Urban Air Mobility (UAM) Vision
Concept of Operations (ConOps) UAM Maturity Level (UML) – 4

Overview

The UAM vision will only be achievable if everyone benefits
<table>
<thead>
<tr>
<th>Topic</th>
<th>Content</th>
<th>Slide</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAM Vision, Framework, & Maturity Levels</td>
<td>A “Vision” ConOps
UAM Vision and Framework
UAM Framework and Barriers
UAM Maturity Levels (UML)</td>
<td>3–7</td>
</tr>
<tr>
<td>The UAM Concept at UML-4</td>
<td>The UAM ConOps at-a-glance
Key UAM Elements
UAM Ecosystem Key Roles
Gate-to-Gate Operations Overview4</td>
<td>8–14</td>
</tr>
<tr>
<td>Airspace Pillars</td>
<td>Airspace System Design & Implementation
Airspace & Fleet Operations Management</td>
<td>15–26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27–34</td>
</tr>
<tr>
<td>Aircraft & Aircrew Pillars</td>
<td>Individual Aircraft Management & Operations
Aircraft Development & Production</td>
<td>35–41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42–49</td>
</tr>
<tr>
<td>Community Integration Pillar</td>
<td>Community Integration</td>
<td>50–56</td>
</tr>
<tr>
<td>Appendix</td>
<td>UAM Ecosystem Key Responsibilities
UAM Concept Maturation & Next Steps</td>
<td>57–60</td>
</tr>
</tbody>
</table>
UAM Vision, Framework, and Maturity Levels

The UAM vision will only be achievable if everyone benefits.
Urban Air Mobility Vision Concept of Operations

Vision ConOps
(Structure Based on NASA UAM Framework)

“A Vision ConOps”
• High-level – Providing a vision of key concepts in the future
• Broad, covering all pillars

Scope
• Passenger-carrying operations
• Vision at the Intermediate state (UML-4)
• Placing air mobility within reach of the general public (i.e., realistic, cost-effective transportation choice for general public)

UAM Vision
Revolutionize mobility around metropolitan areas by enabling a safe, efficient, convenient, affordable, and accessible air transportation system
Urban Air Mobility (UAM) Vision: Revolutionize mobility around metropolitan areas by enabling a safe, efficient, convenient, affordable, and accessible air transportation system for passengers and cargo.
Late-Stage Certification Testing and Operational Demonstrations in Limited Environments
Aircraft certification testing and operational evaluations with conforming prototypes; procedural and technology innovations supporting future airspace operations (e.g., UTM-inspired); community/market demonstrations and data collection

Low Density and Complexity Commercial Operations with Assistive Automation
Type certified aircraft; initial Part 135 operation approvals; limited markets with favorable weather and regulation; small UAM network serving urban periphery; UTM Construct and UAM routes supporting self-managed operations through controlled airspace

Low Density, Medium Complexity Operations with Comprehensive Safety Assurance Automation
Operations include urban core; operational validation of advanced airspace operations and management including UTM inspired ATM, CNSI, C^2, and automation for scalable, weather-tolerant operations; few high-capacity aerodromes; noise compatible with urban soundscape; model-local regulations

Medium Density and Complexity Operations with Collaborative and Responsible Automated Systems
100s of simultaneous operations; expanded networks including closely-spaced high throughput aerodromes; many UTM inspired ATM services available, simplified aircraft operations for credit; low-visibility operations

High Density and Complexity Operations with Highly-Integrated Automated Networks
1,000s of simultaneous operations; large-scale, highly-distributed networks; high-density UTM inspired ATM; autonomous aircraft and remote, M:N fleet management; high-weather tolerance including icing; high-volume manufacturing

Ubiquitous UAM Operations with System-Wide Automated Optimization
10,000s of simultaneous operations (capacity limited by physical infrastructure); ad hoc landing sites; noise compatible with suburban/rural operations; private ownership & operation models enabled; societal expectation
The UAM Concept at UML-4

The UAM vision will only be achievable if everyone benefits.

Image Source: NASA UAM Grand Challenge Industry Day
The UAM ConOps at-a-glance

ConOps Inputs & Release
- **Subject Matter Expert Input** from:
 - NASA ARMD
 - FAA
 - Deloitte Ecosystem Advisory Group (EAG)

 Active, detailed engagement of 100+ organizations through a series of two-day community workshops

 Review of 160+ sources of UAM and UAM-applicable literature (i.e., UAM, AAM, UAS, UTM, etc.)

 Community-wide information sharing generating 1000+ comments and 800+ were incorporated

 Version 1.0 UAM Vision ConOps release targeted for December 2020

Planned Document Organization

The UAM Concept

The ConOps focuses on the UAM concepts and includes:
- Preface
- Introduction
- Description of the UOE
- The UAM Framework
- The UAM Pillars
- The UAM Cross-cutting Barriers

Appendices

The ConOps appendices are intended to provide more detail and context around the UAM concepts and include:
- Roles & Responsibilities
- Gate-to-gate Operations
- Use Cases
- Acronyms List & Glossary
- Contributing Stakeholders
- Bibliography

- **Concept Decomposition**

 Pillar
 The 5 UAM Pillars divide the UAM concepts into various high-level categories. These pillars define the major areas of focus for the UAM concept.

 Barrier
 A “barrier to entry” in realizing the UAM concept. These barriers break out the next level of detail within each pillar. The UAM concept is defined through the details associated with each barrier.

 ConOps Content
 These bullets are the detailed, decomposed concepts as they pertain to each barrier. They represent the body of the ConOps and the concept at UML-4.

This “vision” ConOps is a **living document** and will continue to be revised as concepts mature through research, development, test, and realization of UMLs 1-3.
Key UAM Elements of Airspace at UML-4

UAM Maturity Level (UML)-Level 4: Medium Density and Complexity Operations with Collaborative and Responsible Automated Systems

- UAM Operations Environment (UOE) – Airspace volumes where Providers of Services to UAM (PSUs) are responsible for aircraft separation and other ATM services.
- Dynamic based on range of factors (structure where necessary, flexible where possible).

Other Characteristics

- Advanced automation (aircraft and air traffic management) largely human-over-the-loop.
- High performance aircraft (e.g., eVTOL) capable of detect and avoid and performance-based separation.
- All aircraft operating in UOE are appropriately equipped and actively participate in UOE.
- U4-UAM is characterized by medium density operations between closely-spaced, high throughput UAM Aerodromes.
- Higher throughput combined with lower operating costs reduce per passenger price & place air travel within reach of the general public.
Key UAM Elements of Aircrafts at UML-4

Advanced technologies enable:
- New aircraft configurations
- High performance aircraft
- Efficient propulsion systems
- Greater weather tolerance
- Greater design and production agility

Advanced design and engineering methods (model-based, digital engineering, etc.) along with advanced rapid testing enable more rapid commercialization.

