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Abstract 12 

For ~100 years, the continental patterns of avian migration in North America have been described in 13 

the context of three or four primary flyways. This spatial compartmentalization often fails to 14 

adequately reflect a critical characterization of migration — phenology. This shortcoming has been 15 

partly due to the lack of reliable continental-scale data, a gap filled by our current study. Here, we 16 

leveraged unique radar-based data quantifying migration phenology and used an objective 17 

regionalization approach to introduce a new spatial framework that reflects interannual variability. 18 

Therefore, the resulting spatial classification is intrinsically different from the “flyway concept”. We 19 

identified two regions with distinct interannual variability of spring migration across the contiguous 20 

U.S. This data-driven framework enabled us to explore the climatic cues affecting the interannual 21 

variability of migration phenology, “specific to each region” across North America. For example, our 22 

“two-region” approach allowed us to identify an east-west dipole pattern in migratory behavior linked 23 

to atmospheric Rossby waves. Also, we revealed that migration movements over the western U.S. was 24 

inversely related to interannual and low-frequency variability of regional temperature. A similar link 25 

but weaker and only for interannual variability was evident for the eastern region. However, this region 26 

was more strongly tied to climate teleconnections, particularly to the East Pacific-North Pacific (EP-27 

NP) pattern. The results suggest that oceanic forcing in the tropical Pacific—through a chain of 28 

processes including Rossby wave trains—controls the climatic conditions, associated with bird 29 

migration over the eastern U.S. Our spatial platform would facilitate better understanding of the 30 

mechanisms responsible for broad-scale migration phenology and its potential future changes.  31 
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Capsule summary 32 

The contiguous U.S. is objectively divided into two regions based on bird migration phenology. We 33 

explore the climatic cues associated with this new spatial framework.  34 
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1. Motivation 35 

The seasonal migration of birds is a prominent feature of the natural world. Every spring, migratory 36 

birds arrive from south and central America to the contiguous U.S. (CONUS) and Canada for breeding 37 

(Gauthreaux 1971; Lowery 1945; Dokter et al. 2018; Lane et al. 2012). Exogenous forces, such as 38 

climate and changes in primary productivity, influence migration speed and phenology, defined as the 39 

seasonal timing of life cycle events (La Sorte et al. 2014a; Zuckerberg et al. 2020; Gordo 2007; Smith 40 

and Deppe 2008). Endogenous forces, such as circadian cycles and site fidelity, also play a role 41 

(Gwinner 1996; Cohen et al. 2012; Alerstam et al. 2003). Together, these forces suggest that migratory 42 

pathways should be stable over time, but also reflect broad-scale and regular patterns in climate 43 

variability. Traditionally, spatial classification of bird migration in CONUS is viewed in the context of 44 

“flyways”, and the region is commonly divided into four principal routes (Pacific, Central, Mississippi, 45 

and Atlantic), largely derived from waterfowl ecology (Hawkins 1984; Lincoln 1935; Waller et al. 46 

2018). An alternative representation is three routes, western, central and eastern (La Sorte et al. 2014b; 47 

Horton et al. 2020), although some similarities have been identified between the latter two routes that 48 

may be indicative of a larger migration system (La Sorte et al. 2014b). 49 

 50 

However, such a large-scale characterization of migratory routes has not been fully understood, and the 51 

common spatial classification approaches are either subjective or based on the time-averaged 52 

migratory behavior and therefore neglect year-to-year variability (Hawkins 1984; La Sorte et al. 53 

2014b; Olsen et al. 2006). Those studies that consider interannual variability are limited to 54 

observations from individual sites (Van Buskirk et al. 2009; Oliver et al. 2020; Ballard et al. 2003). To 55 

fill these voids, we have proposed a new geographic framework, which would reflect the interannual 56 

variability of bird migration at the continental-scale. This approach would be essential for better 57 
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understanding how patterns in climate variability influence broad-scale animal movements and 58 

migration phenology (Strong et al. 2015; Zuckerberg et al. 2020).  59 

 60 

The main obstacle for spatio-temporal analysis of bird migration has been the lack of reliable data over 61 

a sufficiently long period and with broad spatial coverage across CONUS (Horton et al. 2020). This 62 

data limitation has hampered the proper assessments of spatial properties and annual timing events. 63 

