate discrete plane waves within a fraction of w of each other, it requires significant811

effort to do so. Code run times can vary greatly depending on hardware- and software-specific details, but812

as a qualitative example this research implementation could perform approximately 50 million iterations per813

day for a grid of this size, yielding a total run time of just under 3 1/2 days to reach v = 10−15. Clearly814
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Figure A.5. Variances from deconvolution of partially-coherent plane wave simulation using refined (∆kx = w/4) spacing grid

with both coherent and incoherent methods.

this is excessive for a narrowband analysis technique, so the additional metrics from the baseline grid are815

revisited to assess error characteristics for more relaxed stopping criteria.816

Metrics are plotted in Fig. A.6b. Details of the behavior differ from the baseline grid solution. However,817

overall trending is similar. All errors scale poorly for v > 10−6. Error in the integrated power does not roll818

off in a uniform fashion below this, but does decrease. Other metrics have a roughly-uniform roll-off below819

v < 10−7. For this case, error in the source magnitude is slightly higher than phase. Both of these errors820

are above 10% for v = 10−7. For v = 10−9 (u = 4.25× 10−6), the magnitude error is 1.59% and the phase821

error is 0.62%. By v = 10−10 (u = 4.60× 10−7), the magnitude error is 0.14% and the phase error is 0.03%,822

meeting the more stringent criteria considered for the baseline grid.823

Unfortunately, the algorithm requires a reduction in v of two orders-of-magnitude more than that required824

for the baseline grid for the desired error characteristics, so a uniform criterion is not determined by the values825

of u or v. However, it appears that for both the baseline grid and refined grid, 1% error in the magnitude826

and phase is achieved when an order of magnitude reduction in v has occurred in the regime where v has a827

power law relationship with u (illustrated with log-log plots for subsequent test cases). Similarly, 0.1% error828

is achieved for a two order-of-magnitude reduction in this regime. For this case 1% error is reached near829

55 million iterations, while 0.1% error is reached near 80 million iterations. For these two cut-offs, iteration830

requirements thus lie between just under 1/3 to just under 1/2 of the number needed for the initial numeric831

convergence selection of v = 10−15.832
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Figure A.6. Convergence behavior and metrics comparison of the coherent solution technique for the refined grid of the

partially-coherent plane wave simulation.

A.3.3 Refined grid - offset plane waves833

The previous two grids located the plane waves at wavenumbers which exactly match points within the834

scan grid. The plane wave wavenumbers are now offset by w/8 in the kx direction to lie halfway between835

wavenumbers in the refined grid. This is an important test case as, in general use, it is unlikely that a836

wave direction of arrival will precisely colocate with a wavenumber-domain grid point. The new source837

wavenumbers are kx = −3w/8, 0, and 5w/8, with all ky remaining zero. All other characteristics of the838

sources remain unchanged, and the grid layout is identical to the refined grid of the previous subsection.839

Deconvolution results are shown in Fig. A.7. The coherent simulation fails to converge. v drops below840

10−9 after 3.86 × 107 iterations. It still remains above 10−10 after 1.25 × 109 iterations, or 25 days of wall841

time. As shown in Fig. A.8a, u remains above 10−5 and never enters a power law relationship with v.842

The coherent results show plane waves on either side of the true wavenumbers of each wave, as might be843

expected. The incoherent results focus the majority of the plane wave field at the center source area, and844

show waves at spurious wavenumbers off the ky = 0 axis. The incoherent method drops below v = 10−15845

after 1.90× 104 iterations, with u leveling off at 7.78× 10−3.846

Metrics are computed as they were for the refined grid simulation. However, errors are computed based847

on the assumption that summing the grid points adjacent to a given plane wave wavenumber should yield the848

correct acoustic levels. Covariances are computed similarly. This is a first step at defining integration region849

bounds, which are discussed in more detail later. Metrics are plotted in Fig. A.8b. As demonstrated with850
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Figure A.7. Variances from deconvolution of partially-coherent plane wave simulation with true wavenumbers between grid

points using both coherent and incoherent methods.

