
An Uncertainty Quantification Framework for Autonomous 
Flight System Tracking and Health Monitoring 

Matteo	Corbetta,	Chetan	S.	Kulkarni,	Portia	Banerjee,	John	Ossenfort,	Randy	Strauss	and	
Jason	Watkins	

KBR	Inc,	Diagnostics	and	Prognostics	Group,	

NASA	Ames	Research	Center,	

Moffett	Field,	CA	94035	

This	work1	proposes	a	perspective	towards	establishing	a	framework	for	uncertainty	
quantification	of	autonomous	system	tracking	and	health	monitoring.	The	approach	
leverages	the	use	of	a	predictive	process	structure,	which	maps	uncertainty	sources	
and	 their	 interaction	 according	 to	 the	 quantity	 of	 interest	 and	 the	 goal	 of	 the	
predictive	 estimation.	 It	 is	 systematic	 and	 uses	 basic	 elements	 that	 are	 system	
agnostic,	 and	 therefore	 needs	 to	 be	 tailored	 according	 to	 the	 specificity	 of	 the	
application.	This	work	is	motivated	by	the	interest	in	low-altitude	unmanned	aerial	
vehicle	 operations,	 where	 awareness	 of	 vehicle	 and	 airspace	 state	 becomes	more	
relevant	as	the	density	of	autonomous	operations	grows	rapidly.	Predicted	scenarios	
in	the	area	of	small	vehicle	operations	and	urban	air	mobility	have	no	precedent,	and	
holistic	 frameworks	 to	 perform	prognostics	 and	 health	management	 (PHM)	 at	 the	
system-	and	airspace-level	are	missing	formal	approaches	to	account	for	uncertainty.	
At	the	end	of	the	paper,	two	case	studies	demonstrate	implementation	framework	of	
trajectory	tracking	and	health	diagnosis	for	a	small	unmanned	aerial	vehicle.	

Introduction 
The	application	of	systematic	methodologies	for	quantification	of	uncertainty	in	the	area	of	
system	autonomy	is	a	necessity	to	enable	safe	and	efficient	operations,	diagnosis,	and	system	
recovery	in	case	of	partial	failures.	This	need	is	driven	by	multiple	factors.	First,	increasing	
levels	 of	 autonomy	 require	 holistic	 state	 awareness	 capabilities;	 knowing	 the	 system	
condition	and	its	dynamic	performance	is	a	need	to	assess	whether	its	behavior	will	adhere	
to	 future	 steps	 of	 the	 mission.	 Relevant	 system	 states	 are	 typically	 hidden,	 and	 state	
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awareness	 is	 achieved	 with	 limited	 sensor	 data	 from	 which	 unobservable	 variables	 are	
estimated.	The	process	is	characterized	by	sensor	performance	(which	generate	uncertainty	
in	 the	 measured	 variables)	 and	 uncertainty	 caused	 by	 the	 problem	 formulation	 often	
involving	a	physics-based,	empirical,	or	purely	data-based	model.	Second,	the	system	and	its	
operation	may	be	affected	by	exogenous	variables	that	are	hard	to	model,	and	therefore	their	
quantification	relies	on	loose	approximations	on	what	the	system	may	encounter	during	its	
mission.	The	uncertainty	introduced	by	such	simplifications	should	be	accounted	for	when	
performing	 look	 ahead	 forecasts.	 Then,	 predictions	 are	 needed	 to	 compute	 indicators	
suggesting,	directly	or	indirectly,	the	probability	to	accomplish	the	mission.	The	computation	
depends	 on	 a	 set	 of	 assumptions	 related	 to:	 system	 state	 and	 performance,	 observed	
degradation,	 computational	models	used	 to	 simulate/represent	 the	 system	behavior,	 and	
external	variables	affecting	system	operations	and	their	corresponding	future	values.		

As	previously	demonstrated	in	the	PHM	domain,	predictions	should	always	be	accompanied	
by	confidence	intervals	(Saxena,	et	al.,	2008)	(Sankararaman,	2015)	.	All	the	hypotheses	on	
models,	external	variables	and	observations	lead	to	estimates	that	will	not	replicate	the	exact	
future	 behavior,	 but	 they	 will	 represent	 it	 in	 a	 simplified	 fashion.	 Therefore,	 prognoses	
founded	 on	 computer	 models	 cannot	 be	 naively	 interpreted	 as	 deterministic	 outcomes,	
because	of	the	several,	simplifying	assumptions	they	are	based	upon.	The	analysis	proposed	
here,	which	 looks	 at	 system	 tracking	 and	 health	management	with	 holistic	 perspectives,	
suggests	a	 framework	to	 list	 the	possible	sources	of	uncertainty,	discusses	which	sources	
(through	 quantitative	 or	 qualitative	 approaches)	 should	 be	modeled	within	 the	 problem	
formulation,	 and	 defines	 the	 challenges	 of	 uncertainty-aware	 predictive	 estimation	 for	
autonomous	or	automated	systems.	

Uncertainty	 quantification	 is	 already	 being	 investigated	 in	 a	 number	 of	 scientific	 areas,	
especially	computer	models.	The	literature	on	such	topics	is	extensive,	and	examples	include	
the	work	in	(Najm,	2009)	on	uncertainty	quantification	for	computational	fluid	dynamics,	
and	in	(Eldred	&	Burkardt,	2009)	on	intrusive	and	non-intrusive	spectral	methods.	In	the	
case	of	system	tracking	and	health	monitoring	tools,	a	number	of	uncertainty	sources	may	
enter	 the	 prediction	 problem	 (Sankararaman,	 2015).	When	moving	 beyond	 component-
level,	efforts	towards	uncertainty	management	for	system-level	PHM	are	missing,	lacking	a	
framework	 to	 approach	 the	 design	 of	 the	 monitoring	 system	 systematically.	 Many	
engineering	studies	and	applications	list	the	source	of	uncertainty,	(typically	naming	model,	
measure,	and	external	variables),	but	it	is	unclear	how	those	uncertainty	are	linked	in	the	
prediction	process.		

Much	of	 this	effort	was	done	as	part	of	 the	System	Wide	Safety	(SWS)	work	 to	provide	a	
safety	monitoring	data	service	that	incorporates	a	“true”	measure	of	uncertainty	in	an	effort	
to	represent	safe	and	unsafe	conditions	in	the	National	Airspace	due	to	an	increase	in	UAS	
flights.	In	order	to	accomplish	this,	our	project	developed	the	front-end	for	a	Supplemental	
Data	Service	Provider	(SDSP)	to	collect	UAS	flight	data	and	provide	a	predictive	assessment	
of	risk	in	near	real-time.	The	SDSP	was	initially	proposed	as	part	of	the	Unmanned	air	Traffic	
Management	(UTM)	framework	developed	by	NASA	to	provide	information	such	as	weather	
or	population	density	in	an	area.	Our	current	implementation	outputs	proximity	to	obstacles,	
battery	health	information,	and	forecasts	of	high-density	areas.	The	approaches	discussed	in	



this	 paper	 are	 critical	 in	 understanding	 how	 uncertainty	 was	 used	 in	 providing	 these	
assessments.		

Further	motivations	for	this	work,	which	started	by	addressing	uncertainty	quantification	
and	management	methods	of	future	low-altitude	airspace	operations,	is	discussed	in	the	next	
subsection.	 The	 contribution	 of	 this	 paper	 and	 how	 it	 relates	 with	 existing	 works	 is	
addressed	in	Section	2.	The	uncertainty	framework	is	then	split	into	sources	and	predictive	
process,	 Section	 3.	 Section	 4	 shows	 two	 applications	 related	 to	 the	 airspace	 domain:	 (i)	
uncertainty	 affecting	 the	 tracking	 of	 a	 small	 unmanned	 aerial	 vehicle	 over	 a	 pre-defined	
route,	and	(ii)	uncertainty	affecting	the	design	of	a	model-based	electric	powertrain	health	
monitoring	system	composed	of	Lithium-ion	battery,	electronic	speed	controller	(ESC),	and	
brushless	DC	motor.	

Motivation driven by increasing operations of autonomous aerial vehicles 

The	 number	 of	 unmanned	 aerial	 vehicles	 (UAVs)	 entering	 the	 low-altitude	 airspace	 is	
expected	to	increase	drastically	in	the	next	decade	(Kopardekar,	et	al.,	2016)	(FAA,	2018).	
This	forecast,	driven	by	current	interests	in	autonomous	or	automated	UAV	operations	like	
package	delivery,	surveillance,	agriculture	optimization,	as	well	as	future	urban	air	mobility,	
suggests	 the	 need	 of	 systematic	 approaches	 to	 enable	 autonomous	 UAV	 operations	
efficiently	 and	 safely.	 Such	 a	 need	 is	 motivated	 by	 multiple	 factors.	 As	 addressed	 in	
(Kopardekar,	et	al.,	2016),	unmanned	systems	will	enter	areas	originally	used	by	traditional,	
manned	aviation.	However,	infrastructure	and	integration	requirements	were	not	originally	
developed	to	accommodate	a	mix	of	different	vehicles	and	systems.	Small,	 low-cost	UAVs,	
which	are	likely	to	be	utilized	for	package	delivery	and	other	operations,	do	not	guarantee	
high	reliability	standards	(King,	Bertapelle,	&	Moses,	2005)	(Freeman	&	Balas,	2014)	(Johry	
&	Kapoor,	2016),	suggesting	reliability	issues	leading	to	high	failure	rates	when	compared	
to	 commercial	 aviation.	 In	 the	 case	 of	 unmanned	 urban	 air	 mobility,	 the	 absence	 of	 an	
onboard	 pilot	 will	 require	 advanced	 state-awareness	 tools	 to	 ensure	 vehicle	 as	 well	 as	
ground	safety,	minimize	failure	rates	and	reduce	service	disruption.	

