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Abstract

This technical memorandum shows the development of the mathematics needed
to model several types of electromagnetic force actuators that may be of interest
for use in space applications. The actuators described are capable of providing
attractive, repulsive, and longitudinal forces between the actuator and a variety
of metal surfaces. Potential applications for these propellant free actuators include
spacecraft docking, in-space fabrication, robotic spacecraft inspection and servicing,
deflection of metallic debris, and interaction with iron core asteroids (e.g., landing,
repelling, and relocating).
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1 Overview and Purpose

This technical memorandum shows the development of the mathematics needed
to model several types of electromagnetic force actuators that may be of interest
for use in space applications. The actuators described are capable of providing
attractive, repulsive, and longitudinal forces between the actuator and a variety
of metal surfaces. Potential applications for these propellant free actuators include
spacecraft docking, in-space fabrication, robotic spacecraft inspection and servicing,
deflection of metallic debris, and interaction with iron core asteroids (e.g., landing,
repelling, and relocating).

The majority of the document focuses on the interactions of electromagnets
(air coils driven with alternating currents (AC)) and conductive metals, both non-
magnetic and ferromagnetic. An AC coil located in a parallel plane to the surface
of a conductive plate generates eddy currents in the plate that result in a repul-
sive force between the two. If that conductive plate has a relative permeability
greater than one, attractive forces dominate with direct currents (DC) and for low
frequency AC, but then transition to repulsive forces as the frequency of the drive
current is increased. Adding a conductive plate over a ferromagnetic plate makes
this transition occur at lower frequencies compared to a ferromagnetic plate alone.
Configuring multiple overlapping coils in the same plane and driving the currents
with an advancing or retarding phase (e.g., in quadrature) results in longitudinal
force generation. Coils used in this way form what is often referred to as a linear
induction motor. Each of these configurations are explored in detail. Examples are
provided to illustrate the force values obtained for different cases, computed directly
from the math models. In several cases, finite element models where developed in
COMSOL to serve as an independent check on the theory. Data from relevant ex-
periments is presented where possible. Additionally, a few sections include analysis
of coils driven with a general time-varying current to aid in determining the forces
generated in pulsed current applications.

A non-magnetic method of attraction is described by using a series of plates to
induce mirror charges in the conductive plate. Since part of the original purpose
for this work was to consider servicing spacecraft for use on the outside of the
International Space Station (ISS), the effect the ionosphere will have on such a
system needed to be considered. Details are provided about the ionosphere and
testing conducted using this electrostatic method. An important result showed
that by using sufficient charge and modulating the polarity of the drive plates, it is
possible to operate at distances beyond the Debye length without adversely affecting
the attractive force.
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2 Magnetic Force Actuators - Electromagnet Coils and
their Eddy-Current Interactions with Conductive Tar-
gets

This section presents the mathematics to compute the magnetic field and vector
potential for a loop or current and then looks at the eddy currents formed in a
conducting slab parallel to the current loop. These solutions are then used to predict
the forces between the eddy currents and single and then multiple loops. After
developing the math for an isolated current loop, the case of a single loop opposite a
conductive slab is presented, predicting the repulsive force generated when the loop
is driven with an alternating current. The next case describes the forces generated
when two current loops face the slab and are driven with alternating currents at
the same frequency but a separation in phase. In this case, there are translational
(longitudinal) forces generated (the basis for a linear induction motor) and repulsive
forces.

2.1 Single Electromagnetic Coil

2.1.1 Problem Setup

Assume a single current loop, or coil, of radius r is oriented parallel to a conducting
slab of of thickness s and infinite extent as shown in Figure 16. The coil is a distance
d from the surface of the slab. Place a cylindrical coordinate system on the surface
of the slab, with the origin aligned with the center-line of the loop and located on
the surface of the slab closest to the coil.

The coil is driven with a time varying current, I(t) = I cosωt, where ω = 2πf
is the angular frequency and where, without loss of generality, a cosine time depen-
dence has been assumed. It is assumed that the current is not affected by coupling
with the plate eddy currents. A more accurate analysis would have the coil driven
with a power supply of known impedance where the impact of the back electro-
motive force (EMF) on the coil current could be modeled. The slab is assumed to
have conductivity, σ and be non-magnetic µr = 1.

2.1.2 The Magnetic Vector Potential for an Isolated Coil

Several authors have considered the problem of a current loop located over an infinite
slab of material [1–6]. Most were concerned with eddy current testing and could
assume high current frequencies such that even a thin sheet of metal would look
like an infinite slab (the skin depth of aluminum at 1 kHz is only 2.7 mm and at 1
MHz it is only 85 microns). All of them developed their solutions by solving for the
magnetic vector potential, ~A, and that same approach is taken here.

Before introducing the complexities of the conductive slab it is worthwhile to
start with just an isolated coil. The non-homogeneous wave equation for ~A, is

∇2 ~A− (1/c2)
∂2 ~A

∂t2
= −µ0

~J, (1)

9



Figure 1. A magnetic coil of radius r, at a distance d above a conducting sheet of
thickness s, is shown with a cylindrical coordinate system.

where ~J is the current density. We limit our maximum frequency to about 10 kHz
and our maximum length or size to one meter. Consequently, the time derivative
has a maximum factor about 4× 10−8 times smaller than the spatial derivative and
can be dropped, leaving

∇2 ~A = −µ0
~J. (2)

The current density in the coil is given by ~J = I(t)δ(ρ − r)δ(z − d)φ̂, i.e. there is
only current within the loop which is assumed to be infinitesimal in size. Since the
current only points in the φ̂ direction, so does the vector potential, and recalling the
problem has cylindrical symmetry (i.e. no φ dependence) allows the vector potential
to be written in the form, ~A = A(ρ, z, t)φ̂. Then, assuming a Lorentz Gage,

∇ · ~A+
1

c2

∂V

∂t
= 0, (3)

we see that ∇· ~A can be assumed to be zero because at low frequency the change in
potential divided by c2 is very small. These two results allow the vector Laplacian
to be replaced by a double curl and allows the vector differential equation to reduce
to a scalar differential equation (taking only the φ̂ direction)

∇2 ~A = −∇×∇× ~A =

(
∂2A

∂ρ2
+
∂2A

∂z2
+

1

ρ

∂A

∂ρ
− A

ρ2
= −µ0J

)
φ̂. (4)

Now, assuming separation of variables, we write A(ρ, z) = Aρ(ρ)Az(z) and this

10



equation, after dividing by Aρ(ρ)Az(z), becomes(
A′′ρ +A′ρ/ρ−Aρ/ρ2

)
/Aρ +A′′z/Az = −µ0J/ (AρAz) (5)

where primes indicate differentiation and where the explicit variable dependence has
been dropped since the subscripts provide that information.

First solve the problem for all space other than the current loop (i.e., set the
differential equation equal to zero). Doing this yields(

A′′ρ +A′ρ/ρ−Aρ/ρ2
)
/Aρ = −α2 = −A′′z/Az, (6)

where α is an arbitrary constant. Solving this yields, for a particular α, the solution

A(ρ, z) =
(
C1e

αz + C2e
−αz) (C3J1(αρ) + C4Y1(αρ)) , (7)

i.e., a product of exponentials and Bessel functions. The function Y1(αρ) is a Bessel
function of the second kind and is not bounded when ρ = 0, so C4 = 0. Also, noting
that the potential has to stay bounded for large positive or negative values of z
around the coil and that the solution is symmetrical about the plane of the coil, i.e.,
if we let z → z − d then C1 = C2, we can write the solution as

A(ρ, z) =

{∫∞
0 C(α)eαde−αzJ1(αρ) dα, z > d∫∞
0 C(α)e−αdeαzJ1(αρ) dα, z 6 d.

(8)

The solution is symmetrical about d and the parameters C1, C2, and C3 have been
absorbed into the function C(α).

The next step is to find the function C(α) by re-inserting the current. Consider
a location (r, d− ε) where ε is very small and a symmetric location on the other side
of the coil (r, d+ ε). By symmetry we expect the vector potential to have the same
value at both of these points, which is verified by examination of the solution above.
We also expect the slopes in the ρ̂ direction to be the same at these two locations,
just on either side of the coil’s wire. What is different is the slope in the ẑ direction
at these two locations. So consider, Eq. 4 with the coil current inserted

∂2A

∂ρ2
+
∂2A

∂z2
+

1

ρ

∂A

∂ρ
− A

ρ2
= −µ0I(t)δ(z − d)δ(ρ− r). (9)

Integrating along a line from (r, d− ε) to (r, d+ ε) passes through the coil and begins
and ends on locations where the ρ derivatives are equal and cancel, yielding

∂A

∂z

∣∣∣
z=d+ε

− ∂A

∂z

∣∣∣
z=d−ε

= −µ0I(t)δ(ρ− r). (10)

Substituting in the general solution yields

− 2

∫ ∞
0

C(α)e−αεJ1(αρ)αdα = −µ0I(t)δ(ρ− r). (11)

The Bessel function closure relation∫ ∞
0

J1(βρ)J1(αρ)ρ dρ = (1/α)δ(β − α) (12)

11



can be used to simplify the expression above. Multiply both sides by −ρJ1(βρ) and
integrate ρ from 0 to ∞ to obtain∫ ∞

0
ρJ1(βρ)2

∫ ∞
0

C(α)e−αεJ1(αρ)αdαdρ =

∫ ∞
0

ρJ1(βρ)µ0I(t)δ(ρ− r) dρ

2

∫ ∞
0

C(α)e−αεδ(β − α) dα = µ0I(t)rJ1(βr)

2C(β)e−βε = µ0I(t)rJ1(βr)

C(β) = µ0I(t)rJ1(βr)/2,

(13)

where ε has been taken to zero in the final step. So the complete vector potential
for a current loop is given by

A(ρ, z) =

{
1
2

∫∞
0 µ0I(t)reαde−αzJ1(αr)J1(αρ) dα, z > d

1
2

∫∞
0 µ0I(t)re−αdeαzJ1(αr)J1(αρ) dα, z 6 d.

(14)

This expression can be converted to an elliptical integral:

A(ρ, z) =
µ0I(t)

√
r

2π
√
kρ

(−2E (k) + (2− k)K (k)) , (15)

where k = 4rρ

(ρ+r)2+(z−d)2
using Kausel’s paper [7]. This is in agreement with the

results on pages 181-182 in Jackson [8], obtained by performing a line integral around
the coil loop.

2.1.3 Force on the Coil

Before including the slab, it is worthwhile to consider the mathematics predicting
the force the coil exerts on itself. Of course we expect this to yield a net zero force–an
object can’t make itself move–but by going through this derivation we highlight what
terms in the last analysis correspond to coil-coil interaction as opposed to coil-slab
interaction. The force on an element of the coil is given by d~F = I(t)d~l× ~B. For now
only consider the force along the ẑ axis, and since d~l points in the φ̂ direction, only
the radial components of the magnetic field contribute, yielding dF ẑ = −IdlBρẑ.
Integrating about the coil’s circumference yields

Fz = −I2πrBρ (r, d) = I2πr
∂A (r, d)

∂z
. (16)

where Bρ (r, d) is the radial component of the magnetic field on the coil, where
∂A (r, d) ∂z is determined on the coil, and where the time dependence of the current
and fields is not shown. Using the set of equations in Eq. 14, we find

∂A (ρ, z)

∂z
=

{
−1

2

∫∞
0 αµ0I(t)reαde−αzJ1(αr)J1(αρ) dα, z > d

1
2

∫∞
0 αµ0I(t)re−αdeαzJ1(αr)J1(αρ) dα, z < d.

(17)

12



Now let z = d+ε when z > d and z = d−ε when z < d, which upon substitution
gives

∂A (ρ, d+ ε)

∂z
= −1

2

∫ ∞
0

αµ0I(t)reαde−α(d+ε)J1(αr)J1(αρ) dα

∂A (ρ, d− ε)
∂z

=
1

2

∫ ∞
0

αµ0I(t)re−αdeα(d−ε)J1(αr)J1(αρ) dα.

(18)

These two expressions are the negative of each other, so their summation is zero.
If we assume the coil has finite thickness then the force on one side of segment of
the coil is canceled by the force on the other side, so there is no net force.

2.2 Single Coil Facing a Conductive Slab

2.2.1 The Magnetic Vector Potential for a Coil Facing a Conductive
Slab

Inside of the conductive slab the time variation of the vector potential generates an
electric field given by ~E = −∂ ~A/∂t . This causes currents to flow by Ohm’s Law,
~J = σ ~E. Using these, the differential equation for the vector potential in the slab
becomes

∇2 ~A = −µ0
~J = −µ0σ ~E = µ0σ

∂ ~A

∂t
. (19)

Now assume the coil current is varying sinusoidally, I(t) = I cos(ωt), causing the
vector potential to also vary sinusoidally and allowing it to be expressed as

~A (ρ, z, t) =
~A (ρ, z) eiωt + ~A∗ (ρ, z) e−iωt

2
. (20)

There is a phase difference between the current and the vector potential that will
cause ~A (ρ, z) to be complex, but when we calculate forces we will need to multiply
the vector potential times the current and this multiplication can only be done
between real terms, not complex ones. Consequently, it must be kept in mind that
before this multiplication can be performed that the above formula must be used to
recover the real version of the vector potential. So using ~A (ρ, z) eiωt as the form for
the vector potential, the differential equation in the slab becomes

∇2 ~A = −∇×∇× ~A =
∂2 ~A

∂ρ2
+
∂2 ~A

∂z2
+

1

ρ

∂ ~A

∂ρ
−

~A

ρ2
= iωµ0σ ~A. (21)

The coefficient ωµ0σ can be significant. Aluminum has a conductivity of about
4× 107 A/(V-m) and if the frequency is 50 Hz this coefficient is about 16,000 m−2.
So the term on the right of this equation must be kept through the analysis.

As was the case with the isolated coil, the currents and therefore the magnetic
vector potential are only in the φ̂ direction. So, ~A = A(ρ, z)φ̂, allowing Eq. 21 to be
written in scalar form. Then, using separation of variables, A (ρ, z) = Aρ (ρ)Az (z),
yields the differential equation

(Aρ
′′ +Aρ

′/ρ−Aρ/ρ2)/Aρ +Az
′′/Az = iωµ0σ

(Aρ
′′ +Aρ

′/ρ−Aρ/ρ2)/Aρ = −α2 = −Az ′′/Az + iωµ0σ.
(22)
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Solving this yields the solution for a specific α

A (ρ, z) =
(
Dez
√
α2+iωµ0σ + Ee−z

√
α2+iωµ0σ

)
J1 (αρ) , (23)

and the general solution for the vector potential within the slab

A (ρ, z) =

∫ ∞
0

(
D (α) ez

√
α2+iωµ0σ + E (α) e−z

√
α2+iωµ0σ

)
J1 (αρ) dα. (24)

Using the expressions obtained for the isolated coil, there are now four general
solutions, for four different regions of space.

A(ρ, z) =



∫∞
0 C(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
F (α)eαde−αz +G(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d∫∞

0

(
D (α) ez

√
α2+iωµ0σ + E (α) e−z

√
α2+iωµ0σ

)
J1 (αρ) dα,−s < z < 0∫∞

0 H(α)eαzJ1(αρ) dα, z < −s
(25)

Across each interface the vector potential is continuous and, since the slab is assumed
to not be magnetic (µr = 1), the tangential components of the magnetic field,
Hρ = −∂A/∂z, are continuous on each slab interface. This yields five boundary
conditions for the six unknown functions. The sixth boundary condition comes from
the coil itself. Starting with the continuity condition and letting α1 =

√
α2 + iωµ0σ

(we assume α1 is in the quadrant where both its real and imaginary components are
greater than zero) we obtain

C (α) = F (α) +G (α)

F (α) eαd +G (α) e−αd = D (α) + E (α)

D (α) e−α1s + E (α) eα1s = H (α) e−αs.

(26)

The two magnetic field conditions across the slab surfaces yield

−αF (α) eαd + αG (α) e−αd = α1D (α) + α1E (α)

α1D (α) e−α1s − α1E (α) eα1s = αH (α) e−αs.
(27)

Across the coil we have

∂A (ρ, z, t)

∂z

∣∣∣
z=d+ε

− ∂A (ρ, z, t)

∂z

∣∣∣
z=d−ε

= −µ0I (t) δ (ρ− r) . (28)

But we need a boundary condition form for A (ρ, z), i.e., with the time dependence
removed. Using the expression for A (ρ, z, t) given in Eq. 20 and expanding I (t) =
I cos (ωt) allows such a condition to be found:

∂
(
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

)
2∂z

∣∣
z=d+ε

−
∂
(
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

)
2∂z

∣∣
z=d−ε

= −µ0I
eiωt + e−iωt

2
δ (ρ− r) .

(29)
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Rearranging terms to separate the time dependence gives:(
∂A (ρ, z)

∂z

∣∣∣
z=d+ε

− ∂A (ρ, z)

∂z

∣∣∣
z=d−ε

)
eiωt

2
+ cc = −µ0I

eiωt

2
δ (ρ− r) + cc, (30)

where cc is the complex conjugate of each side of the equation. This can be further
simplified to a time independent form:

∂A (ρ, z)

∂z

∣∣∣
z=d+ε

− ∂A (ρ, z)

∂z

∣∣∣
z=d−ε

= −µ0Iδ (ρ− r) . (31)

Substituting this into the first two general solutions in Eq. 24 gives:∫ ∞
0

(
− (C (α) +G (α)) e−αε + F (α) eαε

)
J1(αρ)αdα = −µ0Iδ (ρ− r) . (32)

Now use the orthogonality integral relationship
∫∞

0 J1 (βρ) J1 (αρ) ρdρ = (1/α)δ (β − α)
to obtain:∫ ∞

0
J1 (βρ)

∫ ∞
0

(
− (C (α) +G (α)) e−αε + F (α) eαε

)
J1(αρ)αdαρdρ

= −
∫ ∞

0
J1 (βρ)µ0Iδ (ρ− r) ρdρ.

(33)

This then reduces to∫ ∞
0

(
− (C (α) +G (α)) e−αε + F (α) eαε

)
δ (β − α) dα = −J1 (βr) rµ0I. (34)

Evaluating the final integral results in

− (C (β) +G (β)) e−βε + F (β) eβε = −J1 (βr) rµ0I. (35)

Letting ε go to zero and changing variables gives the last expression needed to find
the full solution:

C (α) +G (α)− F (α) = J1 (αr) rµ0I. (36)

Solving these six equations for the coefficient functions yields:

C (α) = µ0Ir
J1 (αr)

2

(
1 +

(
α2 − α2

1

)
e−2αd (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)

F (α) = µ0Ir
J1 (αr)

2

( (
α2 − α2

1

)
e−2αd (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)

G (α) = µ0Ir
J1 (αr)

2

D (α) = µ0IrJ1 (αr)

(
α (α1 + α) eα1s−αd

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
E (α) = µ0IrJ1 (αr)

(
α (α1 − α) e−α1s−αd

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
H (α) = µ0IrJ1 (αr)

(
2αα1e

α(s−d)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)

(37)
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These expressions combined with Eq. 25 yield the complete description of the
time-independent portion of the vector potential. If α1 = α, i.e., the slab is non-
conducting or the frequency is very small, these expressions reduce to the same
vector potential as found for the isolated coil.