the initial grid refinement, if u and v are not related by a power law then the error behavior is poor. Overall851

integrated power error is reasonable, but the individual plane wave component estimates significantly differ852

from true values to a degree in which they could be considered totally unreliable. Additionally, they appear853

to experience significant change even when v becomes small. While behavior may improve for smaller v,854

from a practical standpoint it makes little sense to extend the case evaluation beyond one and a quarter855

billion iterations. Resolving the component details of a problem consisting of mixed-coherence plane waves856

arriving from directions halfway between grid points appears beyond the capability of this algorithm, at857

least for this array and grid definition. This does suggest, however, that such observed behavior of u and v858

would indicate the need to alter the wavenumber grid of interest in some way.859

A.4 General application860

Simulated plane wave results demonstrate the algorithm’s ability to extract quantitative information861

regarding the statistical relationship between sources, provide some indication of convergence criteria, and862

demonstrate how to assess when a given problem definition will not converge. More general application to863

non-planar wave fronts is now considered. This is done for both an isolated point source and a point source864

with an ideal reflection.865

A.5 Isolated point source866

The isolated point source is centered over the array and located 1.5 m away from the array center at867

a source coordinate of (0,0,1.5) m. This location is approximately twice the array aperture and allows for868

a moderately-curved wavefront to be observed by the array. The source is scaled such that its acoustic869

field has a level of 100 dB at the array center. Frequency selection involves some trade offs. In traditional870

40



v

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

u

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) u as a function of v

v

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

n
o

rm
al

iz
ed

 m
ag

n
it

u
d

e

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

int. error
mag. error
phase error

(b) metrics as a function of v

Figure A.8. Convergence behavior and metrics comparison of the coherent solution technique for the offset plane wave simula-

tion.

aeroacoustic deconvolution analysis, methods often suffer poor behavior at low frequencies, depending on871

array size and source location. At higher frequencies, as mentioned earlier, it becomes computationally-872

cumbersome to analyze the entire acoustic radiation domain with the coherent method. For this particular873

case, a frequency of f = 2 kHz is selected, and the speed of sound is set to c0 = 343 m/s.874

The acoustic field of this point source will appear as a distribution of plane waves. The wavenumber-875

frequency domain grid is constructed to capture the entire acoustic radiation circle and extend at least w/2876

beyond k0 = 5.83 m−1. ∆k() is set to 25% of the main lobe beamwidth or w/4. The resultant grid has877

nk,() = 37 points, with kmin,() = −6.62 m−1 and kmax,() = 6.62 m−1, and is shown in Fig. A.9b. While878

the minimum ns,() for linear convolution is 73, ns,() = 75 for this simulation as many FFT libraries show879

improved performance for transform lengths having small prime factors. The resultant relaxation parameter880

is a = 2.49× 103 for the coherent solver.881

A comment is required regarding behavior of the point source data and frequency selection. The882

wavenumber transform variances of the point source data, P̃ from Eq. (10), are shown for several frequencies883

in Fig. A.9. The two higher-frequency grids show a pentagonal shape for what should be a perfectly axisym-884

metric wavenumber distribution. As mentioned previously, the UFAFF aeroacoustic array is a 5-arm log885

spiral design. As would be expected, the array layout plays a strong role in the wavenumber transform. How-886

ever, the layout also plays a strong role in the deconvolution results. As seen subsequently, the deconvolved887

2 kHz data show some aspects of a pentagonal shape. Not shown are attempts at a coherent deconvolution888
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of the 1 kHz grid. The algorithm struggled and showed no well-defined convergence progress (oscillatory889

v, and u > 0.1). It appeared to be driving towards a single strong plane wave at (kx, ky) = (0, 0) with890

noticeable five-fold axisymmetric artifacts. Various other grid sizes and densities showed similar behavior891

for 1 kHz input data. This could suggest that, as with conventional deconvolution, low-frequency analysis892

may be problematic. It could also suggest that the conventional design rules for aeroacoustic arrays may893

yield geometries which are sub-optimal for wavenumber-frequency deconvolution when applied to sources894

near the array. The 2 kHz data showed more agreeable convergence behavior, and are thus selected for895

further analysis to highlight how well-behaved data can be handled. The 4 kHz data are not analyzed in896

detail due to the computational expense of running the shown nk,() = 69 point grid.897
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Figure A.9. Wavenumber transform variance as a function of frequency for a point source located near the UFAFF array, with

grid spacing ∆k() = w/4.