In	order	to	make	autonomous	and	automated	systems	able	to	meet	high	safety	requirements,	
taking	 the	 uncertainty	 sources	 into	 account	 is	 crucial	 to	 the	 decision-making	 process.	
However,	uncertainty	sources	and	their	quantification	will	vary	depending	on	the	level	of	
autonomy	of	the	considered	system.	While	many	definitions	for	autonomous	systems	have	
been	proposed	(Stevens,	Lewis,	&	 Johnson,	2015)	 ,	we	chose	here	to	adopt	the	taxonomy	
proposed	by	(Fong,	2018),	which	defines	an	autonomous	system	as	a	system	capable	of	self-
directedness	 to	 achieve	 goals	 and	 self-sufficiency	 to	 operate	 independently.	 These	 two	
properties,	self-directedness	and	self-sufficiency,	highlight	the	difference	with	an	automated	
system	 that	 works	 with	 predefined	 instructions	 and	 commands,	 such	 as	 a	 pre-planned	
trajectory.	In	other	words,	the	automated	system	capabilities	are	limited	to	the	command	
and	control	that	were	previously	implemented,	whereas	the	autonomous	system	is	able	to	
make	its	own	decisions	according	to	the	situation	and	change	the	outcome	of	the	mission.	In	
this	paper	the	UAV	path	tracking	problem	reflects	the	operation	of	an	automated	system;	
that	is	a	UAV	operating	on	a	pre-defined	set	of	instructions.	However,	the	approach	is	still	
applicable	to	different	levels	of	autonomy,	which	is	the	reason	why	this	paper	often	refers	to	
both	autonomous	and	automated	systems.	



The	effect	of	growing	interest	in	low-altitude	operations	is	a	number	of	research	activities	
on	 automated	 and	 autonomous	 UAVs,	 including	 new	 design,	 reliability,	 efficiency,	 and	
autonomous	 functions.	 Examples	 of	 such	 works	 can	 be	 found	 in	 (Hoffmann,	 Huang,	
Waslander,	&	Tomlin,	2007)	for	flight	dynamics	and	control,	(Langelaan,	Alley,	&	Neidhoefer,	
2011)	(Glasheen,	Pinto,	Steiner,	&	Frew,	2019)	for	wind	field	estimation,	(Krishnakumar,	et	
al.,	2017)	for	safety	of	low-altitude	UAVs,	and	(Balaban,	et	al.,	2017)	for	dynamic	routing	and	
decision	making.	More	generally,	interest	in	autonomous	vehicles	has	necessitated	system-
level	research	on	the	safety	of	the	national	airspace,	as	in	(Liu	&	Goebel,	2018).	Some	system	
health	management	and	PHM	concepts	for	UAVs	were	discussed	in	(Jing	&	Haifeng,	2013)	
(Walker,	2010),	while	an	early	study	on	fault	detection	for	unmanned	vehicles	was	presented	
in	(Drozeski,	Saha,	&	Vachtsevanos,	2005).	

Contribution and Related Work 
This	work	proposes	an	approach	to	identify	the	sources	of	uncertainty	and	map	them	into	
what	is	defined	as	predictive	process	structure,	inspired	by	concepts	in	(Smith,	2013).	That	
notion	is	developed	further	to	discuss	how	the	uncertainty	sources	could	be	mapped	within	
the	 predictive	 structure	 to	 ensure	 that	 the	 link	 among	 different	 elements	 (and	 their	
corresponding	uncertainty)	are	captured.	The	critical	analysis	of	uncertainty	in	prognostics	
and	remaining	useful	 life	prediction	 in	(Sankararaman,	2015)	highlights	 that	 the	classical	
distinction	between	aleatory	and	epistemic	uncertainty	may	not	be	as	effective	when	dealing	
with	far-ahead	predictions,	which	is	the	theory	our	work	agrees	with	and	incorporates	in	the	
framework.	The	definition	of	uncertainty	sources	as	aleatory	or	epistemic	best	fit	computer	
models	and	their	verification	and	validation	steps,	rather	than	future	predictions.	However,	
some	uncertainty	sources	in	the	framework	still	benefit	from	such	a	distinction,	and	it	will	
be	used	when	believed	to	be	appropriate.	Differently	from	(Sankararaman,	2015),	this	paper	
focuses	more	on	the	type	of	uncertainty	source,	and	their	mapping	in	a	predictive	process,	
rather	 than	 the	 significance	 and	 interpretation	 of	 uncertainty	 in	 remaining	 useful	 life	
estimations.	This	work	 is	a	direct	extension	of	 (Corbetta	&	Kulkarni,	2019),	where	 initial	
concept	of	the	framework	is	proposed.	This	research	also	leveraged	material	from	(Roy	&	
Oberkampf,	2011),	and	previous	works	on	uncertainty	for	PHM	applications	presented	in	
(Sankararaman,	 Ling,	 Shantz,	 &	 Mahadevan,	 2009)	 (Sankararaman	 &	 Goebel,	 2015)	
(Sankararaman,	2015)	(Goebel,	2017).	The	concepts	developed	in	those	works	have	been	
helpful	to	define	the	proposed	framework.	Details	on	verification	and	validation	of	computer	
models	 with	 associated	 uncertainty	 does	 not	 constitute	 the	 goal	 of	 this	 paper,	 and	 the	
interested	 reader	 is	 referred	 to	 (Roy	 &	 Oberkampf,	 2011)	 for	 details.	 Focusing	 on	 the	
framework	 level,	 it	 is	 worth	 mentioning	 the	 remarkable	 result	 of	 SANDIA	 National	
Laboratory	 with	 DAKOTA,	 a	 software	 tool	 for	 uncertainty	 quantification	 (Adams,	 et	 al.,	
2009).	

Within	the	unmanned	aerial	vehicle	domain,	besides	studies	of	uncertainty	affecting	aircraft	
routing	 (Jun	 &	 D'Andrea,	 2003)	 and	methods	 for	 collision	 avoidance	 (Albaker	 &	 Rahim,	
2009),	 methodologies	 to	 handle	 and	 approach	 uncertainty	 affecting	 UAV	 systems	 and	
operations	 has	 been	 rarely	 explored.	 The	 work	 in	 (Sankararaman,	 2017)	 identified	



uncertainty	sources	influencing	UAV	operations	and	presented	examples	of	decision	making	
strategies	based	on	those	uncertainty	sources.	

Specific	statistical	techniques	used	to	quantify	the	uncertainty	in	computer	models,	sensors,	
or	environmental	variables	are	not	discussed.	The	interested	reader	may	refer	to:	(Saltelli,	
Tarantola,	 Campolongo,	 &	 Ratto,	 2004)	 (Saltelli,	 Tarantola,	 Campolongo,	 &	 Ratto,	 2004)	
(Cacuci,	 2003)	 (Crestaux,	 Maıˆtre,	 &	 Martinez,	 2009)	 for	 Sobol’s	 indices	 and	 sensitivity	
analysis,	 (Ghanem	 &	 Spanos,	 1991)	 for	 spectral	 methods	 in	 finite	 element	 simulations,	
(Najm,	 2009)	 (Crestaux,	Maıˆtre,	&	Martinez,	 2009)	 for	 polynomial	 chaos	 expansion,	 and		
(Tessem,	1992)	for	interval	analysis.	For	a	broader	overview	of	uncertainty	quantification	
methods	 see	 (Smith,	 2013)	 and	 references	 therein.	Also,	Bayesian	 filters	 (Kalman,	 1960)	
(Gordon,	Salmond,	&	Smith,	1993)	(Arulampalam,	Maskell,	Gordon,	&	Clapp,	2002)	(Chen,	
2003)	(Haug,	2005),	which	are	one	of	the	state-of-the-art	methods	for	model-based	filtering	
of	past	and	present	uncertainty.	

The	goal	of	 this	 framework	 is	 to	provide	a	systematic	procedure	 to	 identify	and	quantify	
uncertainty,	 from	 the	 perspective	 of	 system-level	 PHM	 for	 autonomous	 or	 automated	
systems.	This	effort	is	different	from	the	previously	cited	work	in	that	it	does	not	develop	
new	statistical	techniques,	nor	apply	existing	ones	to	new	problems.	Rather,	it	discusses	the	
problem	of	uncertainty	quantification	for	unmanned	system	tracking	and	health	monitoring,	
highlighting	key	steps	and	challenges.	A	methodology	is	proposed	to	 list,	define,	and	map	
uncertainty	 in	 the	 predictive	 process	 structure.	 This	 work	 does	 not	 focus	 entirely	 on	
computer	models,	as	done	by	a	large	number	of	existing	studies,	nor	does	it	discuss	the	role	
of	measurement,	 algorithms,	 and	 external	 forcing.	 The	 analysis	 shows	 the	 importance	 of	
predictive	 capabilities	 to	 assess	 multiple	 future	 scenarios	 based	 on	 those	 uncertainty	
sources,	current	available	information	and	potential	mission	profiles.	

The	proposed	methodology	is	system	agnostic,	so	the	framework	can	be	applied	to	different	
systems	 with	 appropriate	 tuning.	 The	 case	 studies	 reported	 in	 Section	 4	 will	 discuss	
implementation	of	the	framework	and	the	selection	of	appropriate	statistical	techniques	to	
handle	specific	challenges.	

Uncertainty Sources, Quantification, and Significance 
This	 section	 has	 three	 main	 goals.	 First,	 it	 reviews	 the	 importance	 of	 uncertainty	
quantification	 involved	 in	 predictions	 of	 autonomous	 systems	 operations	 and	 health	
management.	 Next,	 it	 discusses	 a	 high-level	 subdivision	 of	 uncertainty	 refined	 from	 the	
precursor	 of	 this	 work	 (Corbetta	 &	 Kulkarni,	 2019)	 (Roy	 &	 Oberkampf,	 2011)	 (Roy	 &	
Oberkampf,	 2011)	 (Goebel,	 2017)	 (Sankararaman,	 Significance,	 interpretation,	 and	
quantification	 of	 uncertainty	 in	 prognostics	 and	 remaining	 useful	 life	 prediction,	 2015)	
(Sankararaman,	Significance,	interpretation,	and	quantification	of	uncertainty	in	prognostics	
and	remaining	useful	life	prediction,	2015)	and	,	and	other	works	cited.	Finally,	it	defines	a	
predictive	process	structure,	where	uncertainty	propagates	through	the	different	elements	
composing	the	predictive	process.	