2.2.2 The Force on the Coil

Now consider the force on the coil due to the presence of the slab. The force on
an element of the coil is given by d~F = I(t)d~l × ~B. Since we are only interested
in the total force along the z axis, and since d~l points in the φ̂ direction, only the
radial components of the magnetic field contribute, resulting in dF ẑ = −I(t)dlBρẑ.
Integrating around the coil’s circumference yields:

~F = −I (t) 2πrBρ (r, d, t) ẑ = I (t) 2πr
∂A (r, d, t)

∂z
ẑ, (38)

where Bρ (r, d, t) is the radial component of the magnetic field on the coil and where
∂A(r, d, t)/∂z is the derivative of A with respect to z and evaluated at ρ = r and
z = d. From Eq. 20

∂A (r, d, t)

∂z
=

(
∂A (r, d)

∂z
eiωt +

∂A∗ (r, d)

∂z
e−iωt

)
/2. (39)

This results in a force on the coil given by

~F = I cos (ωt) 2πr

(
∂A (r, d)

∂z
eiωt +

∂A∗ (r, d)

∂z
e−iωt

)
/2ẑ. (40)

We are only interested in the steady state force so we can average the time depen-
dence over a cycle which will leave

~Favg = Iπr

(
∂A (r, d)

∂z
+
∂A∗ (r, d)

∂z

)
/2ẑ. (41)

From the above expressions we know that

A(ρ, z) =

{∫∞
0 C(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
F (α)eαde−αz +G(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d.

(42)

Taking the derivatives yields,

∂A(ρ, z)

∂z
=

{∫∞
0 −αC(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
−αF (α)eαde−αz + αG(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d.

(43)
Now let z = d+ ε when z > d and z = d− ε when 0 < z < d to obtain

∂A(ρ, d+ ε)

∂z
=

∫ ∞
0
−αC(α)e−αεJ1(αρ) dα

∂A(ρ, d− ε)
∂z

=

∫ ∞
0

(
−αF (α)eαε + αG(α)e−αε

)
J1(αρ) dα. (44)
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Now use the expression C(α) = F (α) +G(α)

∂A(ρ, d+ ε)

∂z
=

∫ ∞
0

(
−αF (α)e−αε − αG(α)e−αε

)
J1(αρ) dα

∂A(ρ, d− ε)
∂z

=

∫ ∞
0

(
−αF (α)eαε + αG(α)e−αε

)
J1(αρ) dα. (45)

The G(α) terms correspond to the vector potential gradient due to the current in
the coil itself. As was discussed earlier, these two terms are of opposite sign and
cancel each other. The remaining term corresponds to the vector potential gradient
from the slab and is given by

∂A(ρ, d)

∂z
=

∫ ∞
0
−αF (α)J1(αρ)dα. (46)

On the coil itself, this becomes

∂A(r, d)

∂z
=

∫ ∞
0
−αF (α)J1(αr)dα. (47)

Combining this with Eq. 41, the force on the coil due to the slab is given by

~Favg = −Iπr
2

∫ ∞
0

α (F (α) + F ∗ (α)) J1(αr)dα ẑ, (48)

where

F (α) = µ0Ir
J1 (αr)

2

( (
α2 − α2

1

)
e−2αd (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
(49)

and

α1 =
√
α2 + iωµ0σ. (50)

If the slab becomes nonconducting, or if the frequency is zero, then α1 = α and the
force is zero, as expected. Also, if the thickness of the slab, s, goes to zero then the
force becomes zero, again as expected.

2.2.3 Mathematica Repulsive Force Simulation

Wolfram’s Mathematica was used to code the result in the previous section to un-
derstand the force developed between AC driven coil and a sheet of aluminum. The
aluminum was assumed to be 1.5 mm thick with a conductivity of 3.77×107 S/m.
The coil modeled contains 320 turns with 1 Amp of current and is assumed to be
infinitely thin but has a 136 mm diameter. The frequency was varied and the the
distance between the coil and plate was varied between 0.2-1.0 cm. The resulting
force plots are shown in Figure 2
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Figure 2. The plot for the force between an AC driven coil with 320 Amps (136 mm
diameter) and an 1.5 mm thick aluminum plate.

2.3 Two Coils Facing a Conductive Slab

This section develops the math for the addition of a second current loop. The
resulting forces can then be summed to achieve the overall forces for a variety of
coil configurations including the longitudinal forces for the linear induction motor
or the axial forces for a solenoid coil.

2.3.1 Problem Setup

The first current loop, located as in the previous sections, is now considered to be a
drive loop that generates the vector potential and the eddy currents in the plate. It
is driven with the same current as before, I(t) = I cosωt. The second current loop
is also driven with an oscillating current of the same frequency, but different phase
than the drive coil, I2(t) = I2 cos(ωt+ϕ) and is not inductively coupled to the first
loop, i.e. the power supply can overcome inductive voltages.

The drive coil, has radius r, is centered on the ẑ axis a distance d from the near
surface of the plate, and faces the plate. The second coil also faces the plate, but
is a distance d2 from the front plate surface. The second coil is radius r2 and it’s
center is a distance b along the x̂ axis from the center of the drive coil as shown in
Figure 3

2.3.2 Longitudinal Force on the Second Coil

There will be both longitudinal and ẑ directed forces created on the second coil due
to its current interacting with the vector potential created by the drive coil and the
slab. In this section only the longitudinal force will be found. In practice the total
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Figure 3. Two coils, one a drive coil and one under evaluation, are placed facing a
conductive sheet. Both cylindrical and Cartesian coordinates are shown.

longitudinal force on a number of coils is desired and to find this, the force exerted
by each coil on all of the other coils is summed using the results derived below.

The force on an element, d~l, of the second coil is given by

d~F = I2(t)d~l × ~B(ρ, z, t) (51)

where the magnetic field, ~B(ρ, z, t) is generated by the currents in the drive coil and
in the slab. In this section the x̂ directed force is being calculated. The ŷ force will
total to zero by symmetry and the ẑ force will be found in the next section. Since
the coil is in an x̂-ŷ plane, only the ẑ component of the magnetic field contributes
to the x̂ directed force and only the ŷ component of the current contributes. So the
differential force equation simplifies to

dFx(x, y, t) = I2 cos(ωt+ ϕ)Bz(ρ, z, t)dy. (52)

The magnetic field is complex due to phase shifts in time caused by the slab, and
can be expressed as

Bz(ρ, z, t) =
Bz(ρ, z)e

iωt +B∗z (ρ, z)e−iωt

2
(53)

substituting this into the force equation and expanding the cosine yields

19



dFx(x, y, t) = (I2/4)(ei(ωt+ϕ) + e−i(ωt+ϕ))
(
Bz(ρ, z)e

iωt +B∗z (ρ, z)e−iωt
)
dy. (54)

Averaging this over time yields

dFx(x, y) = (I2/4)
(
Bz(ρ, z)e

−iϕ +B∗z (ρ, z)eiϕ
)
dy. (55)

Since the vector potential points only in the φ̂ direction, i.e., ~A = A(ρ, z)φ̂, the
ẑ component of the magnetic field is given by

Bz(ρ, z) =
1

ρ

∂

∂ρ
(ρA(ρ, z)) (56)

Bz(ρ, z) is only needed when z = d2, the plane containing the second coil, and
only the component of the vector potential generated by the slab is needed, not
the component generated by the drive coil. The drive coil component will generate
a force that will be balanced by the force exerted by the second coil on the first,
yielding no net force. From the prior development, this component of the vector
potential is given by

A(ρ, z) =

∫ ∞
0

F (α)eαde−αzJ1(αρ) dα (57)

which becomes, when z = d2

A(ρ, d2) =

∫ ∞
0

F (α)eα(d−d2)J1(αρ) dα (58)

so the magnetic field component, Bz(ρ, d2) is

Bz(ρ, z) =
1

ρ

∂

∂ρ

(
ρ

∫ ∞
0

F (α)eα(d−d2)J1(αρ) dα

)
Bz(ρ, z) =

∫ ∞
0

F (α)eα(d−d2) 1

ρ

∂

∂ρ
(ρJ1(αρ)) dα

Bz(ρ, z) =

∫ ∞
0

F (α)eα(d−d2)J0(αρ)αdα

(59)

where, from the prior analysis

F (α) = µ0Ir
J1 (αr)

2

( (
α2 − α2

1

)
e−2αd (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
(60)

where α2
1 = α2 + iωµ0σ. So the differential force is given by

dFx(x, y) = (I2/4)

∫ ∞
0

(
F (α)e−iϕ + F ∗(α)eiϕ

)
eα(d−d2)J0(αρ)αdαdy. (61)
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To obtain the total force the differential force is integrated around the upper
half of the second coil (and multiplied by 2 to account for the lower half of the coil).
The upper half of the coil is described by

y2 + (x− b)2 = r2
2 → y =

√
r2

2 − (x− b)2 b− r2 ≤ x ≤ b+ r2 (62)

Recalling that ρ =
√
x2 + y2, the dy and ρ become

dy[x] =
b− x√

r2
2 − (x− b)2

dx and ρ =
√
r2

2 − b2 + 2bx (63)

So the total force on the second coil (including the factor of 2) is given by

Fx = 2

∫ b+r2

b−r2
dFx(x, y)

Fx =

∫ b+r2

b−r2

I2

2

∫ ∞
0

(
F (α)e−iϕ + F ∗(α)eiϕ

)
eα(d−d2)J0(α

√
r2

2 − b2 + 2bx)αdα
b− x√

r2
2 − (x− b)2

dx

Fx =
I2

2

∫ ∞
0

(
F (α)e−iϕ + F ∗(α)eiϕ

)
eα(d−d2)α

∫ b+r2

b−r2

(b− x)J0(α
√
r2

2 − b2 + 2bx)√
r2

2 − (x− b)2
dx dα

(64)

It’s worth noting that the e−2αd term from F (α) and the eα(d−d2) from Fx combine
to show that total force drops exponentially according to the total distance of the
two coils from the slab. Additionally, if b = r2 then the dx integral can be performed
in closed form yielding∫ b+r2

b−r2

(b− x)J0(α
√
r2

2 − b2 + 2bx)√
r2

2 − (x− b)2
dx =

∫ 2b

0

(b− x)J0(α
√

2bx)√
2bx− x2

dx = −bπJ2
1 (αb)

(65)

2.3.3 Mathematica Simulation of Longitudinal Force in a Linear Induc-
tion Motor

The general solution of the LIM presented above was used to determine the max-
imum mean force configuration for a four coil motor by varying the overlap of the
coils and then the phase. The coils again are 320 Amp loops that are 136 mm in
diameter. The first drive coil is assumed to be 1.5 cm from a 1.5 mm thick aluminum
plate with a conductivity of 3.77×107 S/m. The 2nd coil is assumed to be 3.5 cm
from the plate since the two coils can’t occupy the same space. The remaining two
coils repeat the pattern. The overlap parameter, b, was varied to allow different
amounts of overlap while computing the force generated. The model supports al-
lowing the radii of the coils to all be different, but for this example they are all
assumed to be equal to r, which is calculated from the diameter mentioned above
to be 68 mm. The first set of plots is shown in Figure 4 showing that the maximum
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Figure 4. Four coil linear induction motor model with varying amounts of overlap
between adjacent coils

mean force is generated for 0.75r ≤ b ≤ 1.0r. Other modeling showed that the force
drops off for overlaps less than around 0.75r.

The results of the phase variation are given below in Figure 5. Driving the LIM
in quadrature (φ = π/2) results in the maximum mean force. However, the phase
can vary a bit around that point with almost no adverse effect.

2.3.4 ẑ Directed Force on the Second Coil

This section will derive an expression for the ẑ directed force on the second coil due
to the presence of the slab and the eddy-currents induced in it by the first coil. Start
by recalling that the force on an element of the second coil is given by d~F = I2d~l× ~B.
Since we are only interested in the total force along the z axis, and since d~l lays
in the x − y plane and ~B has no φ component, only the radial component of the
magnetic field contributes, resulting in dF ẑ = −I2d~l ×Bρρ̂.

To resolve the cross product, start with the equation for the second coil (see
Figure 6)

y2 + (x− b)2 = r2
2 → y[x] =

√
r2

2 − (x− b)2 b− r2 ≤ x ≤ b+ r2 (66)

Recalling that ρ =
√
x2 + y2, the dy and ρ become

dy[x] =
b− x√

r2
2 − (x− b)2

dx and ρ =
√
r2

2 − b2 + 2bx (67)

Converting ρ̂ to Cartesian coordinates yields
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Figure 5. Four coil linear induction motor model with varying phase between adja-
cent coils

y

x

r r2

b

dl
Bρ

Figure 6. The two loops are shown so that the relationship between d~l and Bρρ̂ can
be seen.
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ρ̂ =
x

(x2 + y[x]2)1/2
x̂+

y[x]

(x2 + y[x]2)1/2
ŷ where b− r2 ≤ x ≤ b+ r2 (68)

Noting that d~l = (dx, dy[x], 0) on the second coil, the cross product becomes

d~l × ~ρ =
r2

2 + bx− b2

((b+ r2 − x)(−b+ r2 + x)(r2
2 − b2 + 2bx))1/2

ẑ (69)

So the force on the differential loop element, d~l, is in the ẑ direction and is given
by

dFz(t) = −I2(t)Bρ(ρ, d2, t)
r2

2 + bx− b2

((b+ r2 − x)(−b+ r2 + x)(r2
2 − b2 + 2bx))1/2

(70)

Using the exponential expressions to express the time dependence of the current
and field, and recalling that the current has a ϕ phase difference when compared to
the current in the first coil, the average force can be found in a process similar to
that used above, yielding

dFz = −I2Bρ(ρ, d2)e−iϕ
r2

2 + bx− b2

4((b+ r2 − x)(−b+ r2 + x)(r2
2 − b2 + 2bx))1/2

+ c.c. (71)

Recall that

Bρ(ρ, d2) = −∂A(ρ, z)

∂z z=d2
(72)

where, from above

A(ρ, z) =

∫ ∞
0

F (α)eαde−αzJ1(αρ) dα (73)

so

Bρ(ρ, d2) = α

∫ ∞
0

F (α)eα(d−d2)J1(αρ) dα (74)

Using this the differential force is

dFz = −I2

∫ ∞
0

αF (α)eα(d−d2)J1(αρ) dαe−iϕ
r2

2 + bx− b2

4((b+ r2 − x)(−b+ r2 + x)(r2
2 − b2 + 2bx))1/2

+c.c.

(75)
The total force on the second coil is then given by integrating this expression over
x from b− r2 to b+ r2, yielding (a factor of 2 has been added because the integral
only accounts for half of the second loop)

Fz = −I2

∫ ∞
0

αF (α)eα(d−d2)e−iϕ
∫ b+r2

b−r2

J1(α
√
r2

2 − b2 + 2bx)(r2
2 + bx− b2)

2((b+ r2 − x)(−b+ r2 + x)(r2
2 − b2 + 2bx))1/2

dx dα+c.c.

(76)
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where F (α) is given by Equation 60 (for the case of a single conducting slab. Other
forms for F (α) arise when multiple slabs or ferrous slabs are modeled) which is
repeated here for convenience.

F (α) = µ0Ir
J1 (αr)

2

( (
α2 − α2

1

)
e−2αd (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
(77)

as a check, if b = 0, I2 = I, r2 = r and d2 = d and ϕ = 0 then we should recover the
ẑ directed force of the drive coil onto itself. Making these substitutions the force
equation above becomes

Fz = −I2r

∫ ∞
0

αF (α)

∫ r2

−r2

J1(αr)

2(r2 − x2)1/2
dx dα+c.c. = −I2πr

2

∫ ∞
0

α(F (α)+F ∗(α))J1(αr)dα

(78)
which is the same result as found earlier. Another interesting case occurs when
b = r2, the second coil touches the center of the first coil. In this case the Force
expression simplifies to

Fz = −I2

∫ ∞
0

αF (α)eα(d−d2)e−iϕ
∫ 2r2

0

J1(α
√

2r2x)r2

2(2r2(2r2 − x))1/2
dx dα+ c.c.

Fz = −I2πr

2

∫ ∞
0

αF (α)eα(d−d2)e−iϕJ1(αr2)J0(αr2) dα+ c.c.

(79)

2.3.5 Mathematica Simulation of Repulsive Force in a Linear Induction
Motor

Returning to the linear induction motor described in Section 2.3.3 and using the
math given by Equations 76 and 77, it is possible to calculate the total repulsive
force for the LIM. This force consists of the interactions of each individual coil with
the eddy-currents it generates plus the forces generated on each coil by the eddy-
currents from adjacent coils. Numbering the coils 1 through 4, the following force
pairs must be computed for the most general case: 1-1, 2-2, 3-3, 4-4, 1-2, 2-1, 1-3,
3-1, 2-3, 3-2, 1-4, 4-1, where the first number in each pair is the drive coil and the
second number is the coil feeling the force.

For our example, the symmetries help to reduce the computation. Coils 1 and 3
are the closest to the plate having a separation of 1.5 cm. So, only the self-induced
force for one of the pairs (1-1 or 3-3) needs to be computed and doubled. The same
is true for coils 2 and 4 which are at 3.5 cm from the plate. The phase relationships
then determine which of the other terms are needed. When driving the coils in
quadrature, directly adjacent pairs 1-2 and 2-1 have equal and opposite forces and
cancel each other. However, coils that are two apart (i.e., 1-3, 3-1, 2-4, 4-2) are
driven out of phase with one another so that the eddy-current forces on the coils
don’t cancel each other. In fact, they have a net attractive force that reduces the
overall repulsive force, depending on the amount of coil overlap. The furthest apart
coil pairs, 1-4 and 4-1, again cancel each other.

