Gazebo renders the moon

Ian Chen & Mark Allan

September 29th, 2018

RP Driving ConOps Simulator

Resource Prospector

Goal: send a rover to the moon to mine volatiles such as hydrogen, oxygen and water

Simulation

End-to-end lunar rover driving simulation to assist in the development of the RP Driving Concept of Operations

- ROS used to emulate flight software and ground software functionality
- Simulated rover is 4 wheel steer platform scaled to RP rover dimensions with RP chassis and mast

Large Scale, High Fidelity Terrain Simulation

Synthetic Terrain Generation

• High resolution (~4cm) to simulate obstacles: positive (rocks), negative (craters)

Large DEMs rendered too slow in Gazebo

- 8K resolution, 213MB
- load time ~5min

Improvements

- Enabled caching of terrain data
- Added Level-Of-Detail
- Background tiles coarse meshes
 - o 6 levels

Lunar Appearance

Default shading model inadequate to model the unique reflective properties of lunar surface

Terrain Material Shader Components

Regolith

Detail Normal

Real time shadows

&

Rock normal

DEM Rock Mask

Hapke Lunar regolith reflectance model

Shader Parameters

Wheel Tracks Plugin

Camera Exposure

Lens Flares

Sun is few degrees above horizon at lunar pole

Camera often points at sun or sees long dark shadows

Implementation

- Post processing effect
- Works with wide angle cameras
- Sparse ray based occlusion checking

Real Time Shadows

Problem: Poor quality overall esp. when camera view angle is coincident with light direction

Improvements

- Override shadow map generation step
- Increased shadow texture resolution
- Hardware PCF + Poisson disk blur filter
- Lowered "built-in ambient" light

WARP

@ 2018/05/26 00:59:32 UTC wara

Summary of Gazebo Improvements

All features and improvements are available in Gazebo7+

Heightmap improvements

• LOD using HeightLODPlugin, heightmap data caching is built-in

Lights and Shadows

LensFlareSensorPlugin, all real time shadows changes merged

Custom Material Shaders

• ShaderParamVisualPlugin (to demo rendering API)

Light as child of link

• Added in SDF 1.6

gazebo_ros_pkgs

- 16 bit camera image format
- gazebo_triggered_[multi]camera plugin

Wheel Slip Model

• WheelSlipPlugin

Team

Open Robotics

NASA Ames Intelligent Robotics Group SGT/KBRwyle

Brian Gerkey Ian Chen Steven Peters Morgan Quigley Mark Allan Uland Wong Terry Welsh Michael Furlong Scott McMichael Arno Rogg

Questions?

End of Presentation

NOTES

Rover Software and Physical Simulation

Rover Software

- ROS used to emulate flight software and ground software functionality
- Simulated rover is 4 wheel steer platform scaled to RP rover dimensions with RP chassis and mast

Physical Simulation

- Gazebo 7 with ODE
- Coulomb friction model with custom wheel slip model
 - first order approximation of wheel slip on unconsolidated soil

Synthetic terrain generation

Obstacles in terrain geometry:

- positive (rocks)
- negative (craters)

Existing lunar DEMs

• Coarse (5-20m) and noisy

Terrain Generation

- Fractal expansion of existing lunar DEMs
- Insertion of rocks and craters based on size-frequency distribution models from lunar scientists

Lunar Highlands

open robotics

LRO Reference Image

Custom material shaders

Wheel Tracks

Pass rover pose to heightmap shaders using Visual Plugin

When should you use it?

Finer control through GLSL shaders But..

- Need knowledge of shaders / OGRE
- Consumes time and effort,
 - e.g. apply your own lighting and shadows!

In RP, custom shaders are only used for the main heightmap model

Shader Parameters

Camera exposure can be emulated by modifying shader parameters in real time

Implementation

- Gazebo plugin finds all shaders with parameter of interest
- ROS listener allows parameters to be set interactively

