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Abstract An automated procedure for the classification of transient contamina-

tion of stationary acoustic data is proposed and analyzed. The procedure requires

the assumption that the stationary acoustic data of interest can be modeled as

a band-limited, Gaussian random process. It also requires that the transient con-

tamination be of higher variance than the acoustic data of interest. When these

assumptions are satisfied, it is a blind separation procedure, aside from the initial

input specifying how to subdivide the time series of interest. No a priori threshold

criterion is required. Simulation results show that for a sufficient number of blocks,

the method performs well, as long as the occasional false positive or false negative

is acceptable. The effectiveness of the procedure is demonstrated with an appli-
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cation to experimental wind tunnel acoustic test data which are contaminated by

hydrodynamic gusts.

Keywords binary classification · noise contamination · unsupervised methods

Nomenclature

B = normalized signal bandwidth

K = Kullback-Leibler divergence

M = Mach number

N = number of samples in a block of data

n = sample index

P = probability distribution function

p = probability density function

Q = probability distribution function, estimate of P

q = probability density function, estimate of p

yn = individual sample in a block of data

α = gamma distribution shape parameter

β = gamma distribution scale parameter

Γ = gamma function

γ = incomplete gamma function

ν = effective degrees of freedom for signal of block size N

σ2 = variance of a block of data

χ2
N = sum of the squares of the samples in a block of data
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1 Introduction1

In aeroacoustic wind tunnel testing, experimentalists often seek to measure acous-2

tic signals, which can be modeled as band-limited, stationary random processes.3

The unfortunate reality for some experimental setups is that the acoustic signal4

of interest will be measured along with some form of contamination. For example,5

in an open-jet and acoustically-treated wind tunnel facility, the contamination ob-6

served by a microphone may manifest as either stationary pressure fluctuations7

generated by facility acoustic sources, or transient pressure fluctuations generated8

by flow over the microphone (Soderman and Allen 2002). Stationary contamination9

may be mitigated through various forms of frequency domain background subtrac-10

tion (Humphreys et al. 1998; Bahr and Horne 2017). However, such techniques are11

not appropriate for transient events.12

Alternative analysis methods are required to classify and separate time do-13

main contamination. While manual inspection of data is an option, this is usually14

impractical due to the large volume of data involved. Simple methods such as15

Chauvenet’s criterion (Coleman and Steele 1999) allow for the classification of16

outliers in Gaussian-distributed random data. Advanced methods are available for17

analyzing more complicated scenarios as shown in Aggarwal (2017) and Hawkins18

(1980), for example. However, rejection of individual samples may not be beneficial19

in time series analysis, as continuous blocks of data are usually required for sub-20

sequent spectral processing. Common block properties, as discussed subsequently,21

do not follow a Gaussian distribution and thus do not lend themselves to analysis22

with basic tools. More advanced tools, to the authors’ knowledge, have not been23
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developed with this specific type of classification problem in mind wherein a priori24

data assumptions and thresholding parameters are minimized.25

This work presents a tailored, alternative method which requires minimal in-26

put aside from the parameters to subdivide a given time series of interest into27

individual blocks, sized according subsequent analysis needs. The identification28

and separation methodology has a well-defined parameter for classifying transient29

data, which should be valid as long as the underlying assumptions are approxi-30

mately obeyed. It is assumed that the acoustic signal of interest is a stationary,31

zero mean, Gaussian random process. With this assumption, the block variances32

can be modeled using a gamma distribution. It is subsequently assumed that the33

acoustic data of interest are of lower variance than transient contaminating data.34

Both mean- and median-based distributions are computed and compared, making35

the method robust to extreme values. The detailed development of this classifica-36

tion technique is given in the following section. Subsequent sections evaluate the37

classification performance with both simulated and experimental data. These are38

followed by recommendations developed from the results.39

2 Theoretical Development40

The first assumption required for this transient classification procedure is that the41

underlying acoustic signal is a stationary, zero mean, Gaussian random process. If42

the samples from the acoustic signal of interest, y, are truly Gaussian-distributed43

random variables with zero mean and unit variance, then the sum of the squares44

of a set of N samples,45

χ2
N =

N∑
n=1

y2n, (1)
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is a random variable, which follows a chi-square distribution with N degrees of46

