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Onboard far-field aircraft detection is needed for safe non-cooperative traffic mitigation 

in autonomous small Unmanned Aerial System (sUAS) operations. Machine vision systems, 

based on standard optics and visible light detectors, possess the ideal size, weight, and power 

(SWaP) requirements for sUAS. This work presents the design and analysis of a novel aircraft 

detection and tracking pipeline based on optical sensing alone. Key contributions of the work 

include a refined range inequality model based on sensing and detection with FAA well-clear 

separation assurance distances between aircraft in mind, a detector fusion method to 

maximize the benefit of two image detectors, and a comparative analysis of Linear Kalman-

filtering and Extended Kalman-filtering to seek optimal tracking performance. The pipeline 

is evaluated offline against multiple intruder platforms, using two types of flight encounters: 

multirotor sUAS vs. fixed-wing sUAS and multirotor sUAS vs. general aviation (GA) plane. 

Analysis is restricted to the rate-limiting head-on and departing collision volume cases 

vertically separated for safety. Results indicate that it is feasible to use the proposed optical 

spatial-temporal tracking algorithm to provide adequate alerting time to prevent penetration 

of well-clear separation volumes for both sUAS and GA aircraft. 
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Nomenclature 

𝑑!"#  =   pixel pitch 

𝐷$%&  =   Number of Ground Truth Detected in Sortie 

𝐷&  =   Total Number of Detections in Sortie 

𝐷'$%&  =   Number of Unique Ground Truth Detected in Sortie 

f  =  focal length 

𝐺𝑇&  =  Total Number of Ground Truth Labels in Sortie 

𝑅())  =  detect and avoid range 

𝑅*+,+-, =  detecting range 

𝑅+./*+ =  evading maneuver range 

𝑅0  =  initial detection range  

𝑅1/23  =  warning range   

𝑡/.4"*  =  time to compute the avoidance maneuver 

𝑡())  =  time to complete detect and avoid maneuver 

𝑡*+,+-,  =  time of detection 

𝑡+./*+  =  time to complete evading maneuver  

𝑡0  =  initial detection time 

TUGTS  =   number of Unique Ground Truth Tracked in Sortie 

x,y  =  pixel coordinates 

X,Y,Z  =  global coordinates 

𝑣-546+  =  aircraft closing velocity 

I. Introduction 

HE rapid expansion of small Unmanned Aerial System (sUAS) commercial applications such as package 

delivery, aerial inspection, and emergency response has created a need for a safe and on-board traffic avoidance 

systems [1].  The number of private (or “model”) sUAS and commercial sUAS in the United States are expected to 

reach 1.39 to 1.59 million and 0.60 to 1.20 million by 2024, respectively [2]. sUAS traffic management is a challenging 

multi-faceted problem because of low altitudes and the density of shared airspace for general aviation, sUAS, and 
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recreational vehicles operated by the general public. The problem is further exacerbated by commercial interests such 

as package delivery, commercial videography, and performance art, all leading to a high density of sUAS operating 

in a low altitude urban environment.  To this end, the Federal Aviation Administration (FAA) and National 

Aeronautics and Space Administration (NASA) are working together, in partnership with private industry, to develop 

a Concept of Operations for UAS Traffic Management (UTM) that focuses on traffic management operating below 

400 ft.  

 Multiple approaches of Detect and Avoid (DAA) methods are being investigated for sUAS traffic management, 

such as, wireless communication links [3], radar [4], infrared sensors [5], and vision systems [6]. Each technique has 

strengths and weaknesses. On-board wireless communication will suffer from signal dropout in dense urban 

environments where line-of-sight may be disrupted by skyscrapers along with GPS signal. Ground-based wireless 

communication systems (e.g., cellular networks) may have too much latency for safety-critical applications of sUAS 

missions.  Radar sensors tend to be heavy relative to sUAS payloads.  Infrared and optical sensors require line-of-

sight and produce degraded information in weather conditions such as fog or cloud cover.   

 This work proposes a novel method of detection and tracking for low-altitude far-field sUAS and General Aviation 

(GA) aircraft using image-differencing and morphological detectors, which are evaluated against a well-clear 

definition. The detections are used as input to a Kalman filter for tracking of intruder aircraft. To the best of our 

knowledge, there is no work in the literature that has integrated the difference detector and horizon detector for an 

application as in this paper. The pipeline is evaluated for two cases: 1) fixed-wing sUAS vs. multirotor camera carrier, 

and 2) GA SR22 vs. multirotor camera carrier.  This paper is organized as follows: Section II present background 

summary of alternate sUAS detection techniques and prior work completed at NASA, Section III provides 

experimental design describing aircraft, hardware, flight paths, and the detection and tracking pipeline, Section IV 

discusses results, Section V provides conclusions, and Section VI describes future work. 

II. Background  

Despite two decades of research, DAA for sUAS remains an open area of research. Optics-based DAA systems 

using cameras and computer vision techniques receive continued attention in the literature. The authors in [7] 

compared optical based tracking systems to pulsed radar in manned aircraft DAA using 16 head-on encounter 

scenarios with varying horizontal separation distances, vertical separation distances, and weather conditions. Extended 

Kalman Filter (EKF) tracking was employed throughout.  Results indicated that 1) radar had decreased sensitivity to 

changes in weather conditions, 2) Electro-Optical (EO) systems had superior range and sensitivity in favorable 
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conditions, 3) first detection distances for both radar and EO system varied substantially across the encounter 

scenarios, which they attributed to the variations in flight encounter approaches and weather conditions, and 4) EO 

systems detected the intruder before the radar system in 6 of the 16 encounter scenarios. While this work demonstrates 

the feasibility of using onboard sensing for DAA or GA intruder and GA ownship encounters, it does not investigate 

DAA problem for sUAS multirotor vs. sUAS fixed-wing or sUAS vs. manned aircraft encounters, which is needed to 

ensure safe autonomous operations.  

The authors in [8] propose that electro-optical sensors are well-suited for DAA due to their SWaP properties.  Their 

DAA system was mounted in a ScanEagle (military grade sUAS) and the intruder aircraft was a Cessna 172R.  The 

DAA system operated in real-time, where the detection algorithm used GPS/INS based image stabilization to mitigate 

for aircraft vibration, wind gusts, and turbulence.  Point features were extracted from the stabilized imagery using 

bottom-hat morphological filter, and then Hidden Markov Models (HMM) were applied for temporal filtering. A total 

of 22 head-on collision-course encounters were conducted, with average detection ranges of 1.48 km for a 5mm lens 

and 2.14 km for an 8 mm lens, which corresponded to 19.2 and 27.7 seconds until collision respectively for the 150 

knots closing speed. These detection results were expected given the angular resolution of the system. Greater ranges 

would be possible with longer focal length lenses at the expense of field of view. An altitude separation of 500 ft was 

used in the experiments and the intruder aircraft was always flown above the horizon. The large altitude separation 

used in this work is inadequate for evaluating sUAS vs. other aircraft encounters because it does not closely model a 

collision geometry.  

The authors in [9] collected video data of manned aircraft for three clear and four cloudy days for head-on and 

tail-chase scenarios.  Their method achieved no false detections in 6.6 hours out of 14.1 hours of flight data. Two 

distinct approaches to temporal processing were employed: Viterbi-based filtering and HMM for object detection.   

However, the technique uses GA vs. GA encounters with much larger vertical separation of 152 meters to satisfy 

safety need for GA vs. GA flight-ops.  

The authors in [10] proposed separate detection strategies for above- and below- horizon targets. For above the 

horizon cases, morphological close-minus-open filters were used, whereas differencing was used below the horizon, 

in both cases to extract keypoints followed by an EKF for inter-frame target tracking. The pipeline was tested on 

manned aircraft in 4 head-on and 6 crossing scenarios. The first detection ranged from 1350 to 2960 meters and their 

algorithm achieved tracking at distances ranging from 980 to 2588 meters.  The authors found that the morphological 

feature detector generated many false positives when used below the horizon and the difference pipeline achieved 
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poor range performance. Data collected onboard sUAS is needed to develop onboard sUAS collision avoidance 

systems because they have different maneuvering capabilities, vibrational environment impacting sensors, more 

dynamic pitching, and tend to operate at lower altitudes with closer proximity to clutter. 

The authors in [11] applied a deep learning technique on data set acquired from a delta wing sUAS imaging up to 

8 sUAS simultaneously, with 1920×1080 or 1280×960 resolution cameras without describing the programmable focal 

length setting for the fisheye lenses. Detection consisted of image differencing followed by a Shi-Tomasi corner 

extractor on images stabilized by an inter-frame homography calculation. Classification was performed via a 

convolutional neural network on image patches extracted around the target. This deep-learning approach was not 

developed with consideration to an avoidance model, which is needed to meet an aviation authority’s definition of 

well-clear to keep aircraft safely separated. 