The amount of overlap was varied to see how much of a reduction in the repulsive
force could be achieved as this is undesirable in a LIM that is created to drive
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longitudinally. Figure 7 shows a series of plots for different amounts of coil overlap.
As overlap increases to b=r/4, the repulsive force is almost half of that of the case
where b=r. Unfortunately, the same holds true for the longitudinal forces. As
overlap increases, the longitudinal force decreases by a similar factor to the net
repulsive force. The main advantage can be seen in the right hand plots that show
the frequency where the longitudinal and repulsive forces are equal in magnitude.
As overlap is increased, so is the frequency band where the longitudinal force is
larger than the repulsive force.
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Figure 7. Plots showing the lateral (blue) and repulsive (red) forces for different
amount of coil overlap. The left hand side shows the forces over a range of 0-2 kHz
while the right side zooms in on the potentially more useful region where the lateral
force exceeds the repulsive force. From top to bottom, the first pair of plots is for
b=r/4, the 2nd set is for b=4/2, and the last pair is for b=r
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2.3.6 Comparison of Linear Induction Motor Forces using a Mathemat-
ica Simulation and a COMSOL Model

A four coil linear induction model was constructed using our analytic approach in
Mathematica and compared to a similar one constructed in the COMSOL Multi-
physics program which uses finite elements to solve the mathematics in a discrete
numeric method. For this comparison, the coils where assumed to have a radius of
1.5 cm and an overlap of the same size so that the center of each coil overlaps the
outer edge of the next. Each coil was modeled as an infinitely thin loop of current
(125 Amps) driven 90 degrees out of phase from the adjacent coil (quadrature). The
coils faced a 3 mm thick aluminum plate with a conductivity of 3.5×107 S/m. The
coils were staggered with the closest pair being 2.5 mm from the aluminum plate
and the remaining two half a cm further at 7.5 mm. The comparison of the repulsive
and lateral forces appear in the pair of plots shown in Figure 8.

The results between the two models are in fairly close agreement. The slight
differences that do occur are likely due to the discrete nature of the finite element
model and potentially insufficient mesh density in regions of the plate. Additionally,
numeric computations are used with Mathematica - Some of the integrals are per-
formed as a discrete sum over a non-infinite range of values, potentially contributing
to the differing results.

The documentation for the COMSOL model appears in the Appendix.

2.4 One Coil Facing a Conductive Slab with a Time Varying/
Pulsed Current

In the previous sections, the analysis was restricted to a sinusoidally varying current.
This limitation allowed the vector potential to be separated into the product of a
time varying and a spatially varying function, permitting the solution to be obtained.
But there is interest in allowing the current to be more general, for example, pulsed,
and that case will be considered here. This type of drive current might best lend
itself to the application of repelling space debris. So, much larger currents are used
in the examples resulting in much larger forces and magnetic fields.

The case of a time varying current can be handled using Fourier Transforms,
however, the force calculation is nonlinear so some care is required. Start by con-
sidering the force expression derived above for the total force on the coil (after
integrating around the coils circumference)

~F = I (t) 2πr
∂A (r, d, t)

∂z
ẑ, (80)

Since the current, I(t) is assumed to be known, then the problem is to find the vector
potential and its derivative corresponding to this current and use this equation to
find the force. (Note that both the current and the vector potential derivative in
this expression are real quantities.) The vector potential is linear in the current,
allowing Fourier Transforms to be used to find it for the general current. Let I(ω)
be the Fourier Transform of I(t) such that
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Figure 8. Plots showing a comparison between the analytical model and a COMSOL
model when used to compute the longitudinal (top) and repulsive (bottom) forces
with an aluminum slab for a four coil LIM driven in quadrature with a coil overlap
equal to the radius. Slight differences occur due to the discrete nature of the finite
elements used in the COMSOL model.
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I(t) =
1√
2π

∫ ∞
−∞

I(ω)eiωt dω I(ω) =
1√
2π

∫ ∞
−∞

I(t)e−iωt dt (81)

I(ω) is interpreted here as the amplitude of current oscillating at frequency ω in
each frequency interval, dω. Recall that even though I(t) is a real function, I(ω) is
a complex function whose complex phase corresponds to the phase of that portion
of current oscillating at frequency ω.

Previously the vector potential for a single frequency was found. This result can
be generalized to express the vector potential derivative amplitude, corresponding
to the size and phase of the vector potential derivative at a specified frequency

∂A (r, d, ω)

∂z
= −

∫ ∞
0

αF (α)J1(αr)dα. (82)

where

F (α) = µ0I(ω)r
J1 (αr)

2

( (
α2 − α2

1

)
e−2αd (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
(83)

and

α1 =
√
α2 + iωµ0σ. (84)

The only difference between this and the previous expression is that the function
I(ω), which replaces the previous constant I, describes the amount and the phase
of the current oscillating at frequency ω.

Now, to find the time varying, real, vector potential derivative, the frequency
components have to be summed

∂A (r, d, t)

∂z
= Real

[ 1√
2π

∫ ∞
−∞

∂A (r, d, ω)

∂z
eiωt dω

]
(85)

Putting this result into the Eq. 80 yields the total force. This represents the force
between a single loop of current and the eddy current it forms in the conductive
plate.

This analytic model was compared to a similar model built in COMSOL and
the results are in close agreement. The current loop was assumed to be 0.19 m in
diameter and located 0.01 m from a copper plate that has a thickness of 0.013 m.
The current and the resulting force are shown in Figure 9 for both the analytic and
COMSOL solutions. In the Mathematica notebook, Fast Fourier Transforms (FFT)
were used for transforming the time dependent current into the frequency domain
where it could be inserted into the frequency domain representation of the derivative
of the magnetic vector potential. This was then converted back to the time domain
via the inverse FFT. In Mathematica, the commands that call on these routines are
Fourier and InverseFourier. These commands offer options to use different Fourier
pairs by setting the FourierParameters option. Only the FourierParameters setting
of {1,-1} , associated with signal processing, produced the correct magnitude and
phase response.
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Figure 9. Plots showing a comparison between the analytical model and a COMSOL
model when used to compute the repulsive forces between a copper slab and pulsed
current loop.
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2.5 Multi-turn Coil Facing a Conductive Slab with a Time Vary-
ing/ Pulsed Current

To get the force for a solenoid, the math in the prior sub-section needs to be gener-
alized a bit further. We’ll need to use pairs of coils and sum the forces from eddy
currents generated by one coil on the current flowing in a second coil. We’ll use r1

and d1 to represent the radius and distance from the plate of the first coil and r2 and
d2 to represent the radius and distance of the 2nd coil. The different combinations
of forces then sum according to the following slightly modified equations to get the
force between the whole solenoid and the plate.

~F =
∑
r1

∑
r2

∑
d1

∑
d2

I (t) 2πr1
∂A (r1, r2, d1, d2, t)

∂z
ẑ, (86)

∂A (r1, r2, d1, , d2, ω)

∂z
= −

∫ ∞
0

αF (α)J1(αr2)eα(d1−d2)dα, (87)

F (α) = µ0I(ω)r1
J1 (αr1)

2

( (
α2 − α2

1

)
e−2αd1 (eα1s − e−α1s)

(α+ α1)2 eα1s − (α− α1)2 e−α1s

)
. (88)

To get the force for a cylinder of the same thickness as the slab, an approximation
can be made by scaling the force by the ratio between the surface areas of the
cylinder and the coil. Also, since the transforms pairs aren’t dependent on radius
or the distance, they remain the same as above.

As an example, let’s consider a 92 turn pancake style coil made from 10 gauge
copper transformer wire with 23 wraps in the radial direction (inner radius 8.5 cm,
outer radius of 15.6 cm) and 4 wraps in the axial direction. We’ll assume this is
placed opposite a copper plate that is 1.3 cm thick. As a starting distance, the
separation between the plate and the closest loop is 1 cm. The coil will then extend
to about 2.1 cm from the plate. If we assume the same current is flowing in this
solenoid as the single loop coil in the prior subsection, we can expect to see about n2

times the peak force of around 8 N, where n is the number of turns in the solenoid.
The eddy current generated in the slab by each loop of current generates a force on
every other loop, including itself giving rise to the n2 number of forces to compute
and sum. So, for this case, we would expect an estimated 922 ∗ 8 = 67.7 kN of
force. Of course, the majority of the loops in the solenoid are further away from
the plate than the single loop so that the total force should be something less than
this estimate. In this case, the actual value is approximately 56 kN. The plots that
show the force between this solenoid and the plate for different separation distances
is given in Figure 10.

Thus far we have only looked at the forces, but it’s important to point out that
the magnetic field may also be easily computed. One method to do this is to find the
magnetic vector potential for each loop using Equations 25, 37, and 84 combined
with I(ω) in the frequency domain, sum the results for each loop and then take the
inverse transform to get the total magnetic vector potential in the time domaian.
The magnetic field is then found using the relation ~B = ∇× ~A. Since the magnetic
vector potential is only in the φ̂ direction with no dependence on φ, the resulting
answer yields a magnetic field of the form ~B(ρ, z) = B(ρ, z)ρ̂+B(ρ, z)ẑ.
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Figure 10. Plots showing the repulsive forces between a solenoid and a copper slab
for four different separation distances. The excitation current pulse is the same as
shown in Figure 9.

2.6 Electromagnetic coil surrounding an electrically conductive cylin-
der

This section presents the mathematics to predict the forces on a conductive cylinder
centered on a current loop as the first step towards a model for a piece of space debris
interacting with a magnetic shielding system. The analysis assumes a sinusoidally
oscillating current.

2.6.1 Problem Setup

Assume a single current loop, or coil, of radius r has current I(t) flowing through it.
Place a cylindrical coordinate system onto the coil, with origin centered on the coil,
and the coil laying in the z = 0 plane. Now place a cylinder or rod, of radius d, on
the ẑ axis. The slab is assumed to have conductivity, σ and be non-magnetic µr = 1.
The magnetic vector potential due to just the coil is as derived in Section 2.1

2.6.2 Oscillating Current and Infinite Length Rod

In this section the rod is assumed to be infinitely long and the current is assumed
to be oscillating as I(t) = I cosωt where ω = 2πf , is the angular frequency and f is
the frequency of the oscillation. We approach this problem by solving for the vector
potential ~A, starting with the non-homogeneous wave equation for ~A,

∇2 ~A− (1/c2)
∂2 ~A

∂t2
= −µ0

~J, (89)
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where ~J is the current density. We limit our maximum frequency to about 10 kHz
and our maximum length or size to one meter. Consequently, the time derivative
has a maximum factor about 4× 10−8 times smaller than the spatial derivative and
can be dropped, leaving

∇2 ~A = −µ0
~J. (90)

The current density in the coil is given by ~J = I(t)δ(ρ− r)δ(z)φ̂. Since the current
only points in the φ̂ direction, so does the vector potential, and recalling the problem
has cylindrical symmetry (i.e. no φ dependence) allows the vector potential to be
written in the form, ~A = A(ρ, z, t)φ̂. Then, assuming a Lorentz Gage,

∇ · ~A+
1

c2

∂V

∂t
= 0, (91)

we see that ∇· ~A can be assumed to be zero because at low frequency the change in
potential divided by c2 is very small. These two results allow the vector Laplacian
to be replaced by a double curl and allows the vector differential equation to reduce
to a scalar differential equation (taking only the φ̂ direction)

∇2 ~A = −∇×∇× ~A =

(
∂2A

∂ρ2
+
∂2A

∂z2
+

1

ρ

∂A

∂ρ
− A

ρ2
= −µ0J

)
φ̂. (92)

Now, assuming separation of variables, we write A(ρ, z) = Aρ(ρ)Az(z) and this
equation, after dividing by Aρ(ρ)Az(z), becomes(

A′′ρ +A′ρ/ρ−Aρ/ρ2
)
/Aρ +A′′z/Az = −µ0J/ (AρAz) (93)

where primes indicate differentiation and where the explicit variable dependence has
been dropped since the subscripts provide that information.

2.6.3 The Magnetic Vector Potential Including the Rod

Inside of the conductive rod the time variation of the vector potential generates an
electric field given by ~E = −∂ ~A/∂t . This causes currents to flow by Ohm’s Law,
~J = σ ~E. Using these, the differential equation for the vector potential in the rod
becomes

∇2 ~A = −µ0
~J = −µ0σ ~E = µ0σ

∂ ~A

∂t
. (94)

Now assume the coil current is varying sinusoidally, I(t) = I cos(ωt) , causing the
vector potential to also vary sinusoidally and allowing it to be expressed as

~A (ρ, z, t) =
~A (ρ, z) eiωt + ~A∗ (ρ, z) e−iωt

2
(95)

There is a phase difference between the current and the vector potential that will
cause ~A (ρ, z) to be complex, but when we calculate forces we will need to multiply
the vector potential times the current and this multiplication can only be done
between real terms, not complex ones. Consequently, it must be kept in mind that
before this multiplication can be performed that the above formula must be used to
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recover the real version of the vector potential. So using ~A (ρ, z) eiωt as the form for
the vector potential, the differential equation in the rod becomes

∇2 ~A = −∇×∇× ~A =
∂2 ~A

∂ρ2
+
∂2 ~A

∂z2
+

1

ρ

∂ ~A

∂ρ
−

~A

ρ2
= iωµ0σ ~A. (96)

The coefficient ωµ0σ can be significant. Aluminum has a conductivity of about
4× 107 A/(V-m) and if the frequency is 50 Hz this coefficient is about 16,000 m−2.
So the term on the right of this equation must be kept through the analysis.

As was the case with the isolated coil, the currents and therefore the magnetic
vector potential are only in the φ̂ direction. So, ~A = A(ρ, z)φ̂, allowing Eq. 96 to be
written in scalar form. Then, using separation of variables, A (ρ, z) = Aρ (ρ)Az (z),
yields the differential equation

(Aρ
′′ +Aρ

′/ρ−Aρ/ρ2)/Aρ +Az
′′/Az = iωµ0σ

(Aρ
′′ +Aρ

′/ρ−Aρ/ρ2)/Aρ − iωµ0σ = α2 = −Az ′′/Az
(97)

Solving this yields the solution for a specific α

A(ρ, z) = C1 cosαz (C2K1(α1ρ) + C3I1(α1ρ)) , (98)

where α1 =
√
α2 + iωµ0σ. The function Y1(α1ρ) is a Bessel function of the second

kind and is not bounded when ρ = 0, so C3 = 0. Combining this with the isolated
coil result from the previous section yields the following expression for the vector
potential

A(ρ, z) =


∫∞

0 A(α) cosαzI1(α1ρ) dα, ρ < d∫∞
0 cosαz(C(α)I1(αρ) +B(α)K1(αρ)) dα, d < ρ < r∫∞
0 D(α) cosαzK1(αρ) dα, ρ > r

(99)

Across each interface the vector potential is continuous and, since the rod is assumed
to not be magnetic (µr = 1), the tangential component of the magnetic field, Hz =
(1/ρ)∂(ρA)/∂ρ, is continuous across the surface of the rod. Combining these with
the boundary condition across the coil itself, supplies four conditions on the four
functions shown, allowing the problem to be solved.

Start with continuity of the vector potential across the surface of the rod, i.e. at
ρ = d. From the above expressions this yields

A(α)I1(α1d) = C(α)I1(αd) +B(α)K1(αd) (100)

Now consider the magnetic field boundary condition. Recall that

(1/ρ)
∂

∂ρ
(ρI1(βρ)) = βI0(βρ) and (1/ρ)

∂

∂ρ
(ρK1(βρ)) = −βK0(βρ). (101)

Using this, the magnetic field boundary condition at the surface of the rod yields

A(α)α1I0(α1d) = C(α)αI0(αd)− αB(α)K0(αd) (102)
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Continuity across the ρ = r interface supplies this condition

D(α)K1(αr) = C(α)I1(αr) +B(α)K1(αr) (103)

The last condition on these functions is found by integrating across the loop
itself from r − ε to r + ε, a very small distance. So consider, Eq. 92 with the coil
current inserted

∂2A

∂ρ2
+
∂2A

∂z2
+

1

ρ

∂A

∂ρ
− A

ρ2
= −µ0Iδ(z)δ(ρ− r). (104)

Integrate along a line from (r − ε, 0) to (r + ε, 0) passes through the coil. Assuming
the z derivative is the same on either side, yields

1

ρ

∂ρA

∂ρ

∣∣∣
r+ε
− 1

ρ

∂ρA

∂ρ

∣∣∣
r−ε

= −µ0Iδ(z). (105)

Substituting in the general solution and letting ε go to zero yields

−
∫ ∞

0
D(α)α cosαzK0(αr) dα−

∫ ∞
0

C(α)α cosαzI0(αr) dα+

∫ ∞
0

B(α)α cosαzK0(αr) dα = −µ0Iδ(ρ−r).