Recently-published data of migration phenology, derived from weather radar observations (Horton et 64 

al. 2020), provides a unique opportunity to perform such analysis at the continental-scale. Leveraging 65 

these data, we have revisited the traditional spatial framework to test whether there is coherent 66 

interannual and low-frequency variability in migration timing across the continent, and whether that 67 

exhibits spatial variability that could be used to improve our knowledge of the drivers of year-to-year 68 

variability of bird migration. In other words, we aim to identify sub-regions based on similarity of 69 

interannual variability of bird migration and consequently explore regional and remote climatic drivers 70 

specific to each region.  71 

 72 

2. Bird migration data 73 

We used nocturnal migration data that has been recently compiled from the NOAA’s Next Generation 74 

Radar (NEXRAD) system (Horton et al. 2020). NEXRAD is a network of 143 stations across the 75 

contiguous U.S. and provides exceptional spatial and temporal coverage for continental-scale analysis 76 

(Ansari et al. 2018; Dokter et al. 2019; Rosenberg et al. 2019). Real-time and archived NEXRAD data 77 

are shared on Amazon Web Service (AWS) and can be accessed via simple application program 78 

interfaces (APIs). The AWS cloud has facilitated data access and created new research opportunities, 79 

including analysis of avian migration. 80 

 81 
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The bird migration data has been developed using a convolutional neural network (CNN) to exclude 82 

precipitation contamination and subsequently quantify the phenology of migratory movements (Lin et 83 

al. 2019). This approach employs a neural network trained using per-pixel labels (biology or weather) 84 

derived from a polarimetric variable, specifically correlation coefficient (ρHV). Correlation coefficient 85 

quantifies the consistency of the shapes and sizes of targets within the radar beam and is used to 86 

distinguish between meteorological and non-meteorological objects. If the correlation coefficient 87 

exceeds 0.95, reflectivity is classified as precipitation, otherwise it is classified as biological. Their 88 

algorithm also removes stationary clutter. Following these filtering steps, vertical profiles of radar 89 

reflectivity are constructed to quantify migration activity from 100-3000 m layer above ground level 90 

(AGL), from spring (1 March to 15 June) 1995 to spring 2018. Some sites have data over a shorter 91 

period. To analyze the timing of migration, consistent with Horton et al. (2020), we used median 92 

migration date (q50), defined as the date by which 50% of the cumulative passage occurred at each 93 

radar station. 94 

 95 

3. Weather and climate data 96 

Monthly meteorological data are obtained from NASA Modern-Era Retrospective Analysis for 97 

Research and Applications, version 2 (MERRA-2, Gelaro et al. 2017). That includes upper-level 98 

geopotential heights and meridional (north-south) wind as well as 2-meter air temperature (T-2m 99 

above the surface), available at 0.5° × 0.625° regular latitude by longitude grids. 100 

 101 

We used the 300 hPa pressure level for geopotential heights and winds to capture the quasi-stationary 102 

Rossby waves, although similar wave patterns were also apparent at 500 hPa (Holton et al. 2003). 103 

These waves appear as a series of troughs and ridges looping around the globe with typical zonal wave 104 

numbers of 4-6.  Rossby waves, and in particular, tropically forced Rossby waves (Hoskins and 105 
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Karoly, 1981), play an important role in modulating mid-latitude weather at subseasonal to seasonal 106 

time scales. Since these waves tend to be barotropic (do not vary in the vertical) in middle latitudes, 107 

their impacts extend down to the near-surface meteorological fields, including T-2m (e.g., Schubert et 108 

al. 2011), which we have used as a proxy for temperature variability within the layer that most of the 109 

migration occurs (up to ~1500 m AGL). Pressure level corresponding to the top of this layer varies 110 

across CONUS due to the east-west topographic contrast. For this reason, we have verified for the 111 

western and eastern CONUS separately, that temperature patterns remain vertically uniform in the bird 112 

migration layer, so that we would be able to use T-2m to represent that layer. 113 