The work in [12] surveyed 8 different feature detectors applied to imagery of a Harvard Mark IV trainer from a 

Bell 206 helicopter ownship equipped with three 5 MP cameras and analyzed with respect to true positive rate, false 

positive rate, earliest detection range, and average run-time per frame based on server with 256 GB DRAM, SSD, and 

two Intel Xeon 16 core 2.2 GHz CPUs. For head-on, the SIFT feature detector performed with the highest true positive 

rate, Shi-Tomasi with the lowest false positive rate, and the FAST feature detector with maximum detection range of 

2.0 km. For a 10-degree offset collision geometry, the FAST feature detector performed with the highest true positive 

rate and maximum detection range, and the Harris corner detector performed with the lowest false detection rate. The 

FAST detector had the fastest average run-time per frame by two orders of magnitude at 0.002 seconds. This work 

does not analyze the low-altitude environment and does not include sUAS intruder aircraft. 

The NASA prior work in [6] utilized fisheye lens with 4k action cameras 170º FOV from aerial sUAS vs. sUAS 

detection and that dataset is available for download here [13]. Camera carrier sUASs included multirotor and fixed-

wing sUAS.  The intruder sUAS included multirotor sUAS and two types of fixed-wing sUAS. The intruder sUAS 

was not visible for a large portion of this dataset due to wide-angle lens on the action camera and the testing 

environment aimed at detecting of the intruder at distances over 1000 feet. An image differencing approach utilizing 

generated limited detection results. Most detections occurred when the intruder sUAS was performing a high-profile 

maneuver above the horizon and near the minimum separation distance. The work in [14] reports a high sUAS 

detection rate with a very high false positive rate for one of the videos using the NASA dataset. Similar flight tests 

were repeated using 41-degree FOV lenses and results demonstrated substantial improvement with detection in [15].  
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III. Contributions 

This work presents an improved NASA machine vision detection and tracking pipeline developed in [9] [11] and 

[15] with the introduction of fusing the morphological and difference detections, and the implementation of an 

Extended Kalman Filter (EKF). In addition, robust analysis is conducted to test the efficacy of the pipeline based on 

a range inequality model. Furthermore, sensitivity analysis on the detection and tracking parameters is conducted. 

Unlike much of the prior vision-based detection and tracking work in sUAS DAA, this work tests both head-on 

collision geometry for GA and sUAS-fixed wing from ownship sUAS multirotor with onboard sensors, evaluates the 

detection and tracking system using well-clear separation distances, and systems level performance metrics described 

in the experimental methodology section. This work tests for head-on collision geometries at low-altitudes and long 

ranges (3.5 to 1 km), which is a typical sUAS operating environment. The head-on collision geometries are the worst-

case scenario from a collision sensing perspective and also where image-based trackers are at their worst because 

changes in image space are very small. 

IV.  Techniques 

A. Range Inequality Models 

 A set of minimum operational performance standards (MOPS) issued by a civil aviation authority is necessary to 

establish a minimum performance requirement for detection of aircraft in a DAA system. At present, no civil aviation 

regulatory agency has adopted or published a performance requirement for electro-optical detection systems. This 

work proposes a quantitative approach towards establishing requirements and bounds on the detection subsystem of 

DAA. The concept, originally defined in [16], is extended here in multiple ways.  

 

Fig. 1 Range Inequality Model. 
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 Fig. 1 defines four ranges as critical distance metrics, namely 𝑹𝟎, 𝑹𝑫𝑨𝑨, 𝑹𝒘𝒂𝒓𝒏 and 𝑹𝒆𝒗𝒂𝒅𝒆. These ranges (or 

distances) are linked by an inequality relationship (Eq. 1), which quantitatively ties the design characteristic of the 

sensing system (𝑹𝟎) to the performance of the detection algorithm (𝑹𝑫𝑨𝑨) in relation to the performance of the 

avoidance algorithm (𝑹𝒘𝒂𝒓𝒏 and 𝑹𝒆𝒗𝒂𝒅𝒆). The lower bound to the DAA algorithm is defined by the time at which a 

warning must be issued to the pilot in command or autopilot system (𝑹𝒘𝒂𝒓𝒏), which must happen before a collision 

maneuver can be safely initiated (𝑹𝒆𝒗𝒂𝒅𝒆) given as, 

 

𝑹𝟎 ≥ 𝑹𝑫𝑨𝑨 ≥ 𝑹𝒘𝒂𝒓𝒏 ≥ 𝑹𝒆𝒗𝒂𝒅𝒆.																																																																						(1) 

 

 In Eq. 1, 𝑹𝟎 is the principal design parameter for the sensing system driven by angular and range resolution 

parameters of a given sensor. It is typically limited by system transfer functions including sensor point-spread effects, 

platform motion, and atmospheric effects such as attenuation and scattering. For an electro-optical system, 𝑹𝟎 is a 

function of the angular resolution and target contrast. The former is derived from the lens focal length and pixel pitch 

of the detector array, while the latter is limited by optical and environmental transfer functions, including atmospheric 

effects such as photon extinction and scattering at the range limit. 𝑹𝑫𝑨𝑨	is the performance characteristic of the DAA 

system. Specifically,  𝑹𝑫𝑨𝑨 is the range at which a target is reported as a collision-course intruder by the processing 

algorithm and a suitable maneuver is calculated by the avoidance system. Specifically, 𝑹𝑫𝑨𝑨 is defined as follows 

(Eq. 2), 

 

𝑹𝑫𝑨𝑨 	= 	𝑹𝟎 	−	𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ 	 (𝒕𝒅𝒆𝒕𝒆𝒄𝒕 + 𝒕𝒂𝒗𝒐𝒊𝒅).																																																															(2) 

 

Here, 𝒗𝒄𝒍𝒐𝒔𝒆 is the closing rate between ownship and intruder, 𝒕𝒅𝒆𝒕𝒆𝒄𝒕 is the time required by the detect and track 

algorithm to produce a collision course intersection with sufficient confidence, and 𝒕𝒂𝒗𝒐𝒊𝒅 is the time required by the 

avoidance algorithm to select an optimal maneuver to successfully evade a collision. 𝒗𝒄𝒍𝒐𝒔𝒆 is a function of the collision 

geometry, determined by ownship and intruder headings and airspeeds. There exists an inherent tradeoff between 

𝒕𝒅𝒆𝒕𝒆𝒄𝒕 and 𝒕𝒂𝒗𝒐𝒊𝒅 as the more time dedicated to the detection algorithm means less time to compute a suitable 

avoidance solution. A fast algorithm may reduce 𝒕𝒅𝒆𝒕𝒆𝒄𝒕 at the expense of reduced track precision, track accuracy, and 

a higher number of false tracks, which may prove detrimental to the efficacy of the avoid solution. Therefore, careful 

tradeoffs must be made in a given DAA pipeline to balance accuracy with speed. 
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 𝑹𝒆𝒗𝒂𝒅𝒆 is the range at which a maneuver must commence if the ownship is to successfully avoid the collision, and 

the corollary 𝒕𝒆𝒗𝒂𝒅𝒆 is the time interval between the start of the maneuver and the closest point of approach. 𝑹𝒆𝒗𝒂𝒅𝒆 

and 𝒕𝒆𝒗𝒂𝒅𝒆 are dependent on the ownship’s aerodynamic performance envelope and the minimum separation distance 

requirement. 𝑹𝒘𝒂𝒓𝒏 introduces a buffer around 𝑹𝒆𝒗𝒂𝒅𝒆 to account for communication delays to the ground station and 

pilot in command. In 2015, the Transport Canada Working Group recommended an 𝒕𝒘𝒂𝒓𝒏 	= 	𝟐 ⋅ 𝒕𝒆𝒗𝒂𝒅𝒆 + 𝟏𝟓 for 

typical UAS operations in Canadian airspace. However, an optimal maneuver may be automatically be undertaken at 

any point between 𝑹𝒘𝒂𝒓𝒏 and 𝑹𝒆𝒗𝒂𝒅𝒆 without violating the inequality, therefore the value for 𝑹𝒘𝒂𝒓𝒏 is driven entirely 

by operational considerations. By factoring in 𝒗𝒄𝒍𝒐𝒔𝒆 for a particular collision geometry, one can define ranges that 

establish lower bounds on the DAA system (Eq. 3), 

 

𝑹𝒆𝒗𝒂𝒅𝒆 = 𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ 𝒕𝒆𝒗𝒂𝒅𝒆, 𝑹𝒘𝒂𝒓𝒏 =	𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ (	𝟐 ⋅ 	 𝒕𝒆𝒗𝒂𝒅𝒆 	+ 	𝟏𝟓	).																																(3) 

 

Given the definitions of 𝑅1/23 and 𝑅+./*+, the spatial and temporal inequalities are denoted as follows (Eq. 4),  

 

𝑹𝑫𝑨𝑨 ≥ 𝑹𝒘𝒂𝒓𝒏 ≥ 𝑹𝒆𝒗𝒂𝒅𝒆 

 

