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ABSTRACT

Recent  measurements  from  Mars  document  X-ray  amorphous/nano-crystalline  materials  in

multiple locations across the planet.  However,  despite their  prevalence,  little is  known about these

materials or what their presence implies for the history of Mars. The X-ray amorphous component of

the martian soil in Gale crater has an X-ray diffraction pattern that can be partially fit with allophane

(approximately Al2O3•(SiO2)1.3-2•(H2O)2.5-3), and the low-temperature water release data are consistent

with allophane.  The chemical data from Gale crater suggest that other  silicate materials  similar to

allophane,  such  as  Fe-substituted  allophane  (approximately  (Fe2O3)0.01-0.5(Al2O3)0.5-0.99•(SiO2)2•3H2O),

may  also  be  present.  In  order  to  investigate  the  properties  of  these  potential  poorly  crystalline

components of the martian soil, Fe-free allophane (Fe:Al = 0), Fe-poor allophane (Fe:Al = 1:99), and

Fe-rich allophane (Fe:Al = 1:1) were synthesized and then characterized using electron microscopy and

Mars-relevant techniques, including infrared spectroscopy, X-ray diffraction, and evolved gas analysis.

Dissolution experiments were performed at acidic (initial pH values pH0 = 3.01, pH0 = 5.04), near-

neutral (pH0 = 6.99), and alkaline (pH0 = 10.4) conditions in order to determine dissolution kinetics and

alteration phases for these poorly crystalline materials. Dissolution rates (rdiss), based on the rate of Si

release into solution, show that these poorly crystalline materials dissolve approximately an order of

magnitude faster than crystalline phases with similar compositions at all pH conditions. For Fe-free

allophane, logrdiss =   -10.65 – 0.15 × pH; for Fe-poor allophane, logrdiss = -10.35 – 0.22 × pH; and for

Fe-rich allophane, logrdiss = -11.46 – 0.042 × pH at 25°C, where rdiss has the units of mol m-2 s-1. The

formation of incipient phyllosilicate-like phases was detected in Fe-free and Fe-rich allophane reacted

in  aqueous  solutions  with  pH0 =  10.4  (steady-state  pH  ≈  8).  Mars-analog  instrument  analyses

demonstrate that Fe-free allophane, Fe-poor allophane, and Fe-rich allophane are appropriate analogs

for silicate phases in the martian amorphous soil component. Therefore, similar materials on Mars must

have had limited interaction with liquid water since their formation. Combined with chemical changes

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



expected  from  weathering,  such  as  phyllosilicate  formation,  the  rapid  alteration  of  these  poorly

crystalline materials may be a useful tool for evaluating the extent of aqueous alteration in returned

samples of martian soils.
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INTRODUCTION

Recent observations have shown that Mars likely once had abundant liquid water (e.g., Carr

1996; Bibring et al.  2006; Vaniman et al.  2014; Grotzinger et al. 2015), widely considered to be a

critical prerequisite for life. However, the amount of liquid water that was present on Mars, and how

long it was present, is not yet clear. Clues to the characteristics and longevity of Mars’s ancient aquatic

environments may lie in aqueous alteration products, including the poorly crystalline, nano-crystalline,

or X-ray amorphous soil components (which we refer to as “amorphous” for simplicity)  that have been

detected widely on Mars from orbit (e.g., Singer 1985; Milliken et al. 2008; Rampe et al. 2012; Weitz

et al. 2014) and in situ by the Pathfinder, Spirit, and Curiosity rovers (e.g., Morris et al. 2000; Squyres

et al. 2008; Bish et al. 2013). Amorphous materials containing structural or adsorbed water may be the

source of globally distributed hydrogen observed on Mars (Meslin et al. 2013). One such material,

allophane (approximately Al2O3•(SiO2)1.3-2•(H2O)2.5-3), has been detected from orbit across many regions

of Mars (Rampe et al. 2011; Rampe et al. 2012; Bishop and Rampe 2016), and has been proposed as a

possible component of the amorphous material at Gale crater, the landing site of the Mars Science

Laboratory rover Curiosity (Bish et al. 2013; Dehouck et al. 2014). 

Allophane is  a  poorly  ordered  aluminosilicate  that  forms  on Earth  from the  weathering  of

volcanic rocks and ash in moist, temperate climates (e.g., Wada 1989; Parfitt 1990; Gustafsson et al.

1998).  Allophane has short-range atomic order and forms aggregates of hollow,  porous nano-scale

spherules approximately 50 Å in diameter (Abidin et al. 2004), giving it a large adsorption capacity and

a high surface area (Ohashi et al. 2002; Iyoda et al. 2012). Allophanes can have a range of Al:Si ratios,

and at Al:Si ratios below ~2:1, the “excess” Si is polymerized in the interior of the allophane nano-

spherules (Childs et al. 1990; Parfitt 1990). In Fe-rich soils, Fe3+ can isomorphically substitute for some

or  most  of  the  Al,  producing Fe-substituted  allophane (e.g.,  Kitagawa 1973) or  a  related  mineral,

hisingerite  (approximately  Fe3+
2Si2O5(OH)4•H2O, Henmi et  al.  1980).  Like  allophane,  hisingerite  is

3

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51



poorly ordered and tends to form aggregates of hollow, porous nano-spherules in soils (Ingles and

Willoughby 1967), although the nano-spherules are much larger (~200 Å in diameter as per Shayan

1984).

Measurements  from  the  Chemistry  and  Mineralogy  (CheMin)  instrument  aboard  Curiosity

indicate that amorphous material is present in abundances from ~15-70 wt.% in all samples measured

to date (e.g., Bish et al. 2013; Blake et al. 2013; Dehouck et al. 2014; Vaniman et al. 2014; Treiman et

al. 2016;  Rampe et al. 2017; Sutter et al. 2017). The broad hump in the CheMin X-ray diffraction

(XRD)  patterns  of  these  samples,  which  was  assigned  to  amorphous  material,  has  been  fit  by  a

combination  of  allophane,  ferrihydrite,  and/or  rhyolitic  and  basaltic  glass  for  samples  of  modern

aeolian sediment (e.g., the Rocknest aeolian bedform; Bish et al. 2013; Achilles et al. 2017) and ancient

sandstone and mudstone (e.g., the Cumberland, John Klein, and Windjana drill sites; Vaniman et al.

2014;  Treiman et  al.  2016; Rampe et  al.  2017).  Plausible  chemical composition of the amorphous

component  for  inactive  aeolian  sediment  (i.e.,  soil)  was  estimated  by  subtracting  the  calculated

composition  of  the  crystalline  component  (determined  from  CheMin  data)  from  the  bulk  sample

composition obtained from Curiosity’s Alpha Particle X-Ray Spectrometer (APXS) (Bish et al. 2013;

Dehouck et al. 2014; Vaniman et al. 2014). Based on the Fe-rich nature of the material, hisingerite may

be present instead of or in addition to allophane (Bish et al. 2013; Dehouck et al. 2014).

Weathering of basaltic materials on Mars could have produced amorphous silica and Al-rich

clay minerals if the water-rock ratio was high (e.g., Catalano 2013). Amorphous silica and Al-rich clay

minerals on Mars may represent the final stages of an alteration sequence in which allophane is an

intermediate product. Although much research has been done on the structure of allophane (e.g., Childs

et al. 1990; Ohashi et al. 2002; Montarges-Pelletier et al. 2005; Iyoda et al. 2012; Bishop et al. 2013),

few data exist on its alteration mechanisms, including dissolution kinetics (Abidin et al. 2004), and to

our knowledge no dissolution rates have been measured for Fe-rich allophane.
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The objectives of this study were to determine the rates and conditions under which analogs for

the martian amorphous soil component persist, dissolve, and form secondary alteration phases. Fe-free

allophane, Fe-poor allophane, and Fe-rich allophane were synthesized; batch dissolution experiments

of  these  phases  were  performed  in  acidic,  near-neutral,  and  alkaline  conditions;  and  the  altered

materials were characterized. The obtained results can help to place constraints on the characteristics

and longevity of liquid water that was present in allophane-bearing regions on Mars after the formation

of these amorphous materials and to search for direct evidence of past aqueous alteration in returned

martian samples. 

MATERIALS AND METHODS

Synthesis procedures

Fe-free allophane,  Fe-poor allophane,  and Fe-rich allophane were synthesized following the

methods of Baker and Strawn (2012, 2014) and Baker et al. (2014). Plastic labware was used for all

steps of the synthesis in order to avoid silica contamination from glass.

Syntheses were carried out using AlCl3•6H2O (reagent grade, Alfa Aesar, Haverkill, MA, USA),

FeCl3•6H2O  (ACS  grade,  Mallinkcrodt,  Staines-upon-Thames,  United  Kingdom),  and  tetraethyl

orthosilicate (TEOS) (≥98% purity, Acros Organics, Fair Lawn, NJ, USA). Solutions of 0.1 M AlCl3

and FeCl3 were mixed, and TEOS was added. While stirring, a solution of 1 M NaOH (reagent grade,

VWR Chemicals BDH, Poole, United Kingdom) was added to the solution with a variable speed Just

Infusion syringe pump (Model NE-300, New Era Pump Systems Inc., East Farmingdale, NY, USA) at a

rate of 25 mL h-1 in order to hydrolyze TEOS and allow Si to bond with Al and Fe. The NaOH solution

was added until  a  molar  ratio of OH/(Al+Fe) = 3:1 was achieved in order to  maximize allophane

production and minimize the production of other phases, such as imogolite (Denaix 1993). The recipes

used for  synthesis  of  Fe-free  allophane,  Fe-poor  allophane,  and Fe-rich  allophane,  along with  the

Al:Fe:Si molar ratio, Brunauer-Emmett Teller (BET) specific surface area (SSA) and average particle
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size of each unaltered material, are summarized in Table 1. The precursor materials were stirred for one

additional hour after NaOH addition to ensure thorough mixing, and then incubated without stirring at

room temperature overnight to stabilize the suspension through an initial stage of colloid formation and

proton release (Denaix 1993; Montarges-Pelletier et al. 2005). The precursors were then heated in an

oven at 95ºC for seven days to promote colloid growth and maturation. The samples were removed

from the oven, cooled on the lab bench to room temperature, and washed with 18.2 MΩ deionized

water until the conductivity of the supernatant was <20 μS to remove excess ions and alcohol from

TEOS. The washed products were frozen in a -20ºC freezer for at least 24 hours, and then freeze-dried

to  create  the  final  solid  product.  Samples  were  sieved  to  <355  μm  prior  to  use  in  dissolution

experiments.

Characterization of unaltered material

The synthesized Fe-free allophane, Fe-poor allophane, and Fe-rich allophane were characterized

by  Fourier-transform  infrared  photoacoustic  spectroscopy  (FTIR-PAS),  X-ray  diffraction  (XRD),

evolved  gas  analysis  (EGA),  scanning  electron  microscopy/energy  dispersive  X-ray  spectroscopy

(SEM/EDS),  field-emission  SEM  (FE-SEM),  field-emission  scanning  transmission  electron

microscopy  (FE-STEM),  BET  SSA analysis,  particle  size  analysis,  and  total  chemistry  by  total

digestion.

FTIR-PAS FTIR-PAS analyses were carried out on a Varian FTS 7000 FTIR spectrometer with a

photoacoustic detector (Varian Inc., Palo Alto, CA, USA) in the Inorganic Materials & Nanomaterials

lab at  the University of Nevada,  Las Vegas (UNLV). The use of photoacoustic techniques allowed

samples to be analyzed with minimal preparation and was non-destructive to the sample. Absorption

spectra were obtained on loosely packed powdered samples. For all runs, the scanning speed was 2.5

kHz, with 64 scans collected at a resolution of 4 cm -1 over the 4,000-400 cm-1 (2.5-25 μm) range. For

each sample, the sample chamber with the sample was run through an open helium purge for 10 min,
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followed  by a  closed  helium purge  for  another  10  min  in  order  to  minimize  contamination  from

atmospheric gases. Carbon black was used to obtain a background spectrum for each run, and this

background spectrum was used as a correction for all sample spectra in order to remove absorptions

due to CO2 and other atmospheric gases. 

