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Motivation

• In-situ resource utilization (ISRU)

crucial for future exploration and

colonization beyond low-Earth

orbit

• Mechanical components needed

from resources available in Lunar

and Martian environments

• Martian regolith rich in metallic

elements but found in silicates

and oxides

Team SEArch+/Apis Cor rendering of 

structure manufactured on Martian 

surface [1]

[1] NASA, Team SEArch+/Apis Cor, Phase 3: Level 4 software model
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Overview

• Chemical analysis to determine the composition of

Ionic liquid-sourced iron (IL-Fe)

• Ductile iron ingot cast using commercial materials with a composition

simulating the use of IL-Fe

– Carbon (C) sourced from Bosch reactor at MSFC

– Cast material referred to as Sim-IL ductile iron (DI)

• Produced ingot compared to commercially available ductile iron

– Characterized microstructure

– Continuous cooling transformation (CCT) and time temperature transformation

(TTT) diagrams

– Mechanical property (hardness)

• Investigation suggested quality ductile iron can be produced from IL-Fe

and Bosch C
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Literature Review: Ionic Liquids, Bosch 

Carbon, and Martian Regolith
• Ionic liquids (IL) currently

studied at MSFC to extract and

recover metallic elements [2]

• Bosch process currently studied

at MSFC as a life support system

for oxygen regeneration with a

by-product of elemental C [3]

Average Chemical Composition of Martian 

regolith [4-9]

SiO2 (n=40) 47.75 ± 6.08

MnO (n=20) 0.31 ± 0.15

FexOx (n=40) 15.11 ± 4.15

Ni (n=11) 0.0192 ± 0.01

MgO (n=40) 6.04 ± 2.07

Al2O3 (n=40) 12.13 ± 4.76

CaO (n=40) 7.80 ± 1.96

Cr2O3 (n=14) 0.24 ± 0.18

(wt.%) ± st.dev

[2] E. Fox, et. al, Astronomy on Tap Club, May 2019

[3] M. B. Abney, et. al, ICES, 2012.

[4] A.S. Yen, et. al., "Evidence for a Global Martian Soil Composition

Extends to Gale Crater", LPSC, 2013.

[5] R.V. Morris, et. al, LPC, 2014.

[6] M.J. Rutherford, et. al, Workshop on Mars, 2001.

[7] G. Peters, et. al., Icarus, 2008.

[8] C. Allen, et. al., Eos, 1998.

[9] C. Allen, et. al., Lunar Planet. Sci, 1997.
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Literature Review: Ductile Iron Alloying 

Elements
• Iron (Fe), C, silicon (Si) and manganese (Mn) are primary

elements in ductile iron

– Magnesium (Mg) needed to “spheroidize” graphite [10]

• Characteristic feature separating gray cast iron from ductile iron

• Phosphorus (P), often considered an impurity, increases castability,

machinability, and tensile properties [11]

• Nickel (Ni) increases tensile properties, hardness at the expense of

ductility [12]

– Elongation and impact energy increase with Ni up to 0.71 wt.% [13]

• Less than 0.55 wt.% molybdenum (Mo) can increase Ni effects on

hardness, and decreases ductility [14]

– Omitted as variable due to desire for minimal alloying
[10] Hot Topics, Ductile Iron Society, 2003. [12] C. Hsu, et. al, Mater. Sci. Eng. A, 2007. [14] C.F. Walton, Gray Iron Founders’ Society, 1958.