Some remarks on uncertainty quantification for autonomous systems 

For	 the	 sake	 of	 this	work,	 system	 tracking	 is	 defined	 as	 the	 continuous	 observation	 (or	
estimation	from	observable	variables)	of	key	parameters	and	telemetry	variables	to	assess	
the	 adherence	 of	 the	 system	 to	 its	mission.	 Key	 parameters	might	 include,	 for	 example,	
current	position,	kinematic	profile,	attitude	and	battery	state	of	charge.	When	focusing	on	
autonomous	vehicles,	the	current	position	may	not	be	enough	to	assess	whether	the	vehicle	
is	 operating	 as	 planned.	 We	 include	 battery	 state	 of	 charge	 under	 the	 system	 tracking	
umbrella,	since	its	value	is	necessary	to	evaluate	if	the	vehicle	can	complete	the	mission;	it	is	
not	necessarily	a	health	parameter	like,	e.g.,	capacitance.	Health	monitoring	can	be	assessed	
through	 either	 dedicated	 sensor	 data,	 like	 powertrain	 temperature,	 or	 a	 combination	 of	
health	data	and	telemetry,	like	speed	of	motors.	

Enabling	predictive	capabilities	for	automated	or	autonomous	UAV	operations	requires	the	
analysis	of	more	than	condition-based	models	and	data.	It	also	needs	to	include	operational	
input	which	may	change	due	to	external	factors,	like	other	UAVs	requesting	right-of-way	for	
emergency	situations	or	temporary	airspace	designations.	However,	that	may	not	be	enough	
to	 ensure	 safe	 operations.	 The	 third	 source	 of	 information	 includes	 those	 environmental	
variables	that	may	affect	UAV	dynamics.	This	is	particularly	true	for	small	UAVs	expected	to	
operate	 in	 urban	 environments,	 where	 wind	 tunnel	 effects	 and	 local	 gusts	 are	 hard	 to	
predict.	Wind	is	not	the	only	variable	affecting	small	UAV	performance;	temperature,	besides	
being	easier	to	predict,	also	plays	a	role	in	the	integrity	of	the	UAV	electronic	components.	

Environmental	conditions	are	particularly	challenging	for	the	rate	and	sparsity	at	which	data	
can	 be	 usually	 collected,	 and	 some	 of	 them,	 like	 the	wind	 field,	 require	 computationally	
intensive	models	even	for	the	simplest	look-ahead	forecast.		autonomous	vehicles	may	also	
require	 an	 enhanced	 set	 of	 prediction	 capabilities	 in	 comparison	 to	 their	 automated	
counterparts.	In	the	latter	case,	one	may	use	models	and	historical	sensor	data	to	enable	the	
prediction	 of	 environmental	 variables	 along	 pre-defined	 sets	 of	 options.	 The	 computing	
effort	can	be	dedicated	to	those	set	of	possibilities,	ignoring	the	rest	of	the	environment.	In	
the	case	of	an	automated	UAV,	the	set	of	possible	options	is	typically	finite	and	restricted	to	
the	previously	defined	instructions.	An	autonomous	vehicle	with	self-directedness	has	a	pool	
of	 options	 that	may	be	 theoretically	 infinite.	 Thus,	 autonomy	may	be	 affected	by	 greater	
uncertainty	than	automation.	Predictions	for	autonomous	system	behavior	and	operations	
require	 in-time	assessment	capabilities.	For	example,	 an	autonomous	UAV	operating	 in	a	
wind	 field	 should	 include	 expected	 wind	 gusts	 or	mean	wind	 profile	 along	 the	 possible	
routes.	To	do	 so,	 a	wind	 forecast	 tool	 is	 necessary	 to	 evaluate	multiple	 options	 explored	
within	the	decision-making	framework.	



Uncertainty Sources 

This	section	discusses	the	macro-categories	model,	method,	measure,	and	input	that	have	
been	chosen	to	represent	the	uncertainty	sources	of	predictive	estimation2.	Each	of	them	
comprises	of	sub-categories	which	are	depicted	in	Figure	1.	High-level	classification	of	
uncertainty	sources	encountered	in	the	predictive	process..	

	
Figure	1.	High-level	classification	of	uncertainty	sources	encountered	in	the	predictive	process.	

Model 

The	sources	of	model	uncertainty	have	been	divided	in	model	abstraction,	model	parameters,	
and	 model	 error.	 Model	 abstraction	 refers	 to	 the	 hypotheses	 introduced	 during	 model	
development	with	the	intent	of	representing	reality	and	physical	processes	through	a	set	of	
equations.	 Those	 hypotheses	 include	 neglecting	 or	 simplifying	 (for	 example,	 through	
linearization	 or	 reduced	 order	 models)	 physical	 phenomena,	 environmental	 effects,	 and	
other	external	factors	that	may	interact	with	the	system,	but	their	effect	on	the	quantities	of	
interest	(QoIs)	is	believed	to	be	limited.	

Model	parameters	include	fixed	or	variable	coefficients	required	to	estimate	the	output	QoIs	
from	the	model.	They	may	fall	within	a	range	of	values,	or	defined	by	random	variables	and	
therefore	represented	through	probability	density	functions	(PDFs).	They	may	depend	on	
system’s	properties,	and	they	may	also	evolve	over	time	because	of	degradation	phenomena.	
However,	 time-varying	 external	 forcing,	 like	 environmental	 variables,	 are	 not	 included	
within	the	parameter	category.		

Model	 error	 introduces	 uncertainty	 representing	 the	 difference	 between	 model	 and	
observed	outcome,	when	other	uncertainty	sources	(model	abstraction	and	parameters)	are	
already	accounted	 for	 in	 the	prediction.	As	a	matter	of	 fact,	 a	 rigorous	discussion	 should	
distinguish	between	modeling	errors	and	residuals,	as	the	former	represent	the	deviation	of	
the	model	output	from	the	true	(unobservable)	value	of	the	QoI,	and	the	latter	defines	the	

	

2	This	section	uses	the	following	notation:	bold,	lower-case	letters	to	define	vectors	and	random	
vectors,	e.g.,	𝐱,	and	functions	and	vector	functions	are	defined	by	parentheses	that	highlight	
dependencies,	e.g.,	𝑓(⋅),	𝐟(⋅).	
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deviation	between	model	output	and	the	observed	value	of	the	QoI.	For	the	goal	of	this	work,	
we	will	not	distinguish	between	the	two,	and	the	interested	reader	can	refer	to	dedicated	
literature	 on	 statistical	models.	 By	 abusing	 the	 nomenclature,	 we	will	 use	 residuals	 and	
errors	 interchangeably	 even	 if	 their	 definition	 is	 slightly	 different.	 The	 model	 error	 is	
typically	an	additive	term	whose	properties	depend	on	the	difference	between	observations	
and	model	predictions.	In	the	optimal	case,	the	model	error	is	a	zero-mean	Gaussian	variable	
with	constant	variance,	e.g.,	𝜖 ∼ 𝒩(0, 𝜎!).	For	illustration,	consider	the	following	model:	

𝐟𝛉(𝐱, 𝐪) ,	

Vector	𝐱	 represents	 independent	 variables	 influencing	 the	QoI	 or	 system	 state	 variables,	
while	𝐪	represents	the	collection	of	external	inputs.	The	latter	is	a	(possibly	nonlinear	and	
multidimensional)	mapping	function	𝐟(⋅,⋅)	parameterized	by	the	parameter	vector	𝛉.	In	this	
case,	model	uncertainty	lies	in	the	hypotheses	and	assumptions	used	to	define	𝐟(⋅,⋅),	as	well	
as	 in	 the	 value(s),	 distribution(s)	 or	 parameter(s)	 of	 the	 distribution(s)	 that	 define	 𝛉.	
Uncertainty	driven	by	model	abstraction	 is	quantified	 through	model	validation,	which	 is	
omitted	here	for	the	sake	of	brevity,	and	the	reader	may	refer	to	for	details	on	the	subject.	
Unmodeled	physical	phenomena	are	typically	represented	with	additive	terms	that	modify	
the	model	response	based	on	the	input	values	(both	𝐱	and	𝐪);	such	additive	terms	are	meant	
to	replace	the	"missing	physics".	By	slightly	modifying	the	notation	in	above	equation,	the	
model	equation	becomes:	

𝐟𝛉(𝐱, 𝐪) + 𝛅(𝐱, 𝐪) .	

Typically,	 the	missing	physics	 term	is	 identified	through	data-driven	methods,	and	so	the	
form	of	the	function	𝛅(⋅)	and	its	parameters	lose	physical	meaning.	The	model	error	can	be	
quantified	from	the	model	fitting	procedures	after	missing	physics	has	been	accounted	for	
and	is	typically	additive.	The	model	eventually	assumes	the	following	structure:	

𝐟𝛉(𝐱, 𝐪) + 𝛅(𝐱, 𝐪) + 𝜖 .	

Some	 modeling	 choices,	 however,	 may	 drive	 the	 model	 error	 to	 be	 non-Gaussian	 and	
nonlinear,	for	example	in	damage-progression	power	laws.	

Methods 

Here,	 methods	 refer	 to	 the	 collection	 of	 algorithms	 and	 computation	 tools	 utilized	 to	
propagate	information	and	variables	through	the	system	model,	to	compute	the	QoIs,	or	to	
interpolate	or	extrapolate	variables	from	data.	The	sources	of	uncertainty	belonging	to	this	
category	have	been	divided	into	algorithms	and	numerical	errors.	