 XRD XRD patterns for unreacted Fe-free allophane, Fe-poor allophane, and Fe-rich allophane were

obtained using a PANalytical X’Pert Pro MPD 3040 instrument (Malvern Panalytical Ltd., Malvern,

United Kingdom) with a traditional spinner stage at NASA Johnson Space Center. Co Kα radiation was

used for all samples for comparison to CheMin XRD data. The scans were conducted at 45 kV/40 mA,

from 2º to 80º 2θ with a step size of 0.02º 2θ, 100 seconds per step. Before analysis, samples were

crushed gently in an agate mortar and pestle to break up aggregates and sieved to <75 μm. Silicon zero-

background slides in aluminum sample holders were used for all samples.

EGA Evolved  gas  analysis  was  conducted  on  Fe-free  allophane,  Fe-poor  allophane,  and  Fe-rich

allophane in order to compare these synthetic materials  with those measured in Gale crater by the

Sample  Analysis  at  Mars  (SAM)  instrument  on  the  Curiosity  rover.  EGA was  conducted  under

conditions similar to those utilized by SAM (i.e., ramp rate, pressure, and carrier gas). The analyses

were  conducted  in  a  Setaram  LabSys  Evo  thermal  gravimeter/differential  scanning  calorimeter

(TG/DSC)  furnace  (Setaram  Inc.,  Caluire,  France)  coupled  to  a  Pfeiffer  ThermoStar  GSD  320

quadrupole mass spectrometer (Pfeiffer Vacuum, Aßlar, Germany) at NASA Johnson Space Center. The

temperature range was from 30ºC to 1,000ºC with a ramp rate of 35ºC min-1.  The carrier gas was

helium, with a flow rate of 10 mL min-1, and the pressure was 30 mbar. Approximately 10 mg of sample

was used for each run, and samples were run in duplicate.

Microscopy Freeze-dried aggregates of unaltered Fe-free allophane, Fe-poor allophane, and Fe-rich

allophane were placed on carbon tape atop aluminum sample plugs and carbon coated for analysis

using a Denton Vacuum DV-502A carbon coater (Denton Vacuum LLC, Moorestown, NJ, USA). SEM
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and EDS analyses were carried out on a JEOL scanning electron microscope model JSM-5600 (JEOL

Ltd., Akishima, Tokyo, Japan) with a magnification range of 35x to 100,000x (1 μm resolution) with an

Oxford  ISIS  EDS  system  (Oxford  Instruments,  Abingdon,  United  Kingdom)  in  the  Electron

Microanalysis and Imaging Laboratory (EMiL) at UNLV.

In order to reach sufficient magnifications to distinguish the nano-spherules characteristic of

allophane, samples were examined on a JEOL JSM-6700F field-emission SEM (JEOL Ltd., Akishima,

Tokyo, Japan) with a magnification range of 500x to 430,000x (5 μm to 10 nm resolution) in the EMiL

at UNLV. Sample preparation was the same as for SEM/EDS analyses. A standard voltage of 15 kV

was used, with a working distance of 8.4 ± 0.1 mm. Fe-free allophane was examined in secondary

electron mode to investigate  topography of  particles,  whereas Fe-poor  and Fe-rich allophane were

examined in backscatter mode to investigate potential chemical variations within and between particles.

Transmission electron microscopy was carried out using a JEOL JEM-2500SE analytical field-

emission scanning transmission electron microscope (FE-STEM) (JEOL Ltd., Akishima, Tokyo, Japan)

with  up  to  1,000,000x  magnification  (1.5  nm  resolution)  at  NASA Johnson  Space  Center.  Both

conventional  and  STEM bright-field  imaging  were  used  in  order  to  identify  major  morphological

features of the grains, such as nano-spherules. Assessment of features on the crystal structure scale,

including those indicative of short- or long-range atomic order, was made using high-resolution lattice

fringe imaging (HRTEM). Freeze-dried samples were gently crushed in an agate mortar and pestle to

break up aggregates, suspended in ethanol, and droplet-deposited on amorphous holey-carbon films

supported on 200 mesh transmission electron microscope (TEM) grids (Electron Microscopy Sciences,

Hatfield, PA, USA). Major element composition of grains was assessed by EDS.

BET surface area and particle size analysis Approximately  400  mg  each  of  unreacted,  unground

synthetic Fe-free allophane,  Fe-poor allophane,  and Fe-rich allophane,  sieved to the <355 µm size

fraction used in the dissolution experiments, were prepared for determination of BET SSA and particle
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size analysis. The BET SSA values were used to normalize the calculated dissolution rates to surface

area and allow comparison of calculated rates to the literature.  BET SSA was determined using a

Micromeritics  TriStar  II  3020  surface  area  and  porosity  instrument  (Micromeritics  Instrument

Corporation,  Norcross,  GA,  USA)  at  NASA Johnson  Space  Center.  N2 was  used  as  the  analysis

adsorptive. Samples were degassed at 250°C under vacuum overnight to remove adsorbed water, which

can interfere with  accurate  BET results  by occupying adsorption sites  and preventing  the analysis

adsorptive from adsorbing. This temperature was chosen because it exceeds the temperature of water

release for allophane (100-150°C, Bish and Duffy 1990; Rampe et al.  2016) but is well below the

temperature at which allophane begins to transform to mullite (900-950°C, Parfitt 1990). Particle size

analysis was conducted on a Microtrac Bluewave S4640 particle size analyzer (MicrotracBEL, Osaka,

Japan)  at  NASA Johnson Space Center.  Samples were dispersed in ethanol  and sonicated prior  to

analysis. All analyses were run in duplicate to allow estimates of uncertainty.

Total chemistry Digestions were performed following a modification of the method of Potts et al.

(1984)  in  order  to  quantify  changes  in  chemical  composition  due  to  alteration.  For  each  sample,

approximately 0.1 g of material was mixed in a 1:5 mass ratio with lithium tetraborate (≥98%, Acros

Organics, Fair Lawn, NJ, USA). The dry mixture was heated at 975°C in a graphite crucible for 20 min,

and then allowed to cool to room temperature. The melt bead was removed from the crucible, mixed

with 100 mL of 1 M HNO3 (Mallinkcrodt, Staines-upon-Thames, United Kingdom) and stirred for 1 h

on low heat (~40°C). Another 100 mL of 1 M HNO3 was added after 1 h, and the suspension was

stirred for an additional 1 h on low heat until the melt bead fully dissolved. The solution was stirred at

room temperature overnight to ensure complete dissolution of silica species. After the overnight stirring

step, an aliquot of the solution was filtered to 0.2 μm and sent to UNLV for Al-Si-Fe measurements

using  an  iCAP Qc Inductively  Coupled  Plasma Mass  Spectrometer  (ICP-MS)  (Thermo Scientific,

Waltham, MA, USA). Graphite residues were observed on the filters due to graphite coatings on the
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original melt beads, but no other residues (i.e., incompletely dissolved sample) were observed on the

filters. Filtered sample solutions were diluted by a factor of 100 for Si-Fe measurements, and by a

factor  of  1,000 for  Al  measurements.  Synthetic  multi-element  standard  solutions  were  made from

HPSTM single element standard solutions (High Purity Standards,  North Charleston,  SC, USA) and

were  used  to  construct  standard  calibration  curves.  The  peaks  of  27Al,  28Si,  29Si,  and  57Fe  were

monitored  under  kinetic  energy  discrimination  (KED) mode  with  collision  cell  gas  on  to  remove

molecular interferences. The blank correction was typically lower than 15% for Si, 6% for Fe, and 1%

for Al. The sensitivity drift within each analytical sequence was less than 15%, and it was corrected by

using an external drift monitor (e.g., DeFelice et al. 2019). Each solution was measured twice in two

analytical sequences. These two measurements agreed within ± 3%, and their averages were reported.

Dissolution experiments and solution chemistry analysis

Experiments were prepared by adding 150.0 ± 0.4 mg of sample (Fe-free allophane, Fe-poor

allophane,  or Fe-rich allophane,  sieved to <355 μm) in acid-washed 250 mL polypropylene bottles

containing 180 mL of 0.01 M NaCl solution (made with reagent grade NaCl, VWR Chemicals BDH,

Poole, United Kingdom) adjusted to pH 3, 5, 7, or 10.4. The bottles were shaken in a shaker water bath

at  25.0  ±  0.1ºC at  50  rpm.  The  pH was  adjusted  with  high-purity  concentrated  HNO3 or  NaOH.

Experiments  were  performed  in  batch  to  examine  changes  in  the  solid  material  at  steady-state

conditions, such as formation of incipient phyllosilicates, likely relevant to low water-to-rock (W/R)

ratio isochemical  reactions that  may have occurred on Mars.  The pH was not  buffered due to the

potential for changes in reaction rate and mechanism caused by the presence of buffers in solution (e.g.,

Dove and Crerar 1990; Wogelius and Walther 1991; Stillings and Brantley 1995). However, 0.01 M

NaCl solution was used instead of deionized water to reduce drastic changes in ionic strength due to

dissolution, which can significantly affect the dissolution rates of high-silica materials compared to

dissolution in pure water (Dove and Nix 1997; Icenhower and Dove 2000). Each experiment was run in
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duplicate with one blank at each pH condition. Blanks consisted of 0.01 M NaCl solution with no

added allophane,  with the same amount of HNO3 or NaOH added as in the experiments. Solution

aliquots (10 mL each) were taken periodically based on expected dissolution rates of similar materials

(e.g., Liang and Readey 1987; Icenhower and Dove 2000; Huertas et al. 2001; Gislason and Oelkers

2003; Abidin et al. 2004; Rozalen et al. 2008; Gainey et al. 2014; Steiner et al. 2016) and preliminary

experiments.  The  resulting  change  in  water-sample  ratio  was  corrected  for  when  calculating  the

elemental release rate (see  Calculations below). The first 8 mL of each sample aliquot was filtered

through a 0.2 µm filter and acidified with 1% v/v high purity HNO3 (67-70%, VWR Chemicals BDH,

Poole, United Kingdom). The pH of the solution was measured from the remaining 2 mL of unfiltered

sample  aliquot.  Dissolution  experiments  are  summarized  in  Table  2, and  the  full  experimental

conditions for each experiment, including initial and final pH and total reaction time, are given in the

supplemental material (Data Sheets S1-S38). Experiments are referred to by starting pH (pH0) and

material: Fe-free allophane (FFA), Fe-poor allophane (FPA), or Fe-rich allophane (FRA). For example,

a dissolution experiment with Fe-free allophane with an initial pH of 3 would be named “pH0_3_FFA.”

Elemental analyses for dissolved Fe, Al, and Si were conducted via flame atomic absorption

(AA) spectroscopy on a  Thermo Scientific  iCE 3000 Series  AA Spectrometer  (Thermo Scientific,

Waltham, MA, USA) at UNLV. Dissolved Fe was measured using an air-acetylene flame and had a

practical quantitation limit of 0.2 mg L-1. The practical quantitation limit is defined as the concentration

at  which  the  instrument  response  is  roughly  10  times  greater  than  the  standard  deviation  of  the

calibration (Gibbons et al. 1991). Dissolved Al and Si were measured using an air-acetylene-nitrous

oxide flame and had practical quantitation limits of 1.0 mg L-1 and 0.2 mg L-1 respectively. Fe samples

were treated with CaCO3 (ACS grade, RICCA Chemical Company, Arlington, TX, USA) to reduce

interference,  and  Al  samples  were  treated  with  KCl  (molecular  biology  grade,  EMD  Millipore,

Burlington, MA, USA) to control ionization, following the methods of Eaton et al. (2005), and 18.2
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MΩ deionized water was used as an instrument blank.