For this and subsequent cases, no obvious exact solution is available for error calculation. The complete898

wavenumber-frequency spectrum of a point source projected on a plane is inappropriate, as that spectrum899

requires an infinite measurement plane. Numeric transformation of the point source wave field projected on900

a finite disk may or may not be a viable metric for comparison, but is cumbersome and has no guarantee901

of providing a correct reference field. In this work simplified power metrics, such as the level at the array902

center microphone or the average level across the array of microphones, are considered. While these do not903

provide an assessment of true error behavior for the deconvolution process, they do provide references for904

overall trending and convergence of algorithm performance, as well as a sanity check on the deconvolution905

results.906

For a single source, integrated levels can be considered by summing the overall deconvolution domain.907

However a wavenumber filtering technique is implemented to separate multiple acoustic sources, as well as908

separate acoustic and hydrodynamic wavenumber domains. This is done by defining a filter as a function909
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of grid point, Ψ (kx, ky). The total filtered integrated power for a given source region is then defined as910

Q̃source =
∑

Ψsource (kx, ky) Ψsource (kξ, kη) Q̃ (kx, ky, kξ, kη) , (A.1)911

where summation occurs over all grid points. Details on the construction of Ψ are given in Appendix B.912

Deconvolution results using both the proposed coherent method and incoherent equivalent are shown in913

Fig. A.10. For this case, v drops below 10−12 before both v and u stop changing with increased iteration914

count. This occurs in just under 1.70 × 104 iterations. As shown in Fig. A.11a, v = 10−12 corresponds to915

u = 6.86×10−12 for the coherent method. The incoherent method (convergence characteristics reported but916

not plotted) also reaches v = 10−12 after just over 2.19 × 104 iterations, although it continues to decrease917

to below 10−16. The value of u reaches a minimum of 9.23× 10−2 for the incoherent method. The coherent918

results in Fig. A.10a show a plane wave distribution mostly residing within the geometric angle integration919

boundary described in Appendix B. The incoherent results show a plane wave arriving from the array-normal920

direction.921
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Figure A.10. Variances from deconvolution of point source data using ∆k() = w/4 spacing grid with both coherent and

incoherent methods.

Three different metrics are plotted in Fig. A.11b. The first sums the entire solution domain. The second922

defines Ψ to isolate the acoustic radiation domain from the rest of the solution. The third defines Ψ to isolate923

the source location based on the geometric angles described in Appendix B and plotted as the dashed bounds924

in Fig. A.10. Metrics are now calculated in dB rather than as relative errors. The dB values are compared925

to the array center level and the array average level (calculated as the mean of the Pa2 powers of each926

individual microphone). It can be readily argued that calculating the overall sum level for the deconvolution927
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process, including the region outside the acoustic radiation circle, makes little sense. As the array is over928

8 wavelengths away from the point source, evanescent components of the wavenumber spectrum should929

be completely suppressed. However, a case could be made for either of the other metrics being reasonable930

attempts at computing the power seen by the array. All three metrics show significant variation for v > 10−5.931

All have reached a converged value by v = 10−6, which corresponds to a two order-of-magnitude reduction932

in v in the regime where v has a power law relationship with u, shown in Fig. A.11a. None of the metrics933

precisely match the array center level of 100 dB or the array average level of 99.9 dB, indicating that these934

simple levels are not ideal choices for direct comparison with wavenumber-frequency domain data in this935

situation. The acoustic radiation sum and source angle integration boundary sum agree to within .026 dB936

for v < 10−6, which appears reasonable for a case with a single isolated acoustic source.937

Integrated metrics for the incoherent solution are also computed at convergence. Here, summing the938

entire solution yields 103.6 dB. Summing the acoustic radiation domain yields 102.3 dB. Summing the939

geometric angle region yields 100.1 dB. In logarithmic terms these values are close to the array center level940

and array average level, and the source angle integration boundary sum comes the closest of any method,941

coherent or incoherent, to matching the array center and array average level.942
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Figure A.11. Convergence behavior and metrics comparison of the coherent solution technique for the point source simulation.