(106)
Now, recall that ∫ ∞

0
cos(βz)cos(αz) dz = δ(β − α) + δ(β + α), (107)

which can be used to simplify the expression above. Multiply both sides by cos(βz),
where β > 0 and integrate z from 0 to ∞. Since α > 0 only the δ(β − α) term is
retained∫ ∞

0

∫ ∞
0

D(α)α cosβz cosαzK0(αr) dαdz +

∫ ∞
0

∫ ∞
0

C(α)α cosβz cosαzI0(αr) dαdz

=

∫ ∞
0

∫ ∞
0

B(α)α cosβz cosαzK0(αr) dαdz +

∫ ∞
0

cosβzµ0Iδ(z)dz∫ ∞
0

D(α)αδ(α− β)K0(αr) dα+

∫ ∞
0

C(α)αδ(α− β)I0(αr) dα =

∫ ∞
0

B(α)αδ(α− β)K0(αr) dα+ µ0I

D(α)αK0(αr) + C(α)αI0(αr) = B(α)αK0(αr) + µ0I.
(108)

Now solve Eqs. 102, 100, 103 and 108 for the functions A(α), B(α), C(α), and
D(α) to obtain

A(α) =
µ0Ir

π

K1(αr)

αdI1(α1d)K0(αd) + α1dI0(α1d)K1(αd)

B(α) =
µ0Ir

π

(−α1I0(α1d)I1(αd) + αI0(αd)I1(α1d))K1(αr)

αI1(α1d)K0(αd) + α1I0(α1d)K1(αd)

C(α) =
µ0Ir

π
K1(αr)

D(α) =
µ0Ir

π
I1(αr) +

µ0Ir

π

(−α1I0(α1d)I1(αd) + αI0(αd)I1(α1d))K1(αr)

αI1(α1d)K0(αd) + α1I0(α1d)K1(αd)

(109)
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and the vector potential is

A(ρ, z) =


∫∞

0 A(α) cosαzI1(α1ρ) dα, ρ < d∫∞
0 cosαz(C(α)I1(αρ) +B(α)K1(αρ)) dα, d < ρ < r∫∞
0 D(α) cosαzK1(αρ) dα, ρ > r

(110)

where
α1 =

√
α2 + iωµ0σ (111)

2.6.4 The Force on the Cylinder

Now consider the force on the cylinder due to the coil current. The total force can
be found more easily by integrating across the coil, but we want to consider an
integral over a finite length in z as an approximation for the force on a finite length
cylinder.

The force on a volume element of the cylinder is given by d~F = ~J(t) × ~B,
where ~J(t) is the eddy current density in the cylinder. Since we are only interested
in the total force along the z axis, and since the eddy currents are only in the φ̂
direction, only the radial components of the magnetic field contribute, resulting
in dF ẑ = −J(t)Bρ(ρ, z, t)ẑ. Bρ(ρ, z, t) = −∂A(ρ, z, t)/∂z. So the force on each
differential volume element of the cylinder is given by

dFz(ρ, z, t) = −σ∂A(ρ, z, t)

∂t

∂A(ρ, z, t)

∂z
(112)

where Eq. 94 has been used to replace the eddy current density with the vector
potential. Now recall that

A (ρ, z, t) =
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

2
(113)

so the force equation becomes

dFz(ρ, z, t) = −σ ∂
∂t

(
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

2

)
∂

∂z

(
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

2

)
= −σ

(
iωA (ρ, z) eiωt − iωA∗ (ρ, z) e−iωt

2

)(
∂A (ρ, z) /∂zeiωt + ∂A∗ (ρ, z) /∂ze−iωt

2

)
.

(114)

Averaging over time only retains the time independent terms

dFz(ρ, z) = −σω (iA(ρ, z)∂A∗ (ρ, z) /∂z − iA∗(ρ, z)∂A (ρ, z) /∂z) /4. (115)

To obtain the total force on a section of the cylinder this expression must be inte-
grated over a selected volume of the cylinder, from z = 0 to z = h. In this volume
the vector potential is given by

A(ρ, z) =

∫ ∞
0

A(α) cosαzI1(α1ρ) dα (116)
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where A(α) is given by Eq. 109. So the total force is given by

Fz = −σω
4

∫ h

0

∫ d

0

∫ 2π

0
(iA(ρ, z)∂A∗ (ρ, z) /∂z − iA∗(ρ, z)∂A (ρ, z) /∂z) ρdφdρdz.

= −σω
4

∫ h

0

∫ d

0

∫ 2π

0

[
i

∫ ∞
0

A(α) cosαzI1(α1ρ) dα
∂

∂z

(∫ ∞
0

A(α′) cosα′zI1(α′1ρ) dα′
)]

ρdφdρdz + c.c.

=
iσωπ

2

∫ h

0

∫ d

0

[∫ ∞
0

A(α) cosαzI1(α1ρ) dα

∫ ∞
0

A(α′)α′ sinα′zI1(α′1ρ) dα′
]
ρdρdz + c.c.

(117)

where
α2

1 = α2 − iωµ0σ (118)

Further simplification can be achieved by using the following integrals∫ h

0
cos(αz) sin(α′z)dz =

α sin(αh) sin(α′h) + α′ cos(αh) cos(α′h)− α′

α2 − (α′)2
(119)

∫ d

0
I1(α1ρ)I1(α′1ρ)ρdρ =

dα1I1(α′1d)I2(α1d)− dα′1I1(α1d)I2(α′1d)

α2
1 − (α′1)2

(120)

2.6.5 The Magnetic Field

Experimentally the magnetic field is measured and then the force on a conductor is
observed. So the magnetic field of the bare coil is needed. This is given by ∇× ~A,
which becomes, in the ẑ direction,

Bz =
1

ρ

∂(ρAφ)

∂ρ
(121)

Using the isolated coil expression this becomes

Bz =
1

π

∫ ∞
0

µ0I(t)αr cosαzK1(αr)I0(αρ) dα (122)

at the center of the loop, ρ = 0, this simplifies to the expected result

Bz = µ0I(t)
r2

2(r2 + z2)3/2
⇒ Bz =

µ0I(t)

2r
when z = 0 (123)

2.6.6 Comments

Space debris may consist of materials with a wide range of conductive properties.
It turns out that it is possible to maintain force by varying the coil drive frequency
to compensate materials with different conductivities. This is an important result
in that debris might be composed of materials with relatively poor conductivity, yet
by raising the frequency the repulsive force magnitude could be maintained. In the
vector potential analysis present above this result is still present, though with a skin
depth effect. First note that in the analysis above, see for example Eq. 96, that the
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Figure 11. Force plots versus frequency for a small loop (1.5 cm radius) with a
cylinder sitting on the plane of the loop with radius 1.5 cm and height equal to 3
cm. Two conductivities are shown, aluminum 4×107 S/m (the left plot (blue)) and
a lower conductivity (right plot (red)) of 4× 106 S/m.

conductivity and the frequency only appear in the product, ωσµ0. Consequently,
lowering the conductivity can always be compensated for by raising the frequency
so that this product takes on the same value. Figure 11 shows the force exerted
by a coil of 1.5 cm radius, with 850 peak amps, on a cylinder that is sitting on the
plane of the coil and is 1.4 cm in radius and 3 cm long. The two plots correspond
to two conductivities; that of aluminum (σ = 4× 107 S/m) and a conductivity ten
times less (σ = 4× 106 S/m). Both curves are identical in shape and yield the same
peak force, but the low conductivity curve is stretched out further in frequency.

Recall that skin depth is given by (2/(ωσµ0))1/2 for non-magnetic materials. So
for a 0.015 m radius cylinder of aluminum we would expect the electromagnetic
field to have difficulty penetrating the cylinder at frequencies of about 200 Hz and
higher. The peak in the curve shown is at about 300 Hz, which is in reasonable
agreement (especially when considering that skin depth is defined for a flat plate
and the current geometry is cylindrical). So the decay with frequency seen in these
curves is due to the oscillating field not being able to penetrate into the cylinder.

The case shown in the figure corresponds to a central magnetic field (i.e., at
the center of the coil) of about 36 mT. Figure 12 shows the total force on the low
conductivity cylinder for different heights of the cylinder, 0.5 cm, 1.0 cm, and 1.5 cm.
The 1.0 cm and 1.5 cm height cylinders have nearly identical forces. One would
expect the force on the longer one to be higher, but this isn’t the case, probably
because the field drops off quickly from the current loop and because the length of
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h=1.5 cm

h=1.0 cm

h=0.5 cm

Figure 12. Force plots versus frequency for a small loop (1.5 cm radius) with a
cylinder sitting on the plane of the loop with radius 1.5 cm and height equal to 0.5,
1.0, 1.5 cm and conductivity of 4× 106 S/m.

the cylinder is preventing the higher frequency components from reaching the top
of the cylinder.

The 0.5 cm high cylinder weighs 8.4 grams (assuming the same density as alu-
minum) and the peak force is about 0.045 N, showing that the force is not sufficient
to elevate the cylinder (the force is about a factor of 2 too small). The energy stored
in the magnetic field displaced by the puck (assuming it is uniform with value 36
mT) is about 0.0016 Joules, which corresponds to a kinetic energy velocity of the
puck of about 0.6 m/sec.

In a real world application we would expect to have multiple loops carrying cur-
rent. So achieving much higher forces are possible, yet alternating current magnets
are not readily available. A preferred approach would be a pulsed magnet where
the current in the coil increases in time.

3 Magnetic Force Actuators - Electromagnet Coils and
their Eddy Current Interactions with Conductive and
Ferromagnetic Targets

This section will consider the interactions between electromagnet coils and ferro-
magnetic plates and combinations of non-magnetic conductors and ferromagnetic
plates. It is well known that a DC electromagnet will adhere to ferrous metals,
but what happens with AC driven electromagnets? They too, will experience the
attractive force at lower frequencies, but ferrous metals are also conductive, so eddy
currents will be present to interact with the drive coils, frequently adding repulsive
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forces to the mix. Now, add a conductive plate on top of the ferrous one and you
get some interesting behaviors previously described by the father of maglev, E. R.
Laithwaite [9], and others [10]. The subsections below will be explore these behav-
iors and the mathematics derived from equations for the underlying physics. Once
again, examples will be provided based on the coil configurations discussed in prior
sections.

3.1 Single Coil Facing a Conductive Ferrous Slab

The math below builds on the derivations in Section 2.1.

3.1.1 The Magnetic Vector Potential for a Coil Facing a Conductive
Ferrous Slab

Inside of the conductive slab the time variation of the vector potential generates an
electric field given by ~E = −∂ ~A/∂t. This causes currents to flow by Ohm’s Law,
~Jf = σ ~E. In addition, because the slab is ferrous, it becomes magnetized in the
presence of the field from the coil. This effect can be described using a magnetization
current, Jm, but this needs to be expressed in terms of the vector potential. A better
route is to recall one of Maxwell’s Equations.

∇× ~B − 1

c2

∂ ~E

∂t2
= µ0( ~Jf +∇× ~M) (124)

where ~M is called the magnetization. In this equation, time derivative of the electric
field can be dropped because that term is very small working at the low frequencies
and short ranges of the proposed problem. Now, recall that for a linear, isotropic,
ferrous material that

~M =
µr − 1

µ0µr
~B (125)

substituting this into Maxwell’s Equation yields

∇× ~B − µr − 1

µr
∇× ~B = µ0

~Jf

∇× ~B = µ0µr ~Jf

(126)

This result is obtained in Lorrain and Corson [11] and is used in Hammond’s pa-
per [1]. Maxwell’s equation states the physical result that the presence of the mag-
netic field in the slab does two things, it magnetizes the slab and it generates free
currents. The magnetization is in phase with the applied field, which should even-
tually yield an attractive force and the currents are in quadrature. After simplifying
to obtain the above expression, it appears that the net result is that small free cur-
rents are associated with large magnetic fields. It will be interesting to see where
this ends up.

Using these, the differential equation for the vector potential in the slab becomes
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∇×∇× ~A = µ0µr ~J = µ0µrσ ~E = −µ0µrσ
∂ ~A

∂t
. (127)

Now assume the coil current is varying sinusoidally, I(t) = I cos(ωt) , causing the
vector potential to also vary sinusoidally and allowing it to be expressed as

~A (ρ, z, t) =
~A (ρ, z) eiωt + ~A∗ (ρ, z) e−iωt

2
(128)

There is a phase difference between the current and the vector potential that
will cause ~A (ρ, z) to be complex, but when we calculate forces we will need to
multiply the vector potential times the current and this multiplication can only be
done between real terms, not complex ones. Consequently, it must be kept in mind
that before this multiplication can be performed that the above formula must be
used to recover the real version of the vector potential. So using ~A (ρ, z) eiωt as the
form for the vector potential, the differential equation in the slab becomes

−∇×∇× ~A =
∂2 ~A

∂ρ2
+
∂2 ~A

∂z2
+

1

ρ

∂ ~A

∂ρ
−

~A

ρ2
= iωµ0µrσ ~A. (129)

The coefficient ωµ0µrσ can be significant. Aluminum has a conductivity of about
4× 107 A/(V-m) and if the frequency is 50 Hz this coefficient is about 16,000 m−2.
Also, µr can be as large, for iron µr ≈ 103.

As was the case with the isolated coil, the currents and therefore the magnetic
vector potential are only in the φ̂ direction. So, ~A = A(ρ, z)φ̂, allowing Eq. 129 to be
written in scalar form. Then, using separation of variables, A (ρ, z) = Aρ (ρ)Az (z),
yields the differential equation

(Aρ
′′ +Aρ

′/ρ−Aρ/ρ2)/Aρ +Az
′′/Az = iωµ0µrσ

(Aρ
′′ +Aρ

′/ρ−Aρ/ρ2)/Aρ = −α2 = −Az ′′/Az + iωµ0µrσ
(130)

Solving this yields the solution for a specific α

A (ρ, z) =
(
Dez
√
α2+iωµ0µrσ + Ee−z

√
α2+iωµ0µrσ

)
J1 (αρ) , (131)

and the general solution for the vector potential within the slab

A (ρ, z) =

∫ ∞
0

(
D (α) ez

√
α2+iωµ0µrσ + E (α) e−z

√
α2+iωµ0µrσ

)
J1 (αρ) dα. (132)

Using the expressions obtained for the isolated coil, there are now four general
solutions, for four different regions of space.

A(ρ, z) =



∫∞
0 C(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
F (α)eαde−αz +G(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d∫∞

0

(
D (α) ez

√
α2+iωµ0µrσ + E (α) e−z

√
α2+iωµ0µrσ

)
J1 (αρ) dα,−s < z < 0∫∞

0 H(α)eαzJ1(αρ) dα, z < −s
(133)
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Across each interface the vector potential is continuous and, since the slab is mag-
netic, the tangential components of the magnetic field, Hρ = −(1/(µ0µr))∂A/∂z, are
continuous on each slab interface. This yields five boundary conditions for the six
unknown functions. The sixth boundary condition comes from the coil itself. Start-
ing with the continuity condition and letting α1 =

√
α2 + iωµ0µrσ (we assume α1

is in the quadrant where both its real and imaginary components are greater than
zero) we obtain

C (α) = F (α) +G (α)

F (α) eαd +G (α) e−αd = D (α) + E (α)

D (α) e−α1s + E (α) eα1s = H (α) e−αs.

(134)

The two magnetic field conditions across the slab surfaces yield

−αF (α) eαd + αG (α) e−αd = (α1D (α)− α1E (α))/µr

(α1D (α) e−α1s − α1E (α) eα1s)/µr = αH (α) e−αs.
(135)

Across the coil we have

∂A (ρ, z, t)

∂z

∣∣∣
z=d+ε

− ∂A (ρ, z, t)

∂z

∣∣∣
z=d−ε

= −µ0I (t) δ (ρ− r) . (136)

But we need a boundary condition form for A (ρ, z), i.e., with the time dependence
removed. Using the expression for A (ρ, z, t) given in Eq. 128 and expanding I (t) =
I cos (ωt) allows such a condition to be found:

∂
(
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

)
2∂z

∣∣
z=d+ε

−
∂
(
A (ρ, z) eiωt +A∗ (ρ, z) e−iωt

)
2∂z

∣∣
z=d−ε

= −µ0I
eiωt + e−iωt

2
δ (ρ− r)

(137)

Rearranging terms to separate the time dependence gives:

(
∂A (ρ, z)

∂z

∣∣∣
z=d+ε

− ∂A (ρ, z)

∂z

∣∣∣
z=d−ε

)
eiωt

2
+ cc = −µ0I

eiωt

2
δ (ρ− r) + cc, (138)

where cc is the complex conjugate of each side of the equation. This can be further
simplified to a time independent form:

∂A (ρ, z)

∂z

∣∣∣
z=d+ε

− ∂A (ρ, z)

∂z

∣∣∣
z=d−ε

= −µ0Iδ (ρ− r) (139)

Substituting this into the first two general solutions in Eq. 132 gives:

∫ ∞
0

(
− (C (α) +G (α)) e−αε + F (α) eαε

)
J1(αρ)αdα = −µ0Iδ (ρ− r) . (140)
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Now use the orthogonality integral relationship
∫∞

0 J1 (βρ) J1 (αρ) ρdρ = (1/α)δ (β − α)
to obtain:

∫ ∞
0

J1 (βρ)

∫ ∞
0

(
− (C (α) +G (α)) e−αε + F (α) eαε

)
J1(αρ)αdαρdρ

= −
∫ ∞

0
J1 (βρ)µ0Iδ (ρ− r) ρdρ.

(141)

This then reduces to

∫ ∞
0

(
− (C (α) +G (α)) e−αε + F (α) eαε

)
δ (β − α) dα = −J1 (βr) rµ0I. (142)

Evaluating the final integral results in

− (C (β) +G (β)) e−βε + F (β) eβε = −J1 (βr) rµ0I. (143)

Letting ε go to zero and changing variables gives the last expression needed to find
the full solution:

C (α) +G (α)− F (α) = J1 (αr) rµ0I. (144)

Solving these six equations for the coefficient functions yields:

C (α) = µ0Ir
J1 (αr)

2

(
1 +

(
µ2
rα

2 − α2
1

)
e−2αd (eα1s − e−α1s)

(µrα+ α1)2 eα1s − (µrα− α1)2 e−α1s

)

F (α) = µ0Ir
J1 (αr)

2

( (
µ2
rα

2 − α2
1

)
e−2αd (eα1s − e−α1s)

(µrα+ α1)2 eα1s − (µrα− α1)2 e−α1s

)

G (α) = µ0Ir
J1 (αr)

2

D (α) = µ0µrIrJ1 (αr)

(
α (α1 + µrα) eα1s−αd

(µrα+ α1)2 eα1s − (µrα− α1)2 e−α1s

)
E (α) = µ0µrIrJ1 (αr)

(
α (α1 − µrα) e−α1s−αd

(µrα+ α1)2 eα1s − (µrα− α1)2 e−α1s

)
H (α) = µ0µrIrJ1 (αr)

(
2αα1e

α(s−d)

(µrα+ α1)2 eα1s − (µrα− α1)2 e−α1s

)

(145)

These expressions combined with Eq. 132 yield the complete description of the
time-independent portion of the vector potential. If α1 = α, i.e., the slab is non-
conducting or the frequency is very small, these expressions reduce to the same
vector potential as found for the isolated coil.
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3.1.2 The Force on the Coil

Now consider the force on the coil due to the presence of the slab. The force on
an element of the coil is given by d~F = I(t)d~l × ~B. Since we are only interested
in the total force along the z axis, and since d~l points in the φ̂ direction, only the
radial components of the magnetic field contribute, resulting in dF ẑ = −I(t)dlBρẑ.
Integrating around the coil’s circumference yields:

~F = −I (t) 2πrBρ (r, d, t) ẑ = I (t) 2πr
∂A (r, d, t)

∂z
ẑ, (146)

where Bρ (r, d, t) is the radial component of the magnetic field on the coil and where
∂A(r, d, t)/∂z is the derivative of A with respect to z and evaluated at ρ = r and
z = d. From Eq. 128

∂A (r, d, t)

∂z
=

(
∂A (r, d)

∂z
eiωt +

∂A∗ (r, d)

∂z
e−iωt

)
/2. (147)

This results in a force on the coil given by

~F = I cos (ωt) 2πr

(
∂A (r, d)

∂z
eiωt +

∂A∗ (r, d)

∂z
e−iωt

)
/2ẑ. (148)

We are only interested in the steady state force so we can average the time depen-
dence over a cycle which will leave

~Favg = Iπr

(
∂A (r, d)

∂z
+
∂A∗ (r, d)

∂z

)
/2ẑ. (149)

From the above expressions we know that

A(ρ, z) =

{∫∞
0 C(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
F (α)eαde−αz +G(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d.