Algorithms	 for	 estimation,	 interpolation	 or	 extrapolation	 in	 multi-dimensional	 spaces	
introduce	 uncertainty	 because	 they	 may	 converge	 to	 sub-optimal	 solutions	 trying	 to	
minimize	errors	or	loss	functions.	Such	loss	functions	may	be	non-convex,	complex	hyper-
surfaces.	As	a	consequence,	different	runs	of	the	algorithms	may	generate	different	results	
because	the	algorithms	remain	trapped	in	local	minima.	This	source	of	uncertainty	is	hard	to	
quantify,	 since	 the	 initial	 conditions	 or	 initial	 guesses	 of	 the	 algorithm	 parameters	 or	
hyperparameters	affect	the	solution,	and	because	input	data	also	change	the	loss	function	
hyper-surface.	Gradient-based	optimization	methods	which	depend	on	the	initial	guess	of	



the	 system	 parameters	 and	 the	 input	 data	 are	 one	 example	 of	 algorithm	 sources	 of	
uncertainty	 (for	 a	 practical	 example,	 consider	 the	 optimization	 of	 Gaussian	 process	
hyperparameters	 by	 maximizing	 the	 log-marginal	 likelihood,	 (Rasmussen	 &	 Williams,	
2006)�.	 Typical	 gradient-based	 minimization	 algorithms	 can	 generate	 different	 hyper-
parameters	 at	 different	 runs	 depending	 on	 the	 initial	 guess).	 Gradient-free	 optimization	
methods	do	not	suffer	from	the	same	issues	related	to	initial-guess	values	as	gradient-based	
methods.	However,	 hyper-parameters	 influence	and	 still	 play	 a	 role	when	estimating	 the	
final	output.	

Uncertainty	does	not	 lie	only	on	 the	optimization	of	 loss	 functions,	but	also	 in	numerical	
errors	 raising	 by	 running	 computer	 models.	 Those	 include	 discretization,	 iterative,	 and	
round-off	errors,	as	already	discussed	in	(Roy	&	Oberkampf,	2011).	Discretization	errors	are	
caused	by	the	finite	grid	used	to	compute	the	solution	(e.g.,	finite	element	models).	This	is	
the	 case	 for	 atmospheric	models	when	 the	 numerical	 grid	 is	 larger	 than	 the	 scale	 of	 the	
physics	that	is	being	modeled	(Smith,	2013).	

Similarly	to	grid	discretization,	sampling-based	methods	like	Monte	Carlo	and	its	variants	
(e.g.,	stratified	sampling	methods)	may	suffer	from	uncertainty	caused	by	the	sample	size,	as	
already	suggested	 in	 (Sankararaman,	2015).	The	right	number	of	samples	 to	solve	multi-
dimensional	integrals	may	be	prohibitive.	In	those	cases	the	number	of	samples	is	reduced	
according	to	the	computational	power	available,	producing	a	coarse	solution	of	the	future	
state	of	the	system	or	the	time	to	reach	a	predefined	bound	(like	in	remaining	life	estimation	
problems).	Such	a	solution	might	be	affected	by	large	uncertainty	because	the	few	samples	
are	not	capable	of	representing	the	true	distribution	shape,	that	can	be	multi-modal,	heavy-
tailed,	etc.	

Errors	 due	 to	 coding	 bugs	 are	 particularly	 hard,	 if	 not	 impossible	 to	 quantify,	 since	 the	
presence	of	a	bug	is	unknown	until	 it	 is	discovered	(and	then	fixed,	so	its	contribution	to	
uncertainty	 is	 then	 removed).	 As	 suggested	 in	 (Roy	 &	 Oberkampf,	 2011)	 numerical	
approximation	errors	should	be	explicitly	represented	by	epistemic	uncertainty,	and	sum	
together	 contributions	 assuming	 that	 the	 lower	 bounds	 of	 each	 error	 (discretization,	
iterative,	and	round-off)	is	zero.	

Measures 

This	 category	 includes	 measurement	 incompleteness,	 uncertainty	 caused	 by	 equipment,	
which	translates	into	sensor	calibration	resolution,	accuracy,	and	precision,	and	systematic	
errors	generated	by	the	measuring	process,	sensor	installation	and	human	error	(if	humans	
are	involved).	Measure	incompleteness	or	missing	measures	are	very	common	in	complex	
measuring	tasks,	like	estimating	the	GPS	position	of	an	object	or	collecting	large	amount	of	
measures,	like	ocean	surface	water	temperature	(Luttinen	&	Ilin,	2012).	The	most	common	
(and	optimistic)	assumption	for	measurement	systems	is	to	be	unbiased	and	Gaussian,	which	
translates	into:	𝐲 = 𝐠𝛎(𝐱) + 𝜖,	where	𝜖 ∼ 𝒩(0, 𝜎!),	and	𝐠𝛎(⋅)	is	the	measurement	function	
parametrized	by	vector	𝛎.	This	 formulation	 is	widespread	 in	 the	 field	of	state	estimation,	
where	the	challenge	is	to	infer	the	hidden	state	𝐱	from	observations	𝐲.	Biases	can	be	modeled	
as	 additive	 terms,	 i.e.,	𝐲 = 𝐠𝛎(𝐱) + 𝐛 + 𝜖.	 It	 should	be	noticed	 that	 the	uncertainty	 of	 the	
measurement	noise,	represented	by	variance	𝜎!,	and	the	biases	may	depend	on	the	input	



quantity,	𝐛 = 𝐛(𝐱)	and	𝜎! = 𝜎!(𝑥)	(this	last	equation	should	be	replicated	for	each	element	
in	𝐱,	assuming	uncorrelated	measure	errors).	A	wrong	assumption	on	𝜖	or	𝐛	will	affect	the	
accuracy	and	precision	of	the	hidden	state	estimation,	even	with	a	correct	system	model.	It	
should	 be	 stressed	 that	 a	 similar	model	may	be	 necessary	 to	 estimate	 input	 variables	𝐪.	
Current	input	values	to	the	system	may	aid	the	prediction	of	future	inputs,	thus	refining	the	
prediction	problem	and	reduce	uncertainty.	Moreover,	if	a	progressive	degradation	model	is	
tied	to	the	main	system	model,	the	estimate	of	input	forcing	may	be	necessary	to	estimate	
the	severity	of	degradation	growth.	

Measurement	accuracy	may	be	hard	 to	quantify	 in	some	real-time	applications	when	on-
demand	 calibration	 is	 not	 an	 option.	 Accuracy	 directly	 ties	 to	 biases,	which	may	 lead	 to	
incorrect	 inference	 over	 the	 latent	 variables.	 Precision	 is	 typically	modeled	 by	means	 of	
random	 variables,	 and	 indicates	 the	 dispersion	 of	 the	 observations	 that	 should	 not	 be	
attributed	 to	 the	 system	but	 to	 the	measurement	device.	The	 specificity	of	measurement	
uncertainty	depends	on	instruments,	methodologies,	and	constraints	of	specific	applications,	
and	so	are	not	investigated	any	further	here.	More	details	on	measurement	uncertainty	can	
be	found	in	the	ASME	standard	(Abernethy,	Benedict,	&	Dowdell,	1985).	For	an	example	of	
measurement	 model	 and	 corresponding	 uncertainty,	 the	 reader	 is	 referred	 to	 	 (Frew	 &	
Sengupta,	 2004)where	 the	 uncertainty	 of	 a	 2D	 stereo-camera	 device	 was	 discussed	 to	
implement	an	obstacle	avoidance	methodology.	

Input 

The	 set	 of	 input	 includes	 time-dependent	 variables,	 initial	 and	boundary	 conditions,	 and	
exogenous	forces	that	may	interact	with	the	system	and	therefore	affect	its	dynamics.	Some	
inputs	 are	 actually	 operational	 requirements	 defined	 according	 to	 the	 system’s	 intended	
function,	 and	 so	 they	 are	 called	 here	 operational	 input	 (e.g.,	 desired	 trajectory	 of	 an	
automated	 or	 autonomous	 vehicle).	 External	 inputs	 are	 external	 forces	 or	 events	 which	
depend	on	the	environment	the	system	is	operating	into.	Initial	and	boundary	conditions	are	
the	most	common	exogenous	inputs.	

It	 should	 be	 noticed	 that	 other	works	may	 include	 input	 within	 the	model	 category	 and	
discuss	the	corresponding	uncertainty	as	part	of	model	uncertainty.	This	is	the	case	in	two	
of	the	main	sources	we	used	as	inspiration.	First,	(Roy	&	Oberkampf,	2011)	suggests	that	
input	includes	"not	only	parameters	used	in	the	model	of	the	system,	but	also	data	from	the	
description	 of	 the	 surroundings,	 geometry,	 and	 initial	 conditions,	 "	 (Subsection	 3.1).	 In	
(Smith,	2013),	model	input	refers	to	the	set	of	parameters	"that	must	be	specified	before	the	
model	can	be	used	to	represent	or	predict	the	behavior	of	the	process".	

Differently	 from	 those	works,	 here	model	 parameters	 refer	 to	 system	model	 coefficients	
(fixed	or	time-varying,	as	explained	above),	but	the	system	input	has	a	dedicated	section,	so	
there	is	a	slight	inconsistency	between	the	categories	we	have	provided	when	compared	to	
the	existing	literature.	The	reason	lies	on	the	nature	of	the	predictive	process	discussed	in	
this	paper,	which	differs	from	the	goal	of	the	aforementioned	works	concentrating	mainly	on	
computer	 models.	 By	 dividing	 model	 input	 and	 model	 parameters,	 we	 can	 distinguish	
between	 uncertainties	 coming	 from	 different,	 non-associated	 sources.	 Input	 refers	 to	
exogenous	variables	that	do	not	belong	to	the	system	but	have	a	direct	or	indirect	effect	on	



it.	The	effect	of	a	random	wind	field	in	an	urban	environment	on	a	small	UAV	is	a	different	
input	source	than	UAV	properties	like	inertia	moments,	which	are	also	input	to	the	model.	
However,	 inertia	moments	 are	 inherent	 system	 parameters	 depending	 on	 geometry	 and	
mass,	 do	 not	 change	 noticeably	 (apart	 from	 different	 vehicle	 configurations	 or	 damages	
happening	to	the	airframe),	and	of	course	do	not	depend	on	the	trajectory,	differently	from	
wind.	