 114 

For composite analysis—focusing on select extreme years—the meteorological variables were 115 

averaged over April and May to represent the peak cumulative flow of migratory birds. For correlation 116 

analysis, we used the entire spring migration season (March-April-May, MAM). A regional mean 117 

time-series was generated for the western and eastern sectors of the U.S., separated at 102 W 118 

longitude, using an objective regionalization approach discussed in Section 4. Anomaly time-series 119 

(subtracting the mean) were used for comparing the data that have the same unit such as in Fig. 1b. 120 

When data with different units were compared, such as in Fig. 3, each time-series was standardized by 121 

subtracting the mean and dividing by the standard deviation. In either case the time-series were linearly 122 

detrended to focus on interannual variability. Note that because of sporadic data coverage in space and 123 

time, the time-series are normalized (or standardized) based on the mean and standard deviation of the 124 

period on which they are presented, e.g., 2004-2018 for Fig. 1b. 125 

 126 

In addition to regional air temperature, seasonal time-series of the normalized difference vegetation 127 

index (NDVI) and various climate indices were correlated with q50. The p-value for each correlation 128 

coefficient was then adjusted using the false discovery rate method (Benjamini and Hochberg 1995). 129 
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These indices that represent different modes of climate variability over the Pacific and Atlantic Oceans 130 

include: Niño 3.4, Pacific North American index (PNA), East Pacific/North Pacific Oscillation 131 

(EP/NP), North Pacific pattern (NP), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation 132 

(NAO), Arctic Oscillation (AO), North Tropical Atlantic index (NTA), and Atlantic Meridional Mode 133 

(AMM). The climate indices data were obtained from NOAA’s Physical Science Laboratory 134 

(https://psl.noaa.gov/data/climateindices/list/). Monthly NDVI was used from the Moderate Resolution 135 

Imaging Spectroradiometer (MODIS) collection 6 product (MOD13C2), available at 136 

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php. 137 

 138 

4. Regionalization based on bird migration 139 

Regionalization is a common practice for climate variability analysis (Fovell and Fovell 1993; Comrie 140 

and Glenn 1998; Dezfuli 2011; Dezfuli and Nicholson 2013). However, to the best of our knowledge, 141 

this is the first study to perform an objective regionalization based on interannual variability of bird 142 

migratory phenology at the continental-scale. The process involved multiple steps and quality control 143 

measures to ensure the robustness of the spatio-temporal patterns and properly address the issues 144 

arising from the gaps and intrinsic noise in migratory data. Those efforts have resulted in excluding 145 

stations with a large number of missing data as well as those with noisy behavior that are most likely 146 

dominated by local characteristics. 147 

 148 

In preparing the data, we first identified and at this initial stage eliminated the years in which more 149 

than half the stations had missing data. A second filter was applied to keep only stations that had q50 150 

observations over all those years. These restricting criteria were imposed to meet the minimum 151 

requirements for a first estimate of regionalization and provided a 35 (stations) by 21 (years) matrix 152 

used in the regionalization model, HiClimR (Badr et al. 2015). This is an open-source tool that uses 153 

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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hierarchical clustering to regionalize any number of spatial points such as radar stations into 154 

homogeneous regions with respect to similarity of their temporal variability. Note that the 21 years 155 

used in the initial stage may not necessarily represent a continuous period. This step of the analysis 156 

tried to maximize the number of years, so that the temporal similarity between stations would be 157 

meaningful. It aimed to simultaneously maintain a minimum number of stations that would provide a 158 

reasonable representation of the spatial variability. This effort would inform us about the optimum 159 

number of regions and the longitudes at which they should be separated, therefore the 35 by 21 matrix 160 

was not used to generate regional time-series. The results at this stage are used as a guideline and 161 

suggested an optimum number of two regions, separated at about 102 W longitude. Using these two 162 

pieces of information, we modified the preliminary results in order to address the known intrinsic 163 

shortcoming of hierarchical algorithms that may result in removing or reassigning inconsistent 164 