Calculations

Dissolution  rates  were  determined  from moles  Si  released  into  solution  with  time.  The  Si

concentration measured in solution was corrected for volume removed during sampling to obtain moles

Si released using the equation:

mt=m(t−1)+(ct−c(t−1 ))V (t−1)                                 (1)

where  mt and  m(t-1) are  the moles  Si  released at  times  t and  t-1,  ct and  c(t-1) are  the corresponding

concentrations (mol L-1),  and  V(t-1) is the volume of solution (L) remaining at  time  t-1 (Welch and

Ulmann 2000). Dissolution of all materials showed an initial linear rapid Si release phase, followed by

a  slower  phase  that  approaches  steady  conditions  (Fig.  1).  This  approach  to  steady  conditions  is

expected in batch (closed-system) conditions either due to equal rates of silica dissolution from one

phase and silica precipitation to another phase, or due to true chemical equilibrium with respect to

some  silica-containing  phase.  The  initial  linear  part  of  the  curve  was  determined  by  fitting  a

preliminary regression line through the Si release data for the first 7 h of the experiment (generally

equivalent to the first 3-4 points), and the last data point that was within two standard deviations (2σ)

of this line was considered the final point of the linear part of the curve. This approach is similar to the

method used by Abidin et al. (2004) to determine the point at which allophane dissolution transitions

from an initial, rapid rate to a slower rate approaching steady-state. The section of the Si release curve

between zero and the first time point was not included in these calculations, as it may represent release

of Si due to rapid dissolution of fine particles (e.g., Nagy et al.  1991), and would therefore not be

representative of the dissolution rate of the bulk material.  When the first  point had a higher silica

concentration than the second point (both replicates of pH0_5_FRA, one replicate each of pH0_5_FFA

and  pH0_5_FPA),  the  first  point  was  not  included  in  the  regression,  as  this  was  interpreted  as

inadvertent sampling of solid material.  The initial linear part of the Si release curve determined as
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described above was then fit with a linear regression, where the slope of the line was the silica release

rate in mol s-1. The dissolution rate was calculated using the following equation:

rdiss=
∆m /∆ t
A×M

                                (2)

where rdiss is the dissolution rate (mol m-2 s-1), Δm/Δt is the silica release rate (mol s-1), A is the average

initial BET SSA of the material (m2 g-1), and M is the total mass of material in the reactor (g) (Table 3).

One  of  the  duplicate  experiments  of  pH0_7_FPA was  excluded  from the  rate  calculations  due  to

anomalous  experimental  conditions  (see  Data  Sheet  S18,  supplemental  material).  Although  BET

surface area is not a perfect measurement of reactive surface area (e.g., Velbel 1993; Gautier et al.

2001; Sanders et al. 2012), it allows comparisons of these surface area-normalized dissolution rates to

surface area-normalized measurements in the literature.. The average pH of the linear section of the

dissolution curve was considered to be the pH of the experiment, since the dissolution rate is also

determined over the same section (see Solution chemistry and Section S10). 

Rate laws were determined by plotting the log of the dissolution rates from Equation (2) against

the pH of the experiment, and then fitting the points with a linear regression. The resulting rate law was

of the form:

log rdiss=log k diss−n× pH         (3)

where kdiss is the dissolution rate constant, and n is the reaction order with respect to H+.

In order to provide a comparison to studies of other rapidly dissolving phases (e.g., Elwood-

Madden et al. 2012; Miller et al. 2016), particle lifetimes of Fe-free allophane, Fe-poor allophane, and

Fe-rich allophane were calculated by the shrinking sphere model (Lasaga 1984):

t=
d

2r dissV m
                            (4)

where t is the particle lifetime (s), d is the particle diameter (m), rdiss is the dissolution rate (mol m-2 s-1)

from Eq. (3), and Vm is the molar volume (m3 mol-1). The molar volume of all allophane samples was
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assumed to be ~101 cm3 mol-1 based on density values from Wada (1989) and calculated molecular

mass because significant volume change is not expected due to Fe-substitution in allophanes (Baker et

al. 2014). The particle lifetime was calculated for a particle 1 μm in diameter to facilitate comparison

with similar studies (e.g., Elwood-Madden et al. 2012; Miller et al. 2016), and for the measured particle

sizes of allophane aggregates in this study (given in Table 1). This calculation is presented as a first-

order estimate of allophane particle lifetimes because allophane does not typically form solid, spherical

particles in nature. 

Characterization of reacted materials

Following dissolution experiments, the solution was decanted from the dissolution vessels and

the solid material was centrifuged at 11,000 rpm for 5 min, washed twice with deionized water to

remove excess NaCl, and then frozen for at least 24 h before freeze-drying for analysis by SEM, FE-

STEM, XRD, and total digestion. The same sample preparation techniques and the same analytical

conditions were used for altered material as for the unreacted material. A summary of characterizations

is given in Table 4.

RESULTS

Characterization of unreacted materials

FTIR-PAS Infrared  absorbance  spectra  for  Fe-free  allophane,  Fe-poor  allophane,  and  Fe-rich

allophane (Fig. 2a) were similar to each other and consistent with previously published results (e.g.,

Wada 1989; Montarges-Pelletier et al. 2005; Rampe et al. 2012; Bishop et al. 2013; Milliken and Bish

2014). All samples had absorption bands at 3400 cm-1, 1645 cm-1, 1030 cm-1, and 940 cm-1, and a weak

band  near  620  cm-1,  and  varied  from the  literature  values  by  less  than  50  cm-1 (Fig.  S1).  A full

description  of  absorption  bands  and  their  assignments  is  presented  in  the  supplemental  material

(Section S1).
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XRD Unreacted Fe-free allophane, Fe-poor allophane, and Fe-rich allophane had similar diffraction

patterns with elevated low-angle background and broad peaks (Fig. 2b, supplemental material Fig. S2),

indicating an abundance of small particles and nano-crystalline structure, respectively (van der Gaast

and Vaars 1981). These synthetic materials have XRD patterns consistent with previous measurements

of  allophane  and  Fe-substituted  allophane.  The  peak  positions  obtained  by  XRD  for  unreacted

synthesized Fe-free allophane, Fe-poor allophane, and Fe-rich allophane are presented in Table 5 along

with  literature  values  for  natural  and synthetic  allophane samples  and natural  hisingerite  samples.

Mustoe (1996) presents a similar summary of the d-spacings of various natural hisingerite samples

from many locations, indicating variations in d-spacings of up to 0.3 Å, as well as variability in the

number of observed peaks. Values for hisingerite are included as a proxy for Fe-rich allophane, as little

literature exists on Fe-rich allophane (Ossaka et al. 1971; Farmer 1997; Baker and Strawn 2014).

EGA Fe-free  allophane,  Fe-poor  allophane,  and Fe-rich  allophane  exhibited  a  sharp  H2O release

centered at ~130°C, likely due to release of adsorbed H2O (Fig. S3), followed by a broader release

from ~130-400°C which may be due to release of structural H2O, consistent with previous laboratory

measurements of water release from allophane (e.g., Bish and Duffy 1990). Release of O2 occurred

concurrently with H2O release in all samples (Fig. S3-S4), indicating the O2 production resulted from

fragmentation  of  H2O during  ionization  in  the  mass  spectrometer. Overall,  these  observations  are

consistent with previous EGA measurements for allophane (e.g., Bish and Duffy 1990; Rampe et al.

2016). Differential scanning calorimetry (DSC) performed concurrently with EGA agreed well with

differential thermal analysis (DTA) of Fe-substituted allophanes by Ossaka et al. (1971), with a peak at

960 ± 10°C for Fe-free allophane that broadened and shifted to lower temperature with increasing Fe

content (924 ± 1°C for Fe-poor allophane and 791 ± 1°C for Fe-rich allophane; Fig. S5).

Microscopy In general, unreacted samples examined by SEM consisted of large, smooth grains ~300-

600 µm across coated with much smaller (~10-50 µm) flakes of “fluffy” material (Fig. 3a and  S6).
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Semi-quantitative EDS analyses, conducted concurrently with SEM investigations, yielded mainly Al,

Si, and Fe compositions consistent with synthesis ratios, and no major compositional differences were

observed between the larger, smooth grains and the smaller, “fluffy” material (Table S1). FE-SEM

analyses of unreacted material also showed that all samples contained small, “fluffy” aggregates (e.g.,

Fig.  3b and  S7)  as  well  as  large  chunks  of  material  that  are  likely  aggregates  formed  during

centrifugation  due  to  the  rapid  rotation  speed  (11,000  rpm)  required  to  pull  fine  particles  out  of

suspension. Chloride was detected in a few samples, most likely the result of incomplete washing, but

was not prevalent (Table S1).

Particles with nano-spherule structures, indicative of allophane, were observed in the FE-STEM

subsamples  of  the  unreacted  synthetic  materials  (Fig.  4).  Nano-spherules  have  previously  been

observed in samples of natural allophane (e.g., Wada 1989; Iyoda 2012) and natural hisingerite (e.g.,

Eggleton and Tilley 1998). The majority of Fe-rich allophane material was structurally disordered (i.e.,

amorphous)  based  on HRTEM images  analyzed by Fourier-transform image processing  (Fig.  4b).

Some  synthetic  Fe-rich  allophane  particles  exhibited  poorly  developed  lattice  fringes  in  localized

regions (e.g., Fig. 4c), indicative of mid- to long-range order. However, synthetic Fe-free allophane did

not show any lattice fringes, even when exposed to the electron beam for several minutes (Fig. 4e-f).

Two different textures  were also observed in  the Fe-free allophane sample; one “rugged” and one

“blobby” (e.g., Fig. 4d). A similar textural dichotomy has previously been observed in hisingerite-like,

poorly crystalline Si-Fe materials  (e.g.,  Decarreau et  al.  1987). Based on observations of a similar

texture in the altered Fe-free allophane, the “blobby” texture is likely more hydrated than the “rugged”

texture.  Only the “rugged” texture was observed in the Fe-rich allophane.  These morphologies are

consistent with those presented by Wada (1989) for natural allophane and Eggleton and Tilley (1998)

for natural hisingerite.
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BET surface area and particle size analysis The average BET SSA and particle sizes for unaltered Fe-

free allophane, Fe-poor allophane, and Fe-rich allophane are given in Table 1. The average BET SSA

for each material was used to normalize the initial dissolution rates to surface area. However, BET

surface area is not a perfect measurement of reactive surface area (Velbel 1993; Gautier et al. 2001),

especially in the case of materials with large internal surface areas, such as allophane. Additionally, due

to the tendency for allophane to form large aggregates consisting of hollow, porous nano-spheres (e.g.,

Fig.  3;  Abidin  et  al.  2004),  the  particle  sizes  reported here  represent  the mean sizes  of  aggregate

“grains” of each material, which helps to explain the apparent discrepancy between large particle sizes

and high surface areas. The complete results of particle size analyses and BET SSA analyses are given

in the supplemental material (Table S2).