= 𝑹𝟎 −	𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ 𝒕𝑫𝑨𝑨 ≥	𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ (	𝟐 ⋅ 𝒕𝒆𝒗𝒂𝒅𝒆 	+ 	𝟏𝟓	𝐬𝐞𝐜) 	≥ 	𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ 𝒕𝒆𝒗𝒂𝒅𝒆; 

 

∴ 𝒕𝟎 − 𝒕𝑫𝑨𝑨 		≥ 			𝟐 ⋅ 𝒕𝒆𝒗𝒂𝒅𝒆 	+ 	𝟏𝟓	𝐬𝐞𝐜		 ≥ 	 𝒕𝒆𝒗𝒂𝒅𝒆,							where	𝒕𝟎 =
𝑹𝟎
𝒗𝒄𝒍𝒐𝒔𝒆

	.																													(4) 

 

 In summary, the model presented herein quantitatively links the collision geometry, the DAA system’s and the 

ownship’s aerodynamic performance envelope. For the DAA system in particular, the upper bound is established by 

𝑹𝟎 and the lower bound by 𝑹𝒘𝒂𝒓𝒏, captured temporally in Eq. 4. Any proposed DAA system may be benchmarked by 

computing 𝒕𝒅𝒆𝒕𝒆𝒄𝒕 and 𝒕𝒂𝒗𝒐𝒊𝒅, and ensuring that the inequalities (Eq. 4) are satisfied.   

B. Computer Vision Detection Pipeline 

The detection and tracking pipeline, shown in Fig. 2, enables detection of different objects above the horizon. This 

pipeline extracts objects using image contrast and shape, creates tracks and assigns detections to existing tracks, and 

uses thresholds to extract good tracks.  The main steps are to extract the location of the horizon, extract objects using 
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morphological or difference detector, cluster detections, track using Kalman filtering, and use thresholds to establish 

good tracks. Each of these components are described in detail the subsections below. The detection and tracking stages 

update at the camera frame rate of 30Hz. 

 

 

Fig. 2 Detection and Track Pipeline. 

 

1. Horizon Detector 

A gradient-based approach was used to extract the horizon contour from collected imagery. Given that the camera 

was mounted to the ownship gimbal mount, and moved independently from the aircraft frame, attitude information 

from the flight controller could not be used to stabilize imagery. The technique operates as follows: First, the input 

image is converted from color to grayscale, Otsu’s binary thresholding method and Canny Edge detector are utilized 

to extract the horizon contour [17] [18] by creating a below-horizon mask.  The mask is then dilated with a gaussian 

blur 5x5 kernel and then eroded with a 100 x100 kernel to reduce jagged edges in the mask and reduce lines parallel 

to the horizon from terrain and clouds.  Finally, the horizon is reduced by changing the edge of the mask from a jagged 

contour to a 2D line using the average vertical positions of the left and right sides of the bisected mask: Point 1 (left 

image horizontal midpoint, left image average vertical position) and Point 2 (right image horizontal midpoint, right 

image average vertical position).  This ensemble of horizon reduction techniques overcame the challenges from low-

lying clouds, haze, multiple tree-lines, fields, and roads that were parallel to horizon.   

The proposed technique was adequate for horizon segmentation in representative datasets consisting of relatively 

flat terrain but would not be considered suitable for flight operations over terrain containing roads, rivers, mountain 

ranges, and other features that may generate long contours unrelated to the horizon location. Future flight test plans 

include the integration of an Inertial Navigation System (INS) mounted rigidly to a calibrated camera system, allowing 

the horizon to be directly computed from the attitude information and projected into the captured imagery.   
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2. Object Detectors 

a) Image Differencing Detector  

The image differencing method subtracts the previous frame from the current frame as shown in Fig. 3.  First the 

contrast in the image is enhanced using Contrast Limited Adaptive Histogram Equalization (CLAHE) [19] and then 

decreased using a gaussian blur to suppress intensity variations unrelated to objects.  Next, image keypoints are 

detected using the FAST feature detector for the previous frame [20].   Next, the keypoints detected in the previous 

frame are localized in the current frame via a pyramidal implementation of Lucas Kanade Optical Flow tracking model 

[21].  The image is stabilized by computing the homography between the previous frame and the current frame as a 

perspective transformation, and then applied to all pixels in the previous frame. Once the image is stabilized, the 

absolute difference is computed between the current frame and the transformed previous frame.   

 

 

Fig. 3 Image Differencing Based Detection. 

 

The difference detections are extracted using the FAST Feature detector.  Differenced images are cluttered with 

minor changes in the scene and thus a technique for removal of stationary objects is required.  Moving objects have 

higher contrast than non-moving objects in the difference image, thus the FAST feature detector is able to extract them 

from the background.  The FAST threshold value is initialized to 10 and incremented until the number of keypoints is 

less than the max difference detection threshold per that frame 

b) Morphological sUAS Detector 

 

 

Fig. 4 Morphological Based Detection. 
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The morphological sUAS detector, depicted in Fig. 4, is a close-minus-open transform. Note that filter processing is 

restricted to above-horizon region of interest in this work. The filter is computed as follows: First, the above the 

horizon region is converted to greyscale, then a closing image is computed, where closing consists of a dilation step 

followed by an erosion step with a known filter kernel. In this work, the cross shaped kernel developed in [10] is used 

and shown here: 

            𝐾	 = 	

⎣
⎢
⎢
⎢
⎡
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤
                                                                          (5)                                                              

Next, the opening image is computed in an erosion step followed by a dilation step. The opening filter reduces image 

noise. Finally, the difference image is computed by subtracting the closing image from the opening image. Detections 

are denoted as high-contrast features and extracted by the FAST feature detector employing the dynamic thresholding 

technique described previously for the differencing detector.  

This morphological filtering approach works well for objects on low textured backgrounds, e.g. clear sky, as the 

close-minus-open process generates high contrast for the aircraft against the background.  

3. Clustering 

 Detections from individual morphological and difference detectors were combined with the fused 

morphological/difference detector using the following clustering technique. Detection centroids are clustered as one 

detection if they are within a radius of 10 pixels of each of other, which is equivalent to clustering detections within 

0.107° azimuth and 0.148° elevation with this camera configuration 

4. Tracking 

For a given frame, each detection is either assigned to a new track or an existing track by generating a cost matrix 

and then determining whether to assign the current detection to an existing track or create a new track. The cost matrix 

is defined as the Euclidean distance between each detection centroid and each existing track prediction; thus, the cost 

matrix dimensions are the number of existing tracks by the number of current frame detections. The Munkres [22] 

implementation of the Hungarian assignment algorithm [23] assigns detections to a track with a cost of non-assignment 

of 10. The Kalman filter updates the predicted location for each existing track. The filter assumes a constant velocity 

with empirically determined parameters: an initial estimate uncertainty variance of 10 x 10 pixels, motion noise of 20 

x 20 pixels, and measurement noise of 20 pixels.  
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Each track is described by the current location in pixel coordinates, Kalman Filter (KF) parameters, age (number 

of frames since initial detection), total number of frames where the object was detected, and total number of 

consecutive invisible counts. An Extended Kalman Filter (EKF) assuming constant velocity is also tested and a 

comparative analysis between KF and EKF is shown in the Results section.  

5. Good Track 

A high-confidence track is defined as having at least 30 detections with a maximum of 5 consecutive dropouts 

(1/6th of a second) and with a visibility greater than 0.6, where visibility is total visible count divided by the track age 

count [15].  Once a track meeting the threshold requirements is identified, it would be reported to a collision avoidance 

system. This work provides detailed analysis on these high-confidence tracks in the results section.  

6. Sample Results 
 

Sample pipeline results are shown in Fig. 5. The morphological detector generated the results shown in the left 

column, the difference detector in the center column, and the centroids from the detectors are shown in the right 

column where yellow is the morphological detector result, red is the difference detector result, and green indicates an 

overlap of the difference and morphological detector. The Close-minus-open process enlarges the intruder aircraft in 

image space beyond the gaussian blurring described the pre-processing stage for the morphological detector. The 

difference detector generates silhouetting as the homography matrix for the interframe change is not perfect.  
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Fig. 5: Sample Detection Segmentation Results: Morphological Detector, Difference Detector, and the 
respective Detector centroids on the raw image where yellow is the morphological detection result, red is the 
difference detector result, and green indicates that the morphological and difference detector provide the same 
centroid coordinates within precision of a pixel.  
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C. Benchmarking 

 The pipeline’s processing rate must correlate to the DAA system performance requirement as established by 𝒕𝒅𝒆𝒕𝒆𝒄𝒕 

in 𝒕𝑫𝑨𝑨. Note that 𝒕𝒅𝒆𝒕𝒆𝒄𝒕 is bounded by the amount of time required to develop a solid track. Since the current pipeline 

is designed for offline processing, it operates at a rate of 1 frame per second. Furthermore, the tracking stage in the 

present pipeline requires a minimum of 30 hits to establish a track with sufficient confidence. The real-time version 

is expected to be 5 to 10x faster, pending implementation and benchmarking. For convenience, a conservative estimate 

of a real-time variant operating at 5 frames/sec is reasonable, leading to a 𝒕𝒅𝒆𝒕𝒆𝒄𝒕 	= 	𝟔	𝐬𝐞𝐜. Assuming that the 

avoidance algorithm takes an equivalent amount of time, i.e. 𝒕𝒂𝒗𝒐𝒊𝒅 	= 	𝟔	𝐬𝐞𝐜, the total DAA processing time is 

established at 𝒕𝑫𝑨𝑨 = 𝟏𝟐	𝐬𝐞𝐜.    