members. In addition, applying those assumptions to the q50 data allowed for larger spatial coverage 165 

and maintained temporal continuity of the regional mean q50.  166 

 167 

Consequently, 2004-2018 was chosen as a period over which most stations (121 of 143) had 168 

continuous observations. Two regional time-series were created, by averaging standardized q50 169 

anomalies of all stations located to the west and east of 102 W, respectively. Pearson correlation 170 

coefficient between each regional time-series and all its individual members were calculated. The 171 

stations with a correlation coefficient less than 0.4 (an arbitrary value corresponding to 𝑝 < .14) were 172 

flagged as noise. Modified regional time-series were calculated after removing those stations, so that 173 

they would represent the large-scale spatial signal in bird migration phenology. The regional time-174 

series were then detrended to focus on the interannual variability. The western and eastern regions 175 

consisted of 28 and 38 stations, respectively. 176 

 177 
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We evaluated the regionalization performance using intra-regional and inter-regional correlations 178 

(Dezfuli 2011; Badr et al. 2015; Badr et al. 2016). A high value of “intra-regional”, defined as the 179 

mean correlation between each regional time-series and its members, assures homogeneity of the 180 

regions. A low value of “inter-regional”, defined as the correlation between regional mean time-series, 181 

satisfies separability of the regions. Both these criteria were simultaneously met in our regionalization 182 

(Fig. 1a), as shown in the high intra-regional correlations for western (Rw =0.57) and eastern (RE = 183 

0.62) regions as well as in the low value for inter-regional correlation (RW-E = -0.04).  184 

 185 

It is important to emphasize that we have used anomalies rather than absolute values of q50 because 186 

we are interested in regional interannual variability. Using anomalies would allow equal contribution 187 

from all stations to the regional means. Therefore, areal average time-series would represent the entire 188 

region and are not biased toward stations with higher q50 values located in the northern latitudes. To 189 

further elaborate on this approach, we have compared two arbitrary stations in the western region 190 

(KMTX, 41.3N & 112.4W and KNKX, 32.9N & 117W). The correlation coefficient between their 191 

time-series was 0.75 (𝑝 < .005), though they are ~1000 km apart and the mean q50 of the northern 192 

stations is ~13 days higher. Similarly, the time-series of KGRB (44.5N & 88.1W) and KTLH (30.4N & 193 

84.3W) in the eastern region—nearly 1600 km apart—are highly correlated (𝑅 = 0.78, 𝑝 < .0001). It 194 

is interesting that some stations in the western region (e.g., KDAX, 38.5N & 121.6W) are strongly 195 

negatively correlated (𝑅 = −.69, 𝑝 < .005) with other stations in the eastern region such as KTLH, 196 

located ~3500 km away. However, this dipole does not seem to be a continental-scale characteristic 197 

since RW-E is nearly zero and therefore is not further investigated in this study. 198 

 199 

We also tried the regionalization for 3 and 4 regions, but both were rejected as the separability criterion 200 

was not achieved. At this stage the regionalization process is complete, and we next explored the 201 
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differences between the temporal characteristics of the two regions such as their interannual variability. 202 

The standard deviation of regional mean time-series of q50 anomalies over the period 2004-2018 203 

shows a relatively higher variability in the western region (2.4 days) than in its eastern counterpart (1.7 204 

days). Using a two-tailed F-test, the difference between variance of the two regional time-series takes a 205 

p-value less than 0.22. 206 

 207 

Our two-region compartmentalization is intrinsically different from the previously used classifications, 208 

which are based on three- and four-flyway strategies, both in how it has been achieved and its 209 

applications. Our approach reflects the interannual variability in timing of bird arrival and therefore is 210 

distinct from migratory corridors. We utilized an objective statistical approach to define the regions. 211 