It	should	be	noticed	that	the	discussion	in	(Sankararaman,	2015)	highlights	that	condition-
based	monitoring	is	not	affected	by	"true	variability",	and	therefore	the	distinction	between	
aleatory	versus	epistemic	uncertainty	loses	importance.	On	the	other	hand,	when	discussing	
input	of	automated	or	autonomous	systems,	external	input	are	often	characterized	by	both	
epistemic	 and	 aleatory	 components.	 The	 first	 is	 caused	 by	measure	 errors,	 interpolation	
error	 or	 forecasts	 uncertainty,	 and	 the	 latter	 given	 by	 the	 intrinsic	 variability	 of	 wind	
phenomena.	Uncertainty	related	to	the	health	of	the	system	is	mainly	epistemic,	as	already	
suggested	in	(Sankararaman,	2015),	and	can	be	reduced	by	collecting	more	data	up	to	a	point	
where	measurement	error	 is	not	 affecting	 the	predictive	process	performance.	For	 those	
reasons,	input	and	model	parameters	have	been	kept	separate.	

Predictive Process Structure 

This	section	discusses	some	key	aspects	in	mapping	the	uncertainty	sources	discussed	in	the	
previous	Section	 into	a	predictive	process.	The	predictive	process	 is	 straightforward	and	
leans	towards	a	generality	rather	than	specificity.	Figure	2.	Predictive	process	structure.	The	
bottom	arrow	describing	uncertainty	propagation	does	not	indicate	that	uncertainty	is	introduced	
only	 in	measured	and	 input	 spaces,	but	 it	 rather	 indicates	 that	 all	 the	elements	 in	 the	predictive	
process	 introduce	 uncertainty,	 which	 increases	 from	 left	 to	 right.	 shows	 a	 diagram	 of	 the	
predictive	process	structure.	It	is	similar	to	many	existing	frameworks	utilized	in	PHM	and	
other	 fields.	 The	 sources	 of	 uncertainty	 discussed	 in	 Figure	 1.	 High-level	 classification	 of	
uncertainty	sources	encountered	in	the	predictive	process.	are	tightly	connected	to	this	structure.	

The	different	spaces	introduced	in	the	predictive	process	are	tightly	connected	to	the	sources	
discussed	in	the	previous	section.	The	measure	space	and	the	input	space	feed	the	models,	
which	 are	 collected	 into	 the	 representation	 space.	 The	 computing	 space	 embraces	 both	
methods	 and	 models,	 since	 algorithms	 (with	 their	 corresponding	 uncertainty	 sources	
discussed	in	the	previous	Section)	may	be	required	to	solve	both	input	and	system	models.	



	
Figure	2.	Predictive	process	structure.	The	bottom	arrow	describing	uncertainty	propagation	does	not	
indicate	that	uncertainty	is	introduced	only	in	measured	and	input	spaces,	but	it	rather	indicates	that	
all	the	elements	in	the	predictive	process	introduce	uncertainty,	which	increases	from	left	to	right.	

According	to	the	goal	of	the	tracking	and	health	monitoring	process,	the	predictive	process	
can	 be	 simplified	 by	 removing	 some	 elements	 that	 do	 not	 apply	 to	 the	 goal,	 or	 whose	
uncertainty	is	expected	to	be	limited	and	using	a	deterministic	function	or	value	does	not	
affect	the	prediction;	the	latter	should	be	supported	by	proper	sensitivity	analysis	(Saltelli,	
et	al.,	2008).	

Application Case Studies 
In	this	paper,	the	approach	to	uncertainty	quantification	is	demonstrated	on	an	automated	
UAV	flight	comprising	of	trajectory	tracking,	and	by	modeling	the	UAV	powertrain	elements	
for	health	monitoring	purposes.	

In	 the	 first	 study,	 the	 UAV	 is	 commanded	 to	 fly	 through	 a	 set	 of	 pre-defined	waypoints	
associated	 with	 their	 expected	 times-of-arrival	 (ETAs).	 The	 goal	 is	 to	 quantify	 the	
uncertainty	of	such	ETAs	as	well	as	the	uncertainty	of	the	time	of	arrival	along	the	whole	
path	 as	 the	 vehicle	 completes	 its	mission.	 The	quantification	 of	 such	uncertainty	 can	 aid	
trajectory	 planning	 in	 high	 density	 airspace	 and	 flight	 scheduling.	 For	 example,	 one	 can	
compute	 the	 upper	 bound	 of	 the	 mission	 time	 for	 multiple	 UAVs	 and	 optimize	 fleet	
operations.	Multiple	 sources	 are	 responsible	 for	 uncertainty	 in	 the	 time	 of	 arrival	 of	 the	
vehicle.	First	and	foremost,	external	forcing	like	wind	magnitude,	direction	and	turbulence	
intensity	along	the	route.	Without	a	high-fidelity	model	of	the	UAV	the	autopilot	response	is	
also	 a	 source	 of	 uncertainty,	 together	 with	 vehicle	 dynamic	 properties	 and	 potential	
degradation	of	powertrain	components.	A	comprehensive	physics-based	model	 to	 reduce	
uncertainty	would	require	not	only	the	vehicle	high-fidelity	model,	but	also	high-resolution	
estimates	of	wind	speed	and	direction	on	the	flight	route	from	field	sensors	and/or	complex	
weather	 simulation	 models.	 The	 former	 (high-fidelity	 vehicle	 model)	 may	 actually	 be	
available	 at	 times,	 but	 typically	 there	 is	 a	 high	 cost	 associated	 with	 running	 the	 model	
multiple	 times.	The	 latter	 (high-resolution	wind	 field)	 is	never	available	 to	UAV	and	 fleet	
operators	and	is	currently	an	open	field	of	research.	Thus,	the	assumption	used	for	case	study	
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1	is	that	the	sources	of	uncertainty	mentioned	above	contribute	to	variations	of	the	flight	
cruise	 speed	 (that	would	 otherwise	 be	 constant	 in-between	way-points).	 That	 is	 a	 large	
simplification	of	the	real	phenomena,	but	constitute	an	appealing	option	when	compared	to	
the	burden	of	high-fidelity	simulations	to	be	run	at	fast	rate.	

The	second	case	study	discusses	what	could	be	a	potential	model-based	approach	of	UAV	
powertrain	 diagnosis,	 modeling	 three	 fundamental	 components:	 the	 battery,	 electronic	
speed	controller	(ESC),	and	motor.	For	this	specific	example,	variability	of	external	forcing	
has	been	ignored.	Similar	to	the	trajectory	tracking	case	study,	external	forcing	is	trajectory	
dependent	 and	 depends	 on	 the	 wind	 field	 during	 flight.	 It	 is	 not	 agnostic	 to	 the	 UAV	
operation.	For	the	sake	of	brevity,	other	uncertainty	sources	related	to	model	abstraction	
and	 battery	model	 parameters	 have	 been	 ignored	 or	 simplified	 but	 are	 discussed	 in	 the	
dedicated	section.	The	example	aims	at	providing	the	guideline	to	the	uncertainty	that	may	
be	affecting	the	model	as	well	as	the	diagnosis	process	based	on	that	same	model.	

The	first	case	study	was	developed	in	a	MATLAB	environment	without	any	ad-on	Toolbox,	
while	 the	 second	 case	 study	was	developed	 in	Python	using	packages	NumPy,	SciPy,	 and	
Matplotlib.	

Trajectory Tracking 

Trajectory	tracking	is	an	important	area	of	research	in	the	field	of	flight	guidance,	navigation	
and	 control	 and	 has	 been	 extensively	 studied	 for	 manned	 aircrafts	 (Kaminer,	 Pascoal,	
Hallberg,	&	Silvestre,	1998)	(Radmanesh,	Kumar,	&	Sarim,	2018).	A	few	interesting	studies	
pertaining	 to	 unmanned	 vehicles	 include	 (Sujit,	 Saripalli,	 &	 Sousa,	 2014)	 (Davis	 &	
Chakravorty,	2007)	that	presents	flight	planning	algorithms	to	control	a	UAV	under	different	
wind	conditions.	Yet,	uncertainty	in	predicted	trajectory	caused	due	to	speed	variations	has	
mostly	remained	unexplored	for	UAVs.	

In	 our	 application,	 the	 framework	 for	 UAV	 trajectory	 tracking	 includes	 the	 trajectory	
generation	 algorithm	 to	 provide	 a	 kinematically-smooth	 trajectory.	 One	 method	 for	
generating	smooth	paths	based	on	pre-defined	waypoints	𝑛 + 1	waypoints	𝐏	with	their	ETAs	
𝐭𝐚	include	the	non-uniform	rational	B-spline	algorithm	(NURBS)(Rogers,	2000).	NURBS	can	
compute	 piecewise-constant	 jerk	 polynomial	 curves	 thus	 avoiding	 discontinuity	 in	 the	
associated	 velocity	 and	 acceleration	 profiles,	 (Corbetta,	 Banerjee,	 Okolo,	 Gorospe,	 &	
Luchinsky,	2019).	

𝑃(𝑢) = 𝑁𝑈𝑅𝐵𝑆(𝐏, 𝐭𝐚)	

Each	segment	of	the	NURBS	curve	is	composed	of	a	weighted	contribution	from	each	way-
point	defined	according	to	a	basis	function	𝑁%,'(𝑢)	which	is	computed	for	𝑖()	way-point	and	
𝑘()	degree.	The	NURBS	basis	function	is	described	in	equations	below.	

𝑥(𝑢) =
∑ ℎ%*
%+, 𝑁%,'(𝑢)𝑥%
∑ ℎ%*
%+, 𝑁%,'(𝑢)

, 0 ≤ 𝑢 ≤ 𝑛 − 𝑘 + 2	

and	
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The	 NURBS	 trajectory	 assumes	 that	 the	 UAV	 flies	 at	 constant	 velocity	 in	 between	 two	
consecutive	waypoints.	This	is	often	not	followed	in	real	applications	when	external	factors	
and	 environmental	 conditions	 introduces	 variations	 on	 the	 vehicle’s	 expected	 speed	
producing	uncertainty	in	the	times	of	arrival	(TAs)	at	all	locations	along	the	entire	flight.	If	
the	uncertainty	on	the	cruise	speed	is	described	by	a	Gaussian	distribution,	the	uncertainty	
in	the	differential	 times-of-arrival	can	be	computed	according	to	error	 intervals	(Physical	
Sciences	2,	2013)	as	denoted	in	equations	below.	
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Eventually,	 the	 time	 of	 arrival	 at	 way-point	𝑘	 can	 be	 described	 by	 a	 normal	 probability	
density	function	(pdf):	

𝑡7,' ∼ 𝒩Q𝑡‾7,' , 𝜎($,!
! S .	