Total digestions Comparison  of  digestion  data  with  predicted  compositions  of  the  unaltered

materials  from  the  formulae  indicates  additional  water  present  in  the  synthesized  phases,  either

structural  or  adsorbed,  as  well  as  the  phases  potentially  being  enriched  in  Al  (Table  6).  The

compositions of synthetic Fe-free allophane and Fe-poor allophane are similar to some natural samples,

and synthetic Fe-rich allophane is similar to certain synthetic hisingerite used in other studies (e.g.,

Baker and Strawn 2014), although it is more Al-rich than most natural hisingerite samples and the Mars

amorphous component, and more Fe-rich than most natural allophane samples (Tables 4 and S3-S6). 

Dissolution experiments

Solution chemistry For all experiments, an initial rapid linear change in pH occurred (Fig. 5), which

then leveled off to a steady pH value (pHsteady), corresponding to a stage in which a lack of change in

solution chemistry was observed (Fig. S8, Data Sheets S1-S38). The average pH of the linear release

stage was calculated and used as the pH of the experiment for calculation of the rate constant (see

Calculations). The initial and final pH data for the linear release stage of dissolution are summarized in

Table 3.
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The  production  or  consumption  of  H+ during  dissolution  of  Fe-free  allophane,  Fe-poor

allophane,  and Fe-rich  allophane can explain the observed pH trends,  as  well  as  the  potential  for

formation of secondary phases. For example, the dissolution of Fe-free allophane at pH0 3 is described

by the reaction

( Al2O3 ) (SiO2 )2 ∙3H2O+6H+¿→ 2 Al3 +¿+2H4 SiO 4+2H 2O ¿
¿         (5)

where  H+ ions  are  consumed,  driving  the  increase  in  pH  with  time  observed  in  the  pH0_3_FFA

experiment. At pH0 10, the dissolution of Fe-free allophane is described by the reaction

( Al2O3 ) (Si O2 )2∙3H 2O+6H 2O→2 Al (OH )4
−¿+2 H 3SiO 4

−¿+4H+ ¿¿
¿
¿         (6)

where  H+ ions  are  produced,  driving  the  decrease  in  pH with  time  observed  in  the  pH0_10_FFA

experiment. The relationship between predicted production and consumption of H+ ions and observed

changes  in  pH  in  these  experiments  was  consistent  across  the  range  of  pH  conditions  studied

(supplemental material, Section S8). Although dissolution was not stoichiometric, the general trends

described by the  equations held true; namely, that the predicted production and uptake of H+ ions

during Fe-rich allophane dissolution was less than that predicted during Fe-free allophane and Fe-poor

allophane dissolution. The scatter in the experimental rate data was likely due to the small dependence

of silica release rate on pH and possibly also due to pH change during the experiments (Fig. 5 and S8).

Fe remained below the practical quantitation limit of the atomic absorption spectrometer (<0.2

mg  L-1)  throughout  the  duration  of  the  experiment  in  all  experiments  except  pH0_3_FRA.  Iron

concentration in solution in the pH0_3_FRA experiment first increased rapidly, then decreased more

slowly (Fig. 1a and S9). Likewise, Al was only above the practical quantitation limit (1.0 mg L-1) in the

pH0 3 experiments, likely because these were the only experiments whose pH remained below ~5 for

the duration of the experiment, and Al precipitation is expected near or above pH ~5. Al concentration

in  the  pH0 3  experiments  first  rose  rapidly,  and  then  leveled  off  or  decreased  slowly  as  the  pH

approached pHsteady, similar to the behavior of Fe in these solutions (Fig. 1a and S10).
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For all experiments, Si concentrations were above the practical quantitation limit (0.2 mg L-1) at

all time points (Fig. 1a and S11-S14), and changes in Si concentrations were similar to trends in pH.

Initially, dissolved Si concentrations increased linearly (e.g., Fig. 1b), and then gradually leveled off to

steady concentrations of ~0.2-0.5 mM within 18 days.

Dissolution  of  Fe-free  allophane,  Fe-poor  allophane,  and  Fe-rich  allophane  was  non-

stoichiometric at pH0 3. During the pH0_3_FRA experiment, Fe release was always below the ~0.5:1

stoichiometric formula Fe/Si ratio, while Al release was initially higher than the ~0.5:1 stoichiometric

formula Al/Si ratio, and then decreased with time to approximately stoichiometric formula values (Fig.

6). The pH0_3_FFA and pH0_3_FPA experiments also showed Al/Si ratios in solution that were initially

above stoichiometric formula values and then decreased to below the ~1:1 stoichiometric formula value

(Fig. 6). Determination of whether dissolution at pH0 5, 7, and 10 was stoichiometric was not possible

because dissolved Fe and Al remained below the practical quantitation limit of the AA spectrometer

throughout these experiments; low concentrations in solution could have been due to precipitation of

secondary phases or adsorption of Fe3+ and Al3+ onto surfaces. Solution chemistry for each time point

for each experiment is reported in the supplemental material (Section S10).

Rate laws Surface area-normalized dissolution rate laws (rdiss, Eq. (3)) were logrdiss = -10.65 – 0.15

× pH for Fe-free allophane, logrdiss = -10.35 – 0.22 × pH for Fe-poor allophane, and logrdiss = -11.46 –

0.042 × pH for Fe-rich allophane. Rate laws for each material were plotted along with the measured

rate for each experiment (Fig. 7). The pH dependence for all materials was low; for Fe-free allophane,

n = 0.146 ± 0.026; for Fe-poor allophane,  n = 0.222 ± 0.040; and for Fe-rich allophane,  n = 0.042 ±

0.016, where the error is the 1-σ standard deviation of n. The pH dependence of Fe-free allophane and

Fe-poor allophane dissolution were almost the same within uncertainty, which is not surprising given

the structural and compositional similarity of these phases.

The  pH  dependence  of  Fe-rich  allophane  dissolution  was  lower  than  that  of  the  Fe-free
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allophane and Fe-poor allophane. Similar trends in the pH-dependence of dissolution are observed for

Al-rich montmorillonite (e.g., Huertas et al. 2001; Rozalen et al. 2008) and Fe3+-rich nontronite (e.g.,

Gainey et al. 2014), and amorphous Al- and Fe3+-phosphates (Tu et al. 2014), with the Fe-rich material

showing a lower pH dependence than the Al-rich material in both cases. Although the water exchange

rate around Fe has been shown to be more rapid than that around Al (e.g., Helm and Merbach 2005;

Miller et al. 2016), the first hydrolysis constant for Fe3+ is much larger than that of Al3+ (Lamb and

Jacques 1938; Frink and Peech 1963), which may result in the rapid formation of Fe-hydroxides (e.g.,

Hsu 1976). Additionally, precipitation of Fe-oxide or oxyhydroxide coatings on material surfaces may

protect those surfaces from the surrounding solution and therefore slow dissolution of Fe-rich materials

compared to Al-rich materials under acidic conditions.

Particle lifetimes Particle lifetimes for Fe-free allophane, Fe-poor allophane, and Fe-rich allophane

are given in  Table 7. Particle lifetimes were calculated both for a 1 μm particle for comparison to

literature on other rapidly dissolving phases (e.g., Elwood-Madden et al. 2012; Miller et al. 2016) and

using the measured particle size of each unaltered material (Table 1). Particle lifetimes are 0.02-0.18

kyr for a 1 μm particle, and 2.5-24.0 kyr for the measured particle sizes. Field dissolution rates of

silicate minerals are generally ~2 orders of magnitude slower than laboratory dissolution rates (e.g.,

Velbel 1993; Zhu et al. 2016), giving a final estimate between 1.9-6.7 kyr for the lifetime of a 1 μm

allophane  particle  in  moderately  acidic  waters,  and  10.6-18.0  kyr  in  moderately  alkaline  waters,

consistent with other estimates of the lifetime of martian waters based on the dissolution of rapidly

dissolving phases (e.g., Elwood-Madden et al. 2009). Using the measured particle sizes, these estimates

extend to 0.3-2.4 Myr. Lower temperatures, higher salinities (above ~0.05 M), and the presence of

liquid water intermittently, rather than persistently, would additionally extend these lifetimes.

An important caveat to these lifetimes is that allophane does not generally form solid spherical

particles; rather, it forms loose aggregates that span tens of microns, each made up of hollow, porous
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nano-spheres  ~5-50 nm in diameter  (Fig.  3  and S6-S7),  which may not  dissolve according to  the

shrinking sphere model. Although natural allophane is present in soils up to ~2 kyr old in tropical

climates (Bleeker and Parfitt 1974) and in soils >30 kyr old in more temperate zones (Nagasawa 1978),

allophane  in  these  soils  may  exist  as  an  intermediate  material,  being  simultaneously  formed  and

transformed to more ordered phases or dissolved, potentially in different zones of the soil. Regions

where  allophane  is  present  would  then  represent  an  environment  where  the  accumulation  rate  of

allophane is equal to or greater than the rate at which allophane is transformed or dissolved, and not

necessarily regions where allophane particle lifetimes are tens of thousands of years.

Characterization of reacted materials

XRD Samples of Fe-free allophane, Fe-poor allophane, and Fe-rich allophane from each experiment

were examined with XRD to investigate possible formation of secondary phases. No well-crystalline

products, such as gibbsite or hematite, were present above the detection limit of the instrument (~1 wt.

%); however, a broad, low-angle peak developed as a result of alteration in Fe-free allophane reacted at

pH0 3, 7, and 10; in Fe-poor allophane reacted at pH0 3; and in Fe-rich allophane reacted at pH0 10

(Fig. 8 and S15). This broad peak occurs near 11-12 Å, larger than the typical (001) d-spacing for

kaolinite (~7.2 Å, Goodyear and Duffin 1961) and smaller than that of type examples of hydrated

smectites (13.5-15 Å, Moore and Reynolds 1997), although similar to the (001) peak observed by

Pickering  (2014)  in  the  partially  hydrated  SWy-2  Na-montmorillonite  (11.8  Å)  and  certain  other

samples of montmorillonite (e.g., Kloprogge et al. 2002, with d-spacings of 11.5-15.0 Å). The 11-12 Å

peak could alternately be due to the collapse of a smectite-like phase due to exposure to vacuum during

freeze-drying (e.g.,  Frushour  and Bish,  2017).  Therefore,  this  broad peak may represent  the  early

development of a clay mineral, as also seen in the HRTEM results. The observed peak positions for all

reacted and unreacted materials are given in Table 8.

21

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479



Microscopy Analyses by SEM of pH0_3_FRA (pHsteady ~4) reacted for two days and for one month

revealed that the grain texture tended to become more porous with increasing dissolution time, and that

the grains themselves tended to become smaller (Fig. S16-S17), possibly indicating the presence of less

ordered material  that dissolves more rapidly than the surrounding material,  causing disaggregation.

Analyses of reacted materials by SEM are summarized in Table S1.

After a 2-month reaction time, pH0_10_FRA showed the formation of small (~2 µm) linear

features within the larger Fe-rich allophane aggregates (Fig. 9a and S18) in HRTEM analysis (analyses

of reacted materials by HRTEM are summarized in Table S7). These features were interpreted as the

rolled or curled edges of silicate sheets,  possibly due to the incipient  conversion to phyllosilicate.

Similar  features  have  been observed in  synthetic  hisingerite-like  Si-Fe precipitates,  and were  also

interpreted as the edges of phyllosilicate sheets (Decarreau et al. 1987). Overall, the material was still

poorly crystalline, and the linear features did not demonstrate a higher degree of crystallinity than the

surrounding masses,  as demonstrated by their  lack of lattice fringes.  The linear features were also

observed in pH0_3_FRA reacted for 6 months, although they were much less prevalent (Fig. S19). In

contrast, no linear features were observed in unaltered Fe-rich allophane.