Certification process are adapted for new technologies, materials, aircrafts, and manufacturing processes building on the regulatory frameworks in place and enable more rapid incorporation of safety improvements.

Mature manufacturing and supply chains, including secure digital processes to track parts and ensure authenticity and traceability, will enable rapid ordering and receipt of parts.
Key UAM Elements of Community Integration at UML-4

U4-UAM is a value-added, integrated component of a city/region’s multi-modal transportation system and is part of local/regional transportation plans.

Cohesive federal, state, and local roles and authorities support design and development of air and ground UAM infrastructure.

Effective processes established to engage and consider community integration concerns (e.g., safety, noise, visual, privacy).

Infrastructure meets industry standards, local ordinances, and other regulations.

Infrastructure integrates advanced technologies to support UAM operations (e.g., grid/power capacity, security, ground transportation, weather sensing, and navigational infrastructure).
UAM Ecosystem Key Roles

This list of key UAM roles is NOT an exhaustive list of UAM stakeholders. The below roles are some of the major roles in the UAM ecosystem and play a large role in UAM operations and the regulatory landscape. The order in which the stakeholders are listed does NOT imply importance of any given role.

- Pilot in Command (PIC)
- Federal Aviation Administration (FAA)
- Fleet Operators
- Emergency Aircraft
- GA Aircraft
- City, State, and Local Government
- UAM Aircraft
- UAM Aerodrome Operators
- Providers of Services to UAM (PSU)
- Supplementary Data Service Provider (SDSP)
- Other
UAM Nominal Gate-to-Gate Operations Overview

UAM operations are highly collaborative & rely on constant information exchange between stakeholders

<table>
<thead>
<tr>
<th>Pre-Flight</th>
<th>Take-off</th>
<th>Climb & Cruise</th>
<th>Descend</th>
<th>Land, Taxi, & Disembark</th>
</tr>
</thead>
</table>
| **Fleet Operator** | • Files operations plan
• Verifies passenger manifest and destination
• Performs dispatch duties | • Approves taxi/takeoff authorization | • Monitors conformance to operations plan
• Monitors aircraft health and status
• Maintains open data exchange with PSU and aircraft
• Makes updates to destination, etc., as needed | • Monitors conformance
• Monitors aircraft
• Maintains open data exchange with PSU and aircraft | • Monitors conformance
• Monitors aircraft
| **PSU** | • Conducts strategic deconfliction and negotiate resolution(s)
• Transmits taxi/takeoff authorization and departure sequencing command | • Conformance monitoring
• Communicates updated operations plan
• Assists with tactical deconfliction
• Maintains open data exchange | • Conformance monitoring
• Communicates sequencing and route changes
• Issues landing clearance
• Sequences aircraft into UAM aerodrome | • Confirms all clear for aircraft landing
• Gives taxi instructions
• Closes operations plan |
| **FAA** | • Approves operations plan through automated data exchange | | | |
| **Aerodrome Operator** | • Screens passengers and cargo
• Performs passenger boarding
• Confirms all clear for departure | • Confirms all clear for aircraft departure | • N/A | • Confirms landing area is clear
• Assigns gate (shares with UAM aerodrome operator)
• Approves/moves aircraft to gate area |
| **Aircraft and Aircraft Crew** | • Performs systems check
• Confirms aircraft ready for departure | • Executes takeoff procedure and sequencing | | |

No active participation but maintain authority over airspace

• Confirms all clear for aircraft landing
• Allocates landing pad and debark area

• Confirms UAM aerodrome clear for aircraft landing
• Allocates landing pad and debark area

• Scans and confirms all clear for landing
• Executes landing procedure and taxi
• Identifies needed maintenance/turnaround requirements
Airspace Pillars

The UAM vision will only be achievable if everyone benefits.

Image Source: NASA UAM Grand Challenge Industry Day
Design, regulate, and manage the airspace and supporting ground facilities to enable safe, efficient, and reliable UAM flights in and around metropolitan areas.

Barriers
- Airspace Design
- Operational Rules, Roles, & Procedures
- CNSI & Control Facility Infrastructure
- Aerodrome Design
Airspace System Design & Implementation

Barrier: Airspace Design

Develop a practical, feasible, flexible, scalable, implementable, and equitable airspace design and implementation for UAM operations that includes the simultaneous operation of diverse missions and aircraft types (e.g., piloted, autonomous, VTOL, STOL, sUAS) and the placement of aerodromes to that takes into account community concerns such as noise and privacy, and consideration for cumulative fleet emissions (e.g., noise, CO2) over local communities.

NASA Vision ConOps

- UAM aircraft in the UOE operate in metropolitan areas extending out to the urban periphery.
- Each UOE area is tailored to the unique characteristics of the metropolitan area in which it exists and can be dynamically adjusted based on FAA criteria.
- The UOE is not a class of airspace itself but exists within other classes of airspace (B, C, D, E, and G). Fleet operators need to meet the applicable airspace requirements and UOE requirements to operate where UOE exists.
- UOE is managed by Providers of Service to UAM (PSU) through a federated architecture and ATC is aware of UAM operations where there is a possible safety impact on manned traffic.
- To enable high volumes of operations, UOE is designed to include dynamic, demand-based, high-density routes for aircraft meeting the performance requirements of the route.
- Redundant emergency landing locations exist for off-nominal events.

Areas with Remaining Unknowns

Scalability

UOE Requirements

Extensions into Actively-controlled Airspace

Emergency Landing Site Locations
Airspace System Design & Implementation

Barrier: Operational Rules, Roles, and Procedures

Develop operating rules, roles, procedures and airspace management Concepts of Operation that enable safe and efficient operations and are compatible with urban environments, scalable operations, interoperability, and operations in moderately poor weather operations.

NASA Vision ConOps

- **Provider of Services to UAM (PSU)** – Flight operations are managed and coordinated by PSUs, which are industry or public sector entities that supply flight safety services under FAA's regulatory and operational authority to supplement and integrate with manned ATC.
 - PSUs deliver flight planning, communications, and aide in separation along with onboard aircraft sensors. PSUs also ensure there is a common understanding and “picture” amongst PSUs to enable cooperative traffic management.
- **PSU Network** – The amalgamation of PSUs connected to each other and exchanging information. Each PSU is required to share certain information with the other PSUs to provide a complete operating picture and situational awareness.
- **Supplementary Data Service Providers (SDSP)** – SDSPs provide support services to enable UAM operations and may or may not be safety critical.
- **Fleet Operators** – The fleet operator of the aircraft who hires the aircraft crew (if the aircraft fleet operator is not also the aircraft crew) and in some instances performs dispatch duties. A fleet may consist of one aircraft.
- **Aircraft Crew** – Aircrafts have a crew consisting or one or more humans who share responsibility for the safety of the flight along with automated systems. This aircraft crew may be on the aircraft or controlling it remotely.
- **Aerodrome Operators** – Aerodrome operators are entities responsible for ensuring the safety of individual takeoff and landing areas, as well as any ground services (embarkation, disembarkation, maintenance, etc.) provided at an aerodrome.