freedom (Zelen and Severo 1972). Eq. (2) normalizes this sum to be an unbiased47

and consistent estimator of the block variance (Bendat and Piersol 2000),48

σ2 =
χ2
N

N − 1
=

1

N − 1

N∑
n=1

y2n, (2)

which also follows a chi-square distribution.49

It is relatively easy to enforce the zero mean condition on acoustic data, either50

through high-pass filtering during data acquisition or mean subtraction in post-51

processing. However, the variance of the distribution for y is unknown, so a more52

general distribution is necessary to model the distribution of the block variance,53

σ2. As a generalization of the chi-square distribution, the gamma distribution can54

be used (NIST 2013). The probability density function for a gamma distribution55

of the block variance (with a zero location parameter) is given by56

p
(
σ2
)

=
1

βΓ (α)

(
σ2

β

)α−1

e
−σ2

β , (3)

where ν is the effective degrees of freedom discussed further below, α = ν/2 is57

the shape parameter required to relate a gamma distribution to the chi-square58

distribution for data of a given bandwidth, β is the scale parameter and Γ is the59

gamma function60

Γ (α) =

∫ ∞
0

tα−1e−t dt. (4)

For β = 2, and substituting χ2
N for σ2, this fully collapses to the chi-square distri-61

bution. This scale parameter allows a distribution fit to handle nonunity variance62

of y.63

In practice, the acoustic signal is not truly random white noise, but has a64

finite bandwidth and correlation timescale. This normalized bandwidth, B, alters65
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the effective degrees of freedom, ν, of the signal (Bendat and Piersol 2000). For66

example, a block of 8192 samples of a signal, which is truly random, has a spectrum67

of white noise and a bandwidth of 100%, so ν = N = 8192. If the signal passes68

through an ideal lowpass filter set to 50% of the Nyquist frequency for the sampling69

rate, then B = 0.5 and the effective number of degrees of freedom is ν = B ×70

N = 4096. This fractional, normalized bandwidth can be estimated through a71

simple procedure. First, the one-sided power spectral density of the signal must72

be computed. This function of frequency, Gyy (f), must then be normalized such73

that its peak is unity,74

Gyy,norm (f) =
Gyy (f)

max [Gyy (f)]
. (5)

The average of this normalized spectral density is then computed by integrating75

across the measurement bandwidth and normalizing by the integration range,76

B =
1

fmax

∫ fmax

0

Gyy,norm (f) df. (6)

The normalized bandwidth can take a wide range of values. With the experimental77

data discussed later in this work, for example, it is found to be on the order of78

10−3 for data acquired at a high sampling rate but dominated by low frequency79

spectral content.80

With the effective degrees of freedom and, thus, the shape parameter of a81

distribution fit derived from the signal bandwidth, the scale parameter must now82

be determined. An easy, if biased (Zhang 2013), estimate of β can be obtained83

from its maximum likelihood estimator84

β =
σ2

α
, (7)
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where σ2 is an estimate of the mean of the block variances. However, the mean85

of the variances is sensitive to extreme variance values, which may occur when86

a transient event is superimposed on the baseline Gaussian process. A statistical87

parameter that is less sensitive to extreme values is necessary for computing β.88

One such parameter is the median of the block variances. The median occurs where89

the probability distribution function is 0.5. The probability distribution function90

for the gamma distribution is given by91

P
(
σ2
)

=
γ
(
α, σ

2

β

)
Γ (α)

, (8)

where γ is the (non-normalized) incomplete gamma function (NIST 2013)92

γ

(
α,
σ2

β

)
=

∫ σ2

β

0

tα−1e−t dt. (9)

The equation for the median variance is thus93

1

2
=
γ
(
α,

σ2
med

β

)
Γ (α)

. (10)