Only a few of these linear “edge-curl” features were observed in pH0_10_FFA reacted for 2

months  (Fig.  S20).  Fe-free  allophane  also  maintained  the  morphological  dichotomy  between  a

“rugged” texture and a “blobby” texture (Fig. 9b) seen in the unreacted material. The “blobby” texture

was rapidly destroyed by the high-energy STEM beam, while the “rugged” texture was more robust,

suggesting a higher degree of hydration in the “blobby” material (Fig. S21; Decarreau et al. 1987). This

extreme beam-sensitivity was only directly observed in the altered Fe-free allophane but may also be

true of the unaltered Fe-free allophane. No “blobby” material was observed in the altered or unaltered

Fe-rich allophane samples.
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Total digestion Changes  in  bulk  chemistry  due  to  dissolution  are  given  in  Table  6.  Total

digestions show that SiO2 was preferentially released from some samples (e.g.,  pH0_7_FPA), while

others (e.g., pH0_7_FFA) maintained relatively stable SiO2 content. The amount of SiO2 released during

dissolution of Fe-rich allophane correlated well with the change in bulk SiO2 content measured by total

digestion (Fig. S22). Neither Fe-poor allophane nor Fe-rich allophane showed detectable differences in

Fe2O3 between experimental conditions and the unreacted samples. The observed enrichment in Al2O3

in some samples (e.g., pH0_10_FFA) is due to a net loss of SiO2 from the samples. This is corroborated

by the pH0_7_FPA experiment,  where the greatest  net  loss of SiO2 (~1 wt.% versus the unreacted

sample) is accompanied by the greatest enrichment in Al2O3 (~12 wt.% versus the unreacted sample).

No correlation between SiO2 loss and Al2O3 enrichment or loss was observed in the Fe-rich allophane

samples.

DISCUSSION

Comparison of synthetic and martian amorphous materials

Comparison of synthetic materials to phases found on the martian surface is necessary to ensure

that they are appropriate functional analogs. These synthetic analogs can help elucidate properties of

the amorphous component in martian rocks and soils that cannot be examined with current remote

instrumentation, such as dissolution kinetics, micro-morphology, and formation of secondary phases.

The XRD patterns of synthesized Fe-free allophane, Fe-poor allophane, and Fe-rich allophane

all have broad peaks centered around 28º 2θ Co Kα (3.39-3.5 Å, Fig. 2b, Tables 5 and 8), similar to the

amorphous  humps  in  the  CheMin  patterns  of  samples  from  Gale  crater  (Fig.  10),  including  the

Rocknest “soil” sample and the Cumberland, John Klein, and Windjana rock samples (Bish et al. 2013;

Achilles  et  al.  2017).  Mass-balance  calculations  (e.g.,  Dehouck et  al.  2014;  Vaniman et  al.  2014;

Achilles  et  al.  2017;  Morrison  et  al.  2018;  Rampe  et  al.  2018)  provided  a  range  of  possible

compositions for the martian amorphous component, bearing in mind that the compositions may be
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slightly skewed by the presence of crystalline phases in abundances below the CheMin detection limit

(e.g.,  Smith et al.  2018; Rampe et al.  2020;  Table S6).  The Al contents of the synthesized Fe-free

allophane,  Fe-poor  allophane,  and  Fe-rich  allophane  are  much  higher  than  that  of  the  martian

amorphous component (Table S6), which may be due to the presence of other high-silica and high-Fe

phases, such as high-silica glasses (e.g., 72.5 wt.% SiO2, 9.36 wt.% Al2O3, 0.95 wt.% FeO; Beard et al.

2015) and/or opaline silica, Fe-oxides, and Fe-sulfates in the martian samples (Achilles et al. 2017;

Rampe et al. 2017). Alternately, Al-rich amorphous materials, such as allophane, may simply not be

present in the Mars amorphous material. The high Fe and Si contents of the martian material indicate

that hisingerite (~33.5 wt.% Fe, ~16.8 wt.% Si; Henmi et al. 1980) or a co-occurrence of ferrihydrite

and amorphous silica are plausible component phases (Dehouck et al. 2017).

The EGA data of the synthetic samples used in this study (Fig. S3-S4) were dominated by water

release at ~130-400ºC. SAM data from the Rocknest, Cumberland, John Klein, and Windjana samples

in  Gale  crater  showed  H2O  release  primarily  between  100-450ºC,  likely  including  releases  from

hydrated sulfates and clay minerals (Leshin et al. 2013; Sutter et al. 2017). Sutter et al. (2017) predict

adsorbed water release, perhaps due to allophane and other amorphous phases, below ~200ºC, and

Leshin et al. (2013) attribute water release from martian samples at ~110ºC to allophane. These values

(≤200ºC  and  ~110ºC)  are  consistent  with  the  measured  release  at  ~130-400ºC  from  the  samples

examined in this study. Therefore, although only a small fraction of the water release from samples at

Gale crater is attributed to amorphous materials, measurements of these synthetic allophanes agree well

with that fraction.

Based on current data and the results of XRD, total chemistry, and EGA analyses, therefore,

synthetic Fe-free allophane, Fe-poor allophane, and Fe-rich allophane are appropriate analogs for at

least portions of the amorphous component in modern martian soils and ancient sedimentary rocks and

can be used to help better understand these amorphous materials.
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Dissolution rates and rate laws

The dissolution rates measured for Fe-free allophane, Fe-poor allophane, and Fe-rich allophane

are  within  10% of  each  other  (Fig.  7)  and  are  approximately  an  order  of  magnitude  faster  than

dissolution rates of crystalline clay minerals of similar compositions, such as nontronite (Gainey et al.

2014; Steiner et al. 2016) and montmorillonite (e.g., Huertas et al. 2001; Rozalen et al. 2008) (Fig. 11).

This  trend is  consistent  with  trends  observed for  other  amorphous  or  poorly crystalline  materials;

amorphous  Al  and  Fe  phosphates  dissolve  more  rapidly  than  crystalline  Al  and  Fe  phosphates

(Huffman 1960; Tu et al. 2014), and amorphous silica dissolves more rapidly than quartz (Liang and

Readey 1987). However, the surface area-normalized dissolution rates measured for Fe-free allophane,

Fe-poor allophane, and Fe-rich allophane are similar to those measured for goethite at pH ~3 (Cheah et

al. 2003), amorphous silica at pH ~3 (Icenhower and Dove 2000), and alunite at pH ~3-5 (Miller et al.

2016)  at  the  same  pH  values,  and  are  slower  than  the  surface  area-normalized  dissolution  rates

measured for basaltic glass (Gislason and Oelkers 2003) and jarosite (Elwood-Madden et al.  2012)

across the pH range (Fig. 11a). Based on the surface area-normalized dissolution rates, interactions

between liquid water and poorly crystalline silicate phases, such as allophane and hisingerite, release

cations  and  silica  into  solution  more  rapidly  than  well-crystalline  silicate  phases  with  similar

compositions (especially when there is polymerized Si in the interior of the allophane or hisingerite

nano-spherules), but at rates similar to or slightly slower than well-crystalline Fe/Al-sulfates and Fe-

oxides and amorphous silica. However, the samples used in this study have very high BET surface

areas (380-510 m2 g-1,  Table 1) and BET surface area is not a perfect proxy for reactive surface area

(e.g.,  Gautier  et  al.  2001).  For  example,  in  both  martian  and  terrestrial  environments,  mineral

dissolution is likely affected by the surface area accessible to water, which may be affected by the size

of  allophane  aggregates  (Karube  et  al.  1996)  or  armoring  of  allophane  surfaces  by  secondary

precipitates.  To account  for  the  very  high  specific  surface  areas  of  these  materials,  the  measured
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dissolution rates were also normalized to the mass of material in the reactor (Fig. 11b). The mass-

normalized  dissolution  rates  of  these  synthetic  materials  are  faster  than  those  of  montmorillonite,

nontronite,  goethite,  and basaltic  glass,  and are  similar  to  those  of  amorphous  silica,  alunite,  and

jarosite.

A low pH dependence is observed for dissolution of all materials in the initial pH range from 3

to  10  (Fe-free  allophane,  n =  0.145 ±  0.028,  Fe-poor  allophane,  n =  0.222 ±  0.040,  and  Fe-rich

allophane, n = 0.042 ± 0.016). These dependences are much lower than for other silicates with similar

compositions;  for example,  for montmorillonite,  n = 0.34,  and nontronite,  n = 0.297, under acidic

conditions (Huertas et al. 2001; Gainey et al. 2014). Based on dissolution experiments with naturally

occurring allophane conducted by Abidin et al. (2004), the pH dependence of allophane dissolution

likely increases dramatically above pH ~10, similar to the trend observed in the pH dependence of

kaolinite  dissolution  (nOH- =  0.472,  Palandri  and  Kharaka  2004  and  references  therein).  In  both

materials, this is likely due to the increased solubility of silica and aluminum at high pH.

The  dissolution  behavior  of  Fe-free  allophane,  Fe-poor  allophane,  and Fe-rich  allophane—

similar  dissolution  rates,  with  low reaction  orders  with  respect  to  pH—may be  explained  by  the

structures of allophane and hisingerite. Allophane consists of hollow, porous nano-spherules ~5 nm (50

Å) in diameter, formed from a rolled silica sheet surrounded by a gibbsite sheet (Iyoda et al. 2012;

Wada 1989). Additional polymerized Si is contained in the interior of the nano-spherules when the

Al:Si ratio is less than ~2:1 (Jeute et al. in press; Childs et al. 1990; Parfitt 1990). Although gibbsite

dissolution has a large reaction order with respect to pH (n = 0.992) (Palandri and Kharaka 2004),

dissolution of pure silica phases, such as amorphous silica, does not depend on pH (e.g., Palandri and

Kharaka 2004). Therefore, dissolution rates based on Si release rates would be expected to be relatively

insensitive to pH because the interior polymerized Si can enter solution through the nano-spherule

pores regardless of the rate at which the gibbsite layer is dissolved. In the high-acidity experiments
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(pH0 3), an initial preferential leaching of Al is observed, consistent with the rapid dissolution of an Al-

rich layer, and little variation in dissolution rate based on silica release rate is observed across the range

of pH conditions, consistent with the mostly independent dissolution of interior silica.

A similar layered nano-spherule structure is observed in hisingerite (Shayan 1984; Eggleton and

Tilley 1998) and may also exist in Fe-rich allophane. However, the hisingerite layers occur in multiple

concentric sheets, similar to the structure of true phyllosilicates, and form nano-spherules up to 200 Å

in diameter (Shayan 1984). These multiple concentric layers may reduce the dissolution rate under

acidic conditions by protecting the interior of the spherules from protons in solution. Precipitation of

Fe-oxide phases on the surface of hisingerite particles might also inhibit further dissolution by blocking

pores or access to surface sites. The dissolution reactions of these synthetic allophanes (e.g.  Eq. (5),

Section S8) also help explain the lower pH dependence of Fe-rich allophane than the Fe-free and Fe-

poor  allophanes by demonstrating the reduced consumption/production of H+ by Fe-rich allophane

versus Fe-free allophane and Fe-poor allophane.

Release of Fe and Al from synthetic materials in this study was approximately equal to or below

stoichiometric values with respect to Si (Fig. 6), with all Fe:Si and Al:Si ratios below stoichiometric

values when pHsteady was reached. This non-stoichiometric dissolution indicates that the altered material

is likely more Al- and Fe-rich than the starting material, as supported by chemical composition of the

reacted samples (Table 8). Aluminum (and Fe if present) is first leached rapidly from the gibbsite sheet

in the nano-spherules (Data Sheets S29-S38), and then may be reprecipitated or adsorbed, as indicated

by the decrease of solution concentrations of Al and Fe with time.