Areas with Remaining Unknowns

- Negotiation Between PSUs
- Single-PSU Regions
- Impact of Dynamic Airspace Management on ATC Workload
- Role of Aircraft Crew
- Information-sharing Mechanism
UAM Operating Environment

Operational Isometric View
UAM Operating Environment

Operational Side View – Entry to Controlled Airspace

Legend:
- UAM Operations Environment (UOE)
- Actively Controlled Airspace (Class B)
- UTM Environment
- UAM Aircraft

For illustrative purposes only - artwork not drawn to scale.
UAM Operating Environment

Operational Side View – UAM Aerodromes
Airspace System Design & Implementation

Barrier: CNSI & Control Facility Infrastructure

Develop and implement in an economically viable manner sufficient, resilient, and secure communication, navigation, surveillance, information (CNSI) and control facility infrastructure, including spectrally-efficient communication links; navigation services including but not limited to GPS; weather surveillance near the ground with high resolution; ability to account for non-cooperative aircrafts; and functionality in urban canyons.

NASA Vision ConOps

- **Communication** – Fleet operators maintain communication with PSUs and UAM aircrafts (vehicle-to-vehicle) in compliance with performance criteria and regulatory requirements to support data exchange required for safe operations. If the aircraft crew is off-board the aircraft, that person has the capability of communicating with ATC and controlling the aircraft to comply with ATC instructions.

- **Information** – Secure information exchange enables vehicle-to-vehicle and aircraft-to-infrastructure communication for data exchange, aircraft separation, and navigation.

- **Navigation** – Performance-based navigation (or future performance-based navigation-like) requirements enable dynamic precision trajectory-based operations (TBO), even in visibility-restricted conditions.

- **Surveillance** – UAM CNSI operations are supported by a range of ground, aircraft-borne, and satellite-based infrastructure. While this surveillance information will be utilized by PSUs, it is also anticipated that in some cases direct information exchange can occur between aircrafts and between ground/satellite infrastructure to enable aircraft and hazard surveillance by fleet operators and FAA.

- **Cybersecurity** – Requirements for secure communication between elements of the PSU Network, the aircraft, and aircraft subsystems ensure secure information exchange and prevent unauthorized intrusion.

Areas with Remaining Unknowns

- On-board Aircraft Situational Awareness
- Sensors Required
- Cybersecurity Requirements
- Available Spectrum
“UAM Operator” includes aircraft crew in this diagram.
Airspace System Design & Implementation

Barrier: Aerodrome Design

Develop an understanding of and guidelines for the optimal aerodrome design and procedures to support the anticipated number of operations, including safe handling of contingency situations, consideration of the impact on local communities, and the development of design standards.

NASA Vision ConOps

- Aerodrome locations are strongly influenced by current and future anticipated demand.
- Citizens as well as businesses have significant input on aerodrome locations as part of the public planning processes.
- Zoning ordinances and existing infrastructure can constrain aerodrome locations.
- Aerodromes reflect their environmental constraints including both the climate and the constraints of the specific site.
- When planning approach and departure paths, fleet operators plan for trajectories that minimize the impact on local communities.
- Aerodromes in urban areas contain limited maintenance and repair services while aerodromes outside urban centers are designed for expanded aircraft services such as aircraft storage, major repair and overhaul facilities, and serve as intermodal hubs.
- Aerodrome design includes adequate physical security features to ensure safe and secure operations.

Areas with Remaining Unknowns

- Aerodrome Energy Infrastructure
- Aerodrome Design Standards
- Repurposing Existing Buildings v. Greenfield Construction
- Minimum Aerodrome Facilities
Airspace System Design & Implementation

Key Issues for Further Exploration

<table>
<thead>
<tr>
<th>Unknowns</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>How can the UOE be designed for scalability to enable a high throughput of operations and a variety of aircraft technologies?</td>
</tr>
<tr>
<td>Extensions into Actively-controlled Airspace</td>
<td>Extensions of the UOE into ATC-controlled airspace–how will they be defined and how will they function?</td>
</tr>
<tr>
<td>Single-PSU Regions</td>
<td>Will the U4-PSU be layered in a geographic region? Or will they be segmented to accommodate specific geographic regions?</td>
</tr>
<tr>
<td>Impact of Dynamic Airspace Management on ATC Workload</td>
<td>Will the FAA’s ability to dynamically alter airspace in the UOE increase ATC workload?</td>
</tr>
<tr>
<td>Role of Aircraft Crew</td>
<td>What is the role of the human aircraft crew (onboard or offboard)? What is the division of labor between automation and human? If no human aircraft crew is necessary, how is safe flight achieved?</td>
</tr>
<tr>
<td>On-board Aircraft Situational Awareness</td>
<td>What performance capabilities are required for aircraft situational awareness?</td>
</tr>
<tr>
<td>Sensors Required</td>
<td>Which sensors will be required equipage to operate in the UOE? Which other sensors will be potentially useful, but not necessarily required?</td>
</tr>
<tr>
<td>Available Spectrum</td>
<td>How will spectrum requirements for UML-4 be met?</td>
</tr>
<tr>
<td>Aerodrome Energy Infrastructure</td>
<td>What energy infrastructure is necessary at aerodromes to enable UML-4 operations?</td>
</tr>
</tbody>
</table>
Provide airspace operations management services as well as fleet operations management services that ensure safe, efficient, scalable, and resilient UAM operations in and around metropolitan areas.

Barriers
- Safe Airspace Operations
- Efficient Airspace Operations
- Scalable Airspace Operations
- Resilient Airspace Operations
- Fleet Management
- Urban Weather Prediction
Airspace & Fleet Operations Management

Barrier: Safe Airspace Operations

Develop and implement an airspace operations management system and the corresponding regulations and procedures that enable safe, secure, sustained, resilient, close-proximity, multi-aircraft operations in constrained, urban environments and allow for interoperability of diverse missions and aircraft types, including in off-nominal situations.

NASA Vision ConOps

- PSUs provide **deconfliction** by exchanging data across the **PSU Network**. This dataset, with elements to be defined by industry consensus and approved by FAA, includes information such as **departure time**, **desired flight path**, **intended arrival destination**, and **alternate aerodromes**.

- PSUs provide **pre-flight strategic deconfliction**. **Tactical deconfliction** is largely provided by the aircraft, but with the support of the PSUs for **data exchange**.

- The **PSUs**, **DAA**, and **vehicle-to-vehicle (V2V)** information exchange together enable **tactical deconfliction** and **separation assurance** in nominal situations such as maintaining safe separation when following another aircraft or sequencing for landing.

