
Accessible Telemetry Streams using a Zero Trust
Architecture for the Flight Operations Directorate

Paul Shoemaker
APPDAT

NASA Johnson Space Center
Mathematical Research, Inc
paul.shoemaker@nasa.gov

Collin Estes
APPDAT

NASA Johnson Space Center
Mathematical Research, Inc

collin.j.estes@nasa.gov

Abstract - As a result of information technology based work
becoming increasingly distributed, unique challenges have
been presented within the realm of defined network
perimeters, namely with respect to secure access to resources.
Historically, and from a simplistic abstract perspective, the
common approach has been to adopt the, so-called, moat
model whereby a physical network perimeter (or
interconnected perimeters) is defined to encapsulate resources
behind a boundary protected by a firewall. Users are
provisioned access through a virtual private network (VPN)
and may be further constrained to resources through specific
firewall allow and disallow rulesets. Virtual Private Networks
and firewall rulesets lead to common problems, particularly
at scale and, as a result, perimeter-less architectures provided
over the public internet are increasingly becoming prevalent,
particularly with its more popular implementation, the Zero
Trust Architecture. We present a proposed implementation of
the Zero Trust Architecture with a particular concrete
example utilizing a de-perimeterized network that requires
authentication and authorization for each action between
nodes and does not operate within an implicit trust boundary.
It should be noted that this paper is not an attempt at
providing comprehensive resolutions for the specific problem
space with respect to perimeter based security and is more
directed at providing information with regard to our
proposed implementation of a Zero Trust Architecture for the
Flight Operations Directorate. We direct the reader to our
Introduction and Background section for more details on
specific documentation and where it can be located as it
relates to de-perimeterization and Zero Trust.

I. Introduction and Background
Network de-perimeterization was first presented by the
Jericho Forum[1] in 2005 resulting in the further expansion

and implementation as well as coining of the term Zero Trust
by John Kindervag from Forrester Research in 2010[2]. In
2014, Google published their implementation of Zero Trust
Architecture called BeyondCorp[3]. Each of these
publications go into great detail concerning the need for
removal of the traditional model of information security
whereby nodes within the network perimeter are implicitly
trusted while those nodes residing outside of the perimeter
are untrusted. Zero Trust Architecture (ZTA) establishes the
concept of trustless operating environments where there is no
implicit trust between any node within the network and all
traffic must be authenticated and authorized. For the
purposes of providing a demonstration of capabilities, we
chose to protect a resource consisting of publicly available
telemetry data from the International Space Station. Our
environment consisted of container-based applications
running within a Google Kubernetes Engine (GKE) managed
Kubernetes environment with a self-managed Istio Service
Mesh layer providing for mutual TLS encryption, traffic
interception, and traffic routing to individually protected
resources. With a custom application specifically written for
this purpose, we subdivided the telemetry data into specific
ElasticSearch indexes representing varying levels of access to
data based upon the requesting user’s explicit level of trust
corresponding to authentication and authorization rules
defined for each protected ingress point. Additionally, we
designed a custom token exchange middleware application
deployed into the same cluster to demonstrate the capabilities
of in-cluster traffic routing based on underlying service mesh
rules in cooperation with application-based token
authentication capabilities (namely that of the ElasticSearch
system) that allowed for a Single Sign On passthrough into

the terminating application Kibana. Kibana was used as a
visualization and index management platform as part of the
ELK stack (ElasticSearch, Logstash, and Kibana). Finally
we developed custom dashboards inside Kibana in order to
demonstrate at a glance that varying users with varying
authentication and authorization rules could access only
specific indexes for which their application role allowed.
Section II provides context for this implementation by laying
out specifically defined Use Cases that are addressed by this
architecture. Section III goes into more detail as to how the
architecture is defined and how specific components within
the architecture work. Section IV concludes our paper
following with acknowledgements and references.