Software libraries exist for efficiently inverting γ for a given α, thus yielding an94

estimate of the median variance normalized by β. The experimental median vari-95

ance can then be divided by this estimate, yielding an estimate of β. Thus, for a96

given shape factor α, two scale factors can be readily computed from the data.97

One, βmean, is based on the mean of the block variances and may be significantly98

influenced by extreme values of block variance in the data such as may be present99

with transient events. The other, βmedian, is based on the median of the block vari-100

ances. Note that for large sample sizes some simplifying mathematics are possible,101

but avoided here to allow for small numbers of short data blocks.102

Having two scale factors allows for the construction of two gamma distribu-103

tions. These can be compared to gain some sense of the relative influence of ex-104
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treme block variances on the data set. Numerically this can be done by evaluating105

the Kullback-Leibler divergence, which is one metric for comparing distributions106

(Cardoso 1997). The divergence K is a measure of the information lost when prob-107

ability distribution Q (or density q) is used to estimate distribution P (or density108

p). This is expressed as109

K (p‖q) =

∫
ln

[
p
(
σ2
)

q (σ2)

]
p
(
σ2
)

d
(
σ2
)
. (11)

While, in general, this can be difficult to compute, it is greatly simplified in the110

case of two gamma distributions with a common α. In this case, some manipulation111

yields112

K (p‖q)αp=αq=α = α

(
lnβq − lnβp +

βp − βq
βq

)
, (12)

or, as used in this application,113

K (pmedian‖pmean)αmedian=αmean=α = α

(
lnβmean − lnβmedian +

βmedian − βmean
βmean

)
.

(13)

The two distributions match when K is zero.114

To summarize, two data distributions can be estimated. The distribution based115

on the block variance mean is more sensitive to blocks with high variance, such116

as those containing transient contamination, than the distribution based on the117

block variance median. A metric is constructed for comparing the two distributions.118

Now a procedure is proposed for determining which blocks of a given time series119

to retain and which to reject. The process is illustrated in Fig. 1. It should be120

noted here that for the number of blocks traditionally used in aeroacoustic wind121

tunnel testing, converged data distributions are not expected. The intent of the122

following procedure is to provide an automated engineering tool to locate and thus123



Automated classification of transient contamination in stationary acoustic data 9

exclude blocks in the time series associated with transient events, not to accurately124

estimate the probability distribution of the acoustic data block variance.125

First, a given microphone time record is broken into blocks of a desired number126

of samples, N . This value is usually dictated by the desired spectral estimation127

parameters. The variance of each of these blocks is computed, and the blocks128

are sorted by their variance, from low to high. A minimum number of blocks is129

selected to automatically accept as stationary. This number of blocks is taken130

as the lowest-variance subset of blocks from the sorted set, and should be large131

enough to reduce the noise in the estimate but small enough to avoid any extreme132

values, or contaminated blocks. Experience with simulations suggests 20% of the133

total block count to be a safe selection, though a lower value was successfully used134

with experimental data. This subset of blocks is used to compute an autospectral135

density, which can be used to calculate α. This can be used to compute βmean and136

βmedian, followed by K. The next block, in order of ascending variance, is added to137

the active subset of blocks and the process is repeated. This continues until all of138

the blocks of data have been included, producing |K| as a function of the number139

of blocks included in the data set in order of ascending variance. The block set140

yielding the minimum |K| is classified as stationary. Blocks excluded from this141

set are classified as containing significant transient contamination. They may be142

subsequently excluded from processing of the stationary data of interest.143

3 Simulated Analysis144

A simulation study is performed to measure the performance of the transient145

classification procedure with data representative of experimental situations and146
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Partition	
time	record

Samples	per	block

Time	series	
data

Compute	
variances

Ascending	
sort

Initialize	
block	set

Minimum	block	
count

Compute	
spectrum

Compute	𝛼,	
𝛽mean	,	𝛽med.

Compute	
|K|

Add	next	
block	to	set

Set	with	
min.	|K|

Included	blocks	
are	stationary

Excluded	blocks	
are	transient

Fig. 1. Algorithm flow chart for classifying transient events.

parameter choices. The goal is to understand the performance of the procedure for147

a variety of situations and to gain an understanding of how the algorithm should148

perform for experimental data. Simulations are used as opposed to training data149

sets to better cover a complete range of possible situations.150

3.1 Performance metrics151

Identification of a data block contaminated with noise is a binary classification152

problem where the data block is either a transient, contaminated block or a sta-153
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tionary, uncontaminated block. Thus, performance metrics used to evaluate binary154

classifiers can be used here (Ting 2010). Note that for this study, classification of155

a data block as a transient, along with its subsequent rejection by the method and156

removal of the data block from the set of interest is considered as a positive result.157