- **Individual aircraft data** assessing both **internal** (aircraft speed, altitude, etc.) and **external environment** (weather, traffic, etc.) is shared via the PSU Network with PSUs and SDSPs. Data exchange across the network enables **inflight strategic deconfliction**.

- Due to the time constraints, **DAA** and potentially **aircraft crew** or **V2V** information exchange are the primary means of collision avoidance in situations where **response times need to be in seconds**, such as avoiding flocks of large birds.

- PSUs and other **safety-critical service suppliers** operating in the UOE are **qualified** by FAA based on standards developed and recommended by industry standards development organizations. Non-safety critical SDSPs may also operate on the PSU Network with **approval** of FAA.

- Entities **providing data** to or **accessing data** from the PSU Network adhere to appropriate **data authentication** and **cybersecurity** standards.

- **Streamlined processes** exist to refine and improve standardized operations and procedures to **continually enhance safety** of UAM operations.

Areas with Remaining Unknowns

- **Industry Safety Standards**
- **Handling Non-cooperative Aircraft**
- **Deconfliction**
Efficient airspace operations can be considered from three perspectives: the aircraft, UAM operations, and the entire urban transportation system. Aircraft efficiency is summarized as the time and energy required to get from point A to point B. Enabling aircraft efficiency relies on collaboration between the fleet operator and PSU, strategic and tactical deconfliction, port arrival/departure flexibility, and active management of multiple aircraft types.

The number of aircrafts able to safety operate during periods of peak demand reflects operational efficiency. Greater throughput is enabled by pre-flight strategic deconfliction, reducing separation between aircrafts, and efficient aerodrome operations.

Prioritization and sequencing criteria will be developed by UML-4. These FAA-approved community-based rules, implemented by PSUs, govern traffic flow and aircraft order. This criteria will be consensus-based and prioritize safety with consideration of the needs of key stakeholders.

Technologies such as aircraft sensors and real-time data exchange enable performance-based separation with comparatively reduced minimums.

The number of operations is primarily driven by aerodrome capacity. Information exchange between aircrafts and infrastructure assists aerodrome operators with managing capacity at aerodromes and prevents the system from being overwhelmed.

An efficient urban transportation system effectively manages demand (which may exceed capacity during peak periods). UAM operations enable an additional avenue to increase the overall urban transportation system capacity.
Airspace & Fleet Operations Management

Barrier: Scalable Airspace Operations

Develop and implement a scalable airspace operations management system to enable higher volumes of air traffic than exist today through the use of automation.

NASA Vision ConOps

- Many operations occur in dynamic **high-density routes** within the UOE, which can be modified quickly by PSUs (according to community-based rules) and are supported by air and ground infrastructure needed to support high volumes of air traffic.

- Operations along high-density routes are governed by operational procedures that enable **sequencing and spacing** of aircrafts based on the **operational characteristics** of the aircraft such as **airspeed**, **rate of climb**, **precision** along the center line, and **ability to fly in proximity** to other aircrafts.

- Criteria for prioritizing, sequencing, and spacing aircrafts will have been established by **consensus standards development organizations** and approved by FAA. These criteria can be modified by FAA as needed.

- Under the principle of **airspace equity**, any **cooperative** aircraft that meets **UOE performance-based** standards has access to these routes.

- In the UOE (particularly over cities), **air traffic management services** are predominantly provided by **PSUs**, rather than active management by ATC today.

- **PSU services may extend into ATC-controlled airspace** to enable UAM operations through ATC airspace or to landing areas.

- These **pre-approved, PSU-managed areas** and operations enable safe UAM operations **without active ATC management**.

- ATC will maintain the ability to **dynamically adjust or close** UOE areas (e.g., based on runway configuration changes or emergency situations).

Areas with Remaining Unknowns

<table>
<thead>
<tr>
<th>Flexibility of High-density Routes</th>
<th>Zero-airspeed Collision Avoidance</th>
<th>Selecting and Defining High-density Routes</th>
<th>Automation Relationship to Scalability</th>
<th>UML Transition</th>
<th>Location of Extensions into ATC-controlled Airspace</th>
</tr>
</thead>
</table>
Resiliency in airspace operations is the ability of the system to withstand a major disruption (within parameters) and recover in an acceptable timeframe. The system has incorporated an In-time Aviation Safety Management System (IASMS) which features monitor, assess, and mitigate functions. The monitor feature is critical as a control to detect adverse events and operations and includes aircraft health monitoring information and models, aircraft location data to ensure the aircraft is on its approved flight path, comparison of forecasted and actual weather conditions, and systems to identify and track potential non-cooperative traffic. These and many other features are offered by the PSUs, fleet and aerodrome operators, and SDSPs as safety enhancement features and use them as market differentiators. Redundant systems are a means for the UAM operations to respond appropriately as it utilizes backup systems to continue critical functions while the primary system recovers. Having more than one PSU within an urban area, pre-identified emergency landing areas, and/or backup communications also improve system resilience.
Management of fleets is largely left to the private sector to develop; however, traffic management is cooperative between PSUs and fleet operators in the PSU Network, which has implications on how fleet operators choose to manage their fleets.

Local regulators have input into where and when UAM aircrafts operate through local aerodrome laws and zoning ordinances.

Industry leverages technology applications and new methods for efficiently managing aircraft fleets and maximizing human productivity.

FAA authorizes traffic management services, industry will provide the services, and fleet operators will coordinate, execute, and manage operations in accordance with accepted standards and practices established by the FAA.

Areas with Remaining Unknowns

- Aerodrome Ownership
- Contingency Management
- Community Impact
- Cooperation with PSUs
Weather in urban environments is more challenging to characterize than weather outside the urban environment.

Urban environment induced micro-climates cause sharp changes in wind speed and directions at the scales of meters.

Urban heat island effects enhance thermal activity and cause notable changes in density altitude between downtown districts and airports in the suburbs or near large bodies of water.

To achieve an adequate degree of weather resiliency to contribute to reliable and cost-effective operations, a combination of airframe airworthiness improvements, smart siting of aerodromes, and a reduction in weather and wind uncertainty caused by urban weather is required.

The weather operations structure is a combination of policy, reporting on current weather conditions, forecasting future weather conditions, information distribution, and decision making.