[11] Hot Topics, Ductile Iron Society, 2000. [13] Y. Sun, et. al., Mater. Des, 2012.
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Literature Review: Mg in Ductile Iron[10]

• Mg is necessary to spheroidize

graphite from flakes to nodules

• Mg requirement varies with sulfur

(S) composition

• Forms MgS first

• “Residual Mg” is excess after

sulfides form

• %Mg = 0.020 + ¾ (%S)

• Too much Mg results in

“exploded” graphite, porosity,

and degraded performance

– Max of 0.040 wt.% Exploded graphite (left) [10], spherical 

graphite (right)

Effects on graphite shape with varying Mg

[10] Hot Topics, Ductile Iron Society, 2003.
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Literature Review: Magnesium Additions to 

Ductile Iron
• Ingot was cast using pure (99+ %) bulk

material at MSU

• Mg sourced from commercially

available “master alloy”

– Master alloys used where a low melting

temperature elements is required

– Mg vapor temperature is ~1100 ˚C while

melting temperature of pure Fe is ~1600

˚C

• Master alloy reduces volatile reaction,

enabling for greater recovery rates

when casting [15]

– Recovery rate obtained within this

experiment was ~33%

5.5Mg-48Si-Fe w/ trace lanthanum 

(La) and Ca

[15] kbmaffilips.com, 2020
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Initial Evaluation of Commercial Ductile Iron

• Two grades of ductile iron purchased [16-17]

– 65-45-12 and 100-70-03

• Nearly identical chemical composition

– Naming convention from minimum properties

• (Tensile strength in ksi – yield strength in ksi – elongation in percent)

• Sample of 100 grade melted and cooled at 1.0˚C/s and compared to 65

grade indicated both grades were produced with heat treatment alone

[16] “Dura-Bar 65-45-12 Continuously Cast Ductile Iron Bar Stock

ASTM A536”, Matweb.com, 2019.

[17] “Dura-Bar 100-70-03 Continuously Cast Ductile Iron Bar Stock

ASTM A536”, Matweb.com, 2019.
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Microstructural phases typically present in 

ductile iron

Phases formed due to different cooling rates and/or elemental additions. I.E., Ferrite, 

pearlite, martensite (slow to fast cooling).

Ferrite: soft, 

nearly pure 

iron phase

Pearlite: hard, 

layered ferrite 

and Fe3C

Graphite: pure 

carbon 

(nodule)

Martensite: 

extremely hard, 

plated phase

50 μm

65-45-12 cooled at 1°C/s 65-45-12 cooled at 10°C/s

50 μm
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Testing suggested both commercial grades 

are similar with differences attributed to heat 

treatment

Hereafter, only 65-45-12 is used for analysis and comparison

100-70-03 As-received 100-70-03 recast and cooled at

1.0°C/s

65-45-12 As-received

200 μm 200 μm 200 μm
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Sim-IL DI As-Normalized vs Commercial 

Ductile Iron
• Sim-IL DI was cast then

normalized to homogenize

microstructure

– Soaked in 900°C furnace for 2 hours,

removed and air cooled

• Sim-IL DI showed more ferrite

(white) than commercial

– Likely due to a faster cooling rate

upon casting/heat treating of

commercial material

• Difficult to compare properties

due to unknown heat treatment

parameters of commercial ductile

iron

Sim-IL DI As-

normalized

65-45-12 As-received

200 μm 200 μm
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Experimental Evaluations

Gleeble 

Dilatometry

Microscopy
As-heat treated

As-polished and as-etched

Mechanical 

Performance
As-heat treated

Hardness

Casting
Normalizing, Sample 

Preparation

Chemical 

Analysis
OES and C/S Analyzer

Microscopy
As-received or as-cast

As-polished and as-etched

Mechanical 

Performance
As-received or as-cast

Hardness
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Chemical Composition
• Chemical composition

acquired via optical emission

spectrometry (OES) and

carbon/sulfur analyzer

• Commercial ductile iron

compared to the target and

resultant Sim-IL DI ingot as

well as the composition of raw

IL-Fe

• C difference effect negligible or

offset based on properties

found (lower graphite volume

in Sim-IL DI)

Chemical Composition Comparisons

Commercial IL-Fe (n=3) Sim-IL DI 

Target

Sim-IL DI 

Result (n=10)