 The benchmarking implementation is as follows.  Detection was implemented in C++ using OpenCV on a desktop 

with dual Intel 5220 CPU x 18 cores with 256 GB DDR4 memory and two NVIDIA 2080 Ti GPU. The tracking 

pipeline was completed on a laptop in MATLAB with a quadcore i7-6829HQ CPU with 32 GB memory. The path to 

onboard DAA starts with design using Minimum Operational Performance Standards (MOPS), next selecting a 

camera, developing an algorithm-based data collected in flight, finalizing the algorithm after revisions to camera and 

flight-testing design, and finally developing dedicated flight hardware. The dedicated flight hardware will likely use 

Application Specific Integrated (ASIC) because it maximizes computational performance while minimizing Size 

Weight and Power (SWAP). A conservative expectation for algorithm processing time improvement is 10x to 100x 

when switching to a dedicated ASIC. 

V.   Experimental Methodology 

 Description of Experiments 

The flight tests were completed in support of the NASA UTM project where different sensors were evaluated for 

onboard collision avoidance using Detect and Avoid Alerting Logic for Unmanned Systems (DAIDALUS) [24]. These 

sensors include Automatic Dependent Surveillance–Broadcast (ADS-B), RADAR, and Dedicated Short-Range 

Communications (DSRC) [3]. A multirotor is used as the ownship for UTM flight testing with fixed wing sUAS and 

GA aircraft as the intruder aircraft at Beaverdam Airpark in Elberton, Virginia, USA. Flights were recorded over two 

days in autumn of 2018. This airfield is surrounded by a tree farm with neighboring agricultural fields on a coastal 

plain. DAIDALUS did not execute an avoidance maneuver for the data used in this work and the range inequality 
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model proposed in IV.A is used for offline analysis of the vision system. The following subsections describe the 

aircraft, camera, collision avoidance objectives, flight test methodologies, dataset, and the evaluation methods. 

B. Aircraft 

The aircraft used in this work are shown in Table 1. The fixed-wing intruder sUAS is a tempest. Aircraft like the 

tempest sUAS may be used for LIDAR mapping after natural disasters or for small package delivery such as medical 

supplies [25] as they have flight time of approximately an hour at 20 m/s and can reach altitudes over 1000 feet. The 

tempest was equipped with a Pixhawk for these flight operations. The GA plane selected in this work is the NASA 

SR22 with tail number NASA 501. The SR22 is a good example of intruder aircraft that an sUAS may encounter 

because it is representative of size and shape of commonly flown GA planes. The SR22 is equipped with a Status 2S, 

which logged the GPS coordinates used in this work. The ownship multirotor is a DJI S1000 and is named: ISAAC 

[26]: ICAROUS Sense and Avoid Characterization, where ICAROUS is Independent Configurable Architecture for 

Reliable Operations of Unmanned Systems [27]. ISAAC was equipped with a Pixhawk flight controller.  

Table 1: Aircraft. 

Aircraft Type Image Dimensions 
w x l x h (m) Manufacture Ground 

Speed (m/s) 
Max Takeoff 
Weight (kg) 

Tempest 
(intruder) 

fixed wing 
sUAS 
 

 

3.2 x 1 x 0.3 UASUSA 18 20 

SR22 
(intruder) 

GA 
  

 

11.68 x 7.92 
x 2.72  

Cirrus 53 1,633 

ISAAC 
(ownship) 

sUAS 
multirotor  

 

1 x 1 x 0.3 DJI 10 11 

C. Camera 

A Sony™ FDR x1000V action camcorder equipped with an 8.2 MP image sensor and retrofitted with an 8.25 mm 

41° Horizontal Field of View (HFOV) by 32 Vertical Field Of View (VFOV) lens was mounted to the ownship for 

this work.  The camera was equipped with a rolling shutter sensor and is shown in Fig. 6 and specifications in Table 

2.  Given that the ownship was a flying multirotor and subject to vibrations, rolling-shutter artifacts were captured in 

the imagery, degrading image quality.  
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D. Range Inequality Sensor Performance  

 An estimate of 𝑹𝟎 is required to estimate the upper bound of the collision avoidance model. The model may be 

constrained within the pinhole camera approximation and to Gaussian optics. The pinhole camera model, also known 

as the projective camera model, is defined by an image plane and a 3D focus point, c, as shown in Figure 7.  The 

pinhole camera assumes that the aperture is a point and thus ignores distortions caused by lens shape.     

 

Figure 7: Pinhole Camera model. 

 The 3D coordinates are defined here with respect to the camera reference frame Ƒc in the pinhole model.  The optical 

axis is perpendicular to the camera reference frame.  The distance between the camera reference and the image planes 

is the focal length, f.  Thus the image of the point P = [ X, Y, Z ]T is given by p = [ x, y, z ]T in the camera frame.  

 It can be further assumed for simplicity that all transfer functions related to optics, motion and, in particular, 

atmospheric attenuation and scattering, are absent. Note that relaxing these assumptions will impact the target’s 

contrast, further reducing the 𝑹𝟎 quantity. As such, the value computed here represents the upper bound on 𝑹𝟎 in the 

absence of transfer function effects. Given the dimensions of the image sensor, 6.17x4.55 mm, the pixel pitch can be 

computed as follows, 

 

 

Fig. 6 Sony Action Camera with 8.25 mm lens. 
The hot glue on the enclosure secured the focus. 

Table 2: Camera Specifications. 

Specification Measurement 
Resolution 3840 x 2160 

Horizontal Field of 
View 41º 

Vertical Field of View 32 º 
Pixels Per Degree 93.7 
Approximate Mass 408g 
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𝒅𝒑𝒊𝒙 =	
𝟔. 𝟏𝟕	𝐦𝐦

𝟑𝟖𝟒𝟎		𝐩𝐢𝐱𝐞𝐥𝐬 =
𝟒. 𝟓𝟓	𝐦𝐦

𝟐𝟏𝟔𝟎		𝐩𝐢𝐱𝐞𝐥𝐬 = 𝟏. 𝟔	𝛍𝐦.																																									(6) 

 For convenience, it is assumed that the target subtends one pixel as the minimum requirement for detection. Note 

that existing transfer functions in a real system will result in an equivalent point spread function larger than a single 

pixel, therefore this is the limiting case. Under these assumptions, the relationship tying a target of known dimensions 

X, Y, Z, the focal length, f, and the imaged dimension x, can be stated as follows,  

 

𝒙
𝒇 =

𝑿
𝒁						,				

𝒚
𝒇 =

𝒀
𝒁																																																																														(7) 

Imposing the constraint that the target subtends exactly one pixel allows x and y to be substituted by the pixel pitch. 

Isolating for Z, the following relationship is ascertained, 

 

𝒁𝒙 =
𝑿. 𝒇
𝒅𝒑𝒊𝒙

						,				𝒁𝒚 =
𝒀. 𝒇
𝒅𝒑𝒊𝒙

																																																																								(8) 

 For the remainder of this analysis, the tempest serves as the intruder aircraft. The maximum closing rate between 

the ownship and the intruder may be computed assuming a head-on collision scenario as the limiting case, with 

velocities obtained from Table 1, as follows, 

 

𝒗𝒄𝒍𝒐𝒔𝒆 = 𝒗𝑻𝑬𝑴𝑷𝑬𝑺𝑻 + 𝒗𝑰𝑺𝑨𝑨𝑪 = 𝟐𝟖	𝒎/𝒔																																																										(9) 

 To compute 𝑹𝟎, the wingspan and the fuselage cross-section are considered as single dimensions in X and Y axes 

respectively. The minimum of the two is taken as a conservative estimate of 𝑹𝟎, which establishes the upper bound 

on 𝑹𝑫𝑨𝑨, 

 