Arriving at this structure was the result of work by the FAA, National Weather Service, NASA, DOD, the National Science Foundation’s National Center for Atmospheric Research, standards development organizations, industry, trade groups, and universities.
Key Issues for Further Exploration

<table>
<thead>
<tr>
<th>Unknowns</th>
<th>Key Issues for Further Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling Non-cooperative Aircraft</td>
<td>How will the PSU Network handle non-cooperative aircraft that enter the UOE? How will the associated situational awareness be disseminated to fleet operators in the UOE? Does ATC have a role in such situations?</td>
</tr>
<tr>
<td>Prioritization and Sequencing Criteria</td>
<td>How will aircrafts be prioritized within the UOE? What about for use of high-density routes or specific aerodromes? Will prioritization be first come first serve, performance-based, or operator-based? If a prioritization algorithm is used, is there a particular stakeholder or group of stakeholders who will be responsible for developing it?</td>
</tr>
<tr>
<td>Zero-airspeed Collision Avoidance</td>
<td>How will collision avoidance be managed, particularly for aircrafts that are hovering or operating at zero airspeed?</td>
</tr>
<tr>
<td>Selecting and Defining High-density Routes</td>
<td>How will high-density routes be defined? Will they be charted and by whom?</td>
</tr>
<tr>
<td>Redundant Systems Impact on Certification Times</td>
<td>How will requiring redundant systems on aircrafts impact the time it takes to obtain aircraft certification? How can this be mitigated?</td>
</tr>
<tr>
<td>Weather Sensor Requirements</td>
<td>Will weather sensors be required equipage on aircrafts? What additional weather infrastructure is needed to obtain adequate climate information given the unique microclimates that exist in urban areas?</td>
</tr>
</tbody>
</table>
Aircraft and Aircrew

Pillars

The UAM vision will only be achievable if everyone benefits.
Individual Aircraft Management & Operations

Scope and Focus

Safely operate UAM aircrafts in and around metropolitan areas while maintaining compliance with all required operational rules and procedures.

Barriers

- Safe Urban Flight Management
- Increasingly Automated Aircraft Operations
- Certification & Operations Approval
- Ground Operations & Maintenance
Individual Aircraft Management and Operations

Barrier: Safe Urban Flight Management

Develop capabilities for safe, efficient, and accommodating flight planning and execution in metropolitan areas, including navigation performance sufficient for medium complexity operations in urban environments, assuring controlled flight for safe contingency management (including cyber attacks), and compliance with regulations other constraints (such as noise limits).

NASA Vision ConOps

- **Sufficient actual navigational performance** to operate in metropolitan environments
- Automation ensures operations occur within a safe operating envelope
- **Advanced technology** such as detect and avoid (DAA) and digital vision enables operations in IMC
 - This includes operations around uncooperative obstacles (birds) and aircraft and unplanned obstacles (cranes, antennas, etc.)
- Robust **navigation systems allow aircraft to operate safely**, even in GPS-degraded/denied operating environments
- **Advanced aircraft technology** (CNSI, avionics etc.) and information exchange allow for performance-based operation

Areas with Remaining Unknowns

- Navigational Performance Requirements
- NOTAMs
- CNSI Requirements
- Off-Nominals & Contingency Operations
- Specific Equipage and DAA Technology
Individual Aircraft Management and Operations

Barrier: Increasingly Autonomous Aircraft Operations

Develop highly automated capabilities and associated operational procedures to enable cost-effective scalability by increasing the ratio of aircraft operations to human operators and support staff.

• **Highly automated aircrafts** capable of performing most operations with minimal human interaction
• **Increasingly automated capabilities** of aircrafts reduce cost for aircraft crew training and fleet operations while maintaining an equivalent level of safety
• **Advanced automation** compared to what is currently available will enable the aircraft to identify the lowest risk emergency landing alternative.

NASA Vision ConOps

Areas with Remaining Unknowns

- DAA Technology
- Certification of Automated Systems
- Training for Aircraft Crew
- Human Interaction Roles & Responsibilities
Develop a framework and corresponding methods of compliance for the holistic certification of advanced automation, humans, and operations of a UAM aircraft, as well as regulations and approval processes for commercial urban operations.

NASA Vision ConOps

- Certification likely occurs under the existing framework regulations (14 C.F.R. 121, 135, et al.)
- Advanced methods to test and certify high-levels of automation approaching artificial intelligence will likely be developed
- Certificated maintenance processes have been developed to ensure aircrafts are properly maintained
- Aircraft crew and maintenance professional training will include a curriculum that covers areas unique to UAM
- The aircraft crew will have sufficient training to meet their allocated requirement of identifying possible maintenance actions

Areas with Remaining Unknowns

- Holistic Certification
- Certification of Aircraft
- Certification of Aircraft Crew
- Certification of Operator
- Certification of Maintenance Facilities & Personnel
- Certification of Parts & Supply Chain
Develop guidance and requirements to ensure safe and efficient maintenance and routine aircraft handling between flights, including considerations for aerodrome design and operations.

NASA Vision ConOps

- **Ground operations at the aerodrome will be the responsibility of the aerodrome operator** who may contract with fleet operators and ground services to provide routine aircraft maintenance at the aerodrome, and maintenance, repair, and overhaul (MRO) providers.
- **Ground operations include an efficient way to recharge/refuel aircraft** in a manner that ensures safe operation and ensures the safety of aircraft crew, ground services, and passengers.
 - May include an automated or aircraft crew safety briefing.
 - Passengers are guided safely through the aerodrome environment and around safety hazards.
- **MRO facilities will provide both minor and major maintenance** supplied by secure certificated supply chains.
 - The types of services provided at aerodromes may be constrained by the location of the aerodrome and the level of traffic at the aerodrome.

Areas with Remaining Unknowns

- Ground Services Training
- Minimum Level of Maintenance Needed at Aerodromes
- Supply Chain Certification
- Non-Maintenance Services at Aerodromes
Individual Aircraft Management & Operations

Key Issues for Further Exploration

<table>
<thead>
<tr>
<th>Unknowns</th>
<th>Key Issues for Further Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Nominals & Contingency Operations</td>
<td>How will off-nominal situations be managed and what is the role of the aircraft crew? How does this differ if there is no crewmember onboard the aircraft?</td>
</tr>
<tr>
<td>DAA Technology</td>
<td>What are the key outstanding research questions that remain for detect and avoid? What will be the requirements for these systems in the UAM context?</td>
</tr>
<tr>
<td>Training for Aircraft Crew & Operator</td>
<td>What amount of flight hours and educational training requirements will there be for aircraft crews, fleet operators, and maintenance professionals? How does the training compare to that of a traditional pilot? How does it differ?</td>
</tr>
<tr>
<td>Human Interaction Roles & Responsibilities</td>
<td>What is the aircraft crew capability? How is automation envisioned to enable this? Does it rely on there being someone onboard the aircraft?</td>
</tr>
<tr>
<td>Holistic Certification</td>
<td>How will aircrafts, fleet operators, aircraft crews, and maintenance professionals/facilities be certified? Can occur using the existing framework or are new regulations needed? How will automation be certified?</td>
</tr>
<tr>
<td>Supply Chain Certification</td>
<td>How can the integrity of the supply chain be ensured?</td>
</tr>
</tbody>
</table>
Aircraft Development & Production

Scope and Focus

Design, certify, and produce airworthy, mission-capable, integrated aircrafts that operate safely in all weather conditions required by the mission, with adequate passenger comfort and sufficiently low levels of noise.