Secondary phases and altered material

Allophane and hisingerite are generally considered to occur as intermediates in the formation of

more stable phases, such as kaolinite and nontronite (Wada 1989). Generally, during the weathering

process, silica and aluminum or iron can combine to form allophane and/or hisingerite, which are then
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converted to imogolite or halloysite, and then to more mature layer silicates (Wada 1989). However,

despite  the  studies  examining  these  large-scale  transitions,  little  work  has  examined  the  incipient

weathering of poorly crystalline phases such as allophane and hisingerite (e.g.,  Farmer et al.  1991;

Farmer 1997). This study shows that under alkaline conditions, layered, phyllosilicate-like precursor

materials  form rapidly  (on  the  order  of  a  few months)  from Fe-free  and  Fe-rich  allophane  under

laboratory conditions, in agreement with previous work by Farmer et al. (1991) and Farmer (1997),

which examined weathering of hisingerite under high temperatures and in calcareous conditions at both

high and low temperatures.

FE-STEM analyses of pH0_10_FRA reacted for 2 months (pHsteady ~8) showed linear “edge-

curl” features that were not present in the unreacted materials (Fig. 4a,  4c, 9a, and S18). At low pH,

fewer of these linear features were observed (Fig. S19). This observation supports the XRD data that

indicate incipient phyllosilicate formation from Fe-rich allophane is less favorable at low pH than at

alkaline pH.

As described above, Fe-free allophane and Fe-poor allophane show fewer phyllosilicate-like

“edge-curl” features than Fe-rich allophane when reacted under alkaline pH conditions for 2 months

(Fig. S20-S21). The Fe-rich allophane may behave differently than the Fe-poor and Fe-free allophanes

because of reprecipitation or reduced dissolution of the Fe-containing material, as evidenced by the

decrease in Fe concentration in solution with time (see Fig. 1, Fig. 6, and Fig. S9). Reprecipitated Fe-

containing material, in combination with the silica-rich solution generated during alteration at alkaline

pH, may create a favorable environment for incipient phyllosilicate characteristics to develop, similar

to  the formation  of  framework  layers  containing  silica  and  divalent/trivalent  cations  during  the

synthesis  of  nontronite  and  saponite  by  the  sol-gel  method  (e.g.,  Harder  1976;  Harder  1978;

Baldermann et al. 2014; Gainey et al. 2017) and the formation of some seafloor nontronites (Sun et al.

2011).  Because the  Fe-free  and Fe-poor  allophane lack  significant  Fe,  they  may be less  likely  to
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develop phyllosilicate precursor phases when exposed to alkaline Si-containing solutions.

Bulk chemistry of unreacted and reacted samples (Table 6) shows that some reacted samples

underwent a net loss of Si versus the unreacted sample, while others did not. A net loss of Si was

observed in Fe-rich allophane samples across the range of pH conditions studied here, although there

was no clear correlation between net Si loss and the pH of the experiment. A net loss of Si was also

observed  in  the  pH0_7_FPA experiment.  No  appreciable  differences  in  Si  content  were  observed

between any of the Fe-free allophane samples. This observation indicates that the Si that dissolved

from all of the Fe-free allophane experiments and all but one of the Fe-poor allophane experiments

either  a)  reprecipitated  before  the  end  of  the  experiment  (but  was  not  detectable  via  XRD  or

microscopy), or b) did not dissolve in sufficient quantity to produce a detectable change in Si content of

the final reacted material. Similarly, for the Fe-rich allophane experiments (and pH0_7_FPA), Si may

have dissolved in sufficient quantities to detectably affect the composition of the remaining solids, and

not reprecipitated in sufficient quantities to erase the signature of its dissolution. The amount of Si

released into solution during dissolution experiments and the amount of Si remaining in each sample

was plotted to illustrate this relationship (Fig. S22).

Implications of experiments for Mars

The dissolution experiments with Fe-free and Fe-bearing allophane demonstrate rapid initial

dissolution and enrichment of Al and Fe across the range of pH conditions. Silicon in the interiors of

Fe-free allophane, Fe-poor allophane, and Fe-rich allophane nano-spherules is accessed through pores

in the nano-spherule walls, dissolves rapidly with little dependence on pH, and tends to remain in

solution. Aluminum and Fe from the nano-spherule walls may rapidly re-precipitate, readsorb, or not

enter solution at all. FE-STEM analyses of reacted materials show diagnostic linear features (e.g., Fig.

9a) that are not seen in unreacted material, which are more prevalent at alkaline pH than at acidic pH.

In the event that samples containing hisingerite or allophane are returned from Mars, similar features
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that  indicate  brief  interaction  with  past  liquid  water  (on  the  order  of  months  to  years)  might  be

detectable.  The  rapid  alteration  of  poorly  crystalline  silicate  materials  could  be  a  useful  tool  for

examining very short-lived episodes of water-rock interaction; on timescales where more crystalline

silicate  materials  would  show  little  to  no  chemical,  mineralogical,  or  structural  change  due  to

interaction  with  water,  poorly  crystalline  silicate  materials  may  be  significantly  altered.  However,

evidence for limited water-rock interactions captured by poorly crystalline silicate materials in returned

martian samples may not capture in-situ processes. Martian samples will be sealed in collection tubes

and left on the surface for years before return to Earth. Hydrated materials may dehydrate diurnally or

seasonally (e.g., Vaniman et al. 2018), potentially allowing water vapor to precipitate on particles in the

sample  tubes.  The  rapid  dissolution  rates  of  Fe-free  allophane,  Fe-poor  allophane,  and  Fe-rich

allophane  suggest  that  these  materials  may be  altered  if  sufficient  water  is  present  during  such  a

scenario and, therefore, samples should be returned rapidly to limit alteration within sample tubes.

The continued presence of allophanic materials in returned samples from Mars could indicate

that interactions of liquid water with the amorphous component were limited, consistent with other

observations of mineral assemblages in Gale crater (e.g., the co-occurrence of jarosite and fluorapatite,

as discussed by Rampe et al. 2017). Although the dissolution rates of all three synthetic materials were

fastest at pH0 3, and slower at more alkaline pH conditions, the range between the fastest and slowest

dissolution rates spans less than an order of magnitude. Therefore, allophane or hisingerite on Mars

would have dissolved or altered to more crystalline phases rapidly if abundant liquid water was present,

regardless of the water’s pH, although field dissolution rates are expected to be ~2 orders of magnitude

slower than the dissolution rates measured in laboratory experiments (e.g.,  Velbel 1993; Zhu et  al.

2016). The temperatures on Mars when liquid water was present were also likely much lower than

25°C,  which  would  further  slow dissolution  and  extend  the  lifetimes  of  allophane  or  hisingerite.

However, waters with low salt concentrations, such as those that might be found in the “dilute lake
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waters” that may have filled Gale crater (Rampe et al. 2017), can significantly enhance dissolution of

Si-rich phases like quartz and amorphous silica (e.g., Dove and Nix 1997; Icenhower and Dove 2000).

Higher concentrations of salts tend to slow dissolution rates across a range of minerals, with dissolution

rates slowing in proportion to decreasing water activity (Pritchett et al. 2012; Olsen et al. 2015; Steiner

et al. 2016), and high ionic strength brines, such as those proposed by Tosca et al. (2008) as the global

norm throughout most of martian history, could result in significantly reduced dissolution rates and

even further extend the lifetimes of rapidly dissolving phases.

Amorphous materials have been found in all samples examined to date in Gale crater, with the

relative proportion of amorphous material increasing from ~20 wt.% at the base of Mt. Sharp to >50

wt.% in formations farther up section (e.g.,  Frydenvang et al.  2017; Rampe et al.  2017; Yen et al.

2017).  The amorphous material  in  the  Pahrump Hills  member  becomes  increasingly  silicic  as  the

amount present in samples increases, although this may be due to a more silicic source rock (Morris et

al. 2016; Rampe et al. 2017). Likewise, the amount of smectite decreases along the traverse up-section

into  Pahrump  Hills  until  smectite  abundance  falls  below  CheMin’s  detection  limit,  while  phases

produced by acidic alteration (e.g., jarosite) are sandwiched between the silica-rich and smectite-rich

members (Morrison et al. 2018). Little olivine is observed in the rock samples from Gale crater, but

olivine is present in higher proportion in the aeolian samples, which are considered to be representative

of the bulk Mars crust (e.g., Bish et al. 2013; Blake et al. 2013; Meslin et al. 2013; Morrison et al.

2018). Taken together, these lines of evidence indicate that the rocks in Gale crater have undergone

significant in-situ chemical alteration (e.g., Yen et al. 2017; Hausrath et al. 2018; Morrison et al. 2018),

although the presence of a non-equilibrium mineral assemblage, including jarosite, fluorapatite, and

perhaps allophane or hisingerite, indicates that aqueous alteration was either time-limited or occurred in

multiple stages, with the later stages being both briefer and more acidic than those that preceded them

(e.g., Rampe et al. 2017; Yen et al. 2017; Hausrath et al. 2018).
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Based on the proposed chemical composition of the amorphous material and the presence of Fe-

rich  clay  minerals  in  the  stratigraphically  lowest  mudstones  of  Gale crater  (Cumberland and John

Klein),  the  amorphous  material  observed  in  these  samples  may  contain  a  significant  hisingerite

component (Dehouck et al. 2017). This hisingerite could represent an intermediate between primary

olivine/pyroxene and the smectite clay minerals. These mudstones are the most likely of the samples

from Gale crater that have been examined so far to contain hisingerite due to their Fe- and Si-rich

compositions, high proportions of clay minerals, and limited interaction with acidic waters (Bish et al.

2017). At the top of the Pahrump Hills member, where the amorphous component is predominantly

amorphous silica, there are no detectable smectites, indicating that either a) both the smectites and their

precursor phases (i.e., hisingerite) have been dissolved, or b) that no smectites or precursor phases ever

formed  there.  The  presence  of  acid  alteration  products  and  multiple  cation  deficiencies  in  these

locations point to extensive leaching by acidic groundwater. Acidic ground waters would be expected

to rapidly dissolve any hisingerite that was present in these rocks, producing abundant amorphous silica

as a leachate, and the subsequent dissolution of this silica may have been less rapid. However, a more

silicic sediment source may be responsible for the observed silica enrichment in Pahrump Hills (Morris

et al. 2016; Rampe et al. 2017), with acid alteration playing a more minor role, possibly during late-

stage diagenesis.

CONCLUSIONS

Dissolution  experiments  with  synthetic  Fe-free  allophane,  Fe-poor  allophane,  and  Fe-rich

allophane in the range of initial pH0 3-10 indicate rapid initial dissolution, approximately an order of

magnitude faster than that of well-crystalline clay minerals of similar composition.  The dissolution

rates based on Si release of all three materials showed little pH dependence across the experimental pH

range. For Fe-free allophane, logrdiss = -10.65 – 0.15 × pH; for Fe-poor allophane, logrdiss = -10.35 –

0.22 × pH; and for Fe-rich allophane, logrdiss = -11.46 – 0.042 × pH at 25°C, where rdiss has the units of
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mol m-2 s-1. Experimental results indicate that poorly crystalline allophane-like materials in Gale crater

would have dissolved rapidly when exposed to liquid water regardless of the water’s pH. The detection

of  poorly  crystalline  materials  in  Gale  crater  suggests  that  interaction  of  liquid  water  with  these

materials  was limited after  the X-ray amorphous materials  formed. In the case of more prolonged

interactions, the materials would be expected to have either dissolved completely, or altered to form

more stable phases. Dissolution in Gale crater would likely have proceeded significantly more slowly

than in these experiments, with particle lifetimes on the order of tens of thousands to hundreds of

thousands of years, due to the lower temperature and higher salinity expected for Mars’ ancient waters

as well as generally slower dissolution rates in the field than in the laboratory.