The	confidence	intervals	of	the	position	profile	are	hence	computed	by	using	the	upper	and	
lower	intervals	of	the	TAs,	

𝒫/(𝑡) = NURBS(𝐏, 𝐭7/) ,
𝒫-(𝑡) = NURBS(𝐏, 𝐭7-) ,	

where,	

𝐭7/ = [𝑡‾7,,, 𝑡‾7,. + 𝜎𝑡7,., … , 𝑡‾7,8 + 𝜎𝑡7,8] ,	

𝐭7- = [𝑡‾7,,, 𝑡‾7,. − 𝜎𝑡7,., … , 𝑡‾7,8 − 𝜎𝑡7,8] .	

The	NURBS	trajectory	along	with	the	uncertainty	bounds	for	an	experimental	UAV	flight	at	
NASA	Langley	Research	Center	are	demonstrated	in	Fig.	7.	The	UAV	is	a	𝐷𝐽𝐼𝑆1000	octocopter	
flying	through	a	pre-defined	set	of	17	waypoints	over	380	seconds.	A	flight	executed	from	
the	same	vehicle,	on	another	day	and	on	another	route,	was	utilized	to	compute	the	variance	
𝛴9	of	the	cruise	velocity	distribution:	Σ9 ≈ diag(0.0625, 0.0625, 0.0289)	𝑚! 𝑠!⁄ .	



	

	
Figure	3:	Experimental	UAV	flight	data	with	GPS	measurements	and	prior	uncertainty	bounds	for	(a)	

position	profile	(b)	velocity	profile	

If	wind	field	is	known	for	the	flight	path,	the	wind	velocity	vector	can	be	added	to	the	velocity	
uncertainty	as	well.	For	example,	the	notation	𝒘 = l𝑤3 , 𝑤4 , 𝑤5n

: ∈ ℝ;×.	is	used	to	indicate	
the	 wind	 field	 components	 along	 x	 (East),	 y	 (North)	 and	 z	 (Up)	 directions,	 with	
corresponding	uncertainty	Σ= = diag q𝜎=&

! , 𝜎='
! , 𝜎=(

! r ∈ 	ℝ;×;	 for	Gaussian	pdfs.	By	adding	
the	 wind	 speed	 in	 vector	 form,	 the	 ground	 speed	 of	 the	 vehicle	 becomes	 𝐯> = 𝐯 +𝐰.	
Leveraging	once	more	the	algebra	of	random	variables	,	the	error	interval	on	the	arrival	time,	
previously	defined	by	equation	can	be	described	as	in	the	next	equation.	

𝜎(",!
! ≜ uΔ𝑡0,'

!
𝜎9",!
! + 𝜎=",!

!

�̅�>",!! 			∀			�̅�>",! ∈ 	𝒗{>!: �̅�>",! ≠ 0

0																																				Otherwise
	

Further,	measured	 location	 from	navigation	 sensors	on-board	of	 the	UAV	can	be	used	 to	
update	 the	 current	 estimates	 of	 UAV	 position	 as	 well	 as	 compute	 the	 remaining	 future	
trajectory.	Apart	from	discrepancies	in	planned	velocity,	measurement	error	from	the	UAV	
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navigation	units	constitutes	an	additional	source	of	uncertainty	in	the	predicted	trajectory	
(Banerjee	&	Corbetta,	2020).	

In	 order	 to	 integrate	measurement	 error	 in	 the	 uncertainty	 on	 predicted	 trajectory,	 the	
NURBS	trajectory	defines	the	prior	PDF	of	the	position	estimates	at	time	t=0	s	and	velocity	
estimates	at	time	t=0	and	t	=	1	s,	denoted	in	equation	below.	

𝜎?,(+() = max( 𝒫/(𝑡 = 𝑡,) − 𝒫(𝑡 = 𝑡,),
𝒫-(𝑡 = 𝑡,) − 𝒫(𝑡 = 𝑡,)) ,

	

𝑑,
@ ∼ 𝒩Q𝑃(+() , 𝜎?,(+()

! S
𝑣,
@ ∼ 𝒩Q𝑉(+() , 𝜎9,(+()

! S
𝑣.
@ ∼ 𝒩Q𝑉(+(* , 𝜎9,(+(*

! S
	

Next,	the	trajectory	profile	is	converted	to	a	discrete	time-state	space	model	such	that	the	
position	is	a	function	of	position	at	the	previous	time	step	and	parameters	𝛉(-.:( =
(𝑣(-., 𝑣(

@).	

𝑑( = 𝑑(-.
@ + 𝑣(-.

@ 𝛿𝑡 +
1
2𝑎(-.𝑡	𝛿𝑡

! =	𝑑(-.
@ + 𝑣(-.

@ 𝛿𝑡 +
1
2 Q𝑣(

@ − 𝑣(-.
@ S	𝛿𝑡!	

	

Finally,	the	uncertainty	bounds	on	the	predicted	trajectory	is	obtained	via	implementation	
of	Kalman	filters.	

𝒙�'|'-. = 𝐴	𝒙�'-.|'-. + 𝐵𝒖'-. + 𝐸𝒆'-.
𝑃'|'-. = 𝐴𝑃'-.|'-.𝐴: + 𝑄

	

where,	the	state	vector	𝐱 = [𝑑3 , 𝑑4 , 𝑑5 , 𝑣3 , 𝑣4 , 𝑣5]C ,	containing	the	three	positions	𝑑	and	
velocities	𝑣	in	the	three	Cartesian	directions.	The	input	vector	contain	the	planned	velocity	
at	the	next	time	step,	𝐮'-. = [𝑣3,'

@ , 𝑣4,'
@ , 𝑣5,'

@ ]C .	A	position	error	term	𝐞	used	to	correct	any	
bias	that	may	be	introduced	by	initial	conditions	or	external	disturbances	is	denoted	by	
𝐞'-. = [𝑒3,'-., 𝑒4,'-., 𝑒5,'-.]C .	

In	this	formulation,	the	state	matrix	𝐴,	input	matrix	𝐵,	and	error-correction	matrix	𝐸	
become:	

𝐴 = 0.5 �0; 𝐼;
0; 0;

�	

𝐵 = 0.5 �𝐼;0;
�	

𝐸 = 𝑘@ �
𝐼;
0;
�	

where	𝑘@	is	a	constant	analogous	to	the	proportional	control	gain,	while	0;	and	𝐼;	are	an	all-
zero	matrix	and	the	identity	matrix,	both	of	dimensions	3 × 3.	The	constant	0.5	in	matrices	



𝐴	and	𝐵	comes	from	the	approximation	of	uniformly-accelerated	motion	where	acceleration	
is	computed	as	the	average	between	speed	at	two	subsequent	time	steps	.	Diagonal	matrices	
𝑃	and	𝑄	of	dimensions	6 × 6,	represent	the	convariance	matrix	of	the	state	vector	and	the	
model	noise.	Once	the	prior	of	the	system	state	𝐱�'|'-.	and	its	covariance	matrix	𝑃'|'-.	have	
been	computed,	the	updating	is	performed	following	the	Kalman	filter	procedure,	as	shown	
in	equation	below.	

𝒚�' = 𝒎' − 𝐻𝒙�'|'-.
𝑆' = 𝐻	𝑃'|'-.𝐻: + ΣDE7F

𝐾' = 𝑃'|'-.𝐻:𝑆'-.

𝒙�'|' = 𝒙�'|'-. + 𝐾'𝒚�'
𝑃'|' = (𝐼 − 𝐾'𝐻)𝑃'|'-.

	

The	 three	 position	 measurements	 are	 collected	 in	 vector	𝐦.	 Matrix	 𝐻	 represents	 the	
measurement	model	 while	𝛴DE7F	 represents	 the	 covariance	matrix	 of	 the	measures	 and	
matrix	𝐾	represents	the	Kalman	gain.	

After	computing	the	posterior	estimate	of	the	system	state,	composed	of	state	vector	𝐱�'|' 	
and	 covariance	 matrix	 𝑃'|' ,	 the	 prediction	 of	 the	 remaining	 trajectory	 involves	 the	
propagation	of	the	state	vector	as	stated	in	equation	above.	

Figure	4	depicts	the	95%	confidence	intervals	on	estimated	and	predicted	position	values	
using	measurements	available	up	 to	 (a)	50,	 (b)	150	and	 (c)	280	seconds	of	 the	 flight.	As	
observed	from	the	plots,	 it	 is	evident	that	uncertainty	bounds	become	tighter	when	more	
measurements	 are	 available	 for	 prediction.	 Moreover,	 the	 uncertainty	 is	 higher	 at	 the	
waypoint	locations	where	the	UAV	changes	its	direction	yielding	higher	deviations	from	its	
planned	velocity.	Besides,	the	difference	of	measurement	vector	from	planned	state	and	the	
measurement	error	 is	taken	into	account	while	computing	the	uncertainty	bounds	on	the	
estimated	trajectory.	



	

	

	

	

	

Figure	4:	Trajectory	estimation	and	prediction	using	Bayes	filtering	with	on-board	navigation	
measurements	available	upto	(a)	50	sec	(b)	150	sec	and	(c)	280	sec.	



The	current	trajectory	tracking	technique	does	not	comprise	of	subsystem	behavior	such	as	
individual	rotor	dynamics.	As	a	result,	any	anomaly	or	fault	in	a	specific	motor	or	arm	of	the	
multi-copter	 will	 not	 be	 reflected	 in	 the	 simulated	 flight.	 Uncertainty	 introduced	 from	
approximation	of	UAV	flight	dynamics	will	be	investigated	in	future	studies.	