C 3.83 - 3.83 3.35 ± 0.0

Si 2.65 1.40 ± 0.3 2.65 2.58 ± 0.1

Mn 0.24 0.47 ± 0.1 0.46 0.31 ± 0.0

Ni - 0.14 ± 0.0 0.13 0.12 ± 0.0

Al - 0.11 ± 0.1 0.14 0.04 ± 0.0

Co - 0.08 ± 0.0 0.08 0.06 ± 0.0

Mg 0.035 2.27 ± 0.3 0.035 0.030 ± 0.00

Na - 0.04 ± 0.0 0.04 -

Ca - 0.11 ± 0.1 0.13 0.00 ± 0.0

Fe bal bal bal bal

(wt.%) ± st.dev
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Dilatometry – How volume changes over time

• 9 mm OD x 25 mm L samples were heated to 900°C and held

for 30 min to normalize microstructure and allow C to saturate

austenite from graphite nodules

– Austenite = common phase start point for heat treatment

• Cooling rate maintained (for continuous cooling transformation) with

diameter monitored to visualize phase transformation temperatures
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Transformation temperatures showed 

minimal difference
• Transition temperatures were

within 10°C for all

• This round of tests showed

minimal differences in

transition temperatures for the

heat treatment rates

completed

Transformation Temperatures

Rate Mat’l FS FF,PS PF

0.1°C/s

65-45-12 760 682 649

Sim-IL 

DI
761 677 650

Diff. -1 5 -1

1.0°C/s

65-45-12 753 673 649

Sim-IL 

DI
756 668 642

Diff. -3 5 7
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Microstructures showed slightly greater 

fraction of harder phases
0.1°C/s 1.0°C/s

6
5
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5
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2
S
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-I

L
 D

I

• Sim-IL DI showed

slightly greater

area fraction of

harder phases,

suggesting it

could more

readily respond to

heat treatment

200 μm 200 μm

200 μm 200 μm
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Microstructural area fraction verified harder 

phases

• Higher pearlite content in Sim-

IL DI

– Could be due to increased Ni and

Mn

• Lower graphite fraction in Sim-

IL DI due to reduced carbon

quantity in material

– Lower recovery rate for Bosch C

due to fine powder morphology

versus larger chunks of

commercial C feedstock

Area Fraction Averages (n=5)

Rate Mat’l Graphite Ferrite Pearlite

0.1°C/s

65-45-12 13.0 81.6 5.4

Sim-IL DI 10.2 73.9 15.9

Diff. 2.8 7.7 -10.5

1.0°C/s

65-45-12 11.7 35.0 53.3

Sim-IL DI 10.3 32.0 57.6

Diff. 1.4 3 -4.3
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Mechanical Testing: Hardness

• Hardness measured and

converted across Brinell

(HB), Rockwell-B (HRB), and

Rockwell-C (HRC)

• Hardness values

approximately equal

Area Fraction Averages (n=5)

Rate HB HRB HRC

0.1°C/s

65-45-12 151 81 1

Sim-IL DI 148 80 0

Diff. 3 1 1

1.0°C/s

65-45-12 219 96 20

Sim-IL DI 211 95 18

Diff. 8 1 2

Measured, conversion
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Sim-IL DI vs Commercial DI

• Sim-IL DI

– More pearlite

– Higher highness

• Greater tensile strength

• Lower ductility

– Lower graphite fraction

• Less mass fraction carbon

• Commercial 65-45-12

– More ferrite, less pearlite

– Lower hardness

• Lower tensile strength

• Greater elasticity

– Higher graphite fraction

• More mass fraction carbon

• Sim-IL DI performance difference possibly due to greater Ni and Mn

composition

• Sim-IL DI potentially obtains similar properties as commercial material

with slower cooling rates
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Summary
• Dilatometry and CCT results showed similar phase transitions

with some variation attributable to presence of Ni and larger Mn

composition

• Hardness and microstructure showed Sim-IL DI responds well to heat

treatment

• The use of IL-Fe and Bosch C as casting feedstock could produce

ductile iron with equivalent properties to commercial ductile iron

• In summary, the use of Bosch C with IL-Fe is likely a viable option to

manufacture ductile iron on the Lunar or Martian surfaces with some

limitations

il
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