(150)

Taking the derivatives yields,

∂A(ρ, z)

∂z
=

{∫∞
0 −αC(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
−αF (α)eαde−αz + αG(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d.

(151)
Now let z = d+ ε when z > d and z = d− ε when 0 < z < d to obtain

∂A(ρ, d+ ε)

∂z
=

∫ ∞
0
−αC(α)e−αεJ1(αρ) dα

∂A(ρ, d− ε)
∂z

=

∫ ∞
0

(
−αF (α)eαε + αG(α)e−αε

)
J1(αρ) dα. (152)

Now use the expression C(α) = F (α) +G(α)
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∂A(ρ, d+ ε)

∂z
=

∫ ∞
0

(
−αF (α)e−αε − αG(α)e−αε

)
J1(αρ) dα

∂A(ρ, d− ε)
∂z

=

∫ ∞
0

(
−αF (α)eαε + αG(α)e−αε

)
J1(αρ) dα. (153)

The G(α) terms correspond to the vector potential gradient due to the current in
the coil itself. As was discussed earlier, these two terms are of opposite sign and
cancel each other. The remaining term corresponds to the vector potential gradient
from the slab and is given by

∂A(ρ, d)

∂z
=

∫ ∞
0
−αF (α)J1(αρ)dα. (154)

On the coil itself, this becomes

∂A(r, d)

∂z
=

∫ ∞
0
−αF (α)J1(αr)dα. (155)

Combining this with Eq. 149, the force on the coil due to the slab is given by

~Favg = −Iπr
2

∫ ∞
0

α (F (α) + F ∗ (α)) J1(αr)dα ẑ, (156)

where

F (α) = µ0Ir
J1 (αr)

2

( (
µ2
rα

2 − α2
1

)
e−2αd (eα1s − e−α1s)

(µrα+ α1)2 eα1s − (µrα− α1)2 e−α1s

)
(157)

and

α1 =
√
α2 + iωµ0µrσ. (158)

If µr = 1 the coefficient to the F (α) function has a factor of α2 −α2
1 = −iωµ0σ.

3.1.3 Mathematica and COMSOL Force Models for a Coil Facing a Fer-
rous Slab

A Mathematica model was constructed for the force equation in the previous section
to illustrate the behavior of the forces between an AC driven coil and a slab as a
function of frequency and permeability. The coil is uses the same parameters as
giving in the example for the single coil facing a conductive slab. Since iron has
a lower conductivity than aluminum, a value of 1×10−7 S/m is assumed for the
slab. The slab thickness is assumed to be 1.5 mm to keep it light weight for space
applications. The result is shown below in Figure 13.

The same coil and slab parameters were used to build a model in COMSOL.
This was done to see how the analytical mathematics would compare to a finite
element model (FEM). The results are shown in Figure 14. The COMSOL model
produced results slightly smaller than the analytic model due to the mesh density
in the slab. Increasing the density further would bring the results closer together
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Figure 13. Semi-log plots showing the repulsive forces between a coil and a fer-
rous slab for multiple permeabilities over a broad frequency range. The separation
between the slab and the face of the solenoid is 1 cm.

but the expense of excessive computation time. At least for this case, the analytic
code runs much faster than the FEM in COMSOL.

3.2 Single Coil Facing a Stack of Two Conductive and/ or Ferrous
Slabs

3.2.1 The Vector Potential and Force on the Coil

Place the coil a distance d from the surface of the composite slab, facing the slab
with the z axis aligned with the center of of the coil. Let the first slab be thickness
s1, and have conductivity, σ1, and relative permeability, µr1. Let the second slab
be pressed against the first slab and be thickness s2, and have conductivity, σ2, and
relative permeability, µr2.

A(ρ, z) =



∫∞
0 C(α)eαde−αzJ1(αρ) dα, z > d∫∞
0

(
F (α)eαde−αz +G(α)e−αdeαz

)
J1(αρ) dα, 0 < z < d∫∞

0

(
D (α) ez

√
α2+iωµ0µr1σ1 + E (α) e−z

√
α2+iωµ0µr1σ1

)
J1 (αρ) dα,−s1 < z < 0∫∞

0

(
M (α) ez

√
α2+iωµ0µr2σ2 +N (α) e−z

√
α2+iωµ0µr2σ2

)
J1 (αρ) dα,−s1 − s2 < z < −s1∫∞

0 H(α)eαzJ1(αρ) dα, z < −s1 − s2

(159)
Copying the approach from above where the vector potential and transverse field
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Figure 14. Plots comparing results computed from the analytic expression derived
above and a COMSOL FEM model. The models were each used to compute the
repulsive forces between a coil and a ferrous slab for multiple permeabilities. The
analytic expressions are shown as a continuous line and the COMSOL results are
shown as a dashed line. The separation between the slab and the face of the solenoid
is 1 cm.
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must be continuous across each boundary yields the following boundary condition
equations,

C (α) = F (α) +G (α)

F (α) eαd +G (α) e−αd = D (α) + E (α)

D (α) e−α1s1 + E (α) eα1s1 = M (α) e−α2s1 +N (α) eα2s1

M (α) e−α2(s1+s2) +N (α) eα2(s1+s2) = H (α) e−α(s1+s2)

−αF (α) eαd + αG (α) e−αd = (α1D (α)− α1E (α))/µr1

(α1D (α) e−α1s1 − α1E (α) eα1s1)/µr1 = (α2M (α) e−α2s1 − α2N (α) eα2s1)/µr2

(α2M (α) e−α2(s1+s2) − α2N (α) eα2(s1+s2))/µr2 = αH (α) e−α(s1+s2).

(160)

where

α1 =
√
α2 + iωµ0µr1σ1

α2 =
√
α2 + iωµ0µr2σ2.

(161)

The last boundary condition comes from the coil itself (see the derivation of this
above)

C (α) +G (α)− F (α) = J1 (αr) rµ0I. (162)

These eight equations can be solved for the eight functions, but only the F (α)
function is needed to obtain the force exerted on the coil due to the presence of the
slabs.

F (α) = J1 (αr) rµ0Ie
−2αd Fnum(α)

2Fden(α)
(163)

Fnum(α) = exp[α1s1 − α2s2](α1 − αµr1)(−α2 + αµr2)(−α2µr1 + α1µr2)

+ exp[−α1s1 + α2s2](α1 + αµr1)(α2 + αµr2)(−α2µr1 + α1µr2)

+ exp[−α1s1 − α2s2](α1 + αµr1)(α2 − αµr2)(α2µr1 + α1µr2)

+ exp[α1s1 + α2s2](−α1 + αµr1)(α2 + αµr2)(α2µr1 + α1µr2)

Fden(α) = exp[α1s1 − α2s2](α1 + αµr1)(−α2 + αµr2)(α2µr1 − α1µr2)

+ exp[−α1s1 + α2s2](α1 − αµr1)(α2 + αµr2)(α2µr1 − α1µr2)

+ exp[−α1s1 − α2s2](α1 − αµr1)(−α2 + αµr2)(α2µr1 + α1µr2)

+ exp[α1s1 + α2s2](α1 + αµr1)(α2 + αµr2)(α2µr1 + α1µr2)

(164)

The force on the coil is then given by

~Favg = −Iπr
2

∫ ∞
0

α (F (α) + F ∗ (α)) J1(αr)dα ẑ, (165)
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3.2.2 Mathematica and COMSOL Force Models for a Coil Facing a Con-
ductive Slab Over a Ferrous Slab

A Mathematica model was constructed for the force equation in the previous section
to illustrate the behavior of the forces between an AC driven coil and a two slab
configuration as a function of frequency and permeability. The slab closest to the
coil face is assumed to be 1.5 mm thick aluminum. The second slab is underneath
the first and is assumed to be 1.5 mm thick with a conductivity of 1×10−7 S/m but
with varying permeability. The coil is uses the same parameters as giving in the
example for the single coil facing a conductive slab. The result is shown below in
Figure 15. The same configuration was modeled in COMSOL. However, the results
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Figure 15. Semi-log plots showing the repulsive forces between a coil and an alu-
minum slab over a ferrous slab for multiple permeabilities over a range of frequencies.
The separation between the slab and the face of the solenoid is 1 cm.

were so close to the curves shown in Figure 15 that they overlap and are therefore
not shown.

Comparing the results from the all iron slab and the two slab case (Figures 13
and 15) shows the benefit of adding the aluminum slab. The transition between
attractive and repulsive force now occurs at a much lower frequency. For iron, the
transition moves from almost 30 kHz down to somewhere around 70-80 Hz. These
lower frequencies are much easier to drive a solenoid at high currents as the proximity
effect and skin depth both will raise the resistance at higher frequencies. By varying
frequency between 30-200 Hz, it’s possible to go from 100 mN of attractive force
to 100 mN of repulsive force. This provides a means to construct a docking and
undocking actuator for either another spacecraft or an iron core asteroid. For the
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asteroid, an aluminum plate could be carried to repel off of when the mission is
complete.

3.3 Two Coils Facing a Stack of Two Conductive and/ or Ferrous
Slabs

3.3.1 Problem Setup and Force Solution

In this section a second current loop is added. The first current loop, located as
in the previous sections, is now considered to be a drive loop that generates the
vector potential and the eddy currents in the plate. It is driven with the same
current as before, I(t) = I cosωt. The second current loop is also driven with an
oscillating current of the same frequency, but different phase than the drive coil,
I2(t) = I2 cos(ωt+ϕ) and is not inductively coupled to the first loop, i.e. the power
supply can overcome inductive voltages.

The drive coil, has radius r, is centered on the ẑ axis a distance d from the near
surface of the plate, and faces the plate. The second coil also faces the plate, but
is a distance d2 from the front plate surface. The second coil is radius r2 and it’s
center is a distance b along the x̂ axis from the center of the drive coil.

Figure 16. Two coils, one a drive coil and one under evaluation, are placed facing a
conductive sheet. Both cylindrical and Cartesian coordinates are shown. A second
conducting sheet with thickness s2 is added behind the first. Additionally, both
sheets are allowed to vary in permeability.

Section 2.3.2 derived the total longitudinal force on the second coil (including
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the factor of 2) yielding Equation 64 which is repeated here for convenience:

Fx =
I2

2

∫ ∞
0

(
F (α)e−iϕ + F ∗(α)eiϕ

)
eα(d−d2)α

∫ b+r2

b−r2

(b− x)J0(α
√
r2

2 − b2 + 2bx)√
r2

2 − (x− b)2
dx dα

(166)
F (α) is dependent on the eddy currents in the slab or slabs. Since we are now
dealing with multiple slabs, it is now given by the combination of Equations 163
and 164. Likewise, the axial force, Fz, has the the same F (α) but now it is used in
conjunction with Equation 76.

3.3.2 Mathematica Model of LIM Longitudinal and Axial Forces

A Mathematica model was created using similar parameters and methods as de-
scribed in Subsections 2.3.3 and 2.3.5 but with the math model described above.
Two parameters were fixed: the phase angle between adjacent coils was set to
φ = π/2 (quadrature) and an overlap of b = r, the coil radius. Figure 17 shows the
result for a variety of permeabilities. When µr = 1, the result is almost identical
to the lower left plot shown in Figure 7 which has the same upper aluminum slab
but no lower slab. The first important thing to note here is that the presence of
the iron under the aluminum doesn’t change the peak repulsive force but about
doubles the longitudinal force. By zooming in on the lower frequencies, we can see
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Figure 17. The longitudinal and z axis forces for a LIM facing an aluminum slab over
an iron slab. The longitudinal force about doubles as µr approaches the value for
iron of 1000, while the peak repulsive forces converge on the same value, regardless
of µr.
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the second important thing to note: The z axis forces transition from attractive to
repulsive at a frequency where the longitudinal force is still significant. This allows
for a frequency controlled LIM where longitudinal forces can be generated without
attractive or repulsive forces also being present. Shifting the frequency by a few
tens of Hertz allows you to also add in either an attractive or repulsive force. This
is illustrated by the plots shown in Figure 18
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Figure 18. A zoomed in plot of the longitudinal and z axis forces for a LIM facing an
aluminum slab over an iron slab. Note that the z axis force is zero at around 70 Hz
when µr = 1000, the case for iron. At 70 Hz, the longitudinal force is still large and
the lack of forces in the ẑ direction allows for cross plane motion without requiring
another compensating actuator. If the frequency is allowed to vary between 30-170
Hz, up to 200 mN of attractive or repulsive force can be added to the longitudinal
force.

3.3.3 Comparison of Linear Induction Motor Forces using a Mathemat-
ica Simulation and a COMSOL Model for an Aluminum Slab on
Top of a Ferrous Slab

A four coil linear induction model was constructed using our analytic approach in
Mathematica and compared to a similar one constructed in the COMSOL Multi-
physics program which uses finite elements to solve the mathematics in a discrete
numeric method. For this comparison, the same four coil configuration that was
modeled in Section 2.3.6 was used. The only difference now is that the aluminum
slab is now 1.5 mm thick rather than 3.0 mm thick as in the previous example.
Additionally, a 1.5 mm thick ferrous slab is placed under the aluminum slab. The
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ferrous slab is assumed to have a conductivity of 1×107 S/m and a relative perme-
ability of 1000. The comparison of the repulsive and lateral forces appear in the
pair of plots shown in Figure 19.
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Figure 19. Plots showing a comparison between the analytical model and a COM-
SOL model when used to compute the longitudinal (top) and repulsive (bottom)
forces with an aluminum slab over an iron slab for a four coil LIM driven in quadra-
ture with a coil overlap equal to the radius. Slight differences occur due to the
discrete nature of the finite elements used in the COMSOL model.

As mentioned in the case of the four coils opposite an aluminum slab, the dif-
ferences between the two models are likely from the a combination of the discrete
nature of the FEM model (mesh density) and the numeric approximation made in
computing the results for the analytic model. It’s interesting to note that operating
at around 300 Hz will allow lognitudinal motion with no repulsive (or attractive)
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force. Shifting the frequency up by 100 Hz will result in the addition of a repul-
sive force similar in magnitude to the longitudinal force, while shifting the frequency
down 100 Hz results in the addition of an attractive force, again of similar magnitude
to the longitudinal force.

The COMSOL model details for this LIM model appear in the Appendix.

4 AC Modulated Electrostatic Force Actuator

We initially looked into using magnetic means of generating the correct phase eddy
currents in a conductive non-ferrous slab to get an attractive force as there is ev-
idence in literature that this is possible [12–14]. After a short time exploring this
option, we determined that if this is possible, it will require very large magnetic
fields, high power, and mass. Since high power and mass are undesirable in space-
craft, we abandoned this approach and decided to explore an electrostatic approach
to achieving an attractive force. What follows is a description of the math modeling
and the experimental work done to test the model.

4.1 Force Between Plates of a Parallel Plate Capacitor

The attractive force is based on electrostatics and uses separation of charges using
capacitive plates driven with high voltages but low currents. The charged capacitive
plate closest to the ISS will result in mirror charges (equal but opposite) to form
on the conductive metal skin of the ISS to cancel the electric field generated by the
satellite spacecraft. This creates an attractive force between the two that will act
to pull them together.

The electric field between a parallel pair of charged conductors is ~E = σ
ε0
n̂

where ε0 is the permittivity of free space (8.85×10−12 F/m), σ is the surface charge
density, and n̂ is a unit vector normal to the surface of the more positively charged
conductor. Capacitance is defined as C = Q/V , where Q is the total charge on
the electrode and V is the potential difference between the electrode and a ground
reference. For a square pair of parallel conductors, V =

∫ d
0
~E · d~l = σ

ε0
d, where d

is the separation between electrodes. The charge density σ can be written as Q/s2

where s is the length of the electrode. Substituting this in for V in the capacitance
equation, we are left with the familiar form for the capacitance of a parallel plate
capacitor: C = ε0

s2

d . However, this formula is for an ideal capacitor and neglects
edge effects and variations in the plate alignment that change the effective area of
the electrode pair. The test electrodes we have selected for our experimental setup
are 0.152 m on a side and d ≥ 0.01 m. So, we will add a scale factor, fs to account
for the varying effects giving C = fsε0

s2

d .
The force on each plate is toward the opposite plate where the magnitude is

given by F = U/d, where the potential energy, U = 1
2CV

2. These equations can be

combined to yield ~F = −1
2fsε0

s2

d2
V 2x̂ where we have chosen the direction normal to

the separation of the plates to be x̂. To get a feel for the magnitude of this force, we
use a square plate that is 0.152 m on a side (approximately 6 inches) and use 4242
Vrms for the voltage. Inserting these values into the force equation and assuming
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an ideal capacitor where fs = 1 produces the plot of force magnitude as a function
of separation shown in Figure 20.
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Figure 20. Computed electrostatic attractive force magnitude for a 15.2 cm on a
side square plate charged with a 4242 Vrms source opposite an infinite conductor as
a function of separation distance.