II. Use Cases
These use cases helped guide the implementation for the
proof of concept and served to illustrate several plausible
scenarios that might be directly applicable to the Flight
Operation Directorate’s needs. It should be noted that there
are a few use cases that indicate the user’s use of VPN-based
networking resources. While we briefly noted that there are
challenges with existing VPN infrastructures, we also note
that, “It is unlikely that any significant enterprise can migrate
to zero trust in a single technology refresh cycle. There may
be an indefinite period when ZTA workflows coexist with
non-ZTA workflows in an enterprise.”[5] As such we
included these use cases to demonstrate the power of CIDR
based IP boundaries that take advantage of Context Aware
rulesets for enforcement.

A. Public User

As a public user, I should be able to access publicly available data
without authenticating. The data that I have access to will be very
limited in scope as a result of my trust level. Authentication and
Authorization will be forfeited for the individual user as a result
of this very limited scope of trust.

B. External Partner with External Partner Identity
Platform

As an external partner, I should have access to a higher trust level
of data as an authenticated user. Authentication and
Authorization will be accomplished using my external partner

identity platform and relies on a trusted relationship between
NASA and the external partner.

C. NASA Employee with PIV on the Public Internet

As a NASA employee with a PIV card (badge), when I am on the
public internet, my trust level will be slightly higher than the
external partner due to the presence of a vetted credential such as
the PIV. Authentication and Authorization will be completed
using Identity Aware Proxy and Context Aware Access using my
NASA G Suite account.

D. NASA Employee with PIV on VPN and GFE

As a NASA employee providing a PIV credential while on VPN
will gain me a higher trust level than previous trust levels.
Authentication will be completed using Identity Aware Proxy and
Context Aware Access will provide the IP based filtering to allow
for authorization constraints to be placed based on incoming IP.

E. NASA Employee with PIV on VPN on Agency Device

As a NASA employee providing a PIV credential while on VPN
and utilizing a NASA agency device will gain me the highest trust
level. Authentication will be completed using Identity Aware
Proxy and Context Aware Access will provide the IP based
filtering as well as agency-managed device verification, in
cooperation with the Device Management component discussed
later (see section below).

III. Implementation
We present our implementation of a Zero Trust Architecture built
around the vendor solution provided by Google through their
BeyondCorp offering. It should be noted that while the Google
framework was chosen for our proof-of-concept (POC), the
abstract components within this infrastructure can be swapped
for non-Google counterparts from other vendors. We will first
discuss the abstract components of the Zero Trust Architecture
and then further discuss the architecture as it is implemented by
BeyondCorp.

A. Abstract Components

The abstract components that adequately describe a Zero
Trust Architecture are illustrated in Figure 1.

Fig. 1. Abstract process flow diagram of ZTA protected resources

1. Proxy

Any resource that is accessible within the network requires
Authentication and Authorization prior to granting access to
that resource. As such a universal proxy is required as a
provided minimum level of access control to that resource.
The proxy is responsible for providing a challenge to the
requesting user (be it a physical person or machine) which
will require some credential in order to pass Authentication.

2. Authentication
The Authentication mechanism is typically provided for by
an Identity Provider (IdP) such as Google, Microsoft, etc.
The IdP will present the challenge discussed above and
provide for allowance or disallowance based on the criteria of
the challenge. For example, if the challenge requires a
username and password, those components must be correct in
order to pass the authentication gate.

3. Authorization
After authentication has been granted, Authorization steps

must be performed in order to provide for a context-based
decision as to whether the requesting user will have access to
the requested resource in spite of providing proper
authentication credentials. Authorization is typically
implemented as a series of rules consisting of sets of logical
AND, OR, and NOT operations with respect to a variety of
parameters.

B. BeyondCorp

The Zero Trust Architecture as it is implemented by BeyondCorp
consists of two primary components: Identity Aware Proxy and
Context Aware Access (with further utilization of Device

Management capabilities). We utilized these individual
components in concert in order to provide concrete
implementations of the abstract components discussed above.