𝒁𝑿 =
𝑿. 𝒇
𝒅𝒑𝒊𝒙

=
𝟑. 𝟐 × 𝟖. 𝟐𝟓𝑬 − 𝟑

𝟏. 𝟔	𝑬 − 𝟔 = 𝟏𝟔𝟓𝟎𝟎	𝐦, 𝒁𝒀 =
𝒀. 𝒇
𝒅𝒑𝒊𝒙

=
𝟏. 𝟎 × 𝟖. 𝟐𝟓𝑬 − 𝟑

𝟏. 𝟔	𝑬 − 𝟔 = 𝟓𝟏𝟓𝟔	𝐦,						(10) 

∴ 𝑹𝟎,𝑮𝑬𝑶𝑴𝑬𝑻𝑹𝑰𝑪 = 𝐦𝐢𝐧(𝒁𝑿, 𝒁𝒀) = 𝟓𝟏𝟓𝟔	𝐦,				𝒕𝟎,𝑮𝑬𝑶𝑴𝑬𝑻𝑹𝑰𝑪 =
𝑹𝟎
𝒗𝒄𝒍𝒐𝒔𝒆

= 𝟏𝟖𝟒	𝐬𝐞𝐜.																							(11) 

Note that the geometric 𝑹𝟎 is an estimate where the target subtends exactly one pixel in the absence of intermediate 

mediums such as atmospheric attenuation, ownship motion and vibration, optical and imager transfer effects 

(including point spread function, aberrations and pixel quantum efficiency) that ultimately limit the contrast of real 

targets. Of the preceding transfer functions, atmospheric attenuation tends to dominate for targets much beyond 1 km, 
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especially under clear-sky conditions where the target is darker than the background, where irradiance from the target 

is lower than the irradiance due to atmospheric scattering effects [28]. In the absence of explicit knowledge of the 

transfer functions, the empirical 𝑹𝟎 may be attained from captured imagery by visual inspection. Sample empirical 

𝑹𝟎,𝑻𝑬𝑴𝑷𝑬𝑺𝑻 and 𝑹𝟎,𝑺𝑹𝟐𝟐 are shown in Fig. 8 were extracted by visual inspection using the following technique: the 

target was identified at close range, then the sequence of images run backwards until the target could not be 

distinguished from the background. It can be observed that the separation distance between the ownship and the 

Tempest is 1136m and the Tempest at this range approximately is approximately 4 by 3 pixels. For the SR22, the 

separation distance is 3406m and the aircraft is 3 by 1 pixels. 

 
(a)  

 
(b) 

Fig. 8 Empirical 𝑹𝟎 with aircraft indicated by red circle: (a) Sortie 1 Tempest (b) Sortie 4 SR22.  

 For both types of intruder, the empirical 𝑹𝟎 is substantially lower than the geometric 𝑹𝟎, which is to be expected due 

to the aforementioned contrast limitations and serves as a much more meaningful metric for the present dataset.   

 

∴ 𝑹𝟎,𝑻𝑬𝑴𝑷𝑬𝑺𝑻	 = 𝟏𝟏𝟑𝟔	𝒎	, 𝒕𝟎,𝑻𝑬𝑴𝑷𝑬𝑺𝑻 =
𝑹𝟎
𝒗𝒄𝒍𝒐𝒔𝒆

= 𝟒𝟐	𝐬𝐞𝐜 

And,  

∴ 𝑹𝟎,𝑺𝑹𝟐𝟐	 = 𝟑𝟒𝟎𝟔	𝒎	, 𝒕𝟎,𝑺𝑹𝟐𝟐 = 𝟒𝟐	𝐬𝐞𝐜. 

 

The lower bounds on 𝑹𝑫𝑨𝑨, namely 𝑹𝒘𝒂𝒓𝒏 and 𝑹𝒆𝒗𝒂𝒅𝒆, are derived from the avoidance sub-system. To remain as 

generic on the avoid component as possible, the simplest avoidance system is considered for the ownship used in these 

experiments. The intruder is assumed to be operating in level flight on a non-maneuvering flight path, with the ownship 

and intruder on a co-altitude, head-on collision course. The avoid maneuver is a 90-degree right-hand turn away from 

traffic. Given that the ownship is a multi-rotor, turn mechanics are simplified and estimated to take 3 seconds to change 

heading and resume at 10 m/sec. Note that a multirotor may also vertically descend to evade a collision, although this 

is often sub-optimal given that descent rates are limited to avoid vortex ring disturbances.  
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 An avoidance maneuver requires a well-clear definition to ascertain the minimum distance requirements. In this 

work, the well-clear criterion is derived from minimum separation requirements of 1000 ft (300 m) lateral and 500 ft 

(150 m) vertical, as per FAA, Transport Canada and EASA advisories on UAS operating in GA space (10000 ft and 

below). For a right-hand turn at an airspeed of 10 m/s, the ISAAC requires 𝒕𝒆𝒗𝒂𝒅𝒆 	= 	𝟑𝟎	𝐬𝐞𝐜 to maintain well-clear 

separation from the intruder under the assumptions outlined. Furthermore, the ownship executes an avoidance 

maneuver autonomously as necessary, and informs the pilot in command at the start of the maneuver, equating 𝑹𝒘𝒂𝒓𝒏 

to 𝑹𝒆𝒗𝒂𝒅𝒆, thus, 

𝒕𝒘𝒂𝒓𝒏 =	 𝒕𝒆𝒗𝒂𝒅𝒆 = 𝟑𝟎	𝐬𝐞𝐜, 𝑹𝒘𝒂𝒓𝒏 =	𝑹𝒆𝒗𝒂𝒅𝒆 = 	𝒗𝒄𝒍𝒐𝒔𝒆 ⋅ 𝒕𝒆𝒗𝒂𝒅𝒆 = 𝟖𝟒𝟎	𝐦																				(12) 

 

𝟒𝟐	𝐬𝐞𝐜 ≤ 𝒕𝑫𝑨𝑨 ≤ 𝟑𝟎	𝐬𝐞𝐜, 𝟏𝟏𝟔𝟖	𝐦 ≤ 𝑹𝑫𝑨𝑨 ≤ 𝟖𝟒𝟎	𝐦																																(13) 

 

Therefore, given upper and lower bounds, the time interval (𝚫𝒕𝑫𝑨𝑨) available to detect, track, and compute an avoid 

solution may be computed as per Eqs. 2 and 4, 

∴ 𝚫𝐭𝐃𝐀𝐀 = 𝚫(𝒕𝒅𝒆𝒕𝒆𝒄𝒕 + 𝒕𝒂𝒗𝒐𝒊𝒅) ≃ 	𝟏𝟐	𝐬𝐞𝐜																																															(14) 

Table 2 illustrates the results with the computation repeated under identical assumptions for the GA aircraft. 
Note that the empirical 𝑹𝟎 is extracted from all sorties and presented as a range of values. This range takes into 
considerations differences in the environmental conditions including visibility and sun angle that affect the 
perceived range.    
*Note that 𝑅1/23 	= 	𝑅+./*+  and 𝑡1/23 	= 	 𝑡+./*+  are assumed for convenience, and would in reality be distinct quantities based on the avoid solution employed. 

 

As shown in Table 2, the GA aircraft is the limiting case, and depending on the design of the optical sub-component, 

can present as few as 15 seconds for 𝑹𝟎 = 4.7	km to the processing algorithm to detect, track and report a collision 

course intruder to the avoidance subsystem.   

E. Flight Test Methodologies 

 For each day, fixed-wing sUAS vs. multirotor sorties were the first ones collected. The fixed-wing sUAS was 

launched and established as a waypoint pattern prior to the multirotor takeoff. The fixed-wing sUAS had about an 

Intruder 𝒗𝒄𝒍𝒐𝒔𝒆  

[m/s] 

Geometric	𝑹𝟎 

[m] 

Empirical 𝑹𝟎  

[m]  

𝒕𝟎  

[sec] 

𝑹𝒆𝒗𝒂𝒅𝒆*   

[m] 

𝒕𝒆𝒗𝒂𝒅𝒆*  

[sec] 

𝚫𝒕𝑫𝑨𝑨  

[sec] 

SUAS – Tempest 28 5156  1168-1006 42 – 36 840 30 12 – 6  

GA – SR22 63 14025  3406-2401 54 – 38 1890 30 24 – 8 
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hour of flight time while the multirotor had 15 minutes. The fixed-wing sUAS was launched via rail in manual mode 

and then switched to auto mode by sUAS pilot command.  Each sUAS pilot had a supporting ground control station 

monitoring onboard sensor data. The SR22 departed from Langley Air Force Base in Hampton, Va and flew to 

Beaverdam Airpark. The SR22 pilots communicated when it was ready for the multirotor to launch and to begin taking 

collision encounter data. A representative subset of 10 sorties across two days and two intruder types was selected for 

analysis in this work.  