A.6 Point source with a reflection943

The acoustic field for the isolated point source is now modified by the inclusion of an ideal reflection.944

This is done by modeling a sound-hard boundary at y = 0.75 m, or approximately one array diameter from945

44



the array center. The resultant ideal image source is located at (0,1.5,1.5) m, and is perfectly coherent with946

the true source. At the array center, the image signal leads the source signal by 135.8◦. The level of the947

image signal at the array center is 97.0 dB. However, due to mild destructive interference the power of the948

sum of the source and its image is only 96.9 dB. The effect of the coherent interaction between the two949

sources is shown in Fig. A.12. The source-alone data are already plotted in Fig. A.9b. These variances950

can be compared to the image source alone data in Fig. A.12a. The summation of the two sources if they951

were incoherent with respect to each other is shown in Fig. A.12b. This is given as a comparison to the952

coherent case evaluated here, plotted in Fig. A.12c. The coherent interaction between the sources distorts953

the shape of the source lobes of the wavenumber transforms, and accentuates lobe structures at non-source954

wavenumbers.955
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Figure A.12. Autovariance variation in wavenumber transform of array data due to interference between a source and reflection.

Deconvolution results are shown in Fig. A.13. Here, v drops below 10−13 with a corresponding value of956

u = 7.30 × 10−13 after 1.86 × 104 iterations, and is shown in Fig. A.14a (as a function of v, not iteration957

count). The incoherent method, again reported but not plotted, decreases below 10−13 after slightly more958

than 1.56× 104 iterations. The corresponding u for the incoherent method is only 1.91× 10−1. As with the959

isolated point source, the coherent results show plane wave distributions residing within the angle integration960

boundaries, although the true source does not exactly match its isolated counterpart when the image source961

is present. The incoherent method again reduces the results to discrete plane waves.962

Several integration metrics are considered for this case. First, the levels are computed for the source and963

image in isolation from each other, as well as for the combined acoustic field. This is done by computing964

two filter functions, Ψsource and Ψimage, using the method described in Appendix B. The isolated levels965

are computed by filtering the data separately with these functions. The combined level is computed by966

using Ψcombined = Ψsource + Ψimage. This handling of the combined filter functions only works when source967

regions are well-separated in the wavenumber-frequency domain. Sources with wavenumber overlap must be968
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Figure A.13. Variances from deconvolution of reflected point source data using ∆k() = w/4 spacing grid with both coherent

and incoherent methods.

handled differently. Comparison is made to the appropriate array center levels. Array average levels are no969

longer plotted for the sake of clarity, as there is no obvious reason to choose the average over the center from970

results of the isolated point source case. Processing in comparison to the array average level for subsequent971

cases shows worse agreement when used as an alternative to the array center level.972

The source level converges to 100.2 dB. While this is slightly above the array center level of 100 dB, it973

is in close agreement. The image level converges to 96.0 dB, which is 1 dB below the array center level of974

97.0 dB. The combined level is calculated as 97.1 dB, slightly above the combined level at the array center975

of 96.9 dB. Overall these metrics are close to the array center value, although the deviation for the image976

source is somewhat larger than deviations seen for the isolated point source case. All three metrics appear977

to converge by v = 10−6, which is again where v has achieved a two order-of-magnitude reduction after978

establishing a power law relationship with u.979

Behavior of covariances is now considered. The covariance between the image and source can be calcu-980

lated by filtering the data using the image and source filter functions on the respective baseline and conjugate981

wavenumber dimensions,982

Q̃cov =
∑

Ψimage (kx, ky) Ψsource (kξ, kη) Q̃ (kx, ky, kξ, kη) . (A.2)983

The coherence-squared between the sources can then be computed as984

γ2 =

∣∣∣Q̃cov∣∣∣2
Q̃source × Q̃image

. (A.3)985
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The phase angle between the sources is simply the angle of Q̃cov. The coherence function should be unity as986

the sources are perfectly coherent in a contamination-free field. The deconvolution process does not quite987

recover unity coherence, as shown in Fig. A.14c. However, the final value of γ2 = 0.98 is extremely close988

to unity, and certainly sufficient to properly indicate the relationship between the sources. The computed989

phase angle converges to 136.7◦. This is within 1◦ of the value of 135.8◦ at the array center. Were these990

values extracted from the raw transform of the data without deconvolution in an attempt to analyze the991

relationship of the source and its image, the coherence-squared is computed as a non-physical value of992