1. Identity Aware Proxy

Fig. 2. Architectural flow diagram for IAP terminated ahead of Load Balancer

Identity Aware Proxy (IAP) is a centralized proxy that can be
terminated on demand in front of an HTTPS load balancer
resource that is serving traffic to within a compute environment
such as Google Kubernetes Engine (Fig. 2).
Its purpose is to provide a centralized authentication mechanism
whereby you can provision access to your protected resource
utilizing a variety of identity platforms, including Google’s own
Cloud Identity (Fig. 3).

Fig. 3. Example of a
authentication form for IAP

Additional external
identity platforms can
easily be utilized
including custom
Security Assertion and
Markup Language
(SAML) and OpenID
Connect (OIDC)
connections. This
means that IAP can
provide the proxy
access point
specifically while an

external Identity Provider (IdP) actually provides the core
authentication mechanism. It should be noted that with respect to
Google’s BeyondCorp offering specifically, IAP manages
user-based access controls through its Identity and Access
Management system (IAM) as long as you are using Google
Cloud Identities. IAM based access controls have the added
benefit of providing capabilities of the Context Aware Access

controls discussed in the next section. If the user wishes to utilize
an external identity platform, that user will forgo IAM based
control mechanisms as well as Context Aware Access capabilities.
Additionally, IAP is terminated in front of an HTTPS Load
Balancer, where, within Google Kubernetes Engine (GKE), it is
prescribed upon a single Ingress Custom Resource Definition
(CRD) which utilizes the Google Ingress Controller within the
cluster. As a result, it is possible to control access to a single
resource utilizing multiple Identity Providers by defining several
discrete Ingress resources.

2. Context Aware Access

Context Aware Access is a mechanism by which a user might
provide for authorization to a protected resource after the step of
authentication. Once the authentication step has completed and is
successful, there is an authorization step that must be completed
in order to ultimately gain access to the desired resource. Context
Aware Access provides for this capability by having the ability to
segment based on a variety of properties including IP boundary
(by Classless Inter-Domain Routing or CIDR), regional location,
as well as specific properties of managed devices (please see
more information below on Device Management). Based on this
complex rules engine, a decision is made to allow or disallow
access to your protected resource. These rules can be chained
together via the web UI or through APIs to the underlying IAM
system.

3. Device Management

Within the BeyondCorp suite of tools, you are able to provision
devices within your enterprise utilizing a Chrome-based client
that will synchronize device-specific information to a centralized
location that is manageable within your Google account. This
information includes operating system patch level, administrative
privileges, model number, serial number, etc. This information
can be used to require, for example, that only agency approved
devices that meet specific device-based criteria will be authorized
to access a particular resource on each request. Should anything
about that device change which changes its compliance state, that
device’s permission will be immediately revoked and access will
no longer be granted until the device is compliant once more.

C. Bringing It All Together

As part of our proof-of-concept for implementing a Zero
Trust Architecture targeting varying levels of access to
non-sensitive telemetry data, our implementation consisted of
four discrete application bundles, including a landing page, a
telemetry listener and indexing application, a token exchange
middleware, and a GKE application stack that included
ElasticSearch, Kibana, and a variety of ingress and service
mesh virtual service manifests. The landing page served as a
way for the user to choose their desired authentication and
authorization mechanism. The user had a choice between
public, NASA, and External in order to demonstrate the
ability to authenticate using several different IdPs and for the
results of that authentication and authorization route to have
an impact on the eventual authentication to the protected
resource (and, by extension, the amount of data that user has
access to). The telemetry application was responsible for
providing data from a publicly available feed containing
various ISS telemetry data points. In order to subdivide
telemetry into increasingly more privileged levels of access,
the data was placed into individual ElasticSearch indices
where they would be used to constrain access by role within
Kibana (it should be noted that it is possible to constrain
access by column within ElasticSearch which represents
another vector by which this could be accomplished). Once a
user chose their authentication IdP, they would enter their
credentials (if required; in the case of Public, this was not
required). Upon successful authentication and authorization,
the user would be forwarded through to the protected
resource, however in this case, that resource required a
specific token for authentication itself and was thus further
protected. IAP provides a JSON Web Token (JWT) [4] as the
method of passing cryptographically signed non-sensitive
user data in a portable manner. Within the JWT payload is a
list of claims that are arbitrary and quite service specific,
meaning, in the case of IAP, there were specific pieces of
data within the payload that pertained to within the Google
ecosystem specifically. As such, the JWT token claims were
incompatible with those required by the protected resource.
It is posited that this particular scenario will be relatively
normal particularly if you are attempting to protect either a
Commercial Off the Shelf (COTS) or Open Source Software
(OSS) resource where the particular mechanisms of