Barriers

- Aircraft Design & Integration
- Airworthiness Standards & Certification
- Aircraft Noise
- Weather-tolerant Aircrafts
- Cabin Acceptability
- Manufacturing & Supply Chain
Aircraft Development & Production

Barrier: Aircraft Design and Integration

Develop “mission-capable,” integrated aircrafts with automated flight critical systems that are compatible with Aerodromes and meet all required attributes simultaneously to be safe; operationally and economically competitive with competing transportation modes; environmentally responsible; and secure from digital attack.

NASA Vision ConOps

• Electric propulsion systems and lightweight structures enable aircraft configurations tailored to UAM missions, with lower manufacturing and operational cost and lower noise signatures (compared to aircrafts in the 2010s).
• Fly-by-wire control systems enable new smaller UAM aircraft configurations to take advantage of electric propulsion.
• Current aircraft fuel reserve requirements will be modified to account for the short distance of UAM flights.
• High-speed computing and advanced automation accelerate development cycles to efficiently bring promising concepts to market.
• Aircraft design eliminate electromagnetic interference (EMI)/radio frequency interference (RFI) between onboard systems, offboard systems, and other radio frequency-emitting devices in urban areas.

Areas with Remaining Unknowns

- Resiliency to EMI/RFI
- New Testing and Verification Approaches
- Fuel Reserve Requirements
Aircraft Development & Production

Barrier: Airworthiness Standards & Certification

Develop a means of initially certifying and allowing for continuing certification of novel and/or rapidly evolving aircrafts in a cost- and time-effective manner, including developing certification requirements and means of compliance for aircrafts and propulsion systems as well as ensuring harmonious international regulations and standards.

NASA Vision ConOps

• Enhance existing regulatory framework, where appropriate, for the certification of UAM aircrafts.
• Some certification requirements may be updated. For example, rather than freeze the configuration, there may be ways for the process to be more adaptable so that manufacturers can certify as they build.
• Standards for UAM aircrafts incorporate unique elements of UAM operations such as automation/artificial intelligence, distributed electric propulsion, and interoperability with the UOE.
• Approaches for aircraft and component certification for UAM will keep pace with accelerating technology development.
• Surveillance standards, standards for detect and avoid, and maintenance/inspection standards will be developed.
• New testing and certification standards and are harmonized internationally so that flight operations are not cost-prohibitive.

Areas with Remaining Unknowns

Standards for New Technology Certification DAA Standards
Aircraft Development & Production

Barrier: Aircraft Noise

Develop aircraft designs and technologies to reduce aircraft noise during all phases of flight; including taxi, take-off/departure, approach/landing, and cruise.

NASA Vision ConOps

- Aircrafts designed to meet **noise levels that are acceptable to the communities in which they operate**.
- Noise level only slightly above the level of **ambient noise**.
- Aircraft noise reduced through **advanced design** and incorporation of **noise reduction technologies** enables quiet aircraft operations including **distributed electric propulsion** and **low-noise rotors**.
- Community noise **measured in the context of a fleet** in addition to measuring noise from a single aircraft.
- Noise standards at UML-4 are reduced compared to UMLs 1 through 3 and will continue to **evolve**.

Areas with Remaining Unknowns

- **Noise Standards**
Develop aircrafts that are capable of safely flying into and maintaining control in poor, yet frequently experienced, weather conditions, including moderately high winds, low visibility, and high density altitudes.

NASA Vision ConOps

- UAM aircrafts operate safely in weather and climate conditions experienced in the urban environment, such as turbulence due to thermal heating/cooling or wind shear due to obstacles.
- Designed for the characteristics of the local markets in which they operate, such as Denver’s altitude, Phoenix’s temperature, and Chicago’s wind.
- Aircrafts designed with performance consummate with the weather expected in the location in which they operate.

Areas with Remaining Unknowns

Weather Monitoring
Aircraft Development & Production

Barrier: Cabin Acceptability

Develop aircrafts that provide an acceptable level of passenger comfort and payload protection including ride quality, cabin noise, interior climate control, and vibrations.

NASA Vision ConOps

- Cabins **safe for passengers and cargo** in both nominal and off-nominal events.
- **Seat belts** that are effective and simple to use and **ergonomically designed spaces** reduce injuries in an accident.
- **Crashworthiness principles** and safety technologies such as **energy absorbing seats** support occupant survivability in crash landings.
- Cabin design will **minimize vibration and noise during turbulence, provide climate control, and assure passenger safety and comfort**.
- Cabins designed so that necessary maneuvers **do not provide significant adverse impact to passenger comfort**.
- Use of **consumer research** and testing will promote strong understanding of **metrics for passenger acceptance**.
- Factors considered in cabin design include **ambient noise, illumination, vibration, temperature**, and **seating configuration**.
- Safe and efficient access to the cabin provided for passengers—including **children and persons with disabilities**.
- Support for **communication between passengers** by active or passive noise cancellation, personal mobile phones for convenience.

Areas with Remaining Unknowns

- **Minimum Cabin Design Requirements**
- **Metrics for Cabin Acceptability**
- **Cabin Monitoring**
Aircraft Development & Production

Barrier: Manufacturing & Supply Chain

Develop safe, certifiable, high-volume, affordable, secure and rapid manufacturing capabilities as well as a supporting supply chain ecosystem that is robust and scalable.

NASA Vision ConOps

- **Use of advanced manufacturing techniques** combine practices and processes developed across the automotive, aerospace, and other industries.
- Manufacturing processes supported by integrated design, modular configurations, and advanced materials, and new techniques (e.g., 3D printing).
- **Supply scaled** to the number of aircrafts anticipated, flexible aircraft configurations.
- **Strict quality and authenticity standards verified by electronic processes** for tracking, providence, and authentication of safety-critical components (e.g., block chain, digital authentication) and to protect against cyber and physical security threats.
- Approaches for supply chain qualification keep pace with levels of production for manufacturing high volumes of aircrafts.
- **Less vertical integration** and dependency on single suppliers in supply chains; greater diversity of manufacturers and distributors of parts and materials.
- **Close integration** between the OEMs, fleet operators, and manufacturers to optimize supply chain management and control costs.