This work relies on the fact that variability of bird migration phenology can be divided into two 212 

components, “noise” and “signal”. The noise part may be determined by factors such as local 213 

environmental conditions, local geographical features and species-specific characteristics (Vardanis et 214 

al. 2011; Somveille et al. 2019; Deppe et al. 2015; Youngflesh et al. 2021). On the other hand, 215 

common behavioral factors among species as well as large-scale climatic phenomena would 216 

collectively result in a spatio-temporal “signal” in interannual variability. We argue that our 217 

regionalization approach, reflecting this coherent “spatial signal”, enables us to better identify the 218 

drivers of interannual and potentially decadal variability of migration timing at the continental scale. 219 

Here, we provide examples of large-scale impacts of climate conditions on bird migration, facilitated 220 

by our regionalization. It is worth noting that the three-year running averages are only used to 221 

qualitatively discuss the low-frequency variability in data. All quantitative analysis, including 222 

regionalization, significance tests, and correlations incorporate unsmoothed time-series. 223 

 224 

5. Climate-migration association for the two regions  225 
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Comparing the mean time-series of the two regions (Fig. 1b) allowed us to identify years with notably 226 

east-west contrast in median passage date anomalies. That contrast was most evident in 2005 and 2010, 227 

when the western and eastern sectors experienced considerably different median passage dates, with 228 

the western region exhibiting an earlier date in 2005 and a later date in 2010. We attribute this zonal 229 

(east-west) dipole pattern in q50, in part, to the near surface air temperature (Fig. 2a) and, to a lesser 230 

degree, the meridional winds (Fig. 2b) during the peak migration months, April and May. The warmer 231 

than normal temperatures and southerly anomalies over the western region in 2005 favor an earlier 232 

arrival than in 2010. The opposite pattern is apparent for the eastern region. The strong linkage with 233 

temperature is likely due to the fact that temperature serves as a surrogate for resources (Studds and 234 

Marra 2011; Van Doren and Horton 2018). We speculate that the winds at the height of migrating birds 235 

that are linked to the gradient of surface temperature via thermal wind balance may play a secondary 236 

role. This zonal configuration of temperature and meridional winds resembles a pattern that is 237 

consistent with that of a quasi-stationary atmospheric Rossby wave. The spatial structure of 238 

geopotential heights captures the areas of high- and low-pressure anomalies, associated with the wave 239 

(Fig. 2a). This anomaly pattern over the U.S. is part of a wave train that extends from the central North 240 

Pacific into the North Atlantic (Fig. 2b); it was especially prominent during 2010. The effect of the 241 

waves—likely triggered by sea surface temperature (SST) anomalies over the Pacific Ocean—is 242 

reflected at the lower troposphere through downward penetration of potential vorticity. 243 

 244 

Another capability of our regionalization approach is that it enables us to identify variability patterns 245 

specific to each region and their associated controlling factors. One advantage of objective 246 

regionalization is that once the borders are determined, the regions are assumed homogeneous and 247 

therefore the time-series can be extended over the years that were excluded from the original 248 

regionalization due to the low number of sites with data available. This advantage allowed us to extend 249 
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the time-series of q50 over 1996-2018, recognizing the potential uncertainties and errors, arising from 250 

using a smaller number of stations for the years prior to 2004. However, we have computed correlation 251 

coefficient between q50 and various climate indices for both periods (Table 1).  252 

 253 

The western region shows a significant negative correlation with T-2m averaged over the same area 254 

(𝑅 = −0.79) for 1996-2018. One noticeable pattern in q50 of this region is its low-frequency 255 

variability that is also apparent in the regional T-2m (Fig. 3) and PDO (not shown), where 256 

positive/negative phases of PDO are coincident with early/late arrival dates. However, we recognize 257 

that the period of this analysis is not sufficiently long to confidently support this link, which can be 258 

considered as a viable hypothesis for further investigation when data becomes available. In contrast, a 259 

low-frequency pattern is not evident over the eastern region, and q50 over this area shows a weaker 260 

interannual association, though statistically significant, with its regional mean temperature (𝑅 =261 

−0.56). This different magnitude of response to temperature is intriguing because CONUS can be 262 

divided into two homogeneous regions with respect to interannual variability of spring temperature 263 

(MAM), and the separating longitude is roughly the same as that of the regions based on q50 (Fig. 4). 264 