The associated negative result is the classification of a data block as stationary.158

This study considers three performance metrics: accuracy, false positive rate, and159

false negative rate. The accuracy is the fraction of test cases that are correctly160

classified as either a transient data block or a stationary data block. The false161

positive rate is the fraction of the total number of stationary data blocks that are162

incorrectly classified as transient data blocks. It provides a measure of reduction in163

useful, stationary data blocks due to the classification process. The false negative164

rate is the fraction of the total number of transient blocks that are misclassified165

as stationary data blocks and provides a measure of the contaminated data blocks166

that are allowed through the algorithm.167

An intermediate step for computing the accuracy, false positive rate, and false168

negative rate is the calculation of the confusion matrix. For a binary classification169

problem, the confusion matrix is a two by two table containing the counts of the170

classifier output for true positives and true negatives on the diagonal elements and171

false positives and false negatives on the off-diagonal elements. Thus, the accuracy172

is the sum of the diagonal elements divided by the total number of data blocks,173

while the false positive rate and false negative rate are the off-diagonal elements174

divided by the total number of true or known positives or negatives, respectively.175
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3.2 Simulation cases176

The desired measured signal and the contamination signal are modeled as inde-177

pendent Gaussian noise signals with different variances, with the variance of the178

contamination larger than the variance of the desired signal. Five parameters are179

studied in simulations. These are the ratio of the variance of the contamination to180

the variance of the signal, the total number of data blocks, the number of points181

N in each data block, the percentage of the data blocks contaminated, and the182

percentage of the points in each data block that are contaminated. For all simu-183

lation cases, the total number of data blocks is swept through values of 100, 200,184

300, 400, 500, and 1,000. The remaining parameters are given in Table 1. These185

combinations yield a total of 132 individual simulation cases.186

3.3 Simulation procedure187

The simulation procedure is as follows. First, a simulation case is selected, and the188

case parameters are noted. Next, the noncontaminated signal is modeled as a unit189

variance Gaussian random signal with the number of data points per data block190

and the number of blocks specified for the simulation case. Next, the clean signal is191

divided into the desired number of blocks, with no block overlap. Then, the desired192

number of blocks are contaminated for the desired percentage of points (selected193

as the first part of the block) with additive noise specified by the variance ratio194

and added to the the block. The transient classification algorithm is applied to the195

simulated data, and the data blocks classified as transients are logged. For these196

simulations, the transient classification procedure automatically considers the 20%197

of data blocks with the lowest variance to be stationary because lower total block198
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Table 1. Parameter values for simulation cases. All cases sweep through six values

of the total number of data blocks of 100, 200, 300, 400, 500, and 1000.

Variance Points Percentage Percentage of

ratio per data of data blocks points in each data

block contaminated block contaminated

2 8192 75 100

2 8192 50 100

2 8192 25 100

2 8192 25 50

2 8192 25 25

2 8192 75 50

2 8192 75 25

2 2048 75 25

2 2048 75 100

2 2048 25 25

2 2048 25 100

3 8192 25 25

5 2048 25 100

5 2048 75 100

5 2048 25 25

5 2048 75 25

5 8192 75 25

5 8192 75 100

5 8192 25 25

5 8192 25 100

10 8192 25 25

100 8192 25 25
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counts approach the minimum necessary for a reasonable autospectral estimate.199

The confusion matrix elements are then calculated and recorded. The process is200

repeated for a total of 50,000 trials of data generation for each simulation case. The201

individual elements of the confusion matrix are examined to ensure the mean and202

standard deviation have converged to within 0.1% based on the values from one203

iteration to the next. Finally, the mean estimate for the confusion matrix is used204

to compute the estimated mean accuracy, false positive rate, and false negative205

rate for the simulation case.206

3.4 Results207

Table 2 presents a statistical summary of the three performance metrics over all208

of the simulation cases. The accuracy ranges from 80.1% to 99.3%. However, if the209

number of blocks is greater than or equal to 300, which is desirable for averaging210

of the spectral estimate as it approaches a normalized random error of 5%, the211

mean accuracy is greater than 90%. This condition also further constrains the212

false positive rate bounds to range from 0.9% to 12.9%, and the false negative213

rate bounds to range from 0.0% to 2.0%, improving on the results summarized in214

Table 2.215

Table 2. Statistical summary of performance metrics for all simulation cases.