4.2 Electrostatic Force Experiment

4.2.1 Test Description

To test the attractive force, four equal sized square plates (0.152 m on a side) were
cut out of aluminum sheet. Two are mounted to aluminum rods to create a balanced
mobile that is free to pivot on a point. The other two plates are rigidly mounted in
a parallel plate configuration with a 0.06 m separation giving them a capacitance of
3.4 pF. A DC-DC transformer (HVM part no. HVA0560) with a programable input
was used to transform a low voltage function generator output to a high voltage low
frequency signal of up to 12 kVpp or 4.2 kV RMS. A 10 Hz sine wave was used as
the input for our experiments. Nylon standoffs are used to separate the plates and
are also used as a stop (0.01 m) to keep the pivoting plates from directly contacting
the charged capacitor. A photo of the test setup is shown below in Figure 21. One
of the plates from the mobile was positioned a few centimeters from the capacitor
and allowed to come to rest. A laser displacement sensor was used to determine
the position of the plate with respect to the capacitor by monitoring the position
of the plate being used as a counterweight. The output of the function generator
was turned on and the data versus time was captured and stored on a laptop and
later processed. The maximum force generated by our configuration should be
around 18.5 mN for a plate separation of 1 cm and 4.2 kV RMS, but saw losses
due to alignment errors that gave a correction scale factor of fs = 0.75 reducing
the maximum to about 13.9 mN. From the force expression it’s easy to see that the
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force goes as voltage squared, but falls off to 1/distance squared.

Figure 21. Electrostatic attraction test configuration showing a mobile balanced by
two square plates. An optical displacement sensor is used to measure the movement
of the plate on the left. The mobile servicing spacecraft is modeled by the parallel
plate capacitor on the right hand side.

To see if the predicted force will match up with the position data, some additional
math is needed. We have a rotating plate that is measured at a radius of r2 from the
pivot point. So, the torque, ~τ = −r2F ẑ = −Iαẑ, where I is the moment of inertia
of our rotating mobile and α is the angular acceleration. If we take our earlier
expression for the force and let c1 = 1

2fsε0s
2V 2, F = c1/d

2. We then substitute this
into our expression for torque and allow d to now be a variable, x yielding:

τ(x) = r2
c1

x2
= Iα(x). (167)

The angular acceleration can be rewritten in terms of the linear acceleration for
small movements, α(x) = a(x)/r2. We then let a(x) = ẍ to denote the second time
derivative of position, x. We then substitute and get

τ(x) = r2
c1

x2
= Iẍ/r2. (168)

Rearranging, we get:
ẍ/x2 = r2

2c1/I. (169)

Since the right hand side of the equation is a constant, we’ll now let c2 = r2
2c1/I.

Rearranging we get ẍ = c2/x
2. We then multiply both sides by the velocity, ẋ and

integrate with respect to time: ∫
ẍẋdt =

∫
c2
ẋ

x2
dt. (170)
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Performing the integrals gives the equation for velocity in terms of position and
time:

1

2
ẋ(t)2 = − c2

x(t)
+ c3, (171)

where c3 is a constant from integration representing initial velocity. Rearranging
and incorporating the proper direction we get

ẋ(t) = −

√
2c2

x(t)
− 2c3x̂. (172)

We can then write a discrete version and using appropriate initial conditions, we can
try to match the data. Using the discrete form ẋ(t) → x(n+1)−x(n)

∆t , Equation 172
becomes

x(n+ 1) = x(n)−∆t

√
2c2

x(n)
− 2c3. (173)

For the initial conditions, we set x(0) equal to the starting position. The constants
c1 and c2 are calculated with the geometry, the computed moment of inertia, and
applied voltage. If we assume that the starting velocity is zero, c3 = c2/x(0). This
gives us x(1) = x(0) and subsequent values of x(n) will all be the same unless we
include a starting acceleration. Earlier, we found ẍ(t) = c2/x(t)2. This too can be
written in discrete form and used to find the starting acceleration:

x(n+ 1)− 2x(n) + x(n− 1)

∆t2
= c2/x

2(n). (174)

Rearranging and seeking to find x(2) and recalling x(1) = x(0), we get

x(2) = c2∆t2/x(0)2 + x(0). (175)

In summary, we use our knowledge of the starting velocity (zero) and the starting
acceleration (using Equations 174 and 175) to find the first three data points starting
with the position just before voltage is applied to our capacitor. We then can use
Equation 173 to compute each subsequent point using this recursion relationship.
However, we are still missing one piece of data: the moment of inertia, I, for our
test fixture. The next section will detail this computation.

4.2.2 Moment of Inertia Computation for Test Fixture

A dimensioned diagram of the mobile is shown with one of the plates removed in
Figure 22. The moment of inertia is computed with the following volume integral:

I =

∫
V
ρ(x, y, z)‖~r‖2dV (176)

where ρ(x, y, z) is the spatially varying density of the material, ~r is the vector from
the rotation axis to a point in the material, and V is the volume of the part you
are integrating over. Since our test fixture is created entirely from aluminum, we’ll
assume a uniform density of ρ = 2800 kg/m3. To compute the moment of inertia for
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our test fixture, we’ll break it up into three separate integrals. For the plate we’ll
use

Ip1 = ρd

∫ r2

r1

∫ h

0
x2dydx, (177)

where d is the thickness of the plate (1.54 mm), r1 = 124.8 mm is the radius from
the center to the inner edge of the plate, r2 = 276.8 mm is the radius to the outer
edge of the plate, and h = 152 mm is the height of the plate. Plugging in these
numbers in meters gives a moment of inertia for one plate as Ip1 = 0.00417 kg·m2.

304.8

269.2

124.8

190.4
152.

190.4

276.8

0

25.4

Figure 22. Drawing of test fixture with one plate removed. The dimensions are
given in millimeters and are used to compute the moment of inertia. The thickness
of the support frame is 3.11 mm and the thickness of the square plate is 1.54 mm

The angled support plate can be broken into two computations to find its moment
of inertia. The first is given by

Ip2 = ρd2s2

∫ s1

0
x2dx, (178)

where d2 = 3.11 mm gives the thickness of the support, s1 = 190.4 mm is the
distance from the center to the inner edge of of the support, and s2 = 25.4 mm
and represents the width of the support as shown in Figure 22. Computation shows
that Ip2 = 0.00051 kg·m2. This leaves the small triangular section on the outermost
section of the support plate. This moment of inertia is calculated by finding it for
a square plate and dividing by two:

Ip3 =
ρd2s2

2

∫ s1+s2

s1

x2dx. (179)

After inserting our measurements shown in Figure 22, Ip3 = 0.00012 kg·m2. Sum-
ming the three moments of inertia and doubling it gives us the total moment of
inertia for our test fixture, I = 0.0096 kg·m2.
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4.2.3 Test Results

We now have enough information to compute predicted position data as a function
of the applied voltage and starting position. Two sets of results appear below in
Figure 24 showing the close agreement between theory and experiment, if we assume
a correction factor of fs = 0.75.

It should be mentioned that there is a large reservoir of free charge in the alu-
minum skin covering the outside of the ISS. Charging plates on a servicing spacecraft
will result in mirror charges being pulled from this reservoir to cancel the electric
field generated by the servicing spacecraft electrodes. In our experiment in Fig-
ure 21, the mobile is connected via a grounding cable to the optical table to provide
that reservoir to the plate. In the final experimental mobile shown in Figure 23, a
drag wire was suspended from the mobile to provide this additional charge.

Figure 23. A photo showing a linear induction motor test setup for measuring lateral
motion and force along with electrostatic actuators above and below the coils. A
suspended drag wire is used to provide an adequate source of charge so the mobile
can respond to the electrostatic actuators.

Another point that should be discussed is the choice of alternating the charges
between the plates to create a changing electric field versus applying a DC voltage
across the plates. In the vacuum of space, the ion density is quite low so that there
would be no charge cancellation on the electrodes when using a DC voltage. How-
ever, at 400 km altitude, the ionosphere still has enough charge to cause cancellation
of a static electric field. So, for testing purposes, our fields were varied at 10 Hz.
Higher frequencies are possible but not with the electronics we used. It is possible
that 10 Hz will be insufficient and the ionosphere will partially or totally shield the
ISS from the electric field, but the initial analysis discussed below in Section 5 looks
promising.
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Figure 24. Position vs time data for two electrostatic attraction tests showing pre-
dicted data (blue) and actual data (black). The upper plot is for a 10 Hz 2545 V
RMS sinusoidal drive signal and the lower plot is for a 10 Hz 4242 V RMS sinusoidal
drive signal.
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4.3 Plasma Shielding

The ISS sits in an orbit (408 km) that contains a low density plasma. The peak
measured value for the plasma’s electron density at altitudes between 240-450 km is
1.6×1011 m−3 [15]. The free charges in plasma can have two types of shielding that
can adversely affect the proposed electromagnetic propulsion methods discussed
above. The first is a response to the changing magnetic field used for repulsion
and transverse motion. Since the plasma is conductive, eddy currents will form in
response to the changing magnetic field and work to cancel the field passing through
it. This is similar to the skin depth in conductors and follows similar mathematics,
but is referred to as the plasma length.

The second is a response to the polarized electrodes used for generating attrac-
tive force. The charges in the plasma will rearrange themselves to cancel the electric
field generated by the electrodes. This is similar to the double layer effect seen when
electrodes are placed in ionic solutions. In plasmas, an electrostatic field will fall
off exponentially in what is referred to as the Debye length. At the altitude of the
ISS, this is approximately 4.5-8.3 mm depending on the electron temperature varia-
tions [16]. If the potential across the electrodes is varied in time, there is a frequency
dependent inertial response by the charges. As the frequency of the changing poten-
tial is increased, the charge motion can no longer keep up with the varying field and
the electric field is no longer cancelled by the plasma. The frequency this occurs at
is dependent on the electron density and referred to as the plasma frequency [11]:

fp =
1

2π

(
Ne2

ε0me

)1/2

= 8.98
√
N, (180)

where N is the electron density, e is the charge of an electron, ε0 is the permittivity of
free space, and me is the mass of an electron. Assuming a worst case N = 1.6×1011,
then fp = 3.59 MHz. The plasma length is

δ = 1/Im(k), (181)

where k is the wavenumber given by

k =

√(
2πf

c

)2(
1−

f2
p

f2

)
, (182)

where c is the speed of light in vacuum and f is the frequency of the electromagnetic
wave propagating through the plasma. When f < fp, the fields will attenuate
exponentially. At the low frequencies used to drive our magnetic fields, the plasma
length is approximately δ = 13.3 m. When f > fp, no attenuation occurs. Since
our ECAPS will be operated at only short distances from the ISS, we are free to
choose frequencies that allow us to drive our coils most efficiently. However, our
capacitance based force will be blocked at frequencies below the plasma frequency.
We could run at frequencies above the plasma frequency, but there is a resonance of
the plasma electrons that occurs at fp. This resonance can potentially be used to
allow us to drive the capacitive plates at a much lower voltage due to a gain effect
that occurs.
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To understand how this works, we need to look at the response of plasma between
two electrodes derived in a draft textbook by J. D. Callen [17]. The applied field
is given by ~Eext ≡ ~E0 sinω0t, where ~E0 is the electric field amplitude and ω0 is the
angular frequency. The inertial response of the system is governed by the differential
equation:

∂2 ~E

∂t2
+ ω2

pe
~E = −ω2

pe
~Eext. (183)

The total response is given by Callen after summing together the homogeneous,
particular, and externally applied electric field components ( ~E = ~Eh + ~Ep + ~Eext).
The end result is given by

~E (t) = − ω0ωpe
ω2

0 − ω2
pe

~E0 sinωpet+
ω2

0

ω2
0 − ω2

pe

~E0 sinω0t, (184)

where ωpe is the angular plasma frequency. When ω0 � ωpe, the field is totally can-
celled by the charges in the plasma, assuming the plasma charge density is sufficient
to block all of the charges on the electrodes. As ω0 approaches ωpe, a resonance
occurs that results in the field becoming many times larger than the external field.
If we can operate our drive circuit near the plasma frequency, we may be able to
take advantage of this and use it to amplify our field using much lower voltages on
our electrodes. For ω0 > ωpe, the charges in the plasma can no longer rearrange
themselves in time to block the field and the entire external field penetrates the
plasma.

To get the force between the electrode and the ISS skin, we use the relationship
~F = q ~E. We have ~E from equation 184, but need to find q, the total charge on
the plate (or skin of the ISS). We can start with the following relationship for the
surface charge, σ, on a conductive surface:

σ = −ε0
∂Φ

∂n
= ε0En̂. (185)

This states that the surface charge density is equal to the normal component of the
electric field at the conductor’s surface multiplied by the permittivity of free space.
If we integrate over the surface of our electrode, we get the total charge,

q = ε0EA. (186)

So, the force is given by ~F = ε0E
2An̂. We can then combine this with equation 184

to get

~F = ε0A(− ω0ωpe
ω2

0 − ω2
pe

~E0 sinωpet+
ω2

0

ω2
0 − ω2

pe

~E0 sinω0t)
2 · n̂, (187)

where ~E0 = V
d n̂ for a parallel plate geometry.

An implicit assumption in the above discussion is that below the plasma fre-
quency there is sufficient charge density in the ionosphere to cancel the charges on
the plates used for electrostatic attraction. If we assume a 0.01 m2 plate at a dis-
tance of 0.1 m, charged to ±6000 V and use Equations 185 and 186, we get a total
charge of 5.31 × 10−9 Coulombs. The total charge in a cubic decimeter of space

62



nearby is (.001m3)Nq = 2.56× 10−11 Coulombs. So there is around 207 times more
charge on the electrode than in a cubic decimeter of nearby space between the plate
and the ISS surface. This suggests that only a low frequency oscillation may be
necessary to minimize the shielding effect from the plasma.

4.4 Plasma Test

4.4.1 Test Description

A test was conducted in the Low Earth Orbit ionosphere simulation chamber at
Marshall Space Flight Center (MSFC) to see if a low frequency oscillation mentioned
above will overcome the shielding effect from the plasma. The test chamber is
designed to provide varying densities of the type of plasma experienced in Earth’s
atmosphere while in low Earth orbit, simulating the conditions experienced by the
ISS. It was hypothesized that putting a large amount of charge on the plates of an
inspection spacecraft and oscillating the voltage at audio frequencies is sufficient to
keep the plasma in the ionosphere from cancelling out the force.

The test uses a hanging conductive sphere next to a ground plane since the ca-
pacitance and force for this geometry are already well known [18]. The Debye length
is under half a centimeter, so the separation between the sphere and ground plane
must exceed this distance. Therefore, testing was conducted with 1 cm between the
sphere edge and the ground plane. Two methods of excitation are used to generate
2-12 kVpp between the sphere and the ground plane. One method, using a DC-DC
converter tests frequencies from 10-150 Hz and the other uses a step-up transformer
operating at 5-20 kHz. The position was recorded with a laser displacement sensor
mounted outside the chamber and aiming at the sphere through a window. Tests
were run in vacuum with the voltage on and off and repeated again with the ion
source on to see to what extent the displacement is reduced.

4.4.2 Equipment List

1. Micro-Epsilon optoNCDT 1420-500 Displacement Sensor (500 mm)

2. Micro-Epsilon IFP2001/USB RS-422 to USB interface

3. Fluke 189 True RMS Digital Multimeter with Optical USB interface

4. Cal Test Electronics CT4079-NA High Voltage Probe Kit for multimeter and
oscilloscope

5. Rigol DG4162 Function Generator with USB cable

6. Crown CDi4000 Audio Power Amplifier

7. GW Instek GPS-3303 DC Power Supply

8. Step up transformers (hyperlink 1 and hyperlink 2 )

9. HVM Technology HVA0560, 0 to +/- 6000 V DC/DC Converter (will run AC
up to 150 Hz)
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10. Terminal strip for landing high voltage wires

11. Painted hollow aluminum sphere, 2-inch diameter with threaded solder fitting
for high voltage cable

12. 8”×9” aluminum plate, with insulated coating on one side

13. HP Laptop with Windows 7 and a USB hub

4.4.3 Test Configuration with Transformer

The block diagram below in Figure 25 shows the configuration of the test equipment
using one of the transformers to provide voltage to the sphere. The Rigol function
generator is configured with a 3 Vpp sine wave with no offset voltage. This will
provide a standard line voltage input to the channel one input of the power amplifier.
The output of the power amplifier is configured and wired in bridge mode to gang
together the channel 1 and 2 outputs. The amplifier output is then run to the
primary side of the transformer. The secondary is the high voltage side of the
transformer and it is connected to the terminal block to feed the sphere. The metal
sphere is painted and suspended so that the center of the sphere lines up with the
window in the test chamber.

The ILD1420 has a range of 500 mm (19.7”). The sphere and displacement
sensor must be located so that the distance between them is less than this amount.
Some photos of the setup used at Kennedy Space Center appear in Figure 26.

GW Instek
P/S

IFP2001/
USB

24 VDC
ILD1420-

500
RS-422 laser

Terminal 
block

transformerCrown Amp
Rigol

Function
Generator

USB
Hub

Gnd

High Voltage

Fluke 189
High Voltage 

Probe

HP
Laptop

Figure 25. Block diagram showing test configuration using a step-up transformer to
generate the high voltages between the sphere and the ground plane.

4.4.4 Test Configuration with High-Voltage DC-DC Converter

This test configuration uses an HVM Technology HVA Series (HVA0560) to generate
up to +/- 6 kV from DC to a few hundred Hertz. The HVA0560 requires a 5 VDC
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Figure 26. Photos showing test configuration using a step-up transformer to generate
the high voltages between the sphere and the ground plane.
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supply voltage and a 5 Vpp (with 2.5 VDC offset) control voltage. By using a 10-150
Hz sine wave, the output can be varied sinusoidally up to +/-6 kV. The data sheet
is available at this link: HVA0560. The test configuration block diagram appears
below in Figure 27.

GW Instek
P/S

IFP2001/
USB

24 VDC
ILD1420-

500
RS-422 laser

Terminal 
block

HVA0560
Rigol

Function
Generator

USB
Hub

Gnd

High Voltage

Fluke 189
High Voltage 

Probe

HP
Laptop

5 VDC and 5 Vpp Sine
With 2.5 VDC Offset

Figure 27. Block diagram showing test configuration using a HVM Technology
DC-DC converter to generate the high voltages between the sphere and the ground
plane.