The regionalization was objectively performed with HiClimR package, using seasonal T-2m gridded 265 

data from MERRA-2. The two-region classification was obtained from simultaneous minimization of 266 

inter-regional and maximization of intra-regional correlations. In addition, this division closely 267 

corresponds to differences in patterns of greenness and habitat between eastern and western CONUS 268 

(White et al. 2005). Interannual variability of q50 in the western region presents a strong negative 269 

correlation (𝑅 = −0.50) with NDVI—unlike the eastern region (𝑅 = −0.12, Table 1). The latter low 270 

correlation may be attributed to several factors including heterogeneity of interannual variability of 271 

greenness within the eastern region and species and latitudinal dependencies on vegetation patterns 272 

(Mayor et al. 2017; Youngflesh et al. 2021).  273 
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 274 

Although the eastern region shows relatively weaker association with regional variability, its link to 275 

teleconnection patterns is stronger than that of the western region (Table 1). The highest correlations 276 

are with EP/NP (𝑅 = 0.58), NTA (𝑅 = 0.52) and AO (𝑅 = −0.50) indices. To assess the extent to 277 

which these climate phenomena manifest the impact of ocean variability on bird migration, we 278 

evaluated the spatial correlation between q50 of the eastern region and large-scale SSTs (Fig. 5a). The 279 

spatial patterns of EP/NP and NTA can be particularly identified from the regions with significant 280 

correlations, although the North Pacific correlations may also resemble the PDO structure. Analysis of 281 

spatial correlation between 300-hPa geopotential heights and q50 shows that the impact of SST is 282 

likely reflected through Rossby waves that are excited over the tropical Pacific (Fig. 5b). These waves 283 

are often associated with the North American ridge-trough dipole that controls the temperature over the 284 

eastern CONUS. Although the dipole is commonly known for its influence on boreal winter 285 

temperature (Wang et al. 2014; Singh et al. 2016; Schulte et al. 2018), it is also present during spring 286 

(Schulte and Lee 2017). 287 

 288 

The western region, on the other hand, shows strong correlation only with geopotential heights over 289 

the same area and SSTs along the West Coast of North America (Fig. 6). The negative correlations 290 

with SST imply that the adjacent waters likely affect the region through temperature advection. A 291 

Rossby wave train originating from the tropical Pacific is also apparent (Fig. 6b), but it is much weaker 292 

and more spatially limited than the one shown for the eastern region. Additional climate modes were 293 

examined but the results were not included in Table 1 because they were either not statistically 294 

significant (e.g., PNA) or considered redundant due to high co-variability with indices already 295 

presented in the table. For example, NTA was highly correlated with AMM (R = 0.9), so was AO with 296 

NAO (R = 0.74) and PDO with NP (R = -0.7). However, the climate modes shown in Table 1 would 297 
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adequately represent variability over both tropical and extratropical parts of the Pacific and Atlantic 298 

Oceans. 299 

 300 

6. Discussions and future work 301 

Our analysis approach is different from previous studies of long-term changes, which have largely 302 

focused on the trends of migration phenology; many do not consider year-to-year variability in these 303 

dynamics. In contrast, our approach has incorporated detrended data to facilitate the study of 304 

interannual variability and its drivers. As a byproduct, this strategy detects the years during which the 305 

western and eastern U.S. present an opposite migratory behavior and attempts to explore climatic 306 

processes responsible for such a diploe pattern.  307 

 308 

Some differences were noticed between drivers of interannual variability of the western and eastern 309 

regions. While the western region shows a strong link to the regional temperature, the eastern region 310 

presents statistically significant relationships with several climate modes of variability including 311 

atmospheric Rossby waves, which appear to be excited in the tropical Pacific Ocean. While some co-312 

variability may exist between these modes, some of them can act quite independently, suggesting that 313 

bird migration is likely controlled by combined effect of these teleconnections. Such complex 314 

interactions require further investigation. Also, we speculate that spatial variability of species 315 

composition may partly contribute to different responses of the western and eastern regions to regional 316 

climate conditions (La Sorte et al. 2014b; Horton et al. 2020). However, NEXRAD data is agnostic to 317 