Analyses with FE-STEM of reacted Fe-free and Fe-rich allophane revealed structural changes,

including the formation of layered phyllosilicate-like structures within poorly crystalline agglomerates,

after only a few months of reaction time. Such structural changes may be a useful tool for interpreting

the weathering history of returned martian samples that have had limited interactions with liquid water.

Examination of Fe-free allophane, Fe-poor allophane, and Fe-rich allophane may be critical to

understanding the characteristics of short-lived martian waters. These phases may provide insight into

the duration of short-lived liquid water in Gale crater by allowing examination of aqueous alteration

features at a finer timescale than that provided by well-crystalline, aqueously altered minerals. With

continued investigation and characterization, the properties of the Mars amorphous component could

be used to constrain and elucidate the characteristics of Mars’ most recent waters.
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FIGURE CAPTIONS

Fig. 1 Representative solution chemistry data for a dissolution experiment. (a) Typical shape of the Si,

Al, and Fe release curves for Fe-free allophane, Fe-poor allophane, and Fe-rich allophane dissolution

(note the difference in scale between Si and Al released versus Fe released). (b) The linear portion of

the silica release curve as exemplified by a pH0_3_FRA experiment. The linear portion of the silica

release curve was fit with a linear regression (equation and R2 value shown). Error bars are the standard

error of the AA measurement, and are smaller than the points for the first three points. In general, Fe-

rich allophane reached higher final Si, Al, and Fe concentrations than Fe-free allophane or Fe-poor

allophane (Fig. S9-S14). No Al or Fe release was observed in experiments at pH0 5, 7, or 10. Fe release

was only observed in Fe-rich allophane experiments at pH0 3. All data for all experiments are given in

the supplemental material (Data sheets S1-S38)
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Fig. 2 FTIR-PAS absorption spectra (a) and XRD patterns (b) of unreacted synthetic Fe-free allophane,

Fe-poor  allophane,  and  Fe-rich  allophane.  (a) FTIR-PAS  absorption  spectra  of  synthetic  Fe-free

allophane, Fe-poor allophane, and Fe-rich allophane. All samples had absorption bands at 3400 cm-1,

1645  cm-1,  1030  cm-1,  and  940  cm-1 (labeled),  and  a  weak  band  near  620  cm-1 (shaded  box),  in

agreement with literature values for allophane and hisingerite. The spectra are offset for clarity.  (b)

Unreacted  synthetic  Fe-rich  allophane,  Fe-poor  allophane,  and  Fe-free  allophane.  In  the  Fe-rich

allophane  sample,  a  broad  peak,  indicative  of  nano-crystalline  structure,  is  visible  around  3.50  Å

(29.6°2θ), with minor broad peaks at 2.60, 2.24, and 1.92 Å (40.2, 47.1, and 55.5°2θ, respectively). In

the Fe-poor allophane sample, peaks occur at 4.41, 3.42, and 2.26 Å (23.4, 30.3, and 46.6°2θ). In the

Fe-free allophane sample, broad peaks occur at 4.35, 3.39, and 2.25 Å (23.7, 30.6, and 46.8°2θ). All

samples show elevated low background indicative of small particle sizes. Co Kα radiation was used for

all patterns
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Fig.  3 Synthetic  Fe-rich  allophane  imaged  by  SEM  (a) and  FE-SEM  (b).  Nano-spherules  are

distinguishable  in  the  “fluffy”  texture  of  the  aggregate.  Similar  textures  were  observed in  Fe-free

allophane and Fe-poor allophane samples (Fig. S6-S7, supplemental material). The long, apparently

smooth object in (b) is a ridge of “fluffy” material that is out of focus
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Fig.  4 FE-STEM images  of  synthetic  Fe-rich  allophane  (a-c) and  Fe-free  allophane  (d-f).  (a) An

agglomerate of synthetic Fe-rich allophane.  (b) Diffraction pattern from an agglomerate of unaltered

synthetic Fe-rich allophane, obtained during TEM investigations. Diffuse rings are visible, indicating

nanocrystalline structure. Diffractograms were not obtained for synthetic Fe-free allophane due to its

lack of lattice fringes, indicating no long-range order. (c) A very high-magnification view of synthetic

Fe-rich allophane. Lattice fringes (arrows) indicate some crystalline structure.  (d) An agglomerate of

synthetic  Fe-free  allophane.  Nano-spherule-like  structures  are  visible  along  the  edges  of  the

agglomerate. Both the “rugged” (black arrow) and “blobby” (white arrow) textures are visible.  (e) A

closer view of  (d), showcasing the “rugged” nano-spherule structures.  (f) Very high magnification of

synthetic Fe-free allophane. Note the lack of lattice fringes, indicating no long-range crystal structure
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Fig. 5 Observed change in solution pH with time over the range used to calculate dissolution rates for

experiments with pH0 3  (a), pH0 5  (b), pH0 7  (c), and pH0 10  (d). Points are the average pH value

between two duplicates. Solution pH was measured over the course of the entire experiments (see Fig.

S8).  Balanced chemical equations (see supplemental material  Section S8) explain the observed pH

changes
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Fig. 6 Al/Si ratio  (a) and Fe/Si ratio  (b) measured from solution in pH0 3 experiments versus time.

Points where Fe, Al, or Si were below detection are not plotted. The formula ratios of the unaltered Fe-

free allophane (FFA), Fe-poor allophane (FPA), and Fe-rich allophane (FRA) are indicated by FFA

Initial, FPA Initial, and FRA Initial, respectively. In panel (b), the Fe/Si synthesis ratio of the unaltered

Fe-rich allophane is 0.5, well above any of the measured ratios in our solutions

51

1183

1184

1185

1186

1187

1188

1189

1190



Fig. 7 Average of the dissolution rates (points) and rate laws calculated as described in the text (lines)

for Fe-free allophane, Fe-poor allophane, and Fe-rich allophane at pH0 values of 3, 5, 7, and 10. Error

bars represent the 1-σ standard deviation between duplicate experiments. Overall, the pH-dependence

of dissolution was low. All experimental data are given in the supplemental material
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Fig.  8 XRD  patterns  of  unreacted  Fe-free  allophane  and  Fe-free  allophane  reacted  at  pH0 3

(pH0_3_FFA), demonstrating the development of a possible phyllosilicate-like precursor phase (arrow)

with a peak centered around 12.3 Å. A similar, but less pronounced, feature was observed in Fe-free

allophane samples reacted at  pH0 7 and 10; in Fe-poor allophane reacted at  pH0 3;  and in Fe-rich

allophane reacted at pH0 10. XRD patterns of all unreacted and reacted materials were collected (see

Fig. S15). Co Kα radiation was used for all patterns
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Fig. 9 FE-STEM images of synthetic Fe-rich allophane (a) and Fe-free allophane (b), each reacted at

pHsteady values of ~8 (pH0 10) for 57 d. Edge-curl features were much less prevalent in the Fe-free

allophane sample than in the Fe-rich allophane (see Fig. S20, supplemental material, for an example of

an edge-curl feature in the Fe-free allophane). (a) Arrows indicate linear features that may represent the

curled edges of incipient phyllosilicate-like sheets. (b) The “blobby” morphology is visible on the left

(black arrow), while the “rugged” morphology is on the right (white arrow)
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Fig. 10 Comparison of the XRD patterns of synthetic Fe-free allophane, Fe-poor allophane, and Fe-rich

allophane with a 2-line ferrihydrite from the FULLPAT library and the CheMin XRD pattern from the

Rocknest  soil  sample.  Panel  (a) shows  the  full  patterns,  and  panel  (b) is  zoomed  in  to  better

demonstrate  the  concordance  between  our  amorphous  materials  and  the  amorphous  humps  in  the

Rocknest pattern. Co Kα radiation was used for all patterns

Fig. 11 Comparison of the log of the surface area-normalized (a) and mass-normalized (b) dissolution

rates of our synthetic Fe-free allophane, Fe-poor allophane, and Fe-rich allophane at 25°C (points) with

rate laws for montmorillonite (Rozalen et al. 2008), nontronite (Gainey et al. 2014), natural allophane

(Abidin et  al.  2004),  basaltic glass (Gislason and Oelkers.  2003), goethite (Cheah et  al.  2003), K-

jarosite (Elwood-Madden et al. 2012), alunite (Miller et al. 2016), and amorphous silica* (Rimstidt and

Barnes, 1980) (lines) *modified to reflect elevated dissolution rates in 0.01 M NaCl as per Icenhower et

al. (2000) in order to make a more direct comparison to the conditions of our dissolution experiments.

Slower dissolution rates of allophane relative to glass and jarosite in panel (a) may be impacted by the

very large surface areas of Fe-free allophane (BET SSA ≈ 386 m2 g-1), Fe-poor allophane (BET SSA ≈

350 m2 g-1), and Fe-rich allophane (BET SSA ≈ 507 m2 g-1), as evidenced by the mass-normalized rates

shown in panel (b). Error bars are smaller than the points
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TABLES

Table 1. Synthesis recipes, Al:Fe:Si molar ratios, BET SSA and particle sizes for Fe-free allophane, Fe-poor allophane, and
Fe-rich allophane. NaOH was used to hydrolyze TEOS to allow Si to bind with Al and Fe.

Material 0.1 M AlCl3

(mL)
0.1 M FeCl3

(mL)
TEOS
(mL)

1 M NaOH
(mL)

Al:Fe:Si
molar ratio*

BET SSA 
(m2 g-1)

Particle
size (μm)

Fe-free
allophane

167.00 0.00 3.72 50.00 1:0:1 385.77 ± 0.15 167.5 ± 2.2

Fe-poor
allophane

165.33 1.67 3.72 50.00 0.99:0.01:1 350.24 ± 10.67 133.1 ± 0.8

Fe-rich
allophane

83.5 83.5 3.72 50.00 0.5:0.5:1 507.48 ± 0.22 166.5 ± 4.9

*Synthesis ratios. The compositions of the final solids measured via total digestion were slightly more Al-rich than the 
synthesis ratios (Table 6).
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Table 2. Table of dissolution experiments. NA = none added.
Experiment name Material Starting solution Initial pH (pH0) Starting mass (mg)
pH0_3_FFA Fe-free allophane 0.01 M NaCl + HNO3 3.01 150.00 ± 0.10
pH0_3_FPA Fe-poor allophane 0.01 M NaCl + HNO3 3.01 150.25 ± 0.05
pH0_3_FRA Fe-rich allophane 0.01 M NaCl + HNO3 3.01 149.95 ± 0.35
pH0_3_BLANK NA 0.01 M NaCl + HNO3 3.01 0
pH0_5_FFA Fe-free allophane 0.01 M NaCl + HNO3 5.04 149.85 ± 0.25
pH0_5_FPA Fe-poor allophane 0.01 M NaCl + HNO3 5.04 149.85 ± 0.05
pH0_5_FRA Fe-rich allophane 0.01 M NaCl + HNO3 5.04 149.85 ± 0.25
pH0_5_BLANK NA 0.01 M NaCl + HNO3 5.04 0
pH0_7_FFA Fe-free allophane 0.01 M NaCl + NaOH 6.99 150.10 ± 0.10
pH0_7_FPA Fe-poor allophane 0.01 M NaCl + NaOH 6.99 150.2*
pH0_7_FRA Fe-rich allophane 0.01 M NaCl + NaOH 6.99 149.80 ± 0.10
pH0_7_BLANK NA 0.01 M NaCl + NaOH 6.99 0
pH0_10_FFA Fe-free allophane 0.01 M NaCl + NaOH 10.36 150.30 ± 0.10
pH0_10_FPA Fe-poor allophane 0.01 M NaCl + NaOH 10.36 149.95 ± 0.35
pH0_10_FRA Fe-rich allophane 0.01 M NaCl + NaOH 10.36 150.00 ± 0.30
pH0_10_BLANK NA 0.01 M NaCl + NaOH 10.36 0