4.4.5 Test Plan

The Rigol function generator is to be configured to provide a 5, 4, 3, 2, 1, and 0 Vpp
control signal (with 2.5 VDC offset) to the HVA0560 at frequencies of 10, 20, 50,
100, and 150 Hz. This should result in a set of data similar to the one found from
the bench test at KSC. The data from this test is given below in Figure 28 along
with the predicted displacement based on a 60 g, 1-inch radius sphere, suspended
by a 23-inch long high voltage wire, with a starting location 1 cm from a ground
plane. The MSFC test is done in the vacuum of the test chamber at least once
with the ion source on and once with it off. If the results between the two vary,
indicating a reduction in displacement due to the presence of the ions, other initial
displacements should be tried. The theoretical displacement curve which shows
fairly close agreement with the test data shown in Figure 28.

The transformer can be used to get slightly higher voltages than the DC-DC
converter but it is optimized to operate at close to 20 kHz. Other frequencies are
possible, but damage occurred during the KSC test when working at 5 kHz. The
results for 20 kHz from the bench test at KSC are shown below in Figure 29. At 5
kVrms, the displacement is higher than predicted. The sphere oscillates when it is
displaced and 20+ cycles must be averaged to get a representation of the steady state
value. Due to non-linearities, the force is much higher at its closest approach to the
ground plane than its furthest separation. It’s possible the measured displacement
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Figure 28. Graph showing the displacement as a function of voltage of the sphere
starting at 1 cm separation from the ground plane compared to the predicted dis-
placement. Data was generated using the HVA0560 DC-DC converter operating at
frequencies between 10-150 Hz in normal atmosphere.
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Figure 29. Graph showing the displacement as a function of voltage of the sphere
starting at 1 cm separation from the ground plane using the step-up transformer at
20 kHz
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may be biased higher since the oscillations bring it much closer to the ground plane
than the calculated steady state value.

Using the transformer, the plan is to test at 1, 2, 3, 4, 5, and 6 kVrms and at
10, 15, and 20 kHz. The goal is to fill in as much of the curve as possible similar to
the plot for the HVA0560.

4.4.6 Test Results

The testing was conducted in November 18-21, 2019 in building 4605 at MSFC.
The test configuration in and around the plasma chamber is shown in the series of
photographs in Figure 30. The sphere was suspended from a wire hung from an “L”
shaped frame constructed in the vacuum chamber (lower left photo). The distance
between the pivot point and the sphere center was 17” rather than the 24” used in
earlier testing at KSC. The ground plane was the same coated aluminum plate used
in the testing at KSC and was mounted on a translation stage so the distance to the
sphere could be varied. The high voltage wiring was routed along the “L” and then
through a vacuum feed through on the side of the chamber. The wire then ran to the
terminal strip on top of the amplifier (upper right photo). The displacement sensor
was mounted outside the chamber and was able to monitor the position of the sphere
through a window in the side of the chamber (lower right photo). Unfortunately, the
overall capacitance of the feed-through and the cable path (about 115 pF) exceeded
the drive capability of the HVA DC/DC converter. So, testing was only possible
with the combination of the amplifier and step-up transformer.

The first test conducted was to charge the sphere up in ambient conditions to
see that all of the equipment was operational. There were quite a few places where
the high voltage cable came close to a ground point and caused corona discharges to
occur. The high voltage cable was either separated further from the ground or better
insulated through the addition of layers of Kapton tape. The first data was collected
by ramping the voltage up and down with the sphere in the chamber after it was
pumped down to a vacuum. The initial excitation was a 10 kHz sinusoidal signal
that seemed to follow the predicted curve as voltage was increased and decreased.
The comparison between the two plots appears in Figure 31. These two show close
agreement but the falling voltage case as well as the curves for 10 kHz and 15 kHz
have a fair amount of spread. The plot showing the composite of the collected data
is shown in Figure 32. The high voltage cable had a rather thick insulator on it
that had to be vacuum compatible. It is thought that the stiffness of this insulation
played a role in the hysteresis seen in the data as the sphere rarely followed the
same path or returned to the starting location.

When the plasma was turned on for the first time we had an inadvertent dis-
charge that resulted in damage to the displacement sensor interface, the adjustable
DC power supply, and our high voltage scope probe. Fortunately, the MSFC folks
were able to obtain suitable replacements within a day to get us back up and test-
ing. The Debye length during these early runs was around 4.4 mm. The sphere
was painted with a high temperature paint that was supposed to be safe to use in
vacuum. Unfortunately, the paint didn’t provide enough insulation to the sphere
and the purple glow of the corona discharge was clearly visible around the sphere.
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Figure 30. Photos showing the test configuration at MSFC.
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Figure 31. Plot showing displacement of a sphere starting 1 cm from a ground plane
as the voltage on the sphere is increased with a 10 kHz drive frequency in vacuum.
The curve for the predicted motion is shown for comparison.
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Figure 32. Plot of points showing displacement of a sphere starting 1 cm from a
ground plane as the voltage on the sphere is increased. The points shown are from
runs at three different frequencies, 10, 15, and 20 kHz. The curve for the predicted
motion is shown for comparison
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The left photo in Figure 33 shows the presence of the corona around the sphere
and discharges can be seen as bright spots on the sphere. The discharges cause
discoloration of the sphere as can be seen in the right hand photo. The discharges

Figure 33. The photo on the left shows the charged sphere in the presence of the
plasma. The glow of a corona discharge is present. The bright spots on the sphere
are believed to be electrons punching through the paint to try and neutralize the
charge. The photo on the right shows the discoloration to the sphere from the hot
spots in the paint that occur from the plasma electrons attempting to neutralize the
potential.

likely caused the variations we experienced in the movement and the stability of
the applied voltage. The results of a 10 kHz and 20 kHz run are shown in Fig-
ure 34. The overall motion exceeded the predictions but the mechanism for this is
not understood at this time.

On the final day the plasma was measured to have a Debye length of around 4
mm. Numerous discharges occurred and the sphere turned black. The results are
similar to the earlier test with hysteresis and strong variation in the distribution
of the points that show the displacement of the sphere as a function of the RMS
voltage. The MSFC lab had a high voltage AC supply that we used to achieve a
1 kHz oscillation frequency. The results from this final day of testing appear in
Figure 35

4.4.7 Discussion of Results

We predicted the motion of 2-inch diameter sphere located 1 cm from a ground
plane when the sphere is raised to some potential above the ground plane. When
an oscillating voltage between 0 and 5000 Vrms is applied to this sphere, it will
move approximately 1.1 and 1.5 mm for 43.2 cm and 61 cm suspension lengths and
a mass of 60 g for the sphere. We selected to operate this test configuration in a
plasma similar to that encountered at 400 km above the earth as experienced by the
ISS. Post-test measurements were made of the plasma configuration and determined
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that the final tests were run at a plasma density of 0.8-1.0×1012 electrons/m3 and
electron temperatures of 0.2 eV for the cold electrons (90% of the population) and
2.0 eV for the hot electrons (10% of the population). Overall, this results in a
Debye length of 4 mm. The results of the test show that there is at least 1.1 mm
of displacement of the sphere with 5000 Vrms applied, even with the plasma turned
on, regardless of the frequency. There is no evidence of any screening occurring
to diminish the force of attraction between the sphere and the ground plane. This
is likely due to the much larger quantity of charge placed on the sphere than is
available in the chamber to screen the sphere from the ground plane.

Given the large variations in the data sets, a small screening effect would be
hard to discern, especially at lower applied voltages where less charge is placed on
the sphere. Additionally, concerns were raised that the plasma density at the sphere
may not have been exactly what was read by the Langmuir probe in the chamber
as the plasma generator, probe, and test setup where not well aligned with each
other. The insulation on the cable suspending the sphere was stiff and is believed
to be the source of the hysteresis in the plots and different starting and ending
positions when the sphere was returned to 0 Volts. Another anomaly is that the
peak displacement at the highest voltages on the sphere occurred with the plasma
present. These were two to three times the predicted displacement. A possible
explanation for this is formation of sheath near each electrode surface. The sheath
formation causes the plasma between the sheaths to achieve a potential that exceeds
the peak voltage applied to the electrodes. There is then a large drop in potential
between the electrode and the edge of the plasma that is the width of the sheath.
This causes a higher electric field to occur and an enhancement in the force felt by
the electrode.

A repeat of the test was planned with improved insulation on the sphere, a more
flexible wire, and improved alignment, but the impact of the shutdown of MSFC due
to the Covid-19 virus precluded that from occurring prior to the project completion.
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5 Conclusions

Several magnetic force actuators and an electrostatic force actuator have been dis-
cussed that provide attractive, repulsive, and translational motion with respect to
conductive surfaces. Analytical solutions have been obtained that were then con-
firmed via models in Mathematica and independently in COMSOL. In some cases,
experimental data was collected to confirm the force behavior. When combined, full
six degree of motion is possible via these actuators. The feedback and control meth-
ods have not been discussed but will be documented in future publications by our
co-author, Katherine Wilson. It is hoped that the analytic models will help to sim-
plify the understanding of the actuator behavior and to serve as a basis for checking
the results from more elaborate models built with software such as COMSOL.

A fascinating aspect of this work that we would have liked to explore further
is the behavior of the magnetic actuator when opposite a conducting plate that
was backed by a thin layer of ferrous metal. Because steel has a high capacity for
magnetic flux, only a thin layer is required behind the conductor to obtain repulsive,
neutral, or attractive forces just by shifting the drive frequency for the coil. The
theory shows that the attractive force is approximately an order of magnitude larger
than the electrostatic method at the same working distance. This simplifies the
design as only coils would be needed. Such a system would also provide better
balance between the attractive, repulsive, and lateral forces making the feedback
and control system a bit easier to develop. This also enables applications like landing
on a small iron core asteroid. DC currents in the drive coil would allow spacecraft
to stick to the asteroid. If an aluminum plate was carried under the coil it could
be dropped before take off and then used to push against with an AC coil current
to generate repulsive force. Unfortunately due to the pandemic, we were unable to
verify our mathematics and analysis experimentally.

Lastly, the electrostatic actuator testing had some ambiguous results that we
planned to try and resolve through another round of testing but again were inter-
rupted by the pandemic. It would be interesting to better understand the sheath
formation and to determine if it can be exploited to provide an enhanced attractive
force.
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4. Trötzsch, U., Wendler, F., and Kanoun, O., 2013, “Simplified analytical induc-
tance model for a single turn eddy current sensor,” Sensors and Actuators A:
Physical, 191, pp. 11–21.

5. Zhang, S., Wu Weihua, and Tang Jiangfeng, 2015, “Magnetic field calculation of
cylindrical exciting coil above conductive plates,” 2015 12th IEEE International
Conference on Electronic Measurement Instruments (ICEMI), vol. 3, pp. 1471–
1476.

6. Cheng, D. H. S., 1965, “The reflected impedance of a circular coil in the prox-
imity of a semi-infinite medium,” IEEE Transactions on Instrumentation and
Measurement, IM-14(3), pp. 107–116.

7. Kausel, E. and Baig, M. M. I., 2012, “Laplace transform of products of bessel
functions: A visitation of earlier formulas,” Quarterly of Applied Mathematics,
70(1), pp. 77–97.

8. Jackson, J. D., 1998, Classical Electrondynamics, Wiley, 3rd ed.

9. Laithwaite, E. R., 1974, “The hyperconductor and the linomat,” Electrical Re-
view, 25, pp. 530–532.

10. El-Markabi, M. H. S. and Freeman, E. M., 1982, “Electromagnetic properties
of a circular cylindrical coil in a set of planar ferromagnetic regions,” IEE Pro-
ceedings, 129, Part A(8), pp. 582–589.

11. Lorrain, P., Corson, D. R., and Lorrain, F., 1988, Electromagnetic Fields and
Waves, W. H. Freeman and Company, third ed.

12. Batygin, Y. V., Golovashchenkob, S. F., and Gnatova, A. V., 2013, “Pulsed
electromagnetic attraction of sheet metals – fundamentals and perspective ap-
plications,” Journal of Materials Processing Technology, 213, pp. 444–452.

13. Batygin, Y. V., Golovashchenkob, S. F., and Gnatova, A. V., 2014, “Pulsed
electromagnetic attraction of nonmagnetic sheet metals,” Journal of Materials
Processing Technology, 214, pp. 390–401.

76



14. Astakhov, Y. S., Djaliashvili, O. A., Radzivanovich, V. D., Shneerson, G. A.,
and Fridman, B. E., 1992, “Application of alternating and pulsed magnetic
fields for removal of intraocular foreign bodies of non-ferromagnetic metals,”
IEEE Transactions on Magnetics, 28(1), pp. 659–662.

15. Jensen, M. D. and Baker, K. D., 1992, “Measuring ionoshperic electron density
using the plasma frequency probe,” Journal of Spacecraft and Rockets, 29(1),
pp. 91–95.

16. Otsuka, Y., Kawamura, S., Balan, N., Fukao, S., and Bailey, G. J., 1998,
“Plasma temperature variations in the ionoshpere over the middle and upper at-
mosphere radar,” Journal of Geophysical Research, 103(A9), pp. 20705–20713.

17. Callen, J. D., 2003, “Fundamentals of plasma physics,” Chapter 1,
http://homepages.cae.wisc.edu/ callen/book.html.

18. Crowley, J. M., 2008, “Simple expressions for force and capacitance for a con-
ductive sphere near a conductive wall,” Proceedings of the ESA Annual Meeting
on Electrostatics 2008, pp. 1–14.

77



6 Appendix A - COMSOL Model for a Linear Induction
Motor Interacting with and Aluminum Slab and an
Aluminum Slab on top of an Iron Slab - Longitudinal
Force

78



1 

 

1 Global Definitions 

GLOBAL SETTINGS 

Version COMSOL Multiphysics 5.5 (Build: 359) 

Unit system SI 
 

USED PRODUCTS 

COMSOL Multiphysics 

AC/DC Module 
 

1.1 PARAMETERS 

PARAMETERS 1 

Name Expression Value Description 

wbound nw*max(d, ro) 6.75E−2 m width of bounding box 

sigmaCond2 if(mur2>1, 1e7[S/m], 3.5e7[S/m]) 1E7 S/m conductivity of conductor 2 

sigmaCond1 3.5e7[S/m] 3.5E7 S/m 
conductivity of conductor 1 

(nearer to coil) 

ro 0.015[m] 1.5E−2 m outer radius of coil 

p3 if(dirI0 > 0, 360/4*3 , 0) 2.7E2 phase of coil 3 

p2 if(dirI0 > 0, 360/4*2 , 360/4*1) 1.8E2 phase of coil 2 

p1 if(dirI0 > 0, 360/4*1 , 360/4*2) 9E1 phase of coil 1 

p0 if(dirI0 > 0, 0 , 360/4*3) 0E0 phase of coil 0 

nw 4.5 4.5E0 
definition for width of bounding 

box 

nTurns 25 2.5E1 number of turns 

nh 4.5 4.5E0 
definition for height of bounding 

box 

ncond2 ncond*2 1E−3 m 
definition for maximum size of 

conductor mesh 

ncond 0.5e-3[m] 5E−4 m 
definition for maximum size of 

conductor mesh 

mur2 1000 1E3 
relative permeability of conductor 

2 

mur1 1 1E0 
relative permeability of conductor 

1 

lbound (nw + 3)*max(d, ro) 1.125E−1 m length of bounding box 

I0 5[A]*nTurns 1.25E2 A current in coil 

hcond2 hcond1 1.5E−3 m thickness of conductor 2 

hcond1 1.5[mm] 1.5E−3 m thickness of conductor 1 
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Name Expression Value Description 

hbound nh*max(d, ro) + gap 7.25E−2 m height of bounding box 

gap 0.5[cm] 5E−3 m gap between coils 

dirI0 1 1E0 direction of current 

d 0.25[cm] 2.5E−3 m distance of liftoff 
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2 Component 1 

SETTINGS 

Description Value 

Unit system Same as global system 

Avoid inverted elements by curving interior domain elements Off 
 

SPATIAL FRAME COORDINATES 

First Second Third 

x y z 
 

MATERIAL FRAME COORDINATES 

First Second Third 

X Y Z 
 

GEOMETRY FRAME COORDINATES 

First Second Third 

Xg Yg Zg 
 

MESH FRAME COORDINATES 

First Second Third 

Xm Ym Zm 
 

2.1 GEOMETRY 1 

UNITS 

Length unit mm 

Angular unit deg 
 

2.1.1 Plate 1 (blk1) 

POSITION 

Description Value 

Position {-wbound/2, -lbound/2, -hcond1} 
 

AXIS 

Description Value 

Axis type z - axis 
 

SIZE AND SHAPE 

Description Value 

Width wbound 
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Description Value 

Depth lbound 

Height hcond1 
 

2.1.2 Plate2 (blk4) 

POSITION 

Description Value 

Position {-wbound/2, -lbound/2, -hcond1 - hcond2} 
 

AXIS 

Description Value 

Axis type z - axis 
 

SIZE AND SHAPE 

Description Value 

Width wbound 

Depth lbound 

Height hcond2 
 

2.1.3 Outer Air Domain (blk3) 

POSITION 

Description Value 

Position {-wbound/2, -lbound/2, -hbound/2 + (d + hcond1 + hcond2)/2 + gap/2} 
 

AXIS 

Description Value 

Axis type z - axis 
 

SIZE AND SHAPE 

Description Value 

Width wbound 

Depth lbound 

Height hbound 
 

2.1.4 Work Plane 1 (wp1) 

PLANE DEFINITION 

Description Value 

Plane xz - plane 
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UNITE OBJECTS 

Description Value 

Unite objects On 
 

Plane Geometry (sequence2D) 

Point 1 (pt1) 