Accuracy (%) FPR (%) FNR (%)

minimum 80.1 0.9 0.0

mean 94.4 8.8 0.3

median 97.0 6.2 0.01

maximum 99.3 26.4 4.2
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To assess the behavior of the algorithm, and example plot of |K| as a function of216

block count is shown in Fig. 2. Here a global minimum is observed when 749 of the217

blocks are retained, which is very close to the true number of 750 uncontaminated218

blocks. Note that the accuracy is less than that expected for 999/1000 correct219

classifications due to false positives and negatives, as discussed further below.220

Also note that some noise is present at extremely low block counts. This points221

back to the comment in Section 2 to set a minimum number of retained blocks.222

0 100 200 300 400 500 600 700 800 900 1000

Sorted Block Count

10
-5

10
0

|K
|

Fig. 2. Kullback-Leibler divergence as a function of included block count for a

simulation with 1000 blocks of data, a variance ratio of 2, 8192 points per data

block, 25% of the data blocks contaminated, and 50% of the points in each block

contaminated.

3.4.1 Number of data blocks and variance ratio223

The variation in the performance of the algorithm is studied as a function of224

the total number of data blocks and contamination to the signal variance ratio.225

Here, the number of data points per block was held to N = 8, 192 points, the226
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percent of contaminated blocks to 25%, and the percent of each contaminated227

block perturbed to 25%. This resulted in 30 simulation scenarios selected from the228

132 total cases. The results, as plotted in Fig. 3, show that all performance metrics229

converge as a function of variance ratio when the ratio is greater than five. The230

accuracy and the false positive rate improve as the total number of data blocks231

increases. The false negative rate shows more variation, but the values are below232

0.14% for all 30 scenarios. These rates correspond to total false negative counts of233

zero, one, or, at worst, two misclassified blocks.234

3.4.2 Percent of contaminated block perturbed235

In the actual experiments analyzed in a subsequent section, transient gust con-236

tamination occurs sporadically and for short durations. Thus, for any data block237

that is impacted, only a portion of that block may be contaminated. Understand-238

ing how sensitive the performance metrics are to the percentage of any given data239

block that is perturbed is critical to assessing the robustness of the method. This240

simulation subset held the variance ratio to 2 (the most challenging value in the241

simulation study), the number of data points per block to N = 8, 192 points, and242

the percentage of contaminated blocks to 25%. This resulted in 18 simulation sce-243

narios selected from the 132 total cases. The results, as plotted in Fig. 4, show that244

the accuracy and the false positive rate are minimally affected by the percentage245

of the contaminated data block that is perturbed, especially when compared to the246

impact from the total number of data blocks. The magnitudes of the correlation247

coefficients between the accuracy and percentage of the data block contaminated,248

and between the false positive rate and the percentage of the data block contam-249

inated are less than 0.1, confirming the lack of a linear relationship as seen in250
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Fig. 3. Performance metrics varying the total number of data blocks and the

contamination to signal variance ratio. The number of data points per block is

held to to N = 8, 192 points, the percentage of contaminated blocks to 25%, and

the percent of each contaminated data block perturbed to 25%.
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Fig. 4. However, the false negative rate does show a functional dependence on the251

percentage of the data block contaminated. This has a correlation coefficient of252

-0.25 (p-value of 0.004). Thus, as the percentage of the data block that is contam-253

inated increases, the method can more easily identify data blocks that have been254

contaminated. However, the maximum false negative rate is still only 0.14%.255

3.4.3 Percent of data blocks that are contaminated256

The variation in the performance of the classification algorithm is studied as a257

function of the percentage of data blocks that are contaminated. This simula-258

tion subset held the variance ratio to 2, the number of data points per block to259