Areas with Remaining Unknowns

- Advanced Manufacturing processes
- Production Rates
- Secure Supply Chain
- Supply Chain Diversity
Aircraft Development & Production

<table>
<thead>
<tr>
<th>Unknowns</th>
<th>Key Issues for Further Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resiliency to EMI/RFI</td>
<td>How can aircrafts be designed to be resilient from EMI/RFI, both of which are prevalent in urban environments?</td>
</tr>
<tr>
<td>New Testing & Verification Approaches</td>
<td>Will new testing methods be employed for UAM aircrafts or will testing occur using existing methodologies?</td>
</tr>
<tr>
<td>Fuel Reserve Requirements</td>
<td>How will fuel requirements be determined for different UAM aircrafts?</td>
</tr>
<tr>
<td>Certification</td>
<td>Will there be UAM-specific regulation for certification or will certification occur within the existing framework?</td>
</tr>
<tr>
<td>Noise Standards</td>
<td>How will noise standards be determined? Will these standards be stricter than they are for traditional manned aircraft? Will local communities have a role (or be consulted) in determining noise standards?</td>
</tr>
<tr>
<td>Weather Monitoring</td>
<td>Will aircrafts be designed to include weather sensors? Will weather sensors be mandatory? What type(s)?</td>
</tr>
<tr>
<td>Metrics for Cabin Acceptability</td>
<td>What metrics or factors will be used to determine cabin acceptability? Will cabin acceptability differ for passengers on UAM aircrafts than for passengers flying on traditional commercial aircraft?</td>
</tr>
<tr>
<td>Secure Supply Chain</td>
<td>What are the security risks associated with aircraft production? How will parts be authenticated?</td>
</tr>
</tbody>
</table>

Noise Standards

- How will noise standards be determined?
- Will these standards be stricter than they are for traditional manned aircraft?
- Will local communities have a role (or be consulted) in determining noise standards?

Fuel Reserve Requirements

- How will fuel requirements be determined for different UAM aircrafts?

Key Issues for Further Exploration

- Will new testing methods be employed for UAM aircrafts or will testing occur using existing methodologies?
- Will there be UAM-specific regulation for certification or will certification occur within the existing framework?
- Will aircrafts be designed to include weather sensors? Will weather sensors be mandatory? What type(s)?
- What metrics or factors will be used to determine cabin acceptability? Will cabin acceptability differ for passengers on UAM aircrafts than for passengers flying on traditional commercial aircraft?
- What are the security risks associated with aircraft production? How will parts be authenticated?
Community Integration Pillar

The UAM vision will only be achievable if everyone benefits.

Image Source: NASA UAM Grand Challenge Industry Day
Community Integration

Scope and Focus

Achieve public acceptance of UAM aircraft operations in and around metropolitan areas by addressing UAM-related social concerns such as safety, security, affordability, noise, privacy, and liability.

Barriers
- Public Acceptance
- Supporting Infrastructure
- Operational Integration
- Local Regulatory Environment & Liability
Achieve public acceptance of the UAM concept overcoming concerns regarding safety, demonstrating public benefit, and addressing community and environmental impacts.

NASA Vision ConOps

- **Safety**
 - The foundation built at UMLs 1-3 enables safe passenger-carrying operations at UML-4.
 - The UAM industry builds confidence by proactively identifying hazards and their safe resolutions.
 - Employment by UAM manufacturers, fleet operators, PSUs, SDSPs and others in the UAM ecosystem creates an equitable mix of technical and non-technical jobs and spurs economic development.
 - Successful demonstration of UAM at earlier UMLs of operations such as medical transport proves the concept and enables public acceptance, which leads to higher passenger usage (which will drive down cost on a per ride basis) and decrease public resistance.
 - UAM enables metro commuters to travel farther and faster than today, potentially reducing commuter time and congestion.
 - At UML-4, aircrafts are quieter than previous UMLs due to the evolution of technology.
 - Regulators will have established aircraft and fleet noise standards and worked with communities to address localized concerns through flight route planning, temporal modifications, and flight procedures.
 - Mitigating privacy concerns occurs through effective community engagement and builds upon privacy policies being developed for unmanned aircraft systems (UAS) today.
 - Emission levels conform with existing standards and development of new standards is iterative and compliant with regulations.

Public Familiarity with UAM

Emissions Standards

Economic Impact

Mitigating Visual Impacts

Noise Standards

Demonstrating Affordability

Demonstrating Safety

Areas with Remaining Unknowns
Community Integration

Barrier: Supporting Infrastructure

Develop and implement the required supporting infrastructure for integrating UAM operations into metropolitan areas, including utilities, data networks, and Aerodromes.

NASA Vision ConOps

- The physical infrastructure for aerodromes, navigation, and data networks can be **publicly owned**, **privately owned**, or part of a **public-private partnership**.
- Municipalities, fleet and aerodrome operators, and utility companies **cooperatively** determine how much **infrastructure investment** is required to sustain a UAM market and decide **who bears the costs**.
- Fleet and aerodrome operators **coordinate with municipalities and utility companies** to ensure **sufficient power** is available for aircraft charging operations.
- Emergence of new and innovative **partnership models** between fleet and aerodrome operators and energy companies may offer opportunities to simultaneously **satisfy energy needs** and **incorporate alternative energy sources**.
- UML-4 includes UAM “**purpose-built**” aerodrome structures in addition to **preexisting, repurposed** aerodromes (e.g., a heliport retrofitted to be a aerodrome or one that serves both helicopters and UAM aircrafts).
- Aerodromes are designed and built with safety and security infrastructure in place to ensure safety and security for passengers.
- **Passenger demand** and **scalability** are critical for determining **aerodrome location & infrastructure requirements**.
- Communities can control UAM growth areas via **zoning** ordinances.

Areas with Remaining Unknowns

- Financing Infrastructure Upgrades
- Data Network Ownership & Responsibility
- Energy Infrastructure Requirements
Community Integration

Barrier: Operational Integration

Implement multi-mode transportation integration and address operations-related community impacts, including passenger/cargo security, protection from malicious use of aircrafts and denial of service attacks, and graceful degradation of the transportation ecosystem in reaction to disruption of UAM services.

NASA Vision ConOps

• At UML-4, operational integration creates opportunities to integrate UAM with other transportation modes, including autonomous cars, to allow for a seamless transportation experience.

• Advanced security technologies expedite passenger and cargo screening.

• UAM ecosystem is built to address the vulnerabilities of automated systems and includes safety measures to defend against and mitigate threats such as cybersecurity attacks.

• The transportation ecosystem at UML-4 includes mitigation strategies to account for service disruptions on any particular mode, such as strategically placing aerodromes in order to prevent overloading of any single mode of transportation in event of service disruption and graceful degradation of the entire transportation ecosystem in event of disruption of one or more of the various modes.

Areas with Remaining Unknowns

Multi-Modal Integration Cybersecurity Security Screening & Boarding
Community Integration

Barrier: Local Regulatory Environment & Liability

Enact laws and regulations for governing UAM operations, such as zoning, privacy, and noise, striving for consistency across operating locations (i.e., states, municipalities) and develop a framework for the analysis of liability associated with the development and operation of increasingly automated and autonomous systems.

NASA Vision ConOps

- The legal and regulatory framework and case law incorporates the roles and authorities of each: FAA, DOT, other federal agencies (e.g., EPA and FCC), state government, and local/city/municipal government.