Powertrain Health Diagnosis 

In	this	section,	the	predictive	process	is	applied	to	the	design	of	a	model-based	diagnostic	
system	for	an	electrical	powertrain	typically	installed	in	small,	low-cost	UAVs.	The	power-
train	system	model	comprises	of	an	electrochemistry	model	for	Li-ion	batteries	developed	
in	(Daigle	&	Kulkarni,	2013)	,	a	model	for	the	ESC	developed	in	(Gorospe,	Kulkarni,	Hogge,	
Hsu,	&	Ownby,	2017)	,	and	a	dynamic	model	of	the	brushless	DC	motor	utilized	to	actuate	
rotors.	Part	of	this	work	has	already	been	presented	in(Corbetta	&	Kulkarni,	2019),	and	so	
only	 a	 summary	 is	 reported	 here.	 In	 this	 exemplifying	 discussion,	 un-modeled	 physical	
phenomena	are	neglected,	 therefore	uncertainty	referring	to	the	model	abstraction	 is	not	
considered.	Moreover,	uncertainty	in	the	battery	model	parameters	is	also	neglected.	The	
reason	is	the	large	number	of	such	parameters,	which	would	require	a	careful	discussion	on	
the	parameter	modeling	strategy,	the	selection	of	the	distribution	functions	or	the	fine	tuning	
of	 dispersion	 indices	 to	 prevent	 model	 instability.	 Modeling	 the	 uncertainty	 of	 external	
disturbances	coming	from	rotors	would	also	require	large	efforts	beyond	the	scope	of	this	
example,	and	therefore	uncertainty	from	exogenous	variables	is	also	neglected.	Instead,	this	
Section	discusses	how	to	model	uncertainty	affecting	voltage	values	in	the	electrochemistry	
Li-ion	battery	model,	uncertainty	rising	from	lack	of	a	MOSFET	model	for	the	ESC,	and	the	
effect	of	uncertainty	over	ESC	switch	failures.	Also,	example	of	uncertain	inertia	and	friction	
parameters	of	 the	DC	motor	 are	briefly	discussed.	The	diagram	of	 the	health	monitoring	
system	is	presented	in	Figure	5.	

	
Figure	5.	Framework	for	powertrain	health	monitoring	uncertainty	quantification	
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Uncertainty representation in powertrain component models 

The	ESC	is	modeled	as	an	ideal	power	inverter	employing	pulse	width	modulation	(PWM)	
and	 half-bridge	 drivers	 for	 each	 of	 the	 three	 phases	 within	 a	 control	 block.	 The	 PWM	
modulates	three	sine	waves	with	carrier	frequency	𝑓	and	phase	shifts	𝜑 = {0,2𝜋/3,4𝜋/3}	
using	a	saw-tooth	wave	with	frequency	𝑓F( .	The	output	is	a	three	phase	voltage	with	duty	cycle	
depending	on	𝑓	and	𝑓F( ,	(Pillay	&	Krishnan,	1989),	(Holtz,	1992)	.	

The	 model	 structure	 composes	 of	 two	 inputs;	 battery	 output	 voltage	 𝑉	 and	 the	 three	
modulated	square	waves	from	PWM,	𝐹.,	𝐹!,	and	𝐹;.	The	switch	matrix	is	a	design	property	of	
the	system,	and	therefore	can	be	considered	as	a	model	parameter.	The	three	modulated	
square	waves	are	pre-multiplied	by	the	switch	matrix	and	the	battery’s	output	voltage.	The	
output	is	a	three-phase	voltage	𝑣7G ,	𝑣GH ,	𝑣H7 ,	with	phase	shift	of	±2/3𝜋	among	one	another,	
which	becomes	the	input	of	the	motor’s	electrical	dynamic	model	.	

¦
𝑣7G
𝑣GH
𝑣H7

§ = 𝑉 ¦
1 −1 0
0 1 −1
−1 0 1

§ ¦
𝐹.
𝐹!
𝐹;
§	

Even	if	not	specified,	battery’s	output	voltage	𝑉	and	output	PWM	signals	FI, ∀	𝑖 = {1, 2, 3}	are	
obviously	time-varying.	

Uncertainty	affecting	each	single	component	is	modeled	as	independent	in	different	ways.	
The	sine	wave	carrier	frequency	𝑓	can	be	subject	to	steady,	slow	decrease	of	its	value	during	
operation	because	of	the	degradation	affecting	the	MOSFETs,	which	are	not	modeled	in	the	
framework	proposed	here.	Therefore,	a	possible	approach	would	be	to	model	𝑓	as	a	random	
variable	 with	 small	 uncertainty	 around	 its	 nominal	 value.	 Uncertainty	 on	 𝑓	 should	 be	
represented	by	an	always-negative	rate	of	change,	to	ensure	that	𝑓	 is	actually	decreasing,	
and	 not	 increasing,	 over	 time.	 As	 already	 discussed,	 in,	 a	 multiplicative,	 log-Normally	
distributed	random	process	can	achieve	the	goal,	

𝑓' = 𝑓'-. −
d𝑓
d𝑡©'-.

𝑒J ,	

where	 the	 deterministic	 value	 d𝑓/d𝑡	 is	 multiplied	 by	 𝑒J ,	 and	 𝜂 ∼ 𝒩Q−𝜎J!/2, 𝜎J!S.	 The	
function	 d𝑓/d𝑡	 as	 well	 as	 𝜎J!	 should	 be	 tuned	 based	 on	 historical	 data	 on	 MOSFETs	
degradation.	

Switch	failures	can	be	modeled	by	abrupt	changes	in	the	switch	matrix	as	seen	in	equation	
above,	using	a	typical	reliability-based	approach	(Ginart,	Brown,	Kalgren,	&	Roemer,	2009),	
where	switch	reliability	is	defined	by	failure	rates	𝜆(𝑡).	The	elements	equal	to	1	and	−1	in	
the	switch	matrix	will	be	reduced	to	0,	when	a	failure	of	the	corresponding	MOSFET	switches	
occurs	 (Celaya,	 Saxena,	 Kulkarni,	 Saha,	&	Goebel,	 2012)	.	 By	 so	 doing,	 uncertainty	 in	 the	
switch	 matrix	 is	 defined	 through	 mean-time-between-failure	 or	 similar	 quantities.	 An	
example	of	the	three-phase	voltages	from	a	switch	failure	is	shown	in	Figure	6,	where	the	
element	(2,3)	of	the	switch	matrix	originally	equal	to	-1,	has	been	replaced	by	0.	



	

Fig.	6	Example	of	three-phase	voltages	from	ESC	with	a	switch	failure.	The	legend	indicates	that	the	
switch	matrix	(SM)	element	in	position	(2,	3)	has	been	replaced	by	0.	

The	structures	of	the	motor	model	and	the	battery	discharge	model	are	sets	of	first	order	
differential	equations,	in	the	form:	

�̇� = 𝑓𝐩(𝐱, 𝐮)	

where	𝐩	is	the	vector	of	model	parameters	and	𝐮	is	the	input	vector.	State	vectors	are	
defined	by	

𝐱 = [𝑞F,@, 𝑞G,@, 𝑞G,*, 𝑞F,*, 𝑉LM, 𝑉J,@M , 𝑉J,*M ]C  ,	

𝐱 = [𝑖7 , 𝑖G , 𝜔D]C  ,	

for	the	battery	and	motor	model,	respectively.	The	motor	model	assumes	the	form	

�̇�D =
1
𝐽
[−𝐵𝜔D + (𝑇E − 𝑇N)] ,	

where	𝑇E 	and	𝑇N 	are	electrical	and	mechanical	(external)	toques,	respectively.	The	battery	
model	is	composed	of	several	differential	equations	and	the	reader	is	referred	to	(Daigle	&	
Kulkarni,	2013)	for	further	details.	

For	the	motor	dynamic	model,	the	vector	of	model	parameters	is	𝐩 = [𝐵, 𝐽, 𝑅F, 𝐿O]C ,	where	𝐵	
is	the	friction	coefficient,	𝐽	the	motor	inertia,	𝑅P	is	the	resistance	for	each	phase	(assumed	
identical	for	the	three	phases),	𝐿O 	is	the	difference	between	self	and	mutual	inductance	(also	
assumed	 equal	 for	 each	phase).	 For	more	 information	 on	 the	motor	model	 the	 reader	 is	
referred	 to	 (Gorospe,	 Kulkarni,	 Hogge,	 Hsu,	 &	Ownby,	 2017).	 For	 the	 battery	model,	 the	
parameter	 vector	 is	 not	 reported	 for	 the	 sake	 of	 brevity	 (since	 uncertainty	 on	 those	
parameters	 is	 not	 discussed);	 the	 complete	 set	 of	 parameters	 are	 derived	 in	 (Daigle	 &	
Kulkarni,	2013).	



The	motor	model	parameters	can	be	extracted	from	manufacturer	data-sheets	or	estimated	
from	experimental	 tests,	while	 the	parameters	of	 the	electro-chemistry	battery	model	do	
require	estimation	from	characterization	test	profiles.	The	input	of	the	battery	model	is	the	
applied	current	𝐮 = 𝑖.	The	input	of	the	motor	model	composes	of:	(i)	two	of	the	three-phase	
input	voltages	(𝑣7G	and	𝑣GH)	(ii)	three-phase	back-emf	voltages	𝑒7 ,	𝑒G ,	𝑒H ,	and	(iii)	load	torque	
𝑇N ,	 so	 𝐮 = [𝑣7G , 𝑣GH , 𝑒7 , 𝑒G , 𝑒H , 𝑇N]C .	 It	 should	 be	 noticed	 that	 motor	 model	 input	 vector	 is	
composed	of	both	operational	 input,	that	 is	the	desired	applied	three-phase	voltages,	and	
external	input	𝑇N 	which	depends	on	exogenous	variables.	