N = 8, 192 points, and the percent of each contaminated block perturbed to 25%,260

resulting in 18 simulation scenarios selected from the 132 total cases. The results,261

as plotted in Fig. 5, show that the accuracy and false positive rate improve with262

an increasing percentage of transient blocks in the total data set, whereas the false263

negative rate worsens. The values of all three performance metrics as a function264

of the percentage of contaminated blocks present in the total data set are also im-265

pacted by the total number of data blocks. However, when there is a total of 1,000266

data blocks, the variation in the performance metrics as a function of the percent-267

age of contaminated data present is minimal. With at least 300 total blocks, as268

might be recommended, the variation is greatly reduced. Note that a critical value269

of the percentage of contaminated blocks appears to exist between 50% and 75%270

where the behavior of the performance metrics changes.271
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Fig. 4. Performance metrics varying the percentage of the contaminated block

that is perturbed from the contamination signal while holding the variance ratio

to 2, the number of data points per block to N = 8, 192 points, and percentage of

contaminated blocks to 25%.
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Fig. 5. Performance metrics varying the percent of data blocks that are contami-

nated while holding the variance ratio to 2, the number of data points per block to

N = 8, 192 points, and percentage of the data points in the data block perturbed

by contamination to 25%.
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4 Experimental Results272

The transient classification procedure is applied to an advanced aircraft noise273

study conducted at the NASA Langley Research Center’s 14- by 22-Foot Subsonic274

Tunnel (Heath et al. 2016). A photograph of an example test configuration from275

this study is shown in Fig. 6, where a hybrid wing body model is installed inverted276

in the facility test section. As shown in the photograph, microphones are installed277

on sideline traversing towers, as well as a truss and array panel located above the278

facility test section.279

The NASA Langley 14- by 22-Foot Subsonic Tunnel is, by design, an aerody-280

namic wind tunnel, which can operate in an open test section configuration. While281

significant acoustic improvements have been applied to the facility, measurement282

microphones are, under some installation configurations, close enough to the open-283

jet shear layer that hydrodynamic gusts may contaminate the out-of-flow acoustic284

measurements. This was primarily observed when microphones were at the far-285

downstream end of the test section, although occasional gust impingement was286

seen at other measurement stations.287

An extreme example of gust impingement from the airframe noise component288

of the test is shown in Fig. 7. The plotted data are for an acquisition where one of289

the speakers embedded in the model body was driven with a random noise signal290

that was bandpass filtered to span a frequency range of 4 kHz to 16 kHz. The291

speaker data are used rather than the model’s isolated airframe noise data as, in292

the frequency domain, these data provide a more clear visual representation of the293

influence of transient contamination over a limited bandwidth due to more distinct294

spectral structures.295
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Fig. 6. Example arrangement of a hybrid wing body model, phased array and

tower traverses installed in the NASA Langley 14- by 22-Foot Subsonic Tunnel.

The hybrid wing body model was pitched to an angle of attack of 14.5◦, and296

the test section Mach number was M = 0.23. The acoustic measurement hardware297

was traversed to the far-downstream end of the test section. As shown by the298

time series in Fig. 7a, the array center microphone signal appears as might be ex-299

pected for a stationary, band-limited random signal. The south tower microphone,300

located in the upper-right-hand corner of the picture in Fig. 6, clearly experiences301

extreme transient bursts as shown in Fig. 7b. The corresponding autospectra are302

shown in Figs. 7c and 7d. While the array center microphone spectrum shows the303
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low frequency content of the signal at 4 kHz, the south tower microphone spec-304

trum is masked by the low frequency content of the burst. Note that at this stage305

of processing, two clean signals would not overlay due to differences in propaga-306

tion distance between the source and each microphone, along with the speaker307

directivity. Also, this test is a prime example of why an automated classification308

method is desirable. The contamination in the data is clear and could readily be309

separated manually. However, roughly a quarter of a million time series records310

were generated during the test. Manual inspection of such a volume of data is311

unreasonable.312

For these data, the procedure developed for transient classification is applied313

by breaking the microphone time series into 920 blocks of desired length N = 8192314

points. This corresponds to the baseline processing parameters used in the test for315

spectral analysis (Bahr et al. 2014). The minimum number of accepted blocks is316

set to 100 based on observation of the spectral convergence. A histogram of the317

south tower microphone data block variances is shown with respect to the left318

axis in Fig. 8, with the 16 most energetic blocks removed from the plot. Even319

without these blocks, which would extend the plot abscissa beyond a variance of320