F. Dataset 

  Table 3 shows the dataset selected for use in this analysis. The testing environment was altitude separated for 

safety using 30 meters for sUAS encounters and 170 to 180 meters for GA encounters. Every other frame was labeled 

for Ground Truth (GT).  On 10/25 flight conditions were partly cloudy, however, Visual Flight Rules (VFR) applied 

with the aircraft observed against a cloud background. Flight trajectories are superimposed on Google Maps as shown 

in Fig. 9. The first three sorties were head-on between a fixed-wing sUAS vs. a multirotor sUAS. The second set of 

two sorties were between GA head-on and multirotor with a slight lateral offset.  On 10/30 flight conditions were clear 

with very few clouds in the sky with the aircraft observed against a sky background.  The first two sorties featured the 

fixed-wing sUAS departing the collision volume of the multirotor. The next three sorties were head-on between GA 

and multirotor. 

 Table 3 Dataset 

Date and time 
Takeoff (EST) 

Sortie Ownship Ownship 
Altitude (m) 

Intruder Intruder 
Altitude (m) 

Number 
GT Labels 

2018/10/25 
09:40 AM 

1 S1000 200 Fixed-wing sUAS head-on 230 393 
2 S1000 200 Fixed-wing sUAS head-on 230 298 
3 S1000 200 Fixed-wing sUAS head-on 230 367 

2018/10/25 
11:46 

4 S1000 200 GA head on 380 639 
5 S1000 200 GA head on, camera offset 380 186 

2018/10/30 
9:29 

6 S1000 200 Tempest Departing Collision 
Volume 

230 664 

7 S1000 200 Tempest Departing Collision 
Volume 

230 269 

2018/10/30 
12:41 

8 S1000 200 GA head on 370 599 
9 S1000 200 GA head on 370 611 
10 S1000 200 GA head on 370 717 
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(a) (b)  

(c) (d) 

Fig. 9 Example Flight Trajectories: a) Sorties 1-3. Fixed wing sUAS flight path in blue with ownship multirotor 
in yellow, b) Sorties 4-5. Fixed wing GA plane flight path in blue with ownship multirotor in yellow, c) Sorties 
6-7. Fixed wing GA plane flight path in blue with ownship multirotor in yellow, d) Sorties 8-10.  Fixed wing GA 
plane flight path in blue with ownship multirotor in yellow.  

G. Evaluation Methodology 

 The computer vision detection system is evaluated at the detector and tracker levels using the performance 

measures and metrics in Table 4 with definitions as described.  The Number of Ground Truth Detected in Sortie, 𝑫𝑮𝑻𝑺, 

is a measure that includes all detections of ground truth by the detector, where the ground truth was manually extracted 

by visual inspection. The localization algorithm clusters detections within a 100-pixel radius, therefore detections are 

always unique. Difference and morphological detections are also fused together using the 100-pixel radius. The 

Unique Ground Truth Detected in Sortie, 𝑫𝑼𝑮𝑻𝑺,  is a measure includes only one detection per ground truth label.   

The difference detector and morphological detector may detect the same target twice, thus the definition of Unique is 

required.  In any given frame, there is only 1 ground truth detection. Similarly, the Unique Ground Truth Tracked in 

Sortie, 𝑻𝑼𝑮𝑻𝑺, includes only one tracker prediction per ground truth label.   

 For any of the aforementioned detection or prediction metrics, the Euclidean distance of the centroid must be 

within 100 pixels of the ground truth centroid for the intruder to be considered present for 𝑫𝑮𝑻𝑺 and 𝑻𝑼𝑮𝑻𝑺 calculations. 

This equates to less than an azimuth angular threshold of 1.07 degrees and elevation of 1.48 degrees to be considered 

a hit. A 100-pixel radius corresponds to 1 degree in azimuth and 1.5 degree in elevation for the chosen camera 

configuration and is considered to be reasonable for the geometries under consideration in this detect and avoid 

scenario. Under the blue-sky theory assumption, it is unlikely that two aircraft are present in such a narrow voxel of 

space.  
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Table 4: Performance Measures and Metrics.  

Performance Measure or Metric  Definition 

True Positive A detection with a centroid within 100 pixels of the Ground Truth 
Centroid  

False Positive or False Alarm A detection with a centroid that is 100 pixels or more from the 
Ground Truth Centroid 

𝑮𝑻𝑺 Total Number of GT Labels in Sortie 
𝑫𝑮𝑻𝑺 Number of True	Positives Detected	in Sortie 
𝑫𝑺 Total Number of Detections in Sortie 

𝑫𝑼𝑮𝑻𝑺 Number	of	Unique True	Positives	Detected in Sortie 
TUGTS Number	of	Unique Ground Truth Tracked in Sortie 

Detection Precision 
𝑫𝑮𝑻𝑺

𝑫𝑺
 

Detection Recall 
𝑫𝑼𝑮𝑻𝑺

𝑮𝑻𝑺
 

Tracker Ground Truth Accuracy 
𝑻𝑼𝑮𝑻𝑺
𝑮𝑻𝑺

 

Average Tracker Ground Truth Accuracy ∑ 𝑻𝒓𝒂𝒄𝒌𝒆𝒓	𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊
𝑵𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝒐𝒓𝒕𝒊𝒆𝒔
𝒊a𝟏

𝑵𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝒐𝒓𝒕𝒊𝒆𝒔  

Valid Tracks 
Exist at least for 30 frames and 80% or more of tracker 

predictions are within 100-pixel Euclidean distance ground truth 
centroid 

False Tracks Exist at least for 30 frames and less than 80% are within a 100-
pixel Euclidean distance ground truth centroid 

Tracker Precision 
Valid Tracks

Valid Tracks+False Tracks
 

Average Tracker Precision ∑ 𝑻𝒓𝒂𝒄𝒌𝒆𝒓	𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒊
𝑵𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝒐𝒓𝒕𝒊𝒆𝒔
𝒊a𝟏

𝑵𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝒐𝒓𝒕𝒊𝒆𝒔  

Tracker Robustness 
𝐋𝐞𝐧𝐠𝐭𝐡	𝐨𝐟	𝐋𝐨𝐧𝐠𝐞𝐬𝐭	𝐓𝐫𝐚𝐜𝐤

𝑮𝑻𝑺
 

  

 

 Detector precision and recall are useful metrics for confirming that detectors are extracting the aircraft from the 

video and determining sources of false positives.  Tracker Accuracy is a metric of how often the intruder aircraft is 

correctly tracked. Tracker Precision measures the valid track rate. Tracker Robustness is an indicator of how often 

the intruder aircraft is tracked continuously with just one track. Tracker accuracy is reported for each sortie to 

determine the influence of different detection thresholds and to compare KF and EKF tracker performance. 
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VI. Results 

The metrics defined in section V.G were utilized to analyze the performance of the detection and tracking stages 

of the pipeline, including sensitivity to key parameters and range analysis, and a comparison between KF and EKF 

trackers. The overall vision system is evaluated against the collection avoidance model described in the methods 

section above.   

Note that the detection and tracking results are not scale invariant because: the aircraft have different aspect ratios, 

morphologies, and visual-cross sections. Image-based feature extractors have been shown to perform differently 

depending on the object, thus not all are the same from the perspective of detectability. Further, the aircraft operate at 

different speeds relative to the sampling rate of the sensor and the tracking algorithm will respond differently and have 

different Kalman filter parameters. 

A. Detection Threshold Sensitivity Analysis 

 The detection threshold is a parameter that influences tracker performance by including and excluding potential 

hits from the tracking stage. Careful selection of the threshold can provide a good balance between track robustness 

and false detections. Fig. 10 shows tracker performance in terms of Average Tracker Precision across all sorties and 

Average Tracker Ground Truth Accuracy across all sorties to determine the optimum detection threshold for KF and 

EKF trackers. A detection threshold of 5 would provide up to 5 detections for a given frame, which typically is 4 false 

detections and 1 ground truth detection for a given frame. Ideal performance would be 1.0 for Average Tracker 

Precision across all sorties and 100% for Average Tracker Ground Truth Accuracy across all sorties because all GT 

labels would be captured with the tracker without false track generation. The elbow of precision-accuracy is selected 

because it represents a good trade-off between precision and accuracy. Thresholds values ranging from 1 through 4 

provided higher tracker precision than threshold 5, and similar Average Tracker Ground Truth Accuracy, however, a 

vision-based collision avoidance system needs to be able to track multiple aircraft. Therefore, the detection threshold 

5 was selected for detailed analysis as it provides strong ground truth accuracy across all sorties while achieving high 

Average Tracker Ground Truth Accuracy. Fig. 11a shows individual detector performance as a function of sortie and 

detection recall for a detection threshold of 5.  Here, the morphological detector consistently outperformed the 

difference detector across all sorties. The combined detector yielded the highest detection recall across all sorties. 
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Fig. 10 Detection Threshold for Tracking using the Linear Kalman Filter (blue) and the Extended Kalman 
Filter (red).  Selected detection thresholds of 5 for EKF and KF shown by green and purple arrows respectively. 
The dashed line with arrow shows the direction of increasing detection threshold, where precision decreases 
and ground truth accuracy increases. 