1.11. This is due to the influence of negative powers from diagonal removal making P̃ an invalid covariance993

array. The phase angle is computed as 113.7◦. Generating P̃ without diagonal removal yields the correct994

coherence-squared value of 1.00. However, the computed phase angle is 113.8◦.995

Integrated metrics for the incoherent solution are also computed at convergence. The source level is996

computed as 99.2 dB, while the image level is computed as 96.8 dB. Both of these levels are close to their997

respective level at the array center. However, the combined level is computed as 101.2 dB, over 4 dB higher998

than the combined level at the array center. As would be expected, without the covariance information999

relating the sources, they cannot be summed properly.1000

Appendix B Integration weighting function1001

The wavenumber filtering technique used in this work begins by defining a boundary curve in the1002

wavenumber-frequency domain. This curve may follow the acoustic radiation boundary and thus be used1003

to separate acoustic and subsonic hydrodynamic data. It may also follow a curve used to isolate energy1004

arriving from a region of directions of arrival. As an example, consider using the acoustic radiation circle1005

defined by |k| = k0 as the filter boundary where the region within the circle is the desired signal. This1006

circle is plotted for f = 1 kHz and c0 = 343 m/s in Fig. B.1. Two grid points on a coarse wavenumber1007

grid are considered. These grid points are illustrated as two-dimensional boxes centered on the grid point1008

coordinates with dimensions determined by ∆k(). The first grid box lies entirely within the acoustic radi-1009

ation domain and thus has a weighting of Ψ (0, 0) = 1. The second grid box lies on the boundary, so the1010

weighting is determined the ratio of the area of the grid box within the circle to the total grid box area. In1011

this example, this ratio is approximately 0.33. The function Ψ (−0.735,−2.94) for this grid point is thus the1012

square root of the area ratio, or
√

0.33. This means the contribution of the variance of this grid point to the1013

summation, where Ψ (kx, ky) = Ψ (kξ, kη) in Eq. (A.1), is simply this area ratio multiplied by the variance,1014

or 0.33× Q̃ (−0.735,−2.94,−0.735,−2.94). The contribution of the first grid point is Q̃ (0, 0, 0, 0). The con-1015

tribution of the covariance between these two grid points, Ψ (0, 0)×Ψ (−0.735,−2.94)× Q̃ from Eq. (A.1), is1016

√
1×
√

0.33× Q̃ (0, 0,−0.735,−2.94). The conjugate covariance between these two points receives the same1017

weighting. The weighting for any covariance with one component outside of the radiation domain is thus1018
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Figure A.14. Convergence behavior and metrics evaluation of the coherent solution technique for the point source with reflection

simulation.
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zero.1019

For general curve selection to isolate waves from a region of directions of arrival, a geometric argument is1020

used where waves are projected from the source of interest to the circle defining the outer ring of microphones1021

of the array. This projection defines a cone of directions of energy propagation. This direction of energy1022

propagation can be related to wave vector angles which then yield an integration region when projected onto1023

the plane defined by kz = 0. When no flow is present the angles are the same. When flow is present they1024

differ, and the relationships are addressed in Appendix C. To capture energy leaked to adjacent wavenumber-1025

frequency bins for directions of arrival between grid points, the integration bounds are expanded by ∆k in1026

the k-direction normal to the initial calculation of the integration bounds. This expanded integration bound1027

is then used to define Ψ (kx, ky) using the above-described boundary treatment.1028

As an aside, note that the direction of arrival calculation establishes a paradoxical situation for wavenumber-1029

frequency data analysis with regard to array design. A larger array yields a smaller array main lobe in the1030

wavenumber-frequency domain, improving resolution. However, a smaller array will have a smaller obser-1031

vation cone and thus provide improved resolution and isolation of sources in post-deconvolution analysis.1032

