Supporting Material for: Direct Multipoint Observations Capturing the Reformation of a Supercritical Fast

Magnetosonic Shock

D. L. Turner¹, L. B. Wilson III², K. A. Goodrich³, H. Madanian⁴, S. J. Schwartz⁵, T. Z. Liu^{6,7}, A. Johlander⁸, D. Caprioli⁹, I. J. Cohen¹, D. Gershman², H. Hietala¹⁰, A. K. Higginson², J. H. Westlake¹, B. Lavraud^{11,12}, O. Le Contel¹³, and J. L. Burch⁴

¹The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
²NASA Goddard Space Flight Center, Greenbelt, MD, USA
³Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA
⁴Southwest Research Institute, San Antonio, TX, USA
⁵Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
⁶Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, USA.
⁷Geophysical Institute, University of Alaska, Fairbanks, Fairbanks, AK, USA.
⁸University of Helsinki, Helsinki, Finland
⁹Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA
¹⁰Department of Physics and Astronomy, University of Turku, Turku, Finland
¹¹Inst. de Recherche en Astrophysique et Planétologie, Université de Toulouse, France
¹²Centre National de la Recherche Scientifique, UMR 5277, Toulouse, France
¹³Laboratoire de Physique des Plasmas, UMR 7648, CNRS/Ecole Polytechnique / Sorbonne Univ. / Univ. Paris Sud, Paris, France

Calculating the Local Bow Shock Orientation:

Local bow shock normal direction from the Fairfield [1971] model: $\mathbf{n}_{bs} = [0.974, 0.190, 0.127]$ in GSE Upstream magnetic field (average from MMS-1): $\mathbf{B} = [2.00, 2.37, 0.35]$ nT in GSE Angle between bow shock normal and upstream B-field: $\theta_{Bn} = 38.5$ degrees So, MMS were in the quasi-parallel foreshock, consistent with plasma and field observations and the presence of the foreshock transient structure.

Calculating the Foreshock Transient's Shock Normal Direction and Orientation: Using coplanarity with B and V from Schwartz [1998]:

 $\mathbf{n} = (\Delta \mathbf{B} \ge \Delta \mathbf{V} \ge \Delta \mathbf{B}) / |(\Delta \mathbf{B} \ge \Delta \mathbf{V} \ge \Delta \mathbf{B})|$ where $\Delta \mathbf{X} = \mathbf{X}_{\text{downstream}} - \mathbf{X}_{\text{upstream}}, \mathbf{X} = \mathbf{B} \text{ or } \mathbf{V}$

Coplanarity,	Downstream	Upstream Times: :	
B and V:	Times: 04:UT+	04:UT+	n-GSE
MMS-1	39:24.0 - 39:26.0	39:30.0 - 39:32.0	[0.389, -0.315, -0.866]
MMS-2	39:25.0 - 39:27.0	39:31.0 - 39:33.0	[0.590, -0.551, -0.620]
MMS-3	39:20.5 - 39:23.0	39:27.0 - 39:29.0	[0.670, -0.338, -0.661]
MMS-4	39:22.5 - 39:25.3	39:28.0 - 39:30.0	[0.512, -0.313, -0.800]

Average **n** from all four $s/c \pm 1$ standard deviation on the mean:

 $\mathbf{n}_{sh} = [0.540, -0.379, -0.737] \pm [0.104, 0.010, 0.100]$ in GSE

Magnetic field upstream of the transient's shock: $\mathbf{B} = [1.94, 1.16, 0.30] \text{ nT in GSE}$ Angle between transient shock normal and upstream B-field: $\theta_{Bn} = 80.3 \text{ degrees}$ So, the transient shock was in a quasi-perpendicular orientation

Calculating the Foreshock Transient's Shock Speed:

Spacecraft:	Shock Ramp t	Location in GSE [km]	Velocity [km/s]
MMS-1	04:39:26.320 UT	[92772.145, 32264.144, 16086.952]	[-1.715, 0.155, -0.562]
MMS-2	04:39:27.310 UT	[92579.885, 32282.023, 16023.796]	[-1.719, 0.154, -0.563]
MMS-3	04:39:23.600 UT	[93264.432, 32218.352, 16248.785]	[-1.704, 0.159, -0.560]
MMS-4	04:39:25.550 UT	[92915.644, 32250.873, 16134.104]	[-1.712, 0.156, -0.561]

Shock speed: $V_{sh} * \Delta t = \Delta X \cdot n_{sh}$					
Spacecraft	IΔXI		Shock Speed		
Pairs:	[km]	Δt [s]	[km/s]		

MMS-3 to -4	368.6	1.94	-59.9
MMS-3 to -1	520.2	2.72	-60.5
MMS-3 to -2	723.4	3.70	-61.7
MMS-4 to -1	151.6	0.78	-61.7
MMS-4 to -2	354.8	1.79	-63.6
MMS-1 to -2	203.2	0.99	-65.1

Average shock speed along shock normal ± 1 standard deviation:

$$V_{sh} = -62.1 \pm 1.9 \text{ km/s}$$

Note, the shock is apparently accelerating along the shock normal direction at an average rate of: $a = 2.93 \text{ km/s}^2$

Shock velocity in spacecraft frame (GSE): V_{sh} |sc = [-33.5, 23.5, 45.7] ± [2.1, -1.5, -2.9] km/s

Shock velocity in solar wind frame (GSE): $V_{sh}|sw = [207.5, -1.1, -20.5] \pm [2.1, -1.5, -2.9] \text{ km/s}$

Mach Numbers in background solar wind:

 $M_{Alfvén} = 9.9, M_{fast} = 4.2$

Converting MMS Time Series to Distance Along Shock Normal Vector:

 V_{MMS} lsh = $V_{MMS} - V_{sh}$: MMS velocity in shock reference frame

 v_{MMS} lsh = V_{MMS} lsh · n_{sh} : MMS apparent speed along shock normal

 $t_3(0)$: time at which MMS-3 observed the original shock ramp (see "Shock Ramp t" in table

above)

$$\begin{split} \Delta t_i = t_i(t) - t_i(0), \, i = \{1, 2, 3, 4\} \\ \Delta S_i = v_{\text{MMS}} |\text{sh} * \Delta t_i \end{split}$$

For each spacecraft, $i = \{1, 2, 3, 4\}$, ΔS_i is then the distance along the shock normal direction from the original shock ramp location; thus, S = 0 is where each MMS spacecraft first observed the original shock ramp.

Note that for the results shown in Figure 2 of the paper, S were calculated using $t_i(0)$ for each spacecraft. See Figure SM1 below for example of the spatial series plotted vs. S where all four spacecraft are referenced to the location (S=0) of the original shock ramp when/where it was first observed by MMS-3 at $t_3(0)$. That conversion showcases the expansion speed of the foreshock transient but does not align common features between all four spacecraft.

Figure SM1: $|\mathbf{B}|$ time series from each MMS spacecraft converted to distance along shock normal direction using t₃(0) for all four spacecraft, i.e., instead of t_i(0). This conversion captures the expansion of the foreshock transient but does not align common features along this version of S.

Foreshock Transient Shock Orientation Sketches:

Figure SM2: Sketches of the orientation and relative size scales of the foreshock transient shock and MMS spacecraft and the bow shock.