Focusing	on	 the	battery	model,	 the	QoI	 is	 the	output	voltage	𝑉,	which	defines	 the	energy	
introduced	 in	 the	powertrain	 to	produce	 the	 torque	on	 the	 rotors	and	 thus	 the	 thrust	 to	
operate	the	vehicle.	Given	the	complexity	of	the	electro-chemistry	battery	model,	a	sampling-
based	approach	appears	to	be	reasonable.	The	state	vector	𝐱	is	considered	a	random	vector,	
where	the	Li-ions	𝑞F,@,	𝑞G,@	are	defined	by	random	variables.	They	represent	the	number	of	
Li-ions	on	the	positive	side	of	the	surface	𝑞F,@	and	bulk	𝑞G,@	of	the	cell,	respectively.	Since	𝑞F,*,	
𝑞G,*,	as	well	as	the	voltages	𝑉M,	are	derived	quantities,	they	also	become	random	variables.	
Independent,	Gaussian	pdfs	have	been	utilized	to	compute	random	realizations	of	𝑞F,@,	𝑞G,@	
in	a	Monte	Carlo	fashion,	using	Euler’s	forward	method:	

𝑞F,@,' = 𝑞F,@,'-. + �̇�F,@,'-.Δ𝑡'-. + 𝜎Q+,,²Δ𝑡'-.𝑟.
𝑞G,@,' = 𝑞G,@,'-. + �̇�G,@,'-.Δ𝑡'-. + 𝜎Q-,,²Δ𝑡'-.𝑟!

	

where	𝑟.	and	𝑟!	are	two	independent	realizations	 from	the	standard	Normal	distribution,	
and	𝑘	 indicates	 the	 time	 step.	 Rates	 of	 change	 �̇�F,@,'-.	 and	 �̇�G,@,'-.	 are	 derived	 from	 the	
battery	dynamic	model.	The	random	shocks	introduced	by	𝜎Q+,,𝑟.	and	𝜎Q-,,𝑟!	are	scaled	by	
√𝛥𝑡	 for	 consistency	 with	 Wiener	 process	 and	 Brownian	 motion	 used	 in	 stochastic	
differential	 equations	 (Lawler,	 2010).	 By	 so	 doing,	 the	 variances	 of	 the	 two	 stochastic	
processes	 scale	 linearly	with	 time.	The	 two	 standard	deviations	𝜎Q+,, 	 and	𝜎Q-,, 	 should	be	
properly	quantified	to	reflect	the	variability	observed	in	experimental	tests.	

Figure	7	shows,	as	an	example,	the	output	of	a	single	cell	modeled	using	equation	above,	with	
initial	voltage	𝑉, = 𝑉(𝑡 = 0) ∼ 𝒩(4.6,0.316),	𝜎Q+,,

! = 𝜎Q-,,
! = 10.0,	and	assuming	a	constant	

discharge	rate	with	required	power	P=8	W.	The	simulation	parameters	used	are	𝛥𝑡 = 1e−
1	s,	𝑁 = 1000	samples,	and	final	simulation	time	100	s.	The	kernel	density	estimate	(KDE)	
of	the	voltage	at	time	100	s,	computed	with	the	Monte	Carlo	samples	(MCS)	and	Gaussian	
kernel	with	bandwidth	equal	to	0.125,	is	compared	against	a	Gaussian	distribution,	Figure	
13.	Despite	 the	 nonlinearity	 of	 the	model,	 the	 output	 voltage	might	 be	 represented	 by	 a	
Gaussian	random	variable,	provided	that	the	propagation	of	uncertainty	in	time	can	be	also	
be	represented	by	this	simplifying	assumption.	



	

	

Figure	7.	Simulation	of	battery	discharge	at	constant	power.	
Monte	Carlo	samples	are	shown	in	7a,	while	the	resulting	kernel	
density	estimate	is	compared	against	a	Gaussian	distribution	
in	7b.	Only	a	subset	of	all	samples	has	been	represented	

in	7a	to	appreciate	the	different	paths.	

As	clarified	in	the	previous	paragraphs,	motor	model	parameters	could	be	represented	by	
random	 variables	 to	 encapsulate	 the	 model	 parameter	 uncertainty	 within	 the	 model.	
Sensitivity	 analyses	 can	 aid	 the	 selection	 of	 important	model	 parameters	 that	 should	 be	
modeled	as	random	variables,	however	a	few	general	rules	can	be	applied	to	all	parameters.	
Because	 of	 their	 physical	 meaning,	 all	 model	 parameters	 in	 [𝐵, 𝐽, 𝑅F, 𝐿O , 𝑘E]C 	 have	 to	 be	
strictly	positive,	and	therefore	belonging	to	ℝ/.	Consequently,	Gaussian	distributions	may	
not	be	suitable	for	describing	their	uncertainty,	especially	if	their	value	is	(relatively)	close	



to	 0.	 Let	 us	 consider,	 for	 example,	 the	 friction	 coefficient	 𝐵	 and	 motor	 inertia	 𝐽.	 Their	
distributions	can	be	defined	through	a	log-Normal	transformation	by	simply	using:	

ln𝐵 ∼ 𝒩(𝜇lnR , 𝜎lnR! ) ,
ln𝐽 ∼ 𝒩Q𝜇lnS, 𝜎lnS! S ,

	

assuming	 that	𝐵	 and	 𝐽	 are	 independent	 random	variables	 (the	generalization	 to	 the	 case	
𝜎lnR,lnS ≠ 0	is	straightforward	by	introducing	a	multi-variate	Normal	distribution).	Examples	
of	the	two	log-Normal	distributions	are	shown	in	Figure	14.	

	

Fig.	8	Example	of	log-Normal	probability	distributions	of	𝐵	and	𝐽.	

An	example	of	angular	velocity	output	from	the	model,	using	samples	from	the	distributions	
of	𝐵	and	𝐽	is	visible	in	figure	9.	The	effect	of	different	inertia	values	is	clearly	visible	in	the	
transient	period	necessary	to	reach	the	steady-state	regime.	In	order	to	emphasize	the	effect	
of	𝐵	and	𝐽	samples,	the	graph	was	generated	neglecting	dynamics	effects	on	the	back-emf	
voltage	and	external	load	torque	𝑇N .	



	

Fig.	9	Example	of	motor	speed	variations	from	0	up	to	a	steady-state	regime	(nominal	speed	𝜔! =
675	RPM).	

Conclusion 

This	paper	proposed	a	framework	for	uncertainty	quantification	dedicated	to	autonomous	
system	 tracking	 and	 health	monitoring.	 Although	 being	 system	 agnostic,	 the	 framework	
addresses	key	issues	related	to	automated	and	autonomous	UAVs	operations	in	the	airspace.	

The	developed	framework	is	motivated	by	the	need	to	ensure	a	holistic	state-awareness	of	
an	airspace	with	multiple	vehicles	operating	within,	as	expected	in	the	near	future	for	low-
altitude	airspace	in	urban	and	rural	environments.	Different	uncertainty	sources	that	affect	
the	operations	of	those	vehicles	must	be	properly	identified	and	quantified	such	that	look-
ahead	forecast	of	the	airspace	or	of	vehicle	health	conditions	can	highlight	airspace	as	well	
as	vehicle	anomalies.	To	this	aim,	the	proposed	approach	provides	a	detailed	description	of	
these	 uncertainty	 sources	 classified	 into	 model	 uncertainty,	 method	 uncertainty,	
measurements	uncertainty	and	input	uncertainty.	The	identified	sources	are	then	included	
and	propagated	within	a	predictive	process	structure	composed	of	different	spaces	(input	
space,	measure	space,	representation	space	and	computer	space).	The	methodology	helps	
mapping	the	relevant	uncertainty	sources	that	may	enter	the	prediction	process	and	define	
how	the	identified	uncertainty	sources	interact	and	impact	each	other	within	this	predictive	
process	structure.	

The	 proposed	 approach	 was	 demonstrated	 using	 two	 case	 studies.	 The	 first	 application	
shows	a	simple	technique	to	monitor	the	UAV	location	and	its	adherence	to	the	pre-defined	
flight	path.	It	can	provide	enough	information	to	compute	the	expected	time	of	arrival	at	each	
location	along	the	path	and	shrink	or	enlarge	uncertainty	bounds	of	the	trajectory	profile	
according	to	the	observed	vehicle	kinematic	profile.	The	second	case	study	shows	how	the	
list	 of	 uncertainty	 sources	 can	 aid	 the	 design	 of	 a	 vehicle	 powertrain	 health	monitoring	
system.	 According	 to	 the	 granularity	 of	 the	 model-based	 design,	 uncertainty	 can	 be	



introduced	in	different	ways,	from	failure	rates	coming	from	reliability	analysis	to	random	
variables	describing	physical	quantities.	

This	 work	 does	 not	 address	 a	 number	 of	 topics	 related	 to	 uncertainty	 quantification:	
sensitivity	 analysis	 of	 the	 variables	 affecting	 a	 specific	 model,	 statistical	 techniques	 to	
address	 uncertainty	 quantification	 and	 propagation,	 as	well	 as	methods	 to	 describe	 and	
interpret	uncertainty.	It	also	highlights	a	few	challenges	for	the	effective	implementation	of	
monitoring	 strategies	 for	 automated	 and	 autonomous	 vehicles	 operating	 in	 time-varying	
environments.	Characterization	of	external	forcing,	like	the	wind	field	and	the	torque	acting	
on	the	powertrain	during	flight,	is	a	challenge	to	be	addressed	in	the	future	to	obtain	more	
meaningful	 predictions.	 Such	 characterization	 inherently	 involves	 uncertainty	
quantification,	 given	 the	 aleatory	 nature	 of	 some	 external	 forcing.	 This	 approach	 shares	
similarities	 with	 system-level	 prognostics	 approaches,	 but	 introduces	 further	 challenges	
related	to	the	automated	or	self-directedness	properties	of	the	systems.	Methods	should	be	
capable	 of	 resolving	 (i.e,	 estimating)	 and	 predicting	 external	 forcing	 and	 environmental	
factors	to	enable	look-ahead	forecast	of	the	system	dynamics.	This	work	will	benefit	from	
more	 application	 studies	 to	 highlight	 further	 challenges	 and	 opportunities	 to	 implement	
effective	predictive	methods	for	low-altitude	UAV	operations.	
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