Fig. 11b shows the impact of different detection thresholds to tracker accuracy without respect to tracker precision. 

Tracker performance is analyzed by plotting accuracy for KF and EKF trackers across sorties to determine then 

influence of detect thresholds. Table 5 shows the tracking accuracy in relation to precision, sortie length, number of 

false tracks, and total tracks.  

 

(a) 

 

(b) 

Fig. 11 (a)  Detector Performance threshold 5 and (b) Tracker Performance for Different Detection 
Thresholds, where KF is the Kalman Filter tracker results and EKF is the Extended Kalman Filter tracker 

for the combined detections. 
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Tracking was the weakest in the first part of Tempest Sortie 1, as the intruder aircraft emerged from a cloudy 

background with varying low contrast and thus generated unstable detection at maximum ranges. For Tempest sorties 

2 and 3, the background contrast had less variation at maximum range and tracking was stable across all frames with 

tracker accuracy exceeding 90% in nearly all cases. In GA Sortie 4, the ownship turned left and right three times, 

changing the location of the GA plane in image space, which generated short periods of instability in tracking as the 

ownship movement offsets were not integrated into the computer vision algorithm. GA sortie 5 had an offset camera 

relative to the ownship heading and thus the encounter was short in terms of time and frames as well as maximum 

available detection range, as the intruder entered and exited from the side of the frame, instead of the appearing from 

the background as in all other sorties. The trackers performed weakly in tempest sortie 6 when the intruder aircraft 

moved into a low-contrast backgrounds closer to the horizon. Tracking was stronger when the ownship overtook 

tempest sortie 7.  GA sorties 8 through 10 consistently had tracking accuracy over 90% for all trackers with detection 

thresholds higher than 1.    

B. Precision and Recall  

 Computer vision and machine learning benchmarking challenges utilize different evaluation metrics for object 

detection [28]. One frequently used metric is the Received Operator Characteristic (ROC). ROC is frequently used in 

RADAR detection research, where true negative is typically RADAR signal returns from non-aircraft sources that are 

correctly identified as noise. ROC was considered in this work, however, a definition for true negatives is not practical 

because all pixels in an image without an object would need a label as true negatives. For example, consider a detection 

threshold 5 where there are 4 false positives and 1 true positive, representing five 10 x 10 pixel regions. In this case, 

all pixels that are not associated with a detection would be considered a true negative. For the ~8.3 MP imagery in 

this work, this would mean that ~7.8 MP would be labeled as true negatives, 0.4 MP would be false positives, and 

0.01 MP would be true positive. However, ~7.8 consistently drives a sensitivity calculation to always be 1.0 because 

ROC False Positive Rate = True Negatives / (True Negatives + False Positives). Instead of ROC analysis, precision-

recall in useful because precision is a metric of the detector’s ability to extract the objects of interest and recall is a 

metric of detector’s ability to detect all the labeled ground truths. For this aviation application, precision and recall is 

used to evaluate detectors because it captures each detector ability to find the intruder aircraft with respect false 

positive generation.  

A sensitivity analysis was conducted on detection threshold for each sortie using precision and recall. Fig. 12 

illustrates a sensitivity analysis for detectors by sortie for detection threshold and annotated by aircraft, trajectory, and  
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Fig. 12 Precision-Recall for Detectors by Sortie where blue is the difference detector, red is the morphological 
detector, and black is the combined morphological and difference detectors.  MP denotes the maximum 
precision for the detectors and the asterisk show precision-recall values for the detection threshold 5 for each 
detector. 
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weather condition. For all sorites, the blue line is the difference detector, the red line is the morphological detector, 

and the black line is the combined detectors. The x-axis is recall and the y-axis is precision. Each point on the graph 

represents a different detection threshold between 1 and 57. The detection threshold drives the precision-recall 

calculations as increasing the detection threshold tends to add false alarms at a faster rate than the additional ground 

truth detections, which tends to decrease precision and increase recall. The asterisk shows the precision-recall value 

for detection threshold 5, which was selected for detailed analysis for tracking. The maximum precision value is shown 

by extending the precision-recall curve to the x-axis.  

Generally, a strong precision-recall curve would start with high max-precision nearly equaling 1 for recall values 

between 0 and 0.9. Precision then would steeply decrease from 1 to nearly 0 for recall values between 0.9 and 1.0. In 

this way, the model quickly captures most of the ground truth detections and only starts producing false alarms at a 

high rate after the detection threshold is increased substantially, thus driving the precision-recall curves towards a 

precision value of 0 and a recall value of 1. Precision-recall curves do not perform ideally in this work because of the 

challenge of detecting very small, low-contrast objects with differing lighting conditions.  

For Sortie 1, the morphological curve has the highest maximum precision value of 0.47, which corresponds to 

detection threshold of 1 and indicates that about half of the detections were ground truth. The difference detector has 

a maximum precision value 0.23 for the detection threshold of 1, indicating that about one fifth of the detections in 

the sortie captured the ground truth. The combined detector has a maximum precision of 0.29 for threshold 1, which 

corresponds to1 detection from morphological and 1 detection from difference detector. For this sortie, all detector  

curves decrease in a convex manner indicating a delayed gain in recall relative to precision loss. One possible 

explanation for the convex curve behavior is that small intruder aircraft are difficult to detect because of their small 

size and low contrast, thus increasing detection threshold tends to add false detections from other regions of the image 

at a higher rate relative to the rate of additional new ground truth detections on the intruder aircraft. The convex 

behavior extends to all difference detector results across all sorties. Small, low-contrast aircraft generate weak 

signatures in the difference frame. Typically, the detection thresholds between 30 and 60 show the most improvement 

in recall for the difference detector. The morphological detector curve shows strong improvement for recall as 

precision decreases. The morphological detector can extract nearly all intruder aircraft with an increasing the number 

of false alarms. The higher precision-recall performance for the morphological detector suggests that the cross-hair 

convolution filter performs well at extracting small aircraft targets.  This may be related to specific morphological 

shape of fixed-wing aircraft with the wing, tail, and fuselage providing good activation for cross-hair convolution 
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while suppressing false positives from clouds and MJPEG encoding artifacts. Saturating the detection threshold 

generates a higher recall, however, the simultaneous inundation of false alarms decreases tracker robustness. 

Combining the detectors decreased precision while increasing recall. Precision decreases when combining detectors 

because the morphological detector generates both false alarms and ground truth while the difference detector 

generates fewer ground truth detections and more false alarms compared to the morphological detector. This 

imbalance drives the precision calculation lower than the morphological detector’s precision, however, the additional 

unique ground truths captured by the difference detector increases recall by nearly 10% for detection threshold of 5 in 

sortie 1. 

The precision-recall results from this work show a higher precision for detecting GA aircraft to the fixed-wing 

sUAS and an improvement in precision-recall later in the day for sUAS sorties.  The combined precision-recall curve 

often exceeds the morphological detector precision-recall curve, showing that the difference detector is extracting 

detections that the morphological detector missed. Tempest precision-recall curves were stronger on day 2, however, 

it is not clear whether this is due to differing weather conditions or over-taking vs. head-on collision geometries. 

Precision and recall increased during each day for Tempest flights for all detectors. This may be related to higher sun 

elevation angles providing more light on the tempest, thus improving contrast between the tempest and its background.  

C. Tracker Comparison 

 EKF trackers typically outperform KF trackers for non-linear data, however, the tracker parameters such as 

dropout, track age, and invisibility may explain similar performance for both trackers in the dynamic sUAS flight 

environment.  The comparison between KF and EKF is shown in Table 5 examines the Detection Threshold 5 in detail 

at the tracking-level.  The EKF and KF trackers generated similar performances in terms of precision and tracker 

accuracy averages across all sorties. GA aircraft were tracked with greater accuracy over sUAS, which may be related 

to their larger physical dimensions and higher altitudes relative to atmospheric attenuation and scattering effects. The 

false tracks for both trackers in sortie 6 occur simultaneously in the same area of the frame, slightly above the horizon, 

and the false track in sortie 7 appears at the horizon.   

 Tracking robustness was similar across the EKF and KF trackers with minor variations for sorties 1, 6, 7, and 9. 

Sorties where the Robustness is similar to Tracker Accuracy indicates that the tracker was able to maintain one track 

for the majority of the frames in the sortie, which also correlates to a lower number of tracks for that sortie. However, 

discontinuities in tracking occurred in sortie 1 as the Tempest moves across an area of light atmospheric attenuation 
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and scattering effects, sortie 6 and 7 when the Tempest turned at the closest corner, and sortie 9 when the SR22 entered 

an area of low contrast. 

Table 5: Tracking Performance for Detection Threshold 5. 

 

 Table 6: Localization Error Detection Threshold 5. 