*Duplicate experiment excluded because of low mass (73.7 mg), high standard error, and poor R2 value (Data Sheet S18).
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Table 3. pH at the first time point (ti) and at the final time point (tf) of the data used to calculate the dissolution rates, the 
dissolution rates (rdiss) and their 1-σ standard deviations (Std err). The “-1” or “-2” suffix indicates duplicate experiments. 
Averages of the data are plotted in Fig. 7 with rate laws calculated as described in the text. Cells in italics were omitted from
the rate law calculation due to anomalous experimental conditions (see supplemental material Data Sheet S18). All solution
compositions for each experiment at each time point are given in supplemental material (Data Sheets S1-S38).
Material pH 3 pH 5 pH 7 pH 10

pH at
ti

pH at
tf

rdissa

x 10-12
Std erra

x 10-12

pH at
ti

pH at
tf

rdiss
x 10-12

Std err
x 10-12

pH at
ti

pH at
tf

rdiss
x 10-12

Std err
x 10-12

pH at
ti

pH at
tf

rdiss
x 10-12

Std err
x 10-12

Fe-free
allophane-1

3.25 3.48 13.0 0.438 5.84 6.47 2.17 0.144 6.76 7.17 2.11 0.254 9.94 8.70 1.35 0.145

Fe-free
allophane-2

3.22 4.09 5.57 0.435 5.77 6.39 2.05 0.103 6.65 7.06 2.28 0.356 9.90 8.46 1.30 0.172

Fe-poor
allophane-1

3.21 4.04 5.70 0.423 5.59 5.98 1.95 0.101 6.38 6.40 1.39 0.0846 9.81 7.80 1.09 0.172

Fe-poor
allophane-2

3.24 3.48 14.7 2.75 5.55 6.05 1.88 0.119 6.37 6.35 1.49 0.936 9.78 7.39 0.716 0.0719

Fe-rich
allophane-1

3.07 3.23 2.17 0.0995 5.63 6.56 2.41 0.104 5.94 5.27 2.29 0.158 10.04 7.08 1.45 0.138

Fe-rich
allophane-2

3.07 3.54 2.48 0.203 5.50 6.46 1.85 0.226 6.05 5.24 2.31 0.132 10.03 6.85 1.50 0.265

ardiss and standard error have units of mol m-2 s-1
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Table 4. Summary of characterizations of altered synthetic materials. NA = No analysis performed. The different durations
for experiments with different pH0 values allowed all experiments to reach steady-state regardless of dissolution rate.

Method Fe-free allophane Fe-poor allophane Fe-rich allophane
pH0 pHfinal Duration (d) pH0 pHfinal Duration (d) pH0 pHfinal Duration (d)

SEM NA NA NA NA NA NA 3.02
3.02

5.35
6.54

2
31

FE-STEM 10.36 8.59 57 NA NA NA 3.01
10.36

4.78
6.39

181
57

XRD 3.01
5.04
6.99
10.36

4.42
6.85
7.20
7.79

20
12
93
18

3.01
5.04
6.99
10.36

4.35
6.37
6.40
7.18

20
12
93
12

3.01
5.04
6.99
10.36

3.97
7.06
5.00
6.56

20
12
93
12

Total
digestion

3.01
5.04
6.99
10.36

4.42
6.85
7.20
7.79

20
12
93
18

3.01
5.04
6.99
10.36

4.35
6.37
6.40
7.18

20
12
93
18

3.01
5.04
6.99
10.36

3.97
7.06
5.00
6.56

20
12
93
18
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Table 5. A summary of the peak positions observed in various natural and synthetic allophane and hisingerite samples. 
Table 8 gives peak positions for all materials, unreacted and reacted, examined in this study. Data for Allophane from Wada 
and Yoshinaga (1969). Data for Al-rich allophane from Parfitt (2009). Data for Synthetic allophane from Rampe et al. 
(2012). Data for iron-coprecipitated allophane from Ossaka et al. (1971). Data for Hisingerite from Henmi et al. (1980). 
Data for Hisingerite from Geelong, Victoria, Australia from Shayan et al. (1988). Data for Hisingerite from Riddarhyttan, 
Sweden and Gillinge, Sweden from Eggleton and Tilley (1998). Data for Hisingerite from Indiana University collection 
from Milliken and Bish (2014). Data for synthetic nontronites incubated at 150°C and 95°C from Baker and Strawn (2014).

Sample Peak positions (Å)

Allophane 3.3 2.25
Al-rich allophane 12 4.3 3.4 2.2 1.9 1.7
Synthetic allophane 3.5 2.2 1.4
Unreacted synthetic Fe-
free allophane (this study) 12.27 4.35 3.39 2.25

Iron-coprecipitated 
allophane 3.56
Unreacted synthetic Fe-
poor allophane (this study) 4.41 3.42 2.26

Hisingerite 4.4 3.5 2.5-2.6 1.4-1.5
Hisingerite from Geelong, 
Victoria, Australia 4.49 2.58
Hisingerite from 
Riddarhyttan, Sweden 7.70 4.44 3.57 2.56 2.26 1.69 1.54
Hisingerite from  Gillinge,
Sweden 7.51 4.41 3.58 2.57 2.41 1.68 1.54 1.32
Hisingerite from  Indiana 
University collection 4.4 3.6 2.6 1.5
Synthetic nontronite, 
150°C incubated 11.8 3.8 2.7 2.2
Synthetic nontronite,
95°C incubated 11.8 3.8
Unreacted synthetic Fe-
rich allophane (this study) 3.50 2.60 2.24 1.92
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Table 6. Compositions in wt.% oxide of unaltered and altered Fe-free allophane, Fe-poor allophane, and Fe-rich allophane 
determined by ICP-MS analysis of total digestion products (for SiO2, Al2O3, and Fe2O3) and thermal gravimetric analysis 
(TGA; for H2O) compared with samples from the literature and the approximate values expected from the chemical 
formulas. Error in the “formula” phases was determined by comparing variable Si, Al, Fe, and H2O contents in endmember 
compositions. Error in the analyzed samples represents the standard deviation between two runs of each sample. TGA was 
not conducted on altered samples because insufficient sample mass was available for analysis. Comparisons of the 
composition of each unaltered synthetic material with multiple samples from the literature are given in Tables S3-S5. “ND” 
= Not Detected. Data for Silica Springs from Theng et al. (1982). Data for Kanumatsuchi from Kitagawa (1974). Data for 
Hisinger from Hisinger (1928).

Sample SiO2 Al2O3 Fe2O3 H2O Sum
Fe-free allophane (formula) 39.1 ± 6.0 41.0 ± 4.1 0 19.9 ± 2.6 100 ± 7.7 
Silica Springs 33.4 43.8 0.28
Unaltered allophane 30.2 ± 1.0 32.2 ± 0.8 ND 36.2 ± 1.0 98.6 ± 1.6
pH0_3_FFA 30.4 ± 0.6 36.6 ± 0.9 ND
pH0_5_FFA 30.5 ± 0.2 31.9 ± 0.6 ND
pH0_7_FFA 30.2 ± 1.3 38.3 ± 1.5 ND
pH0_10_FFA 29.9 ± 0.2 37.4 ± 0.3 ND
Fe-poor allophane (formula) 39.0 ± 6.0 40.5 ± 4.0 0.64 ± 0.06 19.8 ± 2.5 99.9 ± 7.6
Kanumatsuchi 29.17 33.81 0.56
Unaltered Fe-allophane 29.6 ± 0.7 28.0 ± 0.9 0.47 ± 0.01 36.8 ± 1.0 94.9 ± 1.5
pH0_3_FPA 28.9 ± 0.6 33.3 ± 0.9 0.48 ± 0.02
pH0_5_FPA 30.4 ± 1.1 30.0 ± 0.4 0.44 ± 0.01
pH0_7_FPA 28.2 ± 1.0 41.4 ± 0.9 0.39 ± 0.02
pH0_10_FPA 30.1 ± 0.6 37.2 ± 0.2 0.43 ± 0.01
Fe-rich allophane (formula) 35.1 ± 5.7 18.4 ± 1.6 28.7 ± 2.6 17.8 ± 2.2 100 ± 6.8
Hisinger 27.5 5.5 51.5
Unaltered Fe-rich allophane 30.2 ± 0.4 17.5 ± 0.3 19.3 ± 0.5 33.4 ± 1.1 100.4 ± 1.3
pH0_3_FRA 28.1 ± 0.6 16.5 ± 0.1 19.7 ± 0.3
pH0_5_FRA 28.8 ± 0.9 18.5 ± 0.7 19.4 ± 0.1
pH0_7_FRA 27.2 ± 0.7 16.8 ± 0.7 19.2 ± 0.5
pH0_10_FRA 28.5 ± 1.0 17.4 ± 0.4 19.3 ± 0.3
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Table 7. Particle lifetimes for Fe-free allophane, Fe-poor allophane, and Fe-rich allophane calculated with Eq. (4). The 
molar volume of all allophanes was assumed to be 1.01 x 10-4 m2 mol-1. Error (where given) represents the 1-σ standard 
deviation between duplicates.

Experimental condition Average rdiss at 25 °C x 10-12 (mol m-2 s-1) Particle size (μm) Particle lifetime (kyr)
pH0_3_FFA 9.30 ± 3.74 1.00 0.020 ± 0.008

167.5 ± 2.2 3.35 ± 1.35
pH0_3_FPA 10.20 ± 4.50 1.00 0.019 ± 0.008

133.1 ± 0.8 2.53 ± 1.12
pH0_3_FRA 2.33 ± 0.15 1.00 0.067 ± 0.004

166.5 ± 4.9 11.226 ± 0.82
pH0_10_FFA 1.32 ± 0.02 1.00 0.118 ± 0.002

167.5 ± 2.2 19.747 ± 0.417
pH0_10_FPA 0.95 ± 0.19 1.00 0.180 ± 0.038

133.1 ± 0.8 24.008 ± 5.020
pH0_10_FRA 1.48 ± 0.02 1.00 0.106 ± 0.002

166.5 ± 4.9 17.598 ± 0.586
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Table 8. Calculated peak positions for unreacted Fe-free allophane, Fe-poor allophane, and Fe-rich allophane, and for the
altered materials from experiments with pH0 values of 3, 5, 7, and 10. Numbers in italics are from minor peaks.

Material Peak positions (Å)
Unaltered allophane 12.27 4.35 3.39 2.25
pH0_3_FFA 11.72 4.37 3.42 2.26
pH0_5_FFA 23.7 3.41 2.25
pH0_7_FFA* 10.82 4.32 3.39 2.27
pH0_10_FFA 11.62 4.29 3.38 2.26
Unaltered Fe-allophane 4.41 3.42 2.26
pH0_3_FPA 11.07 3.39 2.25
pH0_5_FPA 3.41 2.25
pH0_7_FPA 3.42 2.27
pH0_10_FPA 3.41 2.25
Unaltered Fe-rich allophane* 3.50 2.60 2.24 1.92
pH0_3_FRA* 3.47 2.60 2.24
pH0_5_FRA 3.47
pH0_7_FRA* 3.45 2.21
pH0_10_FRA* 12.2 3.45 2.60 2.24 1.92

*Quartz contamination from grinding in agate mortar and pestle was observed in the form of a small, sharp peak at 3.34 Å.
Contamination was more common in Fe-rich samples because the Fe-rich allophane was harder than the other allophanes
and required more rigorous grinding.
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