- FAA maintains its role as federal regulator, and while federal preemption applies, rules that do not conflict with, or occupy the “field” of, a federal regulation/regulator may be promulgated at the state and/or local level.

- Because UAM aircrafts operate so close to where people live and work, much local involvement and public interest in the rulemaking process surrounding UAM is anticipated.

- By UML-4, FAA and industry have improved forums and processes used in 2010s to engage state and local leaders to a greater extent than they did in the 2010s in order to harmonize regulations/ordinances promulgated at the state and local level avoiding a patchwork of rules.

- Communities maintain their power to control the development of ground infrastructure (aerodromes, weather sensors, etc.) through zoning ordinances and noise through noise ordinances.

- Laws and other means to assign liability will be based upon current common carrier liability principles and will be updated to address the utilization of autonomous systems.

Areas with Remaining Unknowns

- Federal and Local Government Engagement
- Role of Local Governments
- Harmonization of Local UAM Regulations
Community Integration

<table>
<thead>
<tr>
<th>Unknowns</th>
<th>Key Issues for Further Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Familiarity with UAM</td>
<td>How can the public be made aware of UAM’s benefits in order to promote public acceptance?</td>
</tr>
<tr>
<td>Mitigating Visual Impacts</td>
<td>How can stakeholders respond to public concern regarding visual noise created by UAM operations and aerodromes?</td>
</tr>
<tr>
<td>Noise Standards</td>
<td>How can public concern regarding noise be mitigated? Will the public’s threshold of acceptability for UAM-related noise be different than their threshold for noise created by commercial aviation?</td>
</tr>
<tr>
<td>Demonstrating Safety</td>
<td>How can UAM stakeholders demonstrate UAM safety?</td>
</tr>
<tr>
<td>Financing Infrastructure Upgrades</td>
<td>How can public-private partnerships be utilized in financing infrastructure and aerodromes for UAM? Is this the best solution? What alternatives are available?</td>
</tr>
<tr>
<td></td>
<td>How will aerodromes be funded?</td>
</tr>
<tr>
<td>Energy Infrastructure Requirements</td>
<td>What tools or analyses can municipalities use/perform to determine how much energy infrastructure is needed to support a metropolitan UAM market?</td>
</tr>
<tr>
<td>Multi-Modal Integration</td>
<td>What needs to occur to enable operational integration of UAM with other forms of transportation?</td>
</tr>
<tr>
<td>Security Screening & Boarding</td>
<td>How will passengers and cargo be screened and processed at aerodromes?</td>
</tr>
<tr>
<td>Federal and Local Government Engagement</td>
<td>How can federal regulators better engage local government as the UAM ecosystem develops? What about the reverse?</td>
</tr>
</tbody>
</table>
The UAM vision will only be achievable if everyone benefits.
UAM Ecosystem Key Responsibilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Crew</td>
<td>A human or humans partially responsible for the safe flight of the aircraft who share this responsibility with some automated system(s). An aircraft crew member is not a traditional pilot, but rather performs the role of aircraft operator, multi-aircraft operator, or aircraft steward. An aircraft operator may be either onboard or off-board, a multi-aircraft operator is located off the aircraft, and an aircraft steward is located onboard. One aircraft crew member is designated the PIC (or RPIC) at a time, though the PIC or RPIC may change during flight. Typically, the aircraft crew work on behalf of the fleet operator to support UAM operations. A fleet operator can utilize a traditional pilot, a single aircraft crew member, or a combination of aircraft crew members as required for safety in light of their particular business model. For example, the use of an onboard aircraft crew may bolster public acceptance by providing human interaction throughout the UAM experience.</td>
</tr>
<tr>
<td>FAA</td>
<td>Regulatory and oversight authority for all civilian aircraft operations in the NAS. Collaborates with the PSU Network.</td>
</tr>
<tr>
<td>Fleet Operator</td>
<td>The fleet operator of the aircraft who hires the aircraft crew (if the aircraft fleet operator is not also the aircraft crew) and in some instances performs dispatch duties. A fleet may consist of one aircraft.</td>
</tr>
<tr>
<td>Flight Information Management System (FIMS)</td>
<td>FIMS is an interface for data exchange between FAA systems and UTM/UAM participants. FIMS enables exchange of airspace constraint data between the FAA and the PSU Network. The FAA also uses this interface as an access point for information on active UAM operations. FIMS also provides a means for approved FAA stakeholders to query and receive post-hoc/archived data on UAM operations for the purposes of compliance audits and/or incident or accident investigation. FIMS is managed by the FAA and is a part of the UAM ecosystem.</td>
</tr>
</tbody>
</table>
UAM Ecosystem Key Responsibilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providers of Services to UAM (PSU)</td>
<td>Public or private (e.g., third-party) entities that provide ATC and flight safety services under rules and regulations established by the FAA. Services provided by PSUs include routing, traffic deconfliction, operational constraints, modifications, notifications, and information. A PSU is analogous to a USS in the UTM paradigm and is contracted by the fleet operator (i.e., airspace user).</td>
</tr>
<tr>
<td>PSU Network</td>
<td>The amalgamation of PSUs connected to each other and exchanging information. Each PSU is required to share certain information with the other PSUs to provide a complete operating picture and situational awareness.</td>
</tr>
<tr>
<td>Supplementary Data Service Providers (SDSPs)</td>
<td>Data sources external to the PSUs that supplement the decision-making and information-sharing of the PSU and fleet operator. These can include weather sources and ground risk assessments, among others. PSUs can access SDSPs via the PSU Network for essential or enhanced services (e.g., terrain and obstacle data, specialized weather data, surveillance, constraint information). SDSPs may also provide information directly to PSUs or fleet operators through non-PSU Network sources (e.g., public or private internet sites).</td>
</tr>
<tr>
<td>UAM Aerodrome Operators</td>
<td>UAM aerodrome operators are entities responsible for ensuring the safety of individual TLOA, as well as any ground services (embarkation, disembarkation, maintenance, etc.) provided at a UAM aerodrome. UAM aerodrome operators may be private or public entities.</td>
</tr>
</tbody>
</table>
UAM Concept Maturation & Next Steps

The UAM ConOps is a living document that coincides with the maturation of the UAM concept. These concepts and associated documentation will be updated at appropriate intervals. Updates could also align with results from research, test, industry trends, federal/city/state/local policy and regulations, and community input.

Baseline ConOps Release

- Version 1.0 of the UAM Vision ConOps will be released December 2020
- This document will be released into the public domain and serve as the “Vision” ConOps for UAM at UML-4

AAM Ecosystem Working Groups

- Each AEWG will address domain specific UAM concepts
- The AEWGs will serve as the main forum for concept discussion, feedback, and forward work

UAM Concept Maturation

- UAM concepts will mature as government, academia, industry, & community coalesce
- As various UAM activities are realized, such as research & test, the UAM concepts will be updated