500 Pa2, this histogram shows a long, thin tail in the direction of large variance321

values. The corresponding probability density functions for the median- and mean-322

based models are shown with respect to the right axis in the figure. Note that the323

bandwidth parameter B for these data is extremely low, generally between 4×10−3
324

and 5 × 10−3 depending on the included blocks. This is due to the high levels of325

low frequency data, below the speaker operating range.326

Of the 920 input blocks, 567 are rejected. The computed |K| as a function of327

block count used to separate the blocks is plotted in Fig. 9, showing an obvious328
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minimum as it did with the simulated data in the previous section. The almost-329

monotone increase at higher block counts is similar in behavior to the |K| plot for330

simulated data, and appears to be associated with data convergence. The series331

of local minima near the global minimum are not easily explained, as the baseline332

variances, variance means, and variance medians are all reasonably smooth. It333

is only when differences and ratios of these parameters are computed that more334

jagged features appear.335

It should be noted that while 567/920 blocks is a large portion of the data336

to reject, this microphone acquisition is from a location normally outside of the337

bounds of reasonable acoustic measurement positions in the facility. The histogram338

of the remaining block variances is shown in Fig. 10, along with the median- and339

mean-based probability density function estimates for the retained block set. As340

expected, the probability density functions overlay for the minimum value of |K|,341

indicating near-total agreement between the mean and median models and that all342

the data blocks provide useful information to the statistics. The outliers, as mod-343

eled, have been eliminated. The output of the procedure is shown in Figs. 11a and344

11b. Visually, the technique has identified and removed the obvious contamination345

from the time series. In the spectral analysis, the 4 kHz content of the signal is346

now visible, with a reduction of up to 10 dB in the microphone autospectrum at347

lower frequencies. Higher frequencies are unaffected.348
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Fig. 7. Example data contamination by hydrodynamic impingement. The two com-

pared microphones observed a calibration signal with an output band of 4 kHz to

16 kHz, emitted by one of the model embedded speakers. The hybrid wing body

model was at an angle of attack of 14.5◦, and the test section Mach number was

M = 0.23. Acoustic hardware were at the far downstream traverse location. Spec-

tral binwidths are 30.5 Hz.
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time series data from Fig. 7b. Data blocks are plotted as a function of time. The

shift in the estimated data autospectrum is shown. Spectral binwidths are 30.5

Hz.
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5 Summary & Conclusions349

An automated method for classifying transient data segments that contaminate350

stationary acoustic data is presented. The method requires two assumptions. First,351

it treats the underlying stationary signal of interest as having Gaussian random352

characteristics. Second, it assumes that contaminated segments of data will have353

higher variance than clean segments of data. Under these assumptions, it is an354

unsupervised method that performs binary classification: either a data block is355

contaminated by a transient signal or it is clean.356

An extensive set of simulations covering a broad range of conditions shows that357

the technique has a high degree of accuracy as long as at least 300 data blocks are358

used, though 500 may be preferable. The FPR may still be greater than 5% under359

some of the simulated circumstances. However, falsely classifying a few blocks of360

stationary data as transient and discarding them is not problematic. Wind tunnel361

time is expensive, so data records have a practical duration limit based on cost.362

Regardless, standard spectral estimation techniques will still perform well if a few363

extra blocks are discarded while hundreds are retained. Simulations suggest the364

technique has a very low FNR for the parameter space explored, so misclassifying365

enough transient data as stationary to noticeably contaminate a spectral estimate366

is unlikely.367

Experimental results from a worst-case scenario in an aeroacoustic wind tunnel368

test show that, visually, the method succeeds in separating contaminated blocks369

from the baseline signal of interest. Spectral estimation of the signal both before370

and after the application of the technique shows up to a 10 dB improvement in371

signal-to-noise ratio due to the removal of contamination. Features in the acoustic372
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spectrum that are masked in the baseline data set are revealed once the transient373

blocks are removed.374
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