POINT 

Description Value 

Point coordinate {15, 2.5} 
 

2.1.5 Revolve 1 (rev1) 

SETTINGS 

Description Value 

Work plane Work Plane 1 
 

REVOLUTION ANGLES 

Description Value 

Angles {0, 2*pi} 

Type of specification Full revolution 
 

REVOLUTION AXIS 

Description Value 

Point on the revolution axis {0, 0} 

Direction of revolution axis {0, 1} 

Revolution axis {{0, 0}, {0, 1}} 
 

2.1.6 Coil 0 (copy1) 

SETTINGS 

Description Value 

x 0E0 

y -2.25E1 

z 0E0 
 

2.1.7 Coil 1 (copy2) 

SETTINGS 

Description Value 

Keep input objects On 

x 0E0 
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Description Value 

y 1.5E1 

z 5E0 
 

2.1.8 Coil 2 (copy3) 

SETTINGS 

Description Value 

Keep input objects On 

x 0E0 

y 1.5E1 

z -5E0 
 

2.1.9 Coil 3 (copy4) 

SETTINGS 

Description Value 

Keep input objects On 

x 0E0 

y 1.5E1 

z 5E0 
 

2.2 MATERIALS 

2.2.1 Vacuum 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: All domains 
 

MATERIAL PARAMETERS 

Name Value Unit 

Relative permeability 1 1 

Electrical conductivity 0.1 S/m 

Relative permittivity 1 1 
 

BASIC SETTINGS 

Description Value 

Relative permeability {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Electrical conductivity {{0.1, 0, 0}, {0, 0.1, 0}, {0, 0, 0.1}} 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 
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2.2.2 Conducting plate 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: Domain 3 
 

MATERIAL PARAMETERS 

Name Value Unit 

Electrical conductivity sigmaCond1 S/m 

Relative permittivity 1 1 

Relative permeability mur1 1 
 

BASIC SETTINGS 

Description Value 

Electrical conductivity {{sigmaCond1, 0, 0}, {0, sigmaCond1, 0}, {0, 0, sigmaCond1}} 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Relative permeability {{mur1, 0, 0}, {0, mur1, 0}, {0, 0, mur1}} 

electricconductivity_symmetry 0E0 

relpermeability_symmetry 0E0 
 

2.2.3 Conducting plate 2 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: Domain 2 
 

MATERIAL PARAMETERS 

Name Value Unit 

Electrical conductivity sigmaCond2 S/m 

Relative permittivity 1 1 

Relative permeability mur2 1 
 

BASIC SETTINGS 

Description Value 

Electrical conductivity {{sigmaCond2, 0, 0}, {0, sigmaCond2, 0}, {0, 0, sigmaCond2}} 

electricconductivity_symmetry 0E0 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

relpermittivity_symmetry 3E0 

Relative permeability {{mur2, 0, 0}, {0, mur2, 0}, {0, 0, mur2}} 

relpermeability_symmetry 0E0 
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2.3 MAGNETIC FIELDS 

USED PRODUCTS 

COMSOL Multiphysics 

AC/DC Module 
 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: All domains 
 

2.3.1 Ampère's Law 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: All domains 
 

Constitutive relation B-H 

SETTINGS 

Description Value 

Magnetization model Relative permeability 

Relative permeability From material 
 

Constitutive relation Jc-E 

SETTINGS 

Description Value 

Conduction model Electrical conductivity 

Electrical conductivity From material 
 

Constitutive relation D-E 

SETTINGS 

Description Value 

Relative permittivity From material 
 

Coordinate system selection 

SETTINGS 

Description Value 

Coordinate system Global coordinate system 
 

PROPERTIES FROM MATERIAL 

Property Material Property group 
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Property Material Property group 

Relative permeability Vacuum Basic 

Electrical conductivity Vacuum Basic 

Relative permittivity Vacuum Basic 

Relative permeability Conducting plate 1 Basic 

Electrical conductivity Conducting plate 1 Basic 

Relative permittivity Conducting plate 1 Basic 

Relative permeability Conducting plate 2 Basic 

Electrical conductivity Conducting plate 2 Basic 

Relative permittivity Conducting plate 2 Basic 
 

2.3.2 Magnetic Insulation 1 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 2: All boundaries 
 

2.3.3 Initial Values 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: All domains 
 

Coordinate system selection 

SETTINGS 

Description Value 

Coordinate system Global coordinate system 
 

2.3.4 Edge Current 1 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edges 24–25, 32, 34 
 

SETTINGS 

Description Value 

I0 -I0*exp(i*pi*p0/180) 

 

Coordinate system selection 

SETTINGS 
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Description Value 

Coordinate system Global coordinate system 
 

2.3.5 Edge Current 2 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edges 26–27, 33, 36 
 

SETTINGS 

Description Value 

I0 -I0*exp(i*pi*p1/180) 

 

Coordinate system selection 

SETTINGS 

Description Value 

Coordinate system Global coordinate system 
 

2.3.6 Edge Current 3 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edges 28–29, 35, 38 
 

SETTINGS 

Description Value 

I0 -I0*exp(i*pi*p2/180) 

 

Coordinate system selection 

SETTINGS 

Description Value 

Coordinate system Global coordinate system 
 

2.3.7 Edge Current 4 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edges 30–31, 37, 39 
 

SETTINGS 
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Description Value 

I0 -I0*exp(i*pi*p3/180) 

 

Coordinate system selection 

SETTINGS 

Description Value 

Coordinate system Global coordinate system 
 

2.3.8 Force Calculation 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: Domains 2–3 
 

Force calculation 

SETTINGS 

Description Value 

Force name 0E0 

Torque axis, x component 0E0 

Torque axis, y component 0E0 

Torque axis, z component 1E0 

Torque rotation point, x component 0E0 

Torque rotation point, y component 0E0 

Torque rotation point, z component 0E0 
 

2.4 MESH 1 

2.4.1 Size (size) 

SETTINGS 

Description Value 

Maximum element size 3.96E1 

Minimum element size 7.13E0 

Curvature factor 6E-1 

Resolution of narrow regions 5E-1 

Maximum element growth rate 1.5E0 

Custom element size Custom 
 



12 

 

2.4.2 Mapped 1 (map1) 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 2: Boundary 12 
 

Distribution 1 (dis1) 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edge 11 
 

SETTINGS 

Description Value 

Number of elements floor(lbound/(ncond2)) 
 

Distribution 2 (dis2) 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edge 22 
 

SETTINGS 

Description Value 

Number of elements floor(wbound/(ncond2)) 
 

2.4.3 Swept 1 (swe1) 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: Domains 2–3 
 

SETTINGS 

Description Value 

Face meshing method Quadrilateral (legacy version 5.4) 
 

Distribution 1 (dis1) 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 3: Domains 2–3 
 

SETTINGS 

Description Value 
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Description Value 

Number of elements floor(hcond1/ncond) 
 

2.4.4 Edge 1 (edg1) 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edges 24–39 
 

Size 1 (size1) 

SELECTION 

Geometric entity level Edge 

Selection Geometry geom1: Dimension 1: Edges 24–39 
 

SETTINGS 

Description Value 

Maximum element size 2.25E0 

Minimum element size 2.25E-2 

Curvature factor 2E-1 

Maximum element growth rate 1.3E0 

Predefined size Extremely fine 
 

2.4.5 Free Tetrahedral 2 (ftet2) 

SELECTION 

Geometric entity level Domain 

Selection Remaining 
 

Size 1 (size1) 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1 
 

SETTINGS 

Description Value 

Maximum element size 1.13E1 

Minimum element size 2.03E0 

Curvature factor 6E-1 

Resolution of narrow regions 5E-1 

Maximum element growth rate 1.5E0 
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3 Mesh Sweep 

3.1 PARAMETRIC SWEEP 

Parameter name Parameter value list 

mur2 1, 1000 
 

STUDY SETTINGS 

Description Value 

Sweep type Specified combinations 

Parameter name mur2 

Unit  
 

PARAMETERS 

Parameter name Parameter value list Parameter unit 

mur2 (relative permeability of conductor 2) 1, 1000  
 

3.2 FREQUENCY DOMAIN 

Frequencies (Hz) 

1, range(100,100,5000) 
 

STUDY SETTINGS 

Description Value 

Include geometric nonlinearity Off 
 

SETTINGS 

Description Value 

Frequencies 

{1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 

1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 

3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 

4500, 4600, 4700, 4800, 4900, 5000} 
 

PHYSICS AND VARIABLES SELECTION 

Physics interface Discretization 

Magnetic Fields (mf) physics 
 

MESH SELECTION 

Geometry Mesh 

Geometry 1 (geom1) mesh1 
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4 Results 

4.1 DERIVED VALUES 

4.1.1 Global Evaluation 1 

EXPRESSIONS 

Expression Unit Description 

-mf.Forceavx_0  x component of force on LIM 

-mf.Forceavy_0  y component of force on LIM 

-mf.Forceavz_0  z component of force on LIM 
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1 Global Definitions 

GLOBAL SETTINGS 

Version COMSOL Multiphysics 5.5 (Build: 359) 

Unit system SI 
 

USED PRODUCTS 

COMSOL Multiphysics 

AC/DC Module 
 

1.1 PARAMETERS 

PARAMETERS 1 

Name Expression Value Description 

d 1[cm] 1E−2 m 
separation between coil and 

conductor 

hBound nh*max(d, rCoil) 5.44E−1 m height of bounding box 

hCond1 1.5[mm] 1.5E−3 m height of conductor 1 

hCond2 hCond1 1.5E−3 m height of conductor 2 

I0 1[A]*nTurns 3.2E2 A amplitude of current in coil 

mu0 4[H/m]*pi*10^(-7) 1.2566E−6 H/m vacuum permeability 

mur1 1 1E0 
relative permeability of first 

conductor 

mur2 1 1E0 
relative permeability of second 

conductor 

nCond1 9e-5[m] 9E−5 m 
definition for mesh density in 

first conductor 

nCond2 nCond1 9E−5 m 
definition for mesh density in 

second conductor 

nh 8 8E0 
definition for bounding box 

height 

nTurns 320 3.2E2 number of turns in coil 

nw 7 7E0 
definition for bounding box 

width 

rCoil 136[mm]/2 6.8E−2 m radius of coil 

sigmaCond1 3.5e7[S/m] 3.5E7 S/m conductivity of first conductor 

sigmaCond2 if(mur2>1, 1e7[S/m], 3.5e7[S/m]) 3.5E7 S/m 
conductivity of second 

conductor 

wBound nw*max(d, rCoil) 4.76E−1 m width of bounding box 
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2 Component 1 

SETTINGS 

Description Value 

Unit system Same as global system 

Avoid inverted elements by curving interior domain elements Off 
 

SPATIAL FRAME COORDINATES 

First Second Third 

r phi z 
 

MATERIAL FRAME COORDINATES 

First Second Third 

R PHI Z 
 

GEOMETRY FRAME COORDINATES 

First Second Third 

Rg PHIg Zg 
 

MESH FRAME COORDINATES 

First Second Third 

Rm PHIm Zm 
 

2.1 GEOMETRY 1 

2.1.1 Bounding (r1) 

POSITION 

Description Value 

Position {0, -hBound/2 + (d + hCond1 + hCond2)/2} 
 

SIZE 

Description Value 

Width wBound 

Height hBound 
 

2.1.2 Conductor (r2) 

POSITION 

Description Value 

Position {0, -hCond1} 
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SIZE 

Description Value 

Width wBound 

Height hCond1 
 

2.1.3 Conductor 1 (r3) 

POSITION 

Description Value 

Position {0, -hCond1 - hCond2} 
 

SIZE 

Description Value 

Width wBound 

Height hCond2 
 

2.1.4 Point 1 (pt1) 

POINT 

Description Value 

Point coordinate {0.068, 0.01} 
 

2.2 MATERIALS 

2.2.1 Bound 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: All domains 
 

MATERIAL PARAMETERS 

Name Value Unit 

Relative permeability 1 1 

Electrical conductivity 0 S/m 

Relative permittivity 1 1 
 

BASIC SETTINGS 

Description Value 

Relative permeability {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Electrical conductivity {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 
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2.2.2 Conductor 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: Domain 3 
 

MATERIAL PARAMETERS 

Name Value Unit 

Relative permeability mur1 1 

Relative permittivity 1 1 

Electrical conductivity sigmaCond1 S/m 
 

BASIC SETTINGS 

Description Value 

Relative permeability {{mur1, 0, 0}, {0, mur1, 0}, {0, 0, mur1}} 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Electrical conductivity {{sigmaCond1, 0, 0}, {0, sigmaCond1, 0}, {0, 0, sigmaCond1}} 

relpermeability_symmetry 0E0 

electricconductivity_symmetry 0E0 
 

2.2.3 Conductor 2 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: Domain 2 
 

MATERIAL PARAMETERS 

Name Value Unit 

Relative permeability mur2 1 

Relative permittivity 1 1 

Electrical conductivity sigmaCond2 S/m 
 

BASIC SETTINGS 

Description Value 

Relative permeability {{mur2, 0, 0}, {0, mur2, 0}, {0, 0, mur2}} 

relpermeability_symmetry 0E0 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

relpermittivity_symmetry 3E0 

Electrical conductivity {{sigmaCond2, 0, 0}, {0, sigmaCond2, 0}, {0, 0, sigmaCond2}} 

electricconductivity_symmetry 0E0 
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Description Value 

relpermeability_symmetry_symmetry 0E0 
 

2.3 MAGNETIC FIELDS 

USED PRODUCTS 

COMSOL Multiphysics 

AC/DC Module 
 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: All domains 
 

2.3.1 Ampère's Law 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: All domains 
 

Constitutive relation B-H 

SETTINGS 

Description Value 

Magnetization model Relative permeability 

Relative permeability From material 
 

Constitutive relation Jc-E 

SETTINGS 

Description Value 

Conduction model Electrical conductivity 

Electrical conductivity From material 
 

Constitutive relation D-E 

SETTINGS 

Description Value 

Relative permittivity From material 
 

Coordinate system selection 

SETTINGS 

Description Value 

Coordinate system Global coordinate system 
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USED PRODUCTS 

COMSOL Multiphysics 
 

PROPERTIES FROM MATERIAL 

Property Material Property group 

Relative permeability Bound Basic 

Electrical conductivity Bound Basic 

Relative permittivity Bound Basic 

Relative permeability Conductor 1 Basic 

Electrical conductivity Conductor 1 Basic 

Relative permittivity Conductor 1 Basic 

Relative permeability Conductor 2 Basic 

Electrical conductivity Conductor 2 Basic 

Relative permittivity Conductor 2 Basic 
 

2.3.2 Axial Symmetry 1 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 1: All boundaries 
 

USED PRODUCTS 

COMSOL Multiphysics 
 

2.3.3 Magnetic Insulation 1 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 1: All boundaries 
 

USED PRODUCTS 

COMSOL Multiphysics 
 

2.3.4 Initial Values 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: All domains 
 

Coordinate system selection 

SETTINGS 
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Description Value 

Coordinate system Global coordinate system 
 

USED PRODUCTS 

COMSOL Multiphysics 
 

2.3.5 Force Calculation 1 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: Domains 2–3 
 

Force calculation 

SETTINGS 

Description Value 

Force name 0E0 
 

2.3.6 Line Current (Out-of-Plane) 1 

SELECTION 

Geometric entity level Point 

Selection Geometry geom1: Dimension 0: Point 6 
 

SETTINGS 

Description Value 

I0 I0 

 USED PRODUCTS 

COMSOL Multiphysics 
 

2.4 MESH 1 

2.4.1 Size (size) 

SETTINGS 

Description Value 

Maximum element size 2.88E-2 

Minimum element size 1.63E-4 

Curvature factor 3E-1 

Maximum element growth rate 1.3E0 

Predefined size Fine 
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2.4.2 Mapped 1 (map1) 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: Domain 3 
 

Distribution 1 (dis1) 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 1: Boundary 5 
 

SETTINGS 

Description Value 

Number of elements floor(hCond1/nCond1) 
 

Distribution 2 (dis2) 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 1: Boundary 8 
 

SETTINGS 

Description Value 

Number of elements floor(wBound/nCond1) 
 

2.4.3 Mapped 2 (map2) 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1: Dimension 2: Domain 2 
 

Distribution 1 (dis1) 

SELECTION 

Geometric entity level Boundary 

Selection Geometry geom1: Dimension 1: Boundary 3 
 

SETTINGS 

Description Value 

Number of elements floor(hCond2/nCond2) 
 

Distribution 2 (dis2) 

SELECTION 
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Geometric entity level Boundary 

Selection Geometry geom1: Dimension 1: Boundary 6 
 

SETTINGS 

Description Value 

Number of elements floor(wBound/nCond2) 
 

2.4.4 Free Triangular 1 (ftri1) 

SELECTION 

Geometric entity level Domain 

Selection Remaining 
 

Size 1 (size1) 

SELECTION 

Geometric entity level Domain 

Selection Geometry geom1 
 

SETTINGS 

Description Value 

Maximum element size 3.64E-2 

Minimum element size 1.63E-4 

Curvature factor 3E-1 

Maximum element growth rate 1.3E0 
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3 Study 1 

3.1 PARAMETRIC SWEEP 

Parameter name Parameter value list 

mur2 1,10,100,1000 
 

STUDY SETTINGS 

Description Value 

Sweep type Specified combinations 

Parameter name mur2 

Unit  
 

PARAMETERS 

Parameter name Parameter value list Parameter unit 

mur2 (relative permeability of second conductor) 1,10,100,1000  
 

3.2 FREQUENCY DOMAIN 

Frequencies (Hz) 

1, range(20,20,2000) 
 

STUDY SETTINGS 

Description Value 

Include geometric nonlinearity Off 
 

SETTINGS 

Description Value 

Frequencies 

{1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 

380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 

740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1020, 1040, 1060, 

1080, 1100, 1120, 1140, 1160, 1180, 1200, 1220, 1240, 1260, 1280, 1300, 1320, 1340, 

1360, 1380, 1400, 1420, 1440, 1460, 1480, 1500, 1520, 1540, 1560, 1580, 1600, 1620, 

1640, 1660, 1680, 1700, 1720, 1740, 1760, 1780, 1800, 1820, 1840, 1860, 1880, 1900, 

1920, 1940, 1960, 1980, 2000} 
 

PHYSICS AND VARIABLES SELECTION 

Physics interface Discretization 

Magnetic Fields (mf) physics 
 

MESH SELECTION 

Geometry Mesh 

Geometry 1 (geom1) mesh1 
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4 Results 

4.1 DERIVED VALUES 

4.1.1 Export Table 

OUTPUT 

Evaluated in Table 1 
 

DATA 

Description Value 

Dataset Study 1/Solution 1 
 

EXPRESSIONS 

Expression Unit Description 

-mf.Forceavz_0 N Repulsive force component on coil 

numberofdofs 1E0 Number of degrees of freedom 

mur2  relative permeability of second conductor 

hCond1 m height of conductor 1 

hCond2 m height of conductor 2 

sigmaCond1 S/m conductivity of first conductor 

sigmaCond2 S/m conductivity of second conductor 
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