species composition, therefore long-term species-specific observations with high spatial resolution, for 318 

example, from citizen-science would be crucial to address this question. Other potential future work 319 

could focus on future projection of spring temperature variability mainly for the western region, 320 

changes in teleconnections affecting the eastern region, and seasonal prediction skill of atmospheric 321 
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phenomena, such as Rossby waves, that influence the migration system. The new spatial framework 322 

presented here would facilitate such follow-up studies. 323 
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Table 1. Pearson correlation coefficient between regional mean q50 and seasonal (March-April-May) 470 

mean of various climate indices. Calculations are made for both 2004-2018 (n= 15) with minimum 471 

missing data and the extended period 1996-2018 (n= 23). Corresponding p-values, adjusted with the 472 

false discovery rate method (Benjamini and Hochberg 1995) are also provided (in parentheses). Only 473 

adjusted p-values close to or less than 0.1 are shown (in bold). 474 

 475 

* For 2000-2018. 476 

  477 

Climate Index West/East 2004-2018 1996-2018 

T-2m W -.83 (.0009) -.79 (.00005) 

 E -.55 (.08) -.56 (.02) 

NDVI W -.63 (.04) -.50 (.1)* 

 E -.17 -.12 

Nino3.4 W -.33 -.24 

 E .28 .30 

EP/NP W -.37 -.17 

 E .55 (.08) .58 (.02) 

PDO W -.35 -.29 

 E .31 .42 (.06) 

AO W -.02  .00 

 E -.60 (.08) -.50 (.03) 

NTA W .34 .21 

 E .49 (.11) .52 (.03) 
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Figure Captions 478 

Fig. 1 (a) Two regions identified based on interannual variability of peak bird migration date (q50) in 479 

spring. Circles show the location of NEXRAD stations in each region. (b) Regional mean time-series 480 

of the two regions. Time-series are detrended anomalies. Years with notably west-east contrast in q50 481 

anomalies are marked with open circles. 482 

Fig. 2 (a) T-2m (shading) and geopotential heights at 300 hPa level during April/May (blue and red 483 

contour lines) for 2005 minus 2010. (b) The same as (a) but for 300-hPa meridional wind (shading) 484 

over a longitudinally extended area to capture the Rossby wave train. Regions with high and low 485 

pressure anomalies are labeled with H and L, respectively. 486 

Fig. 3   Three-year running average of spring q50 and T-2m seasonal mean (Mar-Apr-May) over the 487 

western region. Time-series are standardized and detrended for better comparison of variables with 488 

different units. 489 

Fig. 4   Climate regions obtained objectively based on similarity in interannual variability of Mar-Apr-490 

May T-2m (shading). Location of the stations for the two regions identified based on interannual 491 

variability of peak migration date (q50) are superimposed for comparison. 492 

Fig. 5   Correlation patterns between regional q50 time-series of the eastern region and the large-scale 493 

(a) SST and (b) 300-hPa geopotential heights for the eastern region. All time-series are seasonal means 494 

(Mar-Apr-May) for 1996-2018. Black dots show areas with correlation coefficient significant at 10% 495 

level. 496 

Fig. 6   The same as Fig. 5 but for the western region.  497 
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 509 

Fig. 3   Three-year running average of spring q50 and T-2m seasonal mean (Mar-Apr-May) over the 510 

western region. Time-series are standardized and detrended for better comparison of variables with 511 

different units.  512 



28 

 

 513 

Fig. 4   Climate regions obtained objectively based on similarity in interannual variability of Mar-Apr-514 

May T-2m (shading). Location of the stations for the two regions identified based on interannual 515 

variability of peak migration date (q50) are superimposed for comparison.  516 
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 517 

Fig. 5   Correlation patterns between regional q50 time-series of the eastern region and the large-scale 518 

(a) SST and (b) 300-hPa geopotential heights for the eastern region. All time-series are seasonal means 519 

(Mar-Apr-May) for 1996-2018. Black dots show areas with correlation coefficient significant at 10% 520 

level.  521 
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Fig. 6   The same as Fig. 5 but for the western region. 523 