These effects should be considered as a design trade off for any arrays which may be used specifically for1033

wavenumber-frequency analysis of aeroacoustic data acquired near a source or set of sources.1034
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Figure B.1. Example of area-based weighting scheme for wavenumber filtering.
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Appendix C Radiation domain and angle relations in the presence of mean flow1035

The homogeneous wave equation for pressure in a moving medium with constant velocity U in the1036

x-direction is given by [34]1037

∂2p

∂t2
+ 2U

∂2p

∂x∂t
+ U2 ∂

2p

∂x2
− c20∇2p = 0. (C.1)1038

This can be refactored in terms of Mach number as1039

1

c20

∂2p

∂t2
+ 2

M

c0

∂2p

∂x∂t
−
[(

1−M2
) ∂2p
∂x2

+
∂2p

∂y2
+
∂2p

∂z2

]
= 0. (C.2)1040

Assuming the pressure signal is space-time harmonic,1041

p = p̃ej2π(ft−kxx−kyy−kzz), (C.3)1042

Eq. (C.3) can be substituted into Eq. (C.2) and the resultant divided by the right-hand side of Eq. (C.3)1043

and 4π2, yielding1044

− k20 + 2Mk0kx +
(
1−M2

)
k2x + k2y + k2z = 0. (C.4)1045

Setting kz = 0 to establish the appropriate kx/ky plane, the boundary of the radiation domain is determined1046

by1047

k2y = k20 − 2Mk0kx −
(
1−M2

)
k2x. (C.5)1048

When no flow is present, this boundary collapses to the traditional acoustic radiation circle. When there1049

is mean flow, the boundary curve is an ellipse with semi-major and semi-minor axes of k0/
(
1−M2

)
and1050

k0/
√

1−M2, respectively. Foci are located at (kx, ky) = (0, 0) and (kx, ky) =
(
−2M × k0/

(
1−M2

)
, 0
)
.1051

Note that here Mach number should include the sign of the flow direction.1052

Eq. (C.4) can be re-arranged to establish the dispersion relation of frequency f as a function of wavenum-1053

ber vector ~k. The dispersion equation is1054

f
(
~k
)

= Mc0kx + c0

√
k2x + k2y + k2z . (C.6)

Two velocity vectors can be computed from the dispersion equation. The phase velocity vector defines the1055

speed and direction in which planes of constant phase move forward, and has a direction which matches1056

the wave vector. The group velocity vector defines the speed and direction in which energy propagates [35].1057

When U = 0 for this wave equation, the two vectors are identical. However, for an anisotropic wave equation1058

such as this one for non-zero U , they are not. The phase velocity vector is given by1059

~vp =
f∣∣∣~k∣∣∣

~k∣∣∣~k∣∣∣ . (C.7)1060

The group velocity vector is given by1061

~vg = ∇~kf. (C.8)1062
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Substituting Eq. (C.6) into Eq. (C.7) and defining the spherical coordinates1063

kx =
∣∣∣~k∣∣∣ cos θp1064

ky =
∣∣∣~k∣∣∣ sin θp cosφp (C.9)1065

kz =
∣∣∣~k∣∣∣ sin θp sinφp1066

yields1067

~vp = c0 (1 +M cos θp) (cos θpêx + sin θp cosφpêy + sin θp sinφpêz) . (C.10)1068

Substituting Eq. (C.6) into Eq. (C.8) similarly yields1069

~vg = c0 (M0 + cos θp) êx + c0 sin θp cosφpêy + c0 sin θp sinφpêz1070

= |~vg| cos θg êx + |~vg| sin θg cosφg êy + |~vg| sin θg sinφg êz. (C.11)1071

For the filtering process described, θg and φg are assumed known and θp and φp are desired. |~vg| is first1072

found in terms of the phase velocity angles. This can then be used with the êx component of Eq. (C.11) to1073

find1074

θp = θg − sin−1 (−M sin θg) . (C.12)1075

The azimuth angle relationship is then found through the êy and êz components of Eq. (C.11) as1076

φp = φg. (C.13)1077

The final element required to project propagation angles onto the kz = 0 plane is the magnitude of the wave1078

vector. This is found from Eq. (C.6) as1079 ∣∣∣~k∣∣∣ =
k0

1 +M cos θp
. (C.14)1080
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