Sortie Number and Description 

AVG 
Difference 

Localization 
Error 

AVG 
Morph 

Localizatio
n Error 

AVG KF 
Tracker 

Localization 
Error 

 AVG EKF 
Tracker 

Localization Error 

1 Tempest Head-on 10.2 11.1 10.4 10.5 
2 Tempest Head-on 9.5 6.2 8.4 8.4 
3 Tempest Head-on 8.0 9.2 9.8 9.1 
4 GA Head-on 19.7 23.6 23.4 23.4 
5 GA Head-on, near miss 32.5 32.3 31.1 30.4 
6 Tempest Departing Collision Volume 12.5 14.5 15.1 11.6 
7 Tempest Departing Collision Volume 15.3 16.7 17.1 18.0 
8 GA Head-on 16.6 18.7 16.7 17.0 
9 GA Head-on 19.7 20.5 19.3 19.3 
10 GA Head-on 15.1 16.7 16.1 16.1 

 

 Detectors and trackers performed with localization errors ranging from 8.0 to 32.5 pixels as shown in Table 6.  The 

KF and EKF trackers performed similarly with respect to localization error. Typically, the average tracker localization 

errors were between the morphological and difference localization errors. However, the tracker makes predictions 

Sortie Number and 
Description 

Num. 
of 

Frames 

KF Track. 
Precision 

Num. 
KF 

False 
Tracks 

Total 
Num. 
KF 

Tracks  

KF  
Track. 
Acc. 

KF  
Track. 
Robust. 

EKF  
Track. 

Precision 

Num. 
EKF 
False 

Tracks 

Total 
Num. 
EKF 

Tracks  

EKF  
Track. 
Acc. 

EKF  
Track. 
Robust. 

  1 Tempest Head-on 393 1 0 2 74.0 38.2 1 0 2 74.0 38.2 
  2 Tempest Head-on 298 1 0 1 97.3 97.0 1 0 1 97.3 97.0 
  3 Tempest Head-on 367 1 0 3 90.5 80.7 1 0 4 90.5 80.7 
  4 GA Head-on 639 1 0 1 96.4 96.2 1 0 1 96.4 96.2 
  5 GA Head-on, near miss 186 1 0 2 87.6 77.4 1 0 3 87.6 87.1 
  6 Tempest Departing 

Collision Volume 664 0.57 3 7 75.5 55.1 0.5 3 6 66.1 53.6 

  7 Tempest Departing 
Collision Volume 269 0.75 1 4 99.3 52.4 0.8 1 5 96.3 52.4 

  8 GA Head-on 599 1 0 3 95.4 79.0 0.8 1 5 95.7 79.0 
  9 GA Head-on 611 1 0 4 89.2 39.8 1 0 4 89.2 39.8 
  10 GA Head-on 717 1 0 4 90.2 82.2 1 0 4 90.2 82.2 

Avg GA 550.4 1 0 2.8 91.8 74.9 0.96 0.2 3.4 91.8 76.9 

Avg. sUAS 385.2 0.86 0.8 3.4 87.3 64.7 0.86 0.8 3.6 84.8 64.4 

Avg. across all sorties 474.3 0.93 0.4 3.1 89.5 69.8 0.91 0.5 3.5 88.3 70.6 
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based off the Kalman Filter, and improves localization error for sortie 5, which happens to be a head-on collision that 

begins at closer range.  Sorties 1, 2, 4, 9, and 10 generated nearly identical average KF and EKF tracker localization 

errors. Sorties 3, 7, and 8 differed in average localization error by less than 1 pixel. The average EKF localization 

error for Sortie 6 is lower than average KF localization error, however, the EKF tracker accuracy is 66.1 compared to 

75.5 for KF from Table 5, thus supplying less intruder tracking coverage. Given that average tracker localization errors 

are within 1 pixel for 9 of 10 sorties, the decision on which tracker should be based on other metric such as tracker 

accuracy and tracker robustness. The KF tracker achieves 1.2 % higher tracker accuracy and is 0.8% lower in tracker 

robustness, thus making it slightly preferred based on tracker accuracy, robustness, and localization error. 

D. Range Estimation 

Table 7 shows the vision system results with respect to the DAA model described on page 15. Recall that 𝑹𝒅𝒆𝒕 is 

the initial tracking range and that 𝑹𝒆𝒗𝒂𝒅𝒆 is the minimum distance to prevent a well-clear violation by executing an 

avoidance maneuver. Detectors performed similarly for the first detection range with the morphological detector 

achieving higher 𝑹𝒅𝒆𝒕 in a few instances. EKF and KF trackers achieved the same 𝑹𝒅𝒆𝒕.  𝑹𝒅𝒆𝒕 surpassed 𝑹𝒆𝒗𝒂𝒅𝒆 in 9 

of 10 sorties, with the exception of sortie 5, where the camera was offset relative to the ownship and GA plane 

encounter.  Sortie 5 results demonstrate that this system can track a GA plane on a tangential but not intersecting 

course, which is useful for identifying aircraft that may cross the FOV without being on a direct collision course.   

Table 7:  DAA analysis Detection Threshold 5. 

Sortie Number and 
Description 

GT 
[m] 

POT 
 for GT  
w x h 

Diff first 
detection 

[m] 

Morph first 
detection 
	[m] 

KF 
𝑹𝒅𝒆𝒕 
[m] 

EKF 
𝑹𝒅𝒆𝒕 
[m] 

𝑹𝒆𝒗𝒂𝒅𝒆 
[m] 

EKF and KF 
𝒕𝒅𝒆𝒕𝒆𝒄𝒕 
[sec] 

1 Tempest Head-on 1136 4x3 1136 1136 1022 1022 840 36.5 
2 Tempest Head-on 1107 3x3 1093 1107 1078 1078 840 38.5 
3 Tempest Head-on 1006 3x4 999 999 980 980 840 35.0 

4 GA Head-on 3406 3x1 3406 3406 3247 3247 1890 51.5 
5 GA Head-on, 

near miss 858 608x161 812 858 721 721 1890 11.4 

6 Tempest Departing 
Collision Volume  1067 8x10 1067 1067 987 987 840 35.3 

7 Tempest Departing 
Collision Volume  1168 4x10 1166 1166 1150 1150 840 41.1 

8 GA Head-on 2401 4x3 2401 2401 2297 2297 1890 36.5 
9 GA Head-on 2514 3x3 2514 2514 2404 2404 1890 38.2 
10 GA Head-on 3053 3x2 2994 2994 2936 2936 1890 46.6 

Avg GA 2446 NA 2425 2435 2321 2321 1890 37.3 
Avg. sUAS 1097 NA 1092 1095 1043 1043 840 36.8 
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The initial detection results are on par with the Aerial Object Tracking pipeline in [29], where established tracks 

ranged between 2830 to 980 meters for GA vs. GA detection and track.  The average 𝑹𝒅𝒆𝒕  for GA for this work is 

2435m compared to 1822m in [29], however, the closure speed for GA vs. GA is much higher than the SR22 vs. 

ISAAC. 

VII. Conclusion 

Reliable onboard collision avoidance systems for sUAS are needed for safe autonomous sUAS operations. This 

work demonstrates that fixed-wing sUAS and GA planes above the horizon can be detected and tracked in the far-

field from a multirotor in a dynamic sUAS environment using a machine vision system. The computer vision approach 

was developed thoroughly by testing different aircraft detectors over different flight conditions and with two types of 

intruder aircraft. Combining the morphological and difference detectors provided the best tracking performance. The 

detection thresholds were thoroughly explored by heuristically determining values for this sUAS tracking. The EKF 

and KF trackers performed equally to the nearest meter for the initial detection ranges. Average KF tracker accuracy 

across all sorties was slightly higher than average EKF tracker accuracy, however, there was a slight decrease in 

tracking robustness. Success criteria was defined using standard well-clear definitions and a refined range inequality 

model that incorporates sensor characteristics. The offline vision system exceeds the well-clear definitions commonly 

used in sUAS and GA for the head-on and overtaking sUAS and GA aircraft sorties. The vision system provides 

enough time for the flight controller to perform an avoidance maneuver while enabling communication to cooperative 

aircraft in the surrounding area.    

Future work includes porting the current system to an embedded board for a real-time demonstration of the 

computer-vision sensing pipeline. This would include the integration of attitude information from the inertial 

navigation system and use of global shutter cameras to improve vision system performance. Track stability and 

robustness in the presence of ownship and intruder motion will also be analyzed. Another goal is the development of 

a perception system to classify different kind of intruders such as birds, GA plane, multirotor sUAS, and fixed wing 

sUAS. Classifying the intruder will give insights into its performance envelope, i.e. it will help constrain the choices 

of avoidance maneuvers. But it is unlikely to impact the performance of detection and tracking of systems. Any DAA 

system highly dependent on classification will be quite fragile in the field because of the constant upgrades as new 

platforms enter the marketspace.  Future avenues explore ranging and also combining with other sensors and exploring 

how the vision sensor can perform within a dynamic aircraft environment, such as keeping track of existing intruders 

during an evasive maneuver.  
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