authentication may vary. As a result of this particular
implementation, a combination of the Istio Service Mesh and
a custom token exchange middleware application served as
the mechanism by which a token from IAP would be
exchanged for a token by ElasticSearch through the protected
ElasticSearch API. Istio Service Mesh was used as a control
plane to an Envoy proxy based data plane automatically
injected as a sidecar container to each pod deployed in the
cluster. The service mesh served as a mechanism to route
traffic to the desired terminating service which, in this case,
was simply Kibana, as well as filtering for the IAP header
which contained the JWT needed to perform the token
exchange with ElasticSearch. Once the token exchange was
completed, a valid Authorization Bearer header was written
to the request and forwarded to the Kibana application for
verification and authentication. This process flow provides
for a seamless Single Sign On (SSO) experience so that the
user is forwarded to their application without the need to
authenticate through several different mechanisms.
Once the user has arrived in Kibana, they will notice that
they are able to utilize the application as normal and,
importantly, only have access to the index for which their
role allows (directly related to the Use Cases outlined
previously).

IV. Conclusion
We have discussed a bit of the history behind
de-perimeterization and the Zero Trust Architecture
implementation as well as some of the abstract components
that comprise it. Additionally, we have presented our proof
of concept as it relates to a component of the mission under
the purview of the Flight Operations Directorate namely with
respect to ISS telemetry. Our solution utilized many
components of the BeyondCorp vendor offering in order to
achieve its goals, however, many of the abstract components
of proxy, authentication, authorization, device management,
and context aware access can be implemented utilizing other
offerings from other vendors. The advantage of using a
comprehensive set of tools from a single vendor is mainly in
speed of implementation and time-to-solution. For
BeyondCorp specifically, it is necessary to ensure that those
members participating within the Zero Trust network possess
identities from Google Cloud Identity or from an externally
approved IdP with OIDC or SAML integration mechanisms

(such as Microsoft). The disadvantage of a single-vendor
solution is in that same comprehensive nature where it
becomes necessary to adopt all required components that
comprise the solution. In conclusion, we hope to have
introduced the core concepts to those unfamiliar and to have
provided enough detail to those parties of interest that may be
seeking to implement similar architectures or use it as context
or inspiration for their own solutions.

Acknowledgements
Thank you to the Flight Operations Directorate for the
opportunity to design this proof of concept and to Jennifer
Morehead, Peter Mossbacher, and Aaron Goldenthal for
providing resources, context, and answers to organizational
questions along the way. Also thank you to Rudis Muiznieks
and David Kelldorf for providing valuable feedback during
the process of documentation.

References
[1] "Visioning White Paper What is Jericho Forum?" (2005)

[2] Kindervag J "No More Chewy Centers: Introducing The Zero Trust
Model Of Information Security” (2010)
[3] Beyer B, Ward R "BeyondCorp - A New Approach to Enterprise
Security." (2014)
[4] Wikipedia contributors. "JSON Web Token." Wikipedia, The Free
Encyclopedia. Wikipedia, The Free Encyclopedia, 18 Aug. 2020. Web. 24
Aug. 2020.
[5] Rose S, Borchert O, Mitchell S, Connelly S “NIST Special Publications
800-207 Zero Trust Architecture” pp 36
https://doi.org/10.6028/NIST.SP.800-207

Disclaimer
Trade names and trademarks are used in this report for
identification only. Their usage does not